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ABSTRACT

Many soil moisture networks monitor only one land cover type, typically grassland, and the availability of in-situ
soil moisture data in other land cover types is severely limited. Satellite-based radiometers lack adequate res-
olution to match the spatial variability in land cover, which often occurs at the sub-kilometer scale. Thus, spatial
and temporal dynamics of root zone soil moisture in regions with heterogeneous land cover types remain poorly
understood. Our objective was to determine how effectively root-zone soil moisture for diverse land cover types
can be estimated using a water balance model driven by normalized high-resolution, remotely sensed vegetation
indices (VI) data and in-situ meteorological data. Root zone soil moisture dynamics under four different land
cover types were estimated using normalized VI data as a proxy for the basal crop coefficient. Correlation co-
efficients (r) between measured and modeled soil moisture ranged from 0.50-0.92, mean absolute error (MAE)
ranged from 0.03-0.06 m® m~>, and mean bias error (MBE) ranged from -0.05-0.02 m® m~2 across tallgrass
prairie, cropland, mixed hardwood forest, and loblolly pine plantation sites. Model-estimated soil moisture under
each land cover type was more accurate than both measured data from the nearest long-term grassland moni-
toring site and data from the NASA-USDA Enhanced Soil Moisture Active-Passive (SMAP) soil moisture product,
providing evidence that in-situ meteorological data and remotely sensed VI data may be integrated into a simple

water balance model to better estimate root zone soil moisture across diverse land cover types.

1. Introduction

Soil moisture is an essential climate variable affecting near-surface
temperature, hydrological processes, agricultural production, and the
health of ecological systems (Ochsner et al., 2013; Wagner et al., 2007;
Wagner et al., 2012). Soil moisture data from in-situ monitoring net-
works have been used to estimate deep drainage (Zhang et al., 2019;
Wyatt et al., 2017), improve streamflow forecasts (Wyatt et al., 2020;
Harpold et al., 2017), and improve agronomic decision making (Lollato
et al., 2016; Lollato et al., 2018). However, the majority of soil moisture
data currently available from in-situ monitoring networks reflect con-
ditions under a single land cover type, typically grassland; however soil
water conditions under other nearby land cover types, such as croplands
or forests, may differ significantly from these measured values (Zou
et al., 2014; Patrignani and Ochsner, 2018).

Unlike in-situ data, remotely sensed soil moisture products from
satellites can provide global data that capture spatial and temporal
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variations in soil moisture across numerous land cover types (Mohanty
et al., 2017). However, these data suffer from several limitations,
including a shallow sensing depth (~5 cm), relatively coarse spatial
resolution, and a limited ability to sense soil moisture under dense
vegetation types such as forests (Mohanty et al., 2017; Peng et al., 2017;
Kerr et al., 2001). The most accurate satellite soil moisture products are
based on radiometers, which have footprints of >30 km (Entekhabi
et al., 2010). Because vegetation types are often intermixed at smaller
scales (< 1 km), variations in soil moisture caused by contrasting land
cover types are not adequately captured by current remote-sensing soil
moisture products.

A growing body of research shows the potential of higher resolution,
remotely sensed vegetation index (VI) data, such as those from NASA’s
Moderate Resolution Imaging Spectroradiometer (MODIS) sensors, to
close this gap in spatial scale and provide new insights into the effects of
land cover type on soil moisture (Zhu et al., 2020; Olivera-Guerra et al.,
2018; Battude et al., 2017; Sanchez et al., 2012; Sanchez et al., 2010).
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Fig. 1. Map of MODIS land cover types (500-m resolution) and county boundaries in Oklahoma, active Oklahoma Mesonet locations (black dots), and locations of
independent soil moisture monitoring stations under various land cover types (triangles). Site A is a cropland, Site B is a tallgrass prairie, Site C is a hardwood forest,

and Site D is a loblolly pine planation.

The concept of using remotely sensed VI data in mechanistic water and
surface energy balance models has been frequently discussed in the
literature (Hendrickx et al., 2016; Glenn et al., 2011; Glenn et al., 2010;
Gonzalez-Dugo et al., 2009; Glenn et al., 2007), but most land surface
models were not designed to incorporate these data. Incorporating new
data types into existing mechanistic models may not improve model
results (Ford and Quiring, 2013) and may actually decrease model
performance due to overfitting issues (Transtrum and Qiu, 2016). Land
surface models which are capable of integrating VI data, such as those
within the North American Land Data Assimilation System (NLDAS),
have a crude conceptual representation of soil characteristics, allow only
monthly VI inputs, and have a maximum spatial resolution of ~1 km
(Mitchell et al., 2004; Kumar et al., 2006).

The current research seeks to overcome the limitations presented by
both in-situ and remotely sensed soil moisture data by integrating in-situ
meteorological data and remotely sensed VI data into a simple water
balance model based on the FAO-56 dual crop coefficient method (Allen

et al., 1998). This novel application, unlike most prior studies utilizing
the FAO-56 water balance method, utilizes the model primarily to es-
timate daily root zone soil water content rather than evapotranspiration
(ET). The resulting root zone soil moisture estimates are then evaluated
against measured values at four independent in-situ monitoring loca-
tions under diverse land cover types. The goals of this research are: 1) to
determine the suitability of using remotely sensed VI data as proxies for
the basal crop coefficient in the water balance simulations of diverse
land cover types, 2) to evaluate the accuracy of various approaches for
computing crop coefficients from vegetation indices, and 3) to compare
soil moisture estimates resulting from this water balance model under
four different land cover types with a) measured values in each land
cover type, b) data measured at nearby grassland monitoring stations,
and c¢) root zone soil moisture data from the NASA-USDA SMAP soil
moisture product.

This work presents an innovative method of integrating remote
sensing VI data and measured meteorological data within the FAO-56
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Fig. 2. Photos of the cropland (a), tallgrass prairie (b), hardwood forest (c), and loblolly pine plantation (d) sites; a diagram of the layout of monitoring sites A, C, and
D; and an example soil moisture sensor profile of sites A, C, and D. Site B sensor profiles were farther apart with sensors at depths of 0.05, 0.10, 0.20, and 0.50 m

below the surface.
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Table 1
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Geographic and long-term meteorological data for each site, including latitude and longitude, elevation above sea level, distance to the nearest Oklahoma Mesonet
station, long-term mean daily maximum temperature (Tyay), long-term mean daily minimum temperature (Tp,;,), long-term mean annual precipitation (P), and the

year in which soil moisture sensors were installed.

Site Lat, Lon Elevation Distance to Mesonet Tmax, Tmin P Year Installed
deg. m km °C mm

Loblolly Pine Plantation 34.03, -94.82 110 23.1 23.9,11.0 1159 2019

Mixed Hardwood Forest 36.00, -97.04 292 1.00 22.3,9.92 873 2018

Cropland 35.03, -97.91 328 0.13 23.1,9.36 812 2018

Tallgrass Prairie 36.06, -97.21 327 0.47 22.1,9.43 884 2012

model, and our results are among a small number of studies to show that
this integration of data from different sources can lead to accurate es-
timates of root zone soil moisture under a wide variety of land cover
types, including non-agricultural land cover types not traditionally
considered within the FAO-56 model. To our knowledge, this study is
the first conducted following the innovative work of Sanchez et al.
(2010, 2012a, 2012b) which directly incorporates remote sensing VI
data to estimate crop coefficients within the FAO-56 model without the
inclusion of other additional input or calibration data. Further, the
present study is the first application of this method in the U.S. and one of
a few attempts to apply the FAO-56 model to estimate root zone soil
moisture under non-agricultural land cover types.

2. Methods
2.1. Monitoring stations

Four locations in Oklahoma, USA, each with a different dominant
land cover type, were chosen for modeling and as independent soil
moisture monitoring locations to be used for model validation (Fig. 1).
Land cover types at these sites include a mixed hardwood forest, a
loblolly pine (Pinus taeda) plantation, rainfed (i.e., non-irrigated) crop-
land, and tallgrass prairie. At each monitoring location, arrays of soil
moisture sensors (CS-655, Campbell Scientific, Inc., Logan, Utah) were
installed in triplicate to monitor the volumetric water content in the soil
profile. At the mixed hardwood forest, loblolly pine plantation, and
cropland locations, soil moisture sensors were installed horizontally at
depths of 5, 25, 60, and 100 cm. At these sites, sensor profiles were
installed 6.1 m away from a central datalogger along headings separated
by ~120° in order to maximize the distance between sensor profiles and
reduce intercorrelation between soil moisture measurements (Fig. 2).
Five-centimeter diameter soil cores with a length of 5.1 cm were taken
horizontally adjacent to each sensor at the time of installation in each
profile and at each depth (3 profiles per site x 4 depths per profile = 12
cores per site).

At the tallgrass prairie location, CS-655 soil moisture sensors
installed for a previous project were used. Sensors were installed in
triplicate at this location as well, but farther apart than at the other three
monitoring locations (mean of 449 m apart). At each tallgrass prairie
monitoring profile, sensors were installed horizontally at 5, 10, 20, and
50 cm below the surface. As at the other sites, soil cores were collected
from all soil profiles at the time of sensor installation. Soil cores from all
sites were analyzed to estimate the soil volumetric water content at field
capacity (-10 kPa, 0.1¢) [m® m~3], water content at wilting point (-1500
kPa, 0.1500) [m® m~3], bulk density [kg m~3], and fractions of sand, silt,
and clay.

Measurements of soil apparent dielectric permittivity (K,) [-], and
electrical conductivity (EC) [dS m '] were collected either every hour
(tallgrass prairie sites) or half hour (all other sites) using the CS-655
sensors. Sensors were calibrated using Coyle-Lucien complex soil
taken from a location near the tallgrass prairie site in 2013. The cali-
bration equation used was

6 =0.107\/K, — 0.119vVEC — 0.105 )

where 0 is the volumetric soil water content [m® m3]. Using the volu-
metric water content values resulting from Equation 1, we calculated
depth-weighted mean (i.e., mean of three sensor profiles) daily root zone
volumetric soil moisture values for all available dates for each site.
Depth-weighted root zone soil moisture values at these sites and at
Oklahoma Mesonet stations were calculated by assuming soil moisture
sensors were located at the center of a given soil layer (i.e., the data
recorded by the sensor at 5 cm is representative of the condition of the
layer from 0-10 cm, etc.), with the exception of the tallgrass prairie site,
where soil moisture sensor depths necessitated the use of a trapezoidal
integration function for depth weighting. Due to datalogger storage
limitations and remote site connectivity problems, portions (ranging
from 14.2-33.8%) of measured data are missing after the installation
date at each site. Station installation dates are shown in Table 1.

2.2. Soil water balance model

The dual crop coefficient form of the FAO-56 method is a well-known
empirical method used to estimate soil evaporation and crop transpi-
ration (together, ET.) using meteorological data and tabular crop co-
efficients (Allen et al., 1998). Inputs for the model include: daily
estimates of reference evapotranspiration (ET,), which are calculated
from measured wind speed, air temperature, rainfall, incoming solar
radiation, and relative humidity data; daily basal crop coefficient (Kcp)
values which approximate the ratio of transpiration that would occur in
the absence of water stress to reference evapotranspiration; daily plant
height and rooting depth estimates; soil properties for the surface layer
and the full root zone including sand and clay percentages, soil volu-
metric water content at field capacity, and soil volumetric water content
at wilting point; the fraction of soil covered by plant residue; and the soil
volumetric moisture content at the beginning of the simulation.

Daily ET, values for a short crop reference surface are calculated
using the Penman-Monteith method as described in the FAO-56 pro-
cedure. A water stress coefficient (K;), which reduces vegetation tran-
spiration when the amount of available soil water in the root zone drops
below a defined threshold, and a soil evaporation coefficient (Kc), which
reduces soil evaporation when the water content of the surface soil de-
creases, are calculated daily based on the estimated available soil water
storage. Along with the K, values, the estimated K and K, values are
used to scale ET, according to

ET, . = (K, x K+ K.) ET, (2)

where ET 44 is the crop evapotranspiration, adjusted for soil water
stress conditions (Allen et al., 1998).
ET. »qj values are calculated as part of the daily water balance:

D,;= D,_, — (P—RO) + ET,,, + DP 3)

where D;; is the current root zone depletion (i.e., deficit relative to field
capacity), Dy is root zone depletion from the previous day, P is pre-
cipitation, RO is surface runoff, and DP is deep percolation (Allen et al.,
1998). Deep percolation is non-zero only on days when the soil water
content exceeds field capacity and is estimated by
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Table 2
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Surface and full profile mean depth-weighted sand and clay contents, porosity, soil volumetric water contents at field capacity (6.1) and wilting point (0.159¢), and the

depth of soil subject to evaporation (Z.).

Surface Full profile
Site Sand Clay Porosity 0.10 0.1500 Sand Clay Porosity 0.10 0.1500 Ze
% % m®m~3 m®m~3 m®m~3 % % m®m~3 m®m~3 m®m~3 m
Loblolly Pine Plantation 44.8 10.4 0.40 0.28 0.03 36.9 20.9 0.38 0.33 0.09 0.13
Mixed hardwood forest 80.3 3.74 0.46 0.09 0.02 86.1 4.23 0.48 0.07 0.02 0.11
Cropland 25.8 19.9 0.46 0.31 0.10 21.3 24.5 0.45 0.32 0.11 0.14
Tallgrass Prairie 35.0 21.2 0.51 0.30 0.13 20.0 40.9 0.44 0.32 0.21 0.13

DP =P — RO — ET,

Cadj

—Dyiy 4

On days when water drains from the soil profile (i.e., when DP > 0),
D, is equal to zero. Additional calculations within the model include the
estimation of the total available soil water (TAW), which is estimated by

TAW = (0_10 — 0_1500) Z, %)

where Z, is the rooting depth [mm]. Finally, daily plant available water
(PAW) values are estimated as

PAW = TAW — D, (6)

Daily PAW estimates were converted to depth-weighted values of
root-zone volumetric soil moisture (0) [m3 m’3] according to:
PAW

0="2

2 + 0_1500,,

)
where L is the thickness of the soil profile and where 6.75004y is the
depth-weighted mean value of surface and full profile 0_509 values given
in Table 2.

The K; coefficient in Eq. 2 is calculated within the model according to
the following equation:

_ TAW- D,

L= 2T D> pTAW
(1— p)TAW P

(€))

where p is the depletion fraction, or the average fraction of TAW that can
be depleted from the root zone before plant water stress occurs. The K,
coefficient is calculated as:

Ke = min({Kr(Kc_mux - Kub)}y {f;ch_nuu}) (9)

where K, is a dimensionless evaporation reduction coefficient which is
dependent upon the cumulative depth of water evaporated from the soil
surface layer, K mqx represents an upper limit on evapotranspiration,
and f,,, is the fraction of soil that is exposed and wetted (i.e., the fraction
of soil from which evaporation occurs).

The K¢ max parameter is imposed to limit ET based on restraints on
available energy, and is typically calculated according to:

Kooy =Max ({1.2+ [0.04 (14, —2) —0.004(RH, 1, —45)] (g) } {K(,h+0.05}>
(10$)

where u is the mean daily wind speed at 2 m above the ground surface
[m s~ 1], RHpin is the minimum relative humidity for each day [%], and h
is the mean maximum plant height [m]. Equation 10 leads the model to
utilize whichever calculated value is greater (i.e., the first or second
argument of the max function). Normally, K¢ mqx is no more than ~1.3
(Allen et al., 1998). However, in the simulations of the forested sites, Eq.
(10) apparently overestimated K. max due to the larger height (h) of the
forest canopy as compared to typical agronomic crops, and the calcu-
lated K¢ max values were often >1.7. This led to unrealistically high es-
timates of ET ,q; for the forested sites (annual ET 54j >> annual P). For
this reason, for the forested locations, K max Was set equal to K¢, + 0.05
(i.e., the right-hand portion of the function in Eq. 10).

Irrigation inputs were not considered because all of the study

locations are rainfed. Additionally, surface runoff was assumed to be
negligible for these nearly-level sites. Based on measured daily precip-
itation values as well as the hydrologic soil groups and estimated curve
numbers of the study locations, surface runoff likely occurred on <5% of
simulation days across all sites.

The FAO-56 method was developed for and has been traditionally
applied in agricultural cropping systems, but the method has shown the
potential to estimate vegetation water use and soil water dynamics
under diverse land covers types by using remote sensing vegetation
indices data as a proxy for K, (Sanchez et al., 2010). Here, we applied a
vegetation index-based approach at four locations in Oklahoma with
diverse land cover types for the period from January 1, 2000 — June 8,
2020. While simulations were run for >20 years to characterize
long-term patterns, measured soil moisture data are only available at the
four study sites in recent years (see Table 1). For this reason, we focus
our analysis and discussion on the period for which measured soil
moisture data are available at each site. Normalized difference vegeta-
tion index (NDVI) and enhanced vegetation index (EVI) data from the
MODIS instruments aboard NASA’s Aqua and Terra satellites were
tested in order to determine which VI product yielded crop coefficients
that resulted in the most accurate estimations of volumetric soil water
content at the four study sites (see Appendix A). The best-performing VI
dataset and meteorological data from the Oklahoma Mesonet were used
as the primary model inputs (Fig. 1) (Huete et al., 1999; McPherson
et al., 2007).

2.3. Geographical and meteorological inputs

Geographical inputs necessary for the model include elevation and
longitude and latitude, which are used to adjust the psychrometric
constant to account for changes in atmospheric pressure with altitude
and to account for variations in extraterrestrial radiation by latitude.
Precipitation records for each monitoring station are also required, as
are daily estimates of reference evapotranspiration (ET,). Estimates of
ET, were produced using daily data from the Oklahoma Mesonet station
nearest to each independent soil moisture monitoring location. Any
missing meteorological records were filled using data from the next
nearest Oklahoma Mesonet station (McPherson et al., 2007). If no data
were available from the next nearest station, the remaining missing re-
cords were filled in using linear interpolation. The distance between the
Mesonet stations and the monitoring locations ranged from 0.13 km to
23.1 km (Fig. 1, Table 1).

The effects of non-reference (i.e., non-irrigated) ground cover on ET,
estimates were accounted for using daily dew point temperature and
relative humidity data according to the method described by Allen
(1996). Dew point temperatures were calculated from daily temperature
and relative humidity data as follows:

17.502T iy
24097 i

Cour = 6‘1365e<

_ (RH
€= 100 €sat

1D

12)
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In (6.1‘;65)

17.502 — 1n(é)

6.1365

Tgew = 240.97 x 13)

where e, is the saturation vapor pressure [mb] at the minimum daily
temperature, e is the actual vapor pressure [mb], Tpi, is the minimum
daily temperature [°C], and RH is the relative humidity (Buck, 1981;
Allen et al., 1998). This correction was made for days when the mini-
mum observed air temperature was >2°C above the calculated dew
point temperature, and the resulting dew point temperatures and rela-
tive humidity data were used to calculate adjusted daily maximum and
minimum temperature values for use in the ET, calculations according
to the procedure described by Allen (1996). These corrections were
necessary on 27% of days across all sites and resulted in a 2.7% decrease
in ET,, on average.

In addition to corrections for non-reference ground cover, precipi-
tation record inputs at the forested sites were adjusted to account for
canopy and understory interception, assuming 2 mm of interception lost
at the onset of every precipitation event. This interception value is
similar to that found by Zou et al. (2015), who reported canopy storage
capacity (i.e., interception rates) of 2.14-3.44 mm in eastern redcedar
(Juniperus virginiana) woodlands. This adjustment was necessary
because all precipitation data were collected at the nearest Mesonet
station (i.e., outside the forested area) and are not necessarily repre-
sentative of the precipitation experienced at the soil surface under the
forest canopy and residue. This adjustment led to a decrease in effective
annual precipitation of ~141 mm yr! at the mixed hardwood forest site
and ~157 mm yr ! at the pine plantation site. While there may also be
significant interception at the tallgrass prairie location during certain
times of the year (Zou et al., 2015), due to the dynamic nature of the
above ground vegetation, those effects were not considered here.

2.4. Remote sensing inputs

MODIS NDVI and EVI composite imagery at a 250-m resolution and
16-day return period were used here (MOD13Q1 and MYD13Q1 prod-
ucts). Because these images are available from either the Aqua or Terra
satellite at 16-day intervals and because the satellites’ return intervals
are offset from one another by 8 days, a complete image is available
every 8 days. EVI and NDVI are calculated as (Huete et al., 2008):

EVI—G ( PNIR — Pred > 14)

Puie T C1 * Prg — Co % Py + L

NDVI = (Prir = Prea) (15)
(Prir + Prea)

where p are corrected or partially atmosphere-corrected surface re-
flectances of the near infrared (pnir), red (pred), and blue (ppiye) bands, L
is the canopy background adjustment that addresses NIR and red radiant
transfer through a canopy, and C;, Cy are the coefficients of the aerosol
resistance term, which uses the blue band to correct for aerosol in-
fluences in the red band (Huete et al., 2002). The coefficients adopted in
the EVI algorithm are, L = 1, C; = 6, C; = 7.5, and G (gain factor) = 2.5
(Huete et al., 1994; Huete et al., 1997).

All remote sensing data were downloaded using a custom script in
the JavaScript API within the Google Earth Engine Code Editor (Gor-
elick et al., 2017). This script defined a bounding rectangle around each
monitoring station which contained only the dominant land cover type
based on Google Earth aerial imagery. Area-weighted mean VI values for
each area were calculated for each 16-day composite image, and a time
series of VI values for each location was saved in a text file. After
download, VI data were processed using a custom MATLAB script.

Agricultural and Forest Meteorology 307 (2021) 108471

There is some evidence that EVI may be more suitable than NDVI for
the current application for a number of reasons, including that EVI im-
ages are less likely to saturate when considering dense canopies due to
the addition of the blue reflectance band (Gao et al., 2000). Addition-
ally, EVI is designed to separate the background signal of the soil from
that of the plant canopy, EVI is more responsive than NDVI to vegetation
structural variations, and EVI data have been shown to be more highly
correlated with ET than NDVI data (Gao et al., 2000; Wang et al., 2007).

Six different approaches for estimating Ky, values from NDVI and EVI
data were tested. This included using generalized equations and site-
specific equations from the literature (see Appendix A for description
of each method and testing results). K., values from each estimation
method were used within the FAO-56 model in order to determine which
method yielded the most accurate estimations of soil moisture as
compared to measured data at the four focus sites. While all of the Ky,
estimation methods performed similarly, the method with the lowest
mean error was found to be:

EVI — EVI,;,

Ky = o 2 min 16
! EVImax - EVImin ( )

with a mean r value of 0.68, mean MAE of 0.04 m® m_g, and mean MBE
of 0.002 m® m~2 across sites (Table A1). This generalized equation fol-
lows the method described by Choudhury et al. (1994) and Glenn et al.
(2010), where EVI is the mean observed EVI value of the defined area for
each image, EVIp;;, is the minimum EVI value for a given site during the
study period, and EVI,y is the maximum EVI value for a given site
during the study period. Because it performed slightly better than the
other K., estimation equations, does not rely upon a site-specific cali-
bration, and because of the greater suitability of the EVI product over
NDVI for the present study, Eq. 13 alone was used for the remainder of
analyses. Following the calculation of K¢, values at 8-day intervals,
values were interpolated linearly between image dates to produce daily
K values for the simulation period similar to the method used by
Sanchez et al. (2010) and Sanchez et al. (2012a).

2.5. Vegetation characteristic inputs

In addition to the data described above, the model requires daily
estimates of vegetation height and rooting depth. Vegetation heights for
the mixed hardwood forest site were assumed to be static and to be equal
to 10.0 m, which lies within the range of tree heights in the cross timbers
of Oklahoma reported by Oklahoma Forestry Services (2010). A mean
tree height of 9.4 m was reported for the pine plantation location used in
this study by Dipesh et al. (2014) and was used here, also assuming a
static vegetation height. Dynamic daily vegetation heights for the
cropland site were estimated by multiplying daily K¢, values by 2.0 m,
the vegetation height for field corn reported by Allen et al. (1998),
which was grown at the site during the validation period. This method
allowed the vegetation height to vary according to vegetation greenness
rather than according to a defined growth curve, which was necessary
due to the varying crop rotations implemented at the site and due to the
lack of crop type data in many years. The same method was used at the
tallgrass prairie site, using a maximum plant height of 1.0 m based on
observations at the field site.

Rooting depths for the two forested locations and for the cropland
site were set equal to 1.2 m to match the effective soil depth to which soil
moisture content was measured by the installed sensors. The active
rooting depth may be >1.2 m for these locations, as tree roots were
observed down to at least 1.0 m depth at the forested sites during sensor
installation and crops grown at the cropland site can have effective
rooting depths of 1.0-2.0 m (Allen et al., 1998). The rooting depth used
for the tallgrass prairie site was set to 0.65 m to match the shallower soil
moisture measurement depths at that location. The true rooting depth at
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Fig. 3. Daily mean reference evapotranspiration (ET,) from January 1, 2000 —
June 8, 2020 for each study site, smoothed using a 30-day centered mov-
ing average.

the tallgrass prairie site is likely limited by the soil depth, which is <0.3
m in some places and commonly <1.0 m.

2.6. Soil property inputs

Information regarding the soil properties of the modeled area is also
required, including the depth of soil from which evaporation may occur
(Ze), 010 and 0.1500 at the surface and for the full soil profile, and soil
volumetric water content on the first date of simulation. Z. was calcu-
lated for each location based on the sand content of the surface soil as
described in Allen et al. (1998) (Table 2). The necessary soil properties

1o Mixed Hardwood Forest

0
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were estimated from soil cores taken at each monitoring site, and mean
soil properties of the uppermost soil samples (5-cm depth) were used to
represent the soil surface properties in the model.

Mean depth-weighted soil properties (i.e., mean values of the trip-
licate profiles’ soil properties) were used to represent the soil physical
properties of the full soil profile at each site within the model (Table 2).
At the mixed hardwood forest, loblolly pine plantation, and cropland
sites these depth-weighted properties were calculated by assuming that
each soil moisture sensor was located at the center of a given soil layer (i.
e., the data recorded by the sensor at 5 cm is representative of the
condition of the layer from 0-10 cm, etc.). At the tallgrass prairie site,
due to the sensor installation depths, a trapezoidal integration was used
to estimate profile soil properties to a depth of 65 cm. Soil moisture
values on the first day of the simulation were assumed to be the same as
those at the nearest Oklahoma Mesonet station, or to be halfway be-
tween the depth-weighted 0.1¢ and 6.150¢ values if no Mesonet data were
available.

2.7. SMAP root zone soil moisture data

NASA-USDA SMAP root zone soil moisture data were compared with
model-estimated soil moisture values at each site. These soil moisture
data are available every three days at a spatial resolution of 10 km. The
data represent conditions to a depth of 1.0 m and are developed by
integrating radiometer-derived Soil Moisture Active Passive (SMAP)
Level 3 soil moisture observations into the modified two-layer Palmer
model using a 1-dimensional Ensemble Kalman Filter data assimilation
approach (Entekhabi et al., 2010; (Sazib et al., 2018)). Like VI data, data
were processes in Google Earth Engine, which was used to produce
area-weighted mean SMAP soil moisture values for each study site.

Loblolly Pine Plantation

1.2

0
0 100 200 300
Day of Year
Tallgrass Prairie
1.2 - -
1 k

0 100 200 300
Day of Year

Fig. 4. Mean daily K, values for each land cover type from January 1, 2000 — June 8, 2020 (black line). The gray shaded areas represent the full range of daily

K, values.
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Fig. 5. Examples of growing season K, curves for the cropland site when planted with a warm season crop (sorghum) followed by a cool season crop (winter wheat).

3. Results and discussion
3.1. ET, estimates

Mean annual ET, values at each location for the full simulation
period range from 1219 mm yr’1 in the loblolly pine plantation to 1425
mm yr! at the cropland site, with intermediate values of 1352 mm yr
at the tallgrass prairie and 1403 mm yr ! at the mixed hardwood forest
site. Daily ET, estimates ranged from 0.24 to 12.0 mm d ! at the mixed
hardwood forest location, from 0.32 to 9.55 mm d ! at the loblolly pine
plantation location, from 0.30 to 12.3 mm d ™ at the cropland location,
and from 0.26 to 10.8 mm d ! at the tallgrass prairie location. Smoothed
mean daily ET, values for each day of the year during the study period
are shown in Fig. 3. Mean daily ET, peaked on the 192" day of the year
(July 10 or 11) in the loblolly pine plantation and peaked slightly later

on the 201°% day of the year (July 19 or 20) at the mixed hardwood
forest, tallgrass prairie, and cropland sites.

Annual ET, values found for the study sites are similar to long-term
(2005-2019) average ET, values reported by the nearest Oklahoma
Mesonet stations (Sutherland et al., 2005; Oklahoma Mesonet webpage).
The mean annual ET, value of 1219 mm yr~! found at the loblolly pine
plantation is comparable to the value of 1204 mm yr ™! reported for the
nearby Idabel Mesonet site. The ET, values of 1352 mm yr~! estimated
for the tallgrass prairie site and 1403 mm yr~! for the hardwood forest
site are comparable to the value of 1367 reported for the Marena Mes-
onet station nearby both sites. The mean annual ET, value of 1425 mm
yr~! estimated for the cropland is close to the reported value of 1427
mm yr ! at the nearby Chickasha Mesonet site. Distances from the study
sites to the Mesonet sites mentioned here are given in Table 1, with the
exception of the Mesonet site nearest the hardwood forest site, where

Fig. 6. Mean (solid line) and standard devia-
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tion (shaded area) of measured root-zone soil
volumetric water content under each land cover
type, modeled root-zone soil volumetric water
content (black dots), measured root-zone soil
volumetric water content from the nearest
Oklahoma Mesonet station (dashed line), and
NASA-USDA SMAP root zone soil moisture data
at each site (triangles). All data have been
depth-weighted according to the procedure
described in section 2.1. Measured root-zone
soil volumetric water contents at field capac-
ity (0.10) and permanent wilting point (0.1500)
are also given for each site. Select dates are
shown for the tallgrass prairie site to preserve
figure legibility.
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Table 3
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Pearson correlation coefficient (r), mean absolute error (MAE), and mean bias error (MBE) calculated by comparing daily volumetric water content estimated by the
water balance model and measured volumetric water content each independent monitoring site (modeled v. measured), by comparing independent volumetric water
content measured under each land cover type and measured volumetric water content at the Oklahoma Mesonet station nearest the monitoring site (measured v.

Mesonet), and by comparing measured volumetric water content each independent monitoring site with SMAP soil moisture (Measured v. SMAP).

Modeled v. Measured

Measured v. Mesonet

Measured v. SMAP

Site r MAE MBE r MAE MBE r MAE MBE

- m®m3 m®m3 m®m~3 m®m3 m®m~3 m®m~3
Loblolly pine plantation 0.92 0.06 -0.05 0.65 0.18 0.15 0.85 0.07 0.05
Mixed hardwood forest 0.70 0.03 0.02 0.76 0.22 0.14 0.74 0.04 -0.02
Cropland 0.50 0.06 0.02 0.70 0.16 0.10 0.56 0.15 0.11
Tallgrass prairie 0.80 0.04 -0.02 0.75 0.09 0.06 0.83 0.12 0.04
MEAN 0.73 0.05 -0.01 0.72 0.16 0.11 0.75 0.10 0.05

long-term ET, data are not available. The Marena Mesonet station is

0.08 to 0.33 m® m~® under loblolly pine, from 0.11 to 0.32 m® m~

3

located 17.5 km from the hardwood forest site.

3.2. K¢ curves

Mean daily K}, values during the study period, as well as maximum
and minimum K, values for each day of the year, are shown in Fig. 4.
Kp values during the study period ranged from 0.0-1.0 for all land cover
types (see Eq. 13). The curves of the forested and tallgrass prairie sites
show similar patterns, with an exponential increase in K¢, values in the
spring, small declines during the summer months, and a sharp decline
indicating decreasing plant greenness and plant senescence in the fall
and winter months. The mean cropland K, curve shows little change
throughout the calendar year, with small peaks near day 100, day 175,
and day 320. The relatively constant cropland mean K, values and
multiple small peaks throughout the year in Fig. 4 are likely due to the
production of crops with different peak growth periods (e.g., winter
wheat versus sorghum) during different years of the simulation period.
An example of different seasonal K, curves for cool season (winter
wheat) and warm season (sorghum) crops is shown in Fig. 5. This figure
shows the different Ky, curves for two crop types, with peak K, values
for sorghum occurring in early July and peak K, values for winter wheat
occurring in late April and early May.

The K curves for the study locations are similar to those in prior
studies which estimated the basal crop coefficient using VI data. For
example, Sanchez et al. (2012a) reported K, values estimated from VI
data ranging from near zero to ~0.75 for barley cropland during a single
growing season. The same study reported K., values ranging from zero
to ~0.50 for grassland, which is slightly lower than the mean peak value
of ~0.80 found in this study. However, it is important to note that
Sanchez et al. (2012a) considered only one growing season, while Fig. 4
considers >20 years of VI data. Campos et al. (2017) used the soil
adjusted vegetation index (SAVI) to estimate Ky, for a site under maize
and soybean rotation and found that K, reached a maximum value of
0.95 under maize and 0.90 under soybean. These values are more
comparable to the maximum K, values found for the cropland site
(Figs. 4, 5).

The dual crop coefficient method has been most commonly applied
to cropland and grassland locations, and to our knowledge, no compa-
rable studies have been carried out in forested ecosystems that would
allow for a comparison of K, curves at the mixed hardwood forest and
loblolly pine plantation sites. However, Allen et al. (1998) suggests a
year-round K, value of 1.0 for conifer trees. In contrast, Fig. 4 suggests
that even for evergreen species the K, value is not constant and fluc-
tuates seasonally, which indicates that using a constant K., value may
lead to incorrect estimates of ET¢ a4;.

3.4. Comparison of modeled and measured soil moisture

Model-estimated root zone volumetric soil moisture for the study
ranged from 0.02 to 0.07 m® m~2 under mixed hardwood forest, from

under cropland, and from 0.20 to 0.31 m® m~> under tallgrass prairie.
Mean daily volumetric soil moisture was greatest year-round at the
tallgrass prairie location, which had the finest soil texture among the
study sites, and lowest year-round at the hardwood forest site, which
had the coarsest soil texture. The extremely low values of soil moisture
at the hardwood forest site are likely a result of the high sand content of
the soil at the site (>80% sand, Table 2).

Pearson correlation coefficient values across all sites indicate a
moderate to high level of agreement between model estimated and
measured root zone soil moisture. The model was able to estimate soil
moisture dynamics moderately well at all sites, though some over-
estimations and underestimations are evident at times at each site
(Fig. 6). These discrepancies are most likely a result of the values of 8.1¢
and 0.1509 measured at the sites. These values are shown in each sub-
figure of Fig. 6 and represent the effective range of soil moisture
values for each site, as the FAO-56 model uses these values as upper and
lower limits on soil water storage. The greatest r values were found for
the loblolly pine plantation site (r = 0.92), and the lowest values were
found for the cropland site (r = 0.50) (Table 3). The range of r values
from this study is comparable to those found by Schnur et al. (2010),
who reported r values from 0.74 to 0.94 when applying a trained linear
regression model to estimate 0-50 cm soil moisture values at distant,
unmonitored sites using NDVI data. Our findings are also similar to those
reported by Owe et al. (1988), who found an r value of 0.82 for their
model, which used microwave brightness temperature and NDVI to es-
timate soil moisture at an unmonitored location.

Model error and bias were low at all sites, with mean absolute error
(MAE) ranging from 0.03 to 0.06 m? m~3 (Table 3). The greatest MAE
values were found for the cropland and loblolly pine sites, while the
lowest MAE value was found for the mixed hardwood forest site. The
level of error found in the present study is greater than that reported by
Sanchez et al. (2010), who reported RMSE values ranging from 0.01 to
0.03m> m’g, but similar to that reported by Sanchez et al. (2012b), who
reported RMSE values ranging from 0.01 to 0.11 m® m~>. Mean bias
error (MBE) ranged from -0.05 to 0.02 m® m~3, with the greatest ab-
solute MBE observed for the loblolly pine plantation and the lowest
absolute MBE found for the mixed hardwood forest site. The level of bias
found in the present study is also comparable to that reported by
Sanchez et al. (2012b), who reported bias values ranging from 0.00 to
0.04 m®*m~3,

3.5. Comparison of soil moisture measurements from independent
monitoring stations and Mesonet

We also compared measured soil moisture under each land cover
type to measured soil moisture at the nearest Mesonet station in order to
determine differences in soil moisture dynamics and magnitude under
different land cover types (Table 3). The greatest r value was found for
the tallgrass prairie site (r = 0.77), and the lowest value was found for
the loblolly pine plantation (r = 0.65). The moderately low correlation
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Table Al
Pearson correlation coefficient (r), mean absolute error (MAE), and mean bias error (MBE) for six K¢, estimation methods.
K¢p method Land cover type r MAE MBE
- m®m~3 m®m~3
Kep-Evi Mixed Hardwood Forest 0.70 0.03 0.02
Loblolly Pine Plantation 0.92 0.06 -0.05
Cropland 0.50 0.06 0.02
Tallgrass Prairie 0.80 0.04 -0.02
Keb-EVi2 Mixed Hardwood Forest 0.69 0.03 0.02
Loblolly Pine Plantation 0.96 0.05 -0.04
Cropland 0.51 0.06 0.02
Tallgrass Prairie 0.76 0.03 -0.02
Keb-Guerschman Mixed Hardwood Forest 0.67 0.03 0.02
Loblolly Pine Plantation 0.97 0.04 -0.02
Cropland 0.50 0.06 0.03
Tallgrass Prairie 0.79 0.04 -0.02
Keb-Bausch Mixed Hardwood Forest 0.66 0.03 0.02
Loblolly Pine Plantation 0.96 0.04 -0.01
Cropland 0.48 0.06 0.03
Tallgrass Prairie 0.74 0.03 -0.02
Keb-Kamble Mixed Hardwood Forest 0.69 0.03 0.02
Loblolly Pine Plantation 0.96 0.04 -0.01
Cropland 0.49 0.06 0.03
Tallgrass Prairie 0.77 0.03 -0.02
Keb-Tasumi Mixed Hardwood Forest 0.66 0.03 0.02
Loblolly Pine Plantation 0.96 0.04 -0.01
Cropland 0.47 0.06 0.03
Tallgrass Prairie 0.74 0.03 -0.02

(r = 0.70) between soil moisture at the cropland site and the nearby
Oklahoma Mesonet station may be a result of the dichotomous nature of
soil moisture dynamics under cool-season crops (such as winter wheat)
and warm-season native grasses growing at the Mesonet station (Pat-
rignani and Ochsner, 2018). The soil moisture estimates from the model
were more strongly correlated with the measured soil moisture data
than were the data from the nearest Mesonet site for the loblolly pine
plantation site and the tallgrass prairie site, but not for the other two
sites.

The error and bias levels were much greater between soil moisture
measurements from the nearest Mesonet station and soil moisture at the
independent monitoring sites compared to those found between model-
estimated soil moisture and independent monitoring sites (Table 3,
Measured v. Mesonet). Mean absolute error (MAE) for the nearest
Mesonet site ranged from 0.09 to 0.22 m® m~3, with the greatest MAE at
the mixed hardwood forest and lowest MAE at the tallgrass prairie site.
Mean bias error ranged from 0.06 to 0.15 m® m~3, with the greatest MBE
observed at the loblolly pine plantation and the lowest MBE at the
tallgrass prairie. It is likely that these sites exhibited the highest and
lowest levels of bias because of their large and small distances between
the independent stations and the nearest Mesonet station, respectively
(Table 1). While the dynamics of soil moisture between Mesonet and
independent monitoring stations are moderately correlated, there are
often large errors and biases, which highlights the need for improved
estimations of soil moisture under these diverse land cover types. Our
findings indicate that soil moisture estimates from the model developed
here are better indicators of the soil moisture status across diverse land
cover types than are soil moisture measurements from in situ monitoring
stations located exclusively under grassland.

3.6. Comparison of modeled and SMAP soil moisture data

Finally, we compared model-estimated soil moisture data to NASA-
USDA SMAP root zone soil moisture data at each site (Table 3). Our
results indicate that while SMAP data capture soil moisture dynamics
slightly better than the model at several sites, model-estimated soil
moisture has lower MAE and MBE values on average across sites than
SMAP data. This finding suggests that the method used here, if adapted
to estimate soil moisture over large areas using 250 x 250 m resolution

VI data, may be capable of accurately estimating full root zone soil
moisture under a wide variety of land cover types at a much higher
spatial resolution than most currently operational remote sensing soil
moisture products.

4. Conclusions and future work

Soil moisture estimates developed using site-specific VI data and a
simple water balance approach were generally correlated with inde-
pendently measured soil moisture values for the root zone under diverse
land cover types. Further, model-estimated soil moisture values were
closer to the measured values under each land cover type than were soil
moisture measurements under grassland at the nearest Oklahoma Mes-
onet station. This is particularly of note because the water balance
model applied here was developed specifically for agricultural cropping
systems, but our results indicate that, with further improvements, the
model can produce useful estimates of soil moisture when applied in
other, non-agricultural vegetation types.

The results shown here represent a valuable contribution to the field
in that 1) our findings demonstrate that soil moisture under diverse
vegetation types is substantially different from that at nearby grassland
monitoring sites; 2) despite over- and under-estimating soil moisture
during certain times, our model-estimated soil moisture values have a
high level of accuracy and low bias across land cover types, as indicated
by the results shown in Table 3; 3) model-estimated soil moisture values
represent root zone conditions and thus may be more useful for some
purposes than remote sensing soil moisture data, which typically
represent conditions in the top 5 cm of soil; 4) the method incorporates
site-specific VI data rather than generic tabular data, which allows the
FAO-56 model to be applied to produce estimates of soil moisture under
non-agricultural land cover types that were not considered in the orig-
inal model; and 5) unlike most prior studies, the K, estimation method
used here relies upon widely-available historical VI data rather than a
site-specific calibration, making this method widely and easily
applicable.

Further, while the Oklahoma Mesonet is one of the foremost soil
moisture monitoring networks in the world and provides data essential
for many applications, the large discrepancies between soil moisture
values measured at the Mesonet stations and in adjacent, contrasting
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land cover types indicates that ignoring heterogeneity in soil moisture
across land cover types is likely to lead to significant errors when
applying these data. Future work should aim to refine the approach
developed here and to create a distributed model that applies the
method over larger areas (i.e., state or regional scale).
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Appendix A. K¢, estimation

Raw EVI and NDVI data were converted to K., values using six different methods. Three EVI-based equations were tested:

EVI — EVI,,

K. = A.l
P BVl — EVi G

which follows the method described by Choudhury et al. (1994) and Glenn et al. (2010), where EVI is the mean observed EVI value of the defined area
for each image, EVIy, is the minimum EVI for a given location during the study period, and EVI,x is the maximum EVI value for a given location
during the study period. The second EVI-based equation was

EVI
Ky py, =——""— A.2
P EV e — EVli *-2)

which is similar to the previous equation, except that it allows for K}, values greater than one, which is often observed in the FAO-56 methodology. A
third EVI-based equation from Guerschman et al (2009) was also tested:

bmax (1 — exp(—a X EVI;‘)) (A.3)

K eb—Guerschman =

where a = 2.38 and a = 10.22. This equation and the parameter values used are the result of a model calibration across seven sites in Australia with a
variety of land cover types, similar to the present study.

In addition to the equations above, three NDVI-based equations were tested in order to determine which vegetation index is most useful for
developing the basal crop coefficient. The three NDVI-based equations are:

Koy pausen = 1.36NDVI — 0.03 (A4

from Bausch and Neale (1987), who developed the equation for a corn site in in Colorado,

Kep—xampie = (14571 x NDVI) — 0.1725 (A5)

from Kamble et al. (2013), who developed the equation using data from a variety of crop types and locations. The final NDVI-based equation is

Kep—tasumi = (118 X NDVI) + 0.04 "

from Tasumi et al. (2006), who developed the equation for an area of mixed vegetation in New Mexico.

Each set of K., values was tested within the FAO-56 model in order to determine which K¢, estimation method yielded the most accurate estimates
of volumetric soil moisture as compared to soil moisture data measured at each monitoring site based on the Pearson correlation coefficient (r), mean
absolute error (MAE), and mean bias error (MBE) (Table A1).

Appendix B. ET. ,qj model outputs

Mean estimated annual ET »4j ranged from 803 mm yr~! in the hardwood forest to 839 mm yr ! in the loblolly pine plantation, with intermediate
values of 799 mm yr~! at the cropland site and 752 mm yr! at the tallgrass prairie. Annual ET_ a4j values ranged from 517 to 859 mm yr~! for the
mixed hardwood forest site; from 399 to 966 mm yr~ ! for the loblolly pine plantation site; from 436 to 1028 mm yr~! for the cropland site; and from
315 to 935 mm yr ! for the tallgrass prairie site. The greatest mean annual ET_ ,qj was found for the loblolly pine plantation, which is likely due to the
high annual precipitation rate and therefore higher water availability at this location (Table 1). The lowest ET »gj values were found at the tallgrass
prairie location, which may be because the specified rooting depth for the tallgrass prairie site was the shallowest among all the study locations.

Current estimates of ET ,qj compare relatively well with prior estimates of evapotranspiration (ET) in similar vegetation types. Prior work has
estimated annual ET in Oklahoma grasslands ranging from to 640-810 mm yr~! (Burba and Verma, 2005; Yimam et al., 2014). The current mean
annual ET oq; values for the tallgrass prairie site (752 mm yrfl) fall within the range of these prior estimates. Additionally, this mean ET_ ,4j value of
752 mm yr ' is very similar to that reported by Sun et al. (2018), who measured a single-year ET value of 728 mm using an eddy covariance system

10
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installed nearby the independent tallgrass prairie monitoring site.

Agricultural and Forest Meteorology 307 (2021) 108471

Wagle et al. (2019) reported seasonal ET values ranging from 652-734 mm and a single-year total ET value of ~900 mm for a non-irrigated alfalfa
field in central Oklahoma. These values are comparable to the mean annual ET_ »qj value of 799 mm yr~! found at the cropland site. Additionally,
similar ET rates were found under agricultural land in central Oklahoma by Liu et al. (2010), who reported an annual value of 778 mm yr~'; by Burba
and Verma (2005), who measured ET in winter wheat in north-central Oklahoma using an eddy covariance system and found annual values ranging
from 710 mm to 750 mm; and by Yimam et al (2017), whose watershed-scale modeling study in north-central Oklahoma reported an estimated

cropland ET value of 713 mm yr 1.

Liuetal. (2010) reported an annual ET value of 854 mm in forest systems in north-central Oklahoma, which is very comparable to the mean annual
estimated ET 4 at the loblolly pine site (839 mm yr~1) and slightly higher than mean annual estimated ET¢ agj at the mixed hardwood forest (803 mm
yr~1). Doughty et al. (2016) reported ET values estimated from MODIS satellite data of 650 to >900 mm yr ! in evergreen forest in southeast
Oklahoma, which is comparable to the mean annual ET_ ,4; value estimated here for the pine plantation. Hennessey et al. (2004) reported ET values of
~600-800 mm yr ! in a loblolly pine plantation in southeastern Oklahoma, values which are slightly lower than those found in the present study.
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