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A B S T R A C T   

Many soil moisture networks monitor only one land cover type, typically grassland, and the availability of in-situ 
soil moisture data in other land cover types is severely limited. Satellite-based radiometers lack adequate res
olution to match the spatial variability in land cover, which often occurs at the sub-kilometer scale. Thus, spatial 
and temporal dynamics of root zone soil moisture in regions with heterogeneous land cover types remain poorly 
understood. Our objective was to determine how effectively root-zone soil moisture for diverse land cover types 
can be estimated using a water balance model driven by normalized high-resolution, remotely sensed vegetation 
indices (VI) data and in-situ meteorological data. Root zone soil moisture dynamics under four different land 
cover types were estimated using normalized VI data as a proxy for the basal crop coefficient. Correlation co
efficients (r) between measured and modeled soil moisture ranged from 0.50–0.92, mean absolute error (MAE) 
ranged from 0.03–0.06 m3 m−3, and mean bias error (MBE) ranged from -0.05–0.02 m3 m−3 across tallgrass 
prairie, cropland, mixed hardwood forest, and loblolly pine plantation sites. Model-estimated soil moisture under 
each land cover type was more accurate than both measured data from the nearest long-term grassland moni
toring site and data from the NASA-USDA Enhanced Soil Moisture Active-Passive (SMAP) soil moisture product, 
providing evidence that in-situ meteorological data and remotely sensed VI data may be integrated into a simple 
water balance model to better estimate root zone soil moisture across diverse land cover types.   

1. Introduction 

Soil moisture is an essential climate variable affecting near-surface 
temperature, hydrological processes, agricultural production, and the 
health of ecological systems (Ochsner et al., 2013; Wagner et al., 2007; 
Wagner et al., 2012). Soil moisture data from in-situ monitoring net
works have been used to estimate deep drainage (Zhang et al., 2019; 
Wyatt et al., 2017), improve streamflow forecasts (Wyatt et al., 2020; 
Harpold et al., 2017), and improve agronomic decision making (Lollato 
et al., 2016; Lollato et al., 2018). However, the majority of soil moisture 
data currently available from in-situ monitoring networks reflect con
ditions under a single land cover type, typically grassland; however soil 
water conditions under other nearby land cover types, such as croplands 
or forests, may differ significantly from these measured values (Zou 
et al., 2014; Patrignani and Ochsner, 2018). 

Unlike in-situ data, remotely sensed soil moisture products from 
satellites can provide global data that capture spatial and temporal 

variations in soil moisture across numerous land cover types (Mohanty 
et al., 2017). However, these data suffer from several limitations, 
including a shallow sensing depth (~5 cm), relatively coarse spatial 
resolution, and a limited ability to sense soil moisture under dense 
vegetation types such as forests (Mohanty et al., 2017; Peng et al., 2017; 
Kerr et al., 2001). The most accurate satellite soil moisture products are 
based on radiometers, which have footprints of >30 km (Entekhabi 
et al., 2010). Because vegetation types are often intermixed at smaller 
scales (< 1 km), variations in soil moisture caused by contrasting land 
cover types are not adequately captured by current remote-sensing soil 
moisture products. 

A growing body of research shows the potential of higher resolution, 
remotely sensed vegetation index (VI) data, such as those from NASA’s 
Moderate Resolution Imaging Spectroradiometer (MODIS) sensors, to 
close this gap in spatial scale and provide new insights into the effects of 
land cover type on soil moisture (Zhu et al., 2020; Olivera-Guerra et al., 
2018; Battude et al., 2017; Sanchez et al., 2012; Sanchez et al., 2010). 
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The concept of using remotely sensed VI data in mechanistic water and 
surface energy balance models has been frequently discussed in the 
literature (Hendrickx et al., 2016; Glenn et al., 2011; Glenn et al., 2010; 
Gonzalez-Dugo et al., 2009; Glenn et al., 2007), but most land surface 
models were not designed to incorporate these data. Incorporating new 
data types into existing mechanistic models may not improve model 
results (Ford and Quiring, 2013) and may actually decrease model 
performance due to overfitting issues (Transtrum and Qiu, 2016). Land 
surface models which are capable of integrating VI data, such as those 
within the North American Land Data Assimilation System (NLDAS), 
have a crude conceptual representation of soil characteristics, allow only 
monthly VI inputs, and have a maximum spatial resolution of ~1 km 
(Mitchell et al., 2004; Kumar et al., 2006). 

The current research seeks to overcome the limitations presented by 
both in-situ and remotely sensed soil moisture data by integrating in-situ 
meteorological data and remotely sensed VI data into a simple water 
balance model based on the FAO-56 dual crop coefficient method (Allen 

et al., 1998). This novel application, unlike most prior studies utilizing 
the FAO-56 water balance method, utilizes the model primarily to es
timate daily root zone soil water content rather than evapotranspiration 
(ET). The resulting root zone soil moisture estimates are then evaluated 
against measured values at four independent in-situ monitoring loca
tions under diverse land cover types. The goals of this research are: 1) to 
determine the suitability of using remotely sensed VI data as proxies for 
the basal crop coefficient in the water balance simulations of diverse 
land cover types, 2) to evaluate the accuracy of various approaches for 
computing crop coefficients from vegetation indices, and 3) to compare 
soil moisture estimates resulting from this water balance model under 
four different land cover types with a) measured values in each land 
cover type, b) data measured at nearby grassland monitoring stations, 
and c) root zone soil moisture data from the NASA-USDA SMAP soil 
moisture product. 

This work presents an innovative method of integrating remote 
sensing VI data and measured meteorological data within the FAO-56 

Fig. 2. Photos of the cropland (a), tallgrass prairie (b), hardwood forest (c), and loblolly pine plantation (d) sites; a diagram of the layout of monitoring sites A, C, and 
D; and an example soil moisture sensor profile of sites A, C, and D. Site B sensor profiles were farther apart with sensors at depths of 0.05, 0.10, 0.20, and 0.50 m 
below the surface. 

Fig. 1. Map of MODIS land cover types (500-m resolution) and county boundaries in Oklahoma, active Oklahoma Mesonet locations (black dots), and locations of 
independent soil moisture monitoring stations under various land cover types (triangles). Site A is a cropland, Site B is a tallgrass prairie, Site C is a hardwood forest, 
and Site D is a loblolly pine planation. 
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model, and our results are among a small number of studies to show that 
this integration of data from different sources can lead to accurate es
timates of root zone soil moisture under a wide variety of land cover 
types, including non-agricultural land cover types not traditionally 
considered within the FAO-56 model. To our knowledge, this study is 
the first conducted following the innovative work of Sanchez et al. 
(2010, 2012a, 2012b) which directly incorporates remote sensing VI 
data to estimate crop coefficients within the FAO-56 model without the 
inclusion of other additional input or calibration data. Further, the 
present study is the first application of this method in the U.S. and one of 
a few attempts to apply the FAO-56 model to estimate root zone soil 
moisture under non-agricultural land cover types. 

2. Methods 

2.1. Monitoring stations 

Four locations in Oklahoma, USA, each with a different dominant 
land cover type, were chosen for modeling and as independent soil 
moisture monitoring locations to be used for model validation (Fig. 1). 
Land cover types at these sites include a mixed hardwood forest, a 
loblolly pine (Pinus taeda) plantation, rainfed (i.e., non-irrigated) crop
land, and tallgrass prairie. At each monitoring location, arrays of soil 
moisture sensors (CS-655, Campbell Scientific, Inc., Logan, Utah) were 
installed in triplicate to monitor the volumetric water content in the soil 
profile. At the mixed hardwood forest, loblolly pine plantation, and 
cropland locations, soil moisture sensors were installed horizontally at 
depths of 5, 25, 60, and 100 cm. At these sites, sensor profiles were 
installed 6.1 m away from a central datalogger along headings separated 
by ~120◦ in order to maximize the distance between sensor profiles and 
reduce intercorrelation between soil moisture measurements (Fig. 2). 
Five-centimeter diameter soil cores with a length of 5.1 cm were taken 
horizontally adjacent to each sensor at the time of installation in each 
profile and at each depth (3 profiles per site × 4 depths per profile = 12 
cores per site). 

At the tallgrass prairie location, CS-655 soil moisture sensors 
installed for a previous project were used. Sensors were installed in 
triplicate at this location as well, but farther apart than at the other three 
monitoring locations (mean of 449 m apart). At each tallgrass prairie 
monitoring profile, sensors were installed horizontally at 5, 10, 20, and 
50 cm below the surface. As at the other sites, soil cores were collected 
from all soil profiles at the time of sensor installation. Soil cores from all 
sites were analyzed to estimate the soil volumetric water content at field 
capacity (-10 kPa, θ-10) [m3 m−3], water content at wilting point (-1500 
kPa, θ-1500) [m3 m−3], bulk density [kg m−3], and fractions of sand, silt, 
and clay. 

Measurements of soil apparent dielectric permittivity (Ka) [-], and 
electrical conductivity (EC) [dS m−1] were collected either every hour 
(tallgrass prairie sites) or half hour (all other sites) using the CS-655 
sensors. Sensors were calibrated using Coyle-Lucien complex soil 
taken from a location near the tallgrass prairie site in 2013. The cali
bration equation used was 

θ = 0.107
̅̅̅̅̅̅
Ka

√
− 0.119

̅̅̅̅̅̅̅
EC

√
− 0.105 (1)  

where θ is the volumetric soil water content [m3 m−3]. Using the volu
metric water content values resulting from Equation 1, we calculated 
depth-weighted mean (i.e., mean of three sensor profiles) daily root zone 
volumetric soil moisture values for all available dates for each site. 
Depth-weighted root zone soil moisture values at these sites and at 
Oklahoma Mesonet stations were calculated by assuming soil moisture 
sensors were located at the center of a given soil layer (i.e., the data 
recorded by the sensor at 5 cm is representative of the condition of the 
layer from 0-10 cm, etc.), with the exception of the tallgrass prairie site, 
where soil moisture sensor depths necessitated the use of a trapezoidal 
integration function for depth weighting. Due to datalogger storage 
limitations and remote site connectivity problems, portions (ranging 
from 14.2–33.8%) of measured data are missing after the installation 
date at each site. Station installation dates are shown in Table 1. 

2.2. Soil water balance model 

The dual crop coefficient form of the FAO-56 method is a well-known 
empirical method used to estimate soil evaporation and crop transpi
ration (together, ETc) using meteorological data and tabular crop co
efficients (Allen et al., 1998). Inputs for the model include: daily 
estimates of reference evapotranspiration (ETo), which are calculated 
from measured wind speed, air temperature, rainfall, incoming solar 
radiation, and relative humidity data; daily basal crop coefficient (Kcb) 
values which approximate the ratio of transpiration that would occur in 
the absence of water stress to reference evapotranspiration; daily plant 
height and rooting depth estimates; soil properties for the surface layer 
and the full root zone including sand and clay percentages, soil volu
metric water content at field capacity, and soil volumetric water content 
at wilting point; the fraction of soil covered by plant residue; and the soil 
volumetric moisture content at the beginning of the simulation. 

Daily ETo values for a short crop reference surface are calculated 
using the Penman-Monteith method as described in the FAO-56 pro
cedure. A water stress coefficient (Ks), which reduces vegetation tran
spiration when the amount of available soil water in the root zone drops 
below a defined threshold, and a soil evaporation coefficient (Ke), which 
reduces soil evaporation when the water content of the surface soil de
creases, are calculated daily based on the estimated available soil water 
storage. Along with the Kcb values, the estimated Ks and Ke values are 
used to scale ETo according to 

ETc adj = (Ks × Kcb + Ke) ET0 (2)  

where ETc_adj is the crop evapotranspiration, adjusted for soil water 
stress conditions (Allen et al., 1998). 

ETc_adj values are calculated as part of the daily water balance: 

Dri = Dri−1 − (P − RO) + ETcadj + DP (3)  

where Dri is the current root zone depletion (i.e., deficit relative to field 
capacity), Dri-1 is root zone depletion from the previous day, P is pre
cipitation, RO is surface runoff, and DP is deep percolation (Allen et al., 
1998). Deep percolation is non-zero only on days when the soil water 
content exceeds field capacity and is estimated by 

Table 1 
Geographic and long-term meteorological data for each site, including latitude and longitude, elevation above sea level, distance to the nearest Oklahoma Mesonet 
station, long-term mean daily maximum temperature (Tmax), long-term mean daily minimum temperature (Tmin), long-term mean annual precipitation (P), and the 
year in which soil moisture sensors were installed.  

Site Lat, Lon Elevation Distance to Mesonet Tmax, Tmin P Year Installed  

deg. m km ◦C mm  
Loblolly Pine Plantation 34.03, -94.82 110 23.1 23.9, 11.0 1159 2019 
Mixed Hardwood Forest 36.00, -97.04 292 1.00 22.3, 9.92 873 2018 
Cropland 35.03, -97.91 328 0.13 23.1, 9.36 812 2018 
Tallgrass Prairie 36.06,  -97.21 327 0.47 22.1, 9.43 884 2012  
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DP = P − RO − ETcadj − Dri−1 (4) 

On days when water drains from the soil profile (i.e., when DP > 0), 
Dr is equal to zero. Additional calculations within the model include the 
estimation of the total available soil water (TAW), which is estimated by 

TAW = (θ−10 − θ−1500) Zr (5)  

where Zr is the rooting depth [mm]. Finally, daily plant available water 
(PAW) values are estimated as 

PAW = TAW − Dr (6) 

Daily PAW estimates were converted to depth-weighted values of 
root-zone volumetric soil moisture (θ) [m3 m−3] according to: 

θ =
PAW

L
+ θ−1500dw (7)  

where L is the thickness of the soil profile and where θ-1500dw is the 
depth-weighted mean value of surface and full profile θ-1500 values given 
in Table 2. 

The Ks coefficient in Eq. 2 is calculated within the model according to 
the following equation: 

Ks =
TAW − Dr

(1 − p)TAW
, Dr > pTAW (8)  

where p is the depletion fraction, or the average fraction of TAW that can 
be depleted from the root zone before plant water stress occurs. The Ke 
coefficient is calculated as: 

Ke = min({Kr(Kc max − Kcb)}, {fewKc max}) (9)  

where Kr is a dimensionless evaporation reduction coefficient which is 
dependent upon the cumulative depth of water evaporated from the soil 
surface layer, Kc_max represents an upper limit on evapotranspiration, 
and few is the fraction of soil that is exposed and wetted (i.e., the fraction 
of soil from which evaporation occurs). 

The Kc_max parameter is imposed to limit ET based on restraints on 
available energy, and is typically calculated according to: 

Kc max =max
({

1.2+[0.04(u2 −2)−0.004(RHmin −45)]

(
h
3

)}

, {Kcb +0.05}

)

(10)  

where u2 is the mean daily wind speed at 2 m above the ground surface 
[m s−1], RHmin is the minimum relative humidity for each day [%], and h 
is the mean maximum plant height [m]. Equation 10 leads the model to 
utilize whichever calculated value is greater (i.e., the first or second 
argument of the max function). Normally, Kc_max is no more than ~1.3 
(Allen et al., 1998). However, in the simulations of the forested sites, Eq. 
(10) apparently overestimated Kc_max due to the larger height (h) of the 
forest canopy as compared to typical agronomic crops, and the calcu
lated Kc_max values were often >1.7. This led to unrealistically high es
timates of ETc_adj for the forested sites (annual ETc_adj >> annual P). For 
this reason, for the forested locations, Kc_max was set equal to Kcb + 0.05 
(i.e., the right-hand portion of the function in Eq. 10). 

Irrigation inputs were not considered because all of the study 

locations are rainfed. Additionally, surface runoff was assumed to be 
negligible for these nearly-level sites. Based on measured daily precip
itation values as well as the hydrologic soil groups and estimated curve 
numbers of the study locations, surface runoff likely occurred on <5% of 
simulation days across all sites. 

The FAO-56 method was developed for and has been traditionally 
applied in agricultural cropping systems, but the method has shown the 
potential to estimate vegetation water use and soil water dynamics 
under diverse land covers types by using remote sensing vegetation 
indices data as a proxy for Kcb (Sánchez et al., 2010). Here, we applied a 
vegetation index-based approach at four locations in Oklahoma with 
diverse land cover types for the period from January 1, 2000 – June 8, 
2020. While simulations were run for >20 years to characterize 
long-term patterns, measured soil moisture data are only available at the 
four study sites in recent years (see Table 1). For this reason, we focus 
our analysis and discussion on the period for which measured soil 
moisture data are available at each site. Normalized difference vegeta
tion index (NDVI) and enhanced vegetation index (EVI) data from the 
MODIS instruments aboard NASA’s Aqua and Terra satellites were 
tested in order to determine which VI product yielded crop coefficients 
that resulted in the most accurate estimations of volumetric soil water 
content at the four study sites (see Appendix A). The best-performing VI 
dataset and meteorological data from the Oklahoma Mesonet were used 
as the primary model inputs (Fig. 1) (Huete et al., 1999; McPherson 
et al., 2007). 

2.3. Geographical and meteorological inputs 

Geographical inputs necessary for the model include elevation and 
longitude and latitude, which are used to adjust the psychrometric 
constant to account for changes in atmospheric pressure with altitude 
and to account for variations in extraterrestrial radiation by latitude. 
Precipitation records for each monitoring station are also required, as 
are daily estimates of reference evapotranspiration (ETo). Estimates of 
ETo were produced using daily data from the Oklahoma Mesonet station 
nearest to each independent soil moisture monitoring location. Any 
missing meteorological records were filled using data from the next 
nearest Oklahoma Mesonet station (McPherson et al., 2007). If no data 
were available from the next nearest station, the remaining missing re
cords were filled in using linear interpolation. The distance between the 
Mesonet stations and the monitoring locations ranged from 0.13 km to 
23.1 km (Fig. 1, Table 1). 

The effects of non-reference (i.e., non-irrigated) ground cover on ETo 
estimates were accounted for using daily dew point temperature and 
relative humidity data according to the method described by Allen 
(1996). Dew point temperatures were calculated from daily temperature 
and relative humidity data as follows: 

esat = 6.1365e

(
17.502Tmin

240.97+Tmin

)

(11)  

e =

(
RH
100

)

esat (12)  

Table 2 
Surface and full profile mean depth-weighted sand and clay contents, porosity, soil volumetric water contents at field capacity (θ-10) and wilting point (θ-1500), and the 
depth of soil subject to evaporation (Ze).   

Surface Full profile  

Site Sand Clay Porosity θ-10 θ-1500 Sand Clay Porosity θ-10 θ-1500 Ze  

% % m3 m−3 m3 m−3 m3 m−3 % % m3 m−3 m3 m−3 m3 m−3 m 

Loblolly Pine Plantation 44.8 10.4 0.40 0.28 0.03 36.9 20.9 0.38 0.33 0.09 0.13 
Mixed hardwood forest 80.3 3.74 0.46 0.09 0.02 86.1 4.23 0.48 0.07 0.02 0.11 
Cropland 25.8 19.9 0.46 0.31 0.10 21.3 24.5 0.45 0.32 0.11 0.14 
Tallgrass Prairie 35.0 21.2 0.51 0.30 0.13 20.0 40.9 0.44 0.32 0.21 0.13  
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Tdew = 240.97 ×
ln

(
e

6.1365

)

17.502 − ln
(

e
6.1365

) (13)  

where esat is the saturation vapor pressure [mb] at the minimum daily 
temperature, e is the actual vapor pressure [mb], Tmin is the minimum 
daily temperature [◦C], and RH is the relative humidity (Buck, 1981; 
Allen et al., 1998). This correction was made for days when the mini
mum observed air temperature was >2◦C above the calculated dew 
point temperature, and the resulting dew point temperatures and rela
tive humidity data were used to calculate adjusted daily maximum and 
minimum temperature values for use in the ETo calculations according 
to the procedure described by Allen (1996). These corrections were 
necessary on 27% of days across all sites and resulted in a 2.7% decrease 
in ETo, on average. 

In addition to corrections for non-reference ground cover, precipi
tation record inputs at the forested sites were adjusted to account for 
canopy and understory interception, assuming 2 mm of interception lost 
at the onset of every precipitation event. This interception value is 
similar to that found by Zou et al. (2015), who reported canopy storage 
capacity (i.e., interception rates) of 2.14-3.44 mm in eastern redcedar 
(Juniperus virginiana) woodlands. This adjustment was necessary 
because all precipitation data were collected at the nearest Mesonet 
station (i.e., outside the forested area) and are not necessarily repre
sentative of the precipitation experienced at the soil surface under the 
forest canopy and residue. This adjustment led to a decrease in effective 
annual precipitation of ~141 mm yr−1 at the mixed hardwood forest site 
and ~157 mm yr−1 at the pine plantation site. While there may also be 
significant interception at the tallgrass prairie location during certain 
times of the year (Zou et al., 2015), due to the dynamic nature of the 
above ground vegetation, those effects were not considered here. 

2.4. Remote sensing inputs 

MODIS NDVI and EVI composite imagery at a 250-m resolution and 
16-day return period were used here (MOD13Q1 and MYD13Q1 prod
ucts). Because these images are available from either the Aqua or Terra 
satellite at 16-day intervals and because the satellites’ return intervals 
are offset from one another by 8 days, a complete image is available 
every 8 days. EVI and NDVI are calculated as (Huete et al., 2008): 

EVI = G
(

ρNIR − ρred

ρNIR + C1 ∗ ρred − C2 ∗ ρblue + L

)

(14)  

NDVI =
(ρNIR − ρred)

(ρNIR + ρred)
(15)  

where ρ are corrected or partially atmosphere-corrected surface re
flectances of the near infrared (ρNIR), red (ρred), and blue (ρblue) bands, L 
is the canopy background adjustment that addresses NIR and red radiant 
transfer through a canopy, and C1, C2 are the coefficients of the aerosol 
resistance term, which uses the blue band to correct for aerosol in
fluences in the red band (Huete et al., 2002). The coefficients adopted in 
the EVI algorithm are, L = 1, C1 = 6, C2 = 7.5, and G (gain factor) = 2.5 
(Huete et al., 1994; Huete et al., 1997). 

All remote sensing data were downloaded using a custom script in 
the JavaScript API within the Google Earth Engine Code Editor (Gor
elick et al., 2017). This script defined a bounding rectangle around each 
monitoring station which contained only the dominant land cover type 
based on Google Earth aerial imagery. Area-weighted mean VI values for 
each area were calculated for each 16-day composite image, and a time 
series of VI values for each location was saved in a text file. After 
download, VI data were processed using a custom MATLAB script. 

There is some evidence that EVI may be more suitable than NDVI for 
the current application for a number of reasons, including that EVI im
ages are less likely to saturate when considering dense canopies due to 
the addition of the blue reflectance band (Gao et al., 2000). Addition
ally, EVI is designed to separate the background signal of the soil from 
that of the plant canopy, EVI is more responsive than NDVI to vegetation 
structural variations, and EVI data have been shown to be more highly 
correlated with ET than NDVI data (Gao et al., 2000; Wang et al., 2007). 

Six different approaches for estimating Kcb values from NDVI and EVI 
data were tested. This included using generalized equations and site- 
specific equations from the literature (see Appendix A for description 
of each method and testing results). Kcb values from each estimation 
method were used within the FAO-56 model in order to determine which 
method yielded the most accurate estimations of soil moisture as 
compared to measured data at the four focus sites. While all of the Kcb 
estimation methods performed similarly, the method with the lowest 
mean error was found to be: 

Kcb =
EVI − EVImin

EVImax − EVImin
(16)  

with a mean r value of 0.68, mean MAE of 0.04 m3 m−3, and mean MBE 
of 0.002 m3 m−3 across sites (Table A1). This generalized equation fol
lows the method described by Choudhury et al. (1994) and Glenn et al. 
(2010), where EVI is the mean observed EVI value of the defined area for 
each image, EVImin is the minimum EVI value for a given site during the 
study period, and EVImax is the maximum EVI value for a given site 
during the study period. Because it performed slightly better than the 
other Kcb estimation equations, does not rely upon a site-specific cali
bration, and because of the greater suitability of the EVI product over 
NDVI for the present study, Eq. 13 alone was used for the remainder of 
analyses. Following the calculation of Kcb values at 8-day intervals, 
values were interpolated linearly between image dates to produce daily 
Kcb values for the simulation period similar to the method used by 
Sánchez et al. (2010) and Sánchez et al. (2012a). 

2.5. Vegetation characteristic inputs 

In addition to the data described above, the model requires daily 
estimates of vegetation height and rooting depth. Vegetation heights for 
the mixed hardwood forest site were assumed to be static and to be equal 
to 10.0 m, which lies within the range of tree heights in the cross timbers 
of Oklahoma reported by Oklahoma Forestry Services (2010). A mean 
tree height of 9.4 m was reported for the pine plantation location used in 
this study by Dipesh et al. (2014) and was used here, also assuming a 
static vegetation height. Dynamic daily vegetation heights for the 
cropland site were estimated by multiplying daily Kcb values by 2.0 m, 
the vegetation height for field corn reported by Allen et al. (1998), 
which was grown at the site during the validation period. This method 
allowed the vegetation height to vary according to vegetation greenness 
rather than according to a defined growth curve, which was necessary 
due to the varying crop rotations implemented at the site and due to the 
lack of crop type data in many years. The same method was used at the 
tallgrass prairie site, using a maximum plant height of 1.0 m based on 
observations at the field site. 

Rooting depths for the two forested locations and for the cropland 
site were set equal to 1.2 m to match the effective soil depth to which soil 
moisture content was measured by the installed sensors. The active 
rooting depth may be ≥1.2 m for these locations, as tree roots were 
observed down to at least 1.0 m depth at the forested sites during sensor 
installation and crops grown at the cropland site can have effective 
rooting depths of 1.0-2.0 m (Allen et al., 1998). The rooting depth used 
for the tallgrass prairie site was set to 0.65 m to match the shallower soil 
moisture measurement depths at that location. The true rooting depth at 
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the tallgrass prairie site is likely limited by the soil depth, which is <0.3 
m in some places and commonly <1.0 m. 

2.6. Soil property inputs 

Information regarding the soil properties of the modeled area is also 
required, including the depth of soil from which evaporation may occur 
(Ze), θ-10 and θ-1500 at the surface and for the full soil profile, and soil 
volumetric water content on the first date of simulation. Ze was calcu
lated for each location based on the sand content of the surface soil as 
described in Allen et al. (1998) (Table 2). The necessary soil properties 

were estimated from soil cores taken at each monitoring site, and mean 
soil properties of the uppermost soil samples (5-cm depth) were used to 
represent the soil surface properties in the model. 

Mean depth-weighted soil properties (i.e., mean values of the trip
licate profiles’ soil properties) were used to represent the soil physical 
properties of the full soil profile at each site within the model (Table 2). 
At the mixed hardwood forest, loblolly pine plantation, and cropland 
sites these depth-weighted properties were calculated by assuming that 
each soil moisture sensor was located at the center of a given soil layer (i. 
e., the data recorded by the sensor at 5 cm is representative of the 
condition of the layer from 0-10 cm, etc.). At the tallgrass prairie site, 
due to the sensor installation depths, a trapezoidal integration was used 
to estimate profile soil properties to a depth of 65 cm. Soil moisture 
values on the first day of the simulation were assumed to be the same as 
those at the nearest Oklahoma Mesonet station, or to be halfway be
tween the depth-weighted θ-10 and θ-1500 values if no Mesonet data were 
available. 

2.7. SMAP root zone soil moisture data 

NASA-USDA SMAP root zone soil moisture data were compared with 
model-estimated soil moisture values at each site. These soil moisture 
data are available every three days at a spatial resolution of 10 km. The 
data represent conditions to a depth of 1.0 m and are developed by 
integrating radiometer-derived Soil Moisture Active Passive (SMAP) 
Level 3 soil moisture observations into the modified two-layer Palmer 
model using a 1-dimensional Ensemble Kalman Filter data assimilation 
approach (Entekhabi et al., 2010; (Sazib et al., 2018)). Like VI data, data 
were processes in Google Earth Engine, which was used to produce 
area-weighted mean SMAP soil moisture values for each study site. 

Fig. 4. Mean daily Kcb values for each land cover type from January 1, 2000 – June 8, 2020 (black line). The gray shaded areas represent the full range of daily 
Kcb values. 

Fig. 3. Daily mean reference evapotranspiration (ETo) from January 1, 2000 – 
June 8, 2020 for each study site, smoothed using a 30-day centered mov
ing average. 
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3. Results and discussion 

3.1. ETo estimates 

Mean annual ETo values at each location for the full simulation 
period range from 1219 mm yr−1 in the loblolly pine plantation to 1425 
mm yr−1 at the cropland site, with intermediate values of 1352 mm yr−1 

at the tallgrass prairie and 1403 mm yr−1 at the mixed hardwood forest 
site. Daily ETo estimates ranged from 0.24 to 12.0 mm d−1 at the mixed 
hardwood forest location, from 0.32 to 9.55 mm d−1 at the loblolly pine 
plantation location, from 0.30 to 12.3 mm d−1 at the cropland location, 
and from 0.26 to 10.8 mm d−1 at the tallgrass prairie location. Smoothed 
mean daily ETo values for each day of the year during the study period 
are shown in Fig. 3. Mean daily ETo peaked on the 192nd day of the year 
(July 10 or 11) in the loblolly pine plantation and peaked slightly later 

on the 201st day of the year (July 19 or 20) at the mixed hardwood 
forest, tallgrass prairie, and cropland sites. 

Annual ETo values found for the study sites are similar to long-term 
(2005-2019) average ETo values reported by the nearest Oklahoma 
Mesonet stations (Sutherland et al., 2005; Oklahoma Mesonet webpage). 
The mean annual ETo value of 1219 mm yr−1 found at the loblolly pine 
plantation is comparable to the value of 1204 mm yr−1 reported for the 
nearby Idabel Mesonet site. The ETo values of 1352 mm yr−1 estimated 
for the tallgrass prairie site and 1403 mm yr−1 for the hardwood forest 
site are comparable to the value of 1367 reported for the Marena Mes
onet station nearby both sites. The mean annual ETo value of 1425 mm 
yr−1 estimated for the cropland is close to the reported value of 1427 
mm yr−1 at the nearby Chickasha Mesonet site. Distances from the study 
sites to the Mesonet sites mentioned here are given in Table 1, with the 
exception of the Mesonet site nearest the hardwood forest site, where 

Fig. 6. Mean (solid line) and standard devia
tion (shaded area) of measured root-zone soil 
volumetric water content under each land cover 
type, modeled root-zone soil volumetric water 
content (black dots), measured root-zone soil 
volumetric water content from the nearest 
Oklahoma Mesonet station (dashed line), and 
NASA-USDA SMAP root zone soil moisture data 
at each site (triangles). All data have been 
depth-weighted according to the procedure 
described in section 2.1. Measured root-zone 
soil volumetric water contents at field capac
ity (θ-10) and permanent wilting point (θ-1500) 
are also given for each site. Select dates are 
shown for the tallgrass prairie site to preserve 
figure legibility.   

Fig. 5. Examples of growing season Kcb curves for the cropland site when planted with a warm season crop (sorghum) followed by a cool season crop (winter wheat).  
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long-term ETo data are not available. The Marena Mesonet station is 
located 17.5 km from the hardwood forest site. 

3.2. Kcb curves 

Mean daily Kcb values during the study period, as well as maximum 
and minimum Kcb values for each day of the year, are shown in Fig. 4. 
Kcb values during the study period ranged from 0.0-1.0 for all land cover 
types (see Eq. 13). The curves of the forested and tallgrass prairie sites 
show similar patterns, with an exponential increase in Kcb values in the 
spring, small declines during the summer months, and a sharp decline 
indicating decreasing plant greenness and plant senescence in the fall 
and winter months. The mean cropland Kcb curve shows little change 
throughout the calendar year, with small peaks near day 100, day 175, 
and day 320. The relatively constant cropland mean Kcb values and 
multiple small peaks throughout the year in Fig. 4 are likely due to the 
production of crops with different peak growth periods (e.g., winter 
wheat versus sorghum) during different years of the simulation period. 
An example of different seasonal Kcb curves for cool season (winter 
wheat) and warm season (sorghum) crops is shown in Fig. 5. This figure 
shows the different Kcb curves for two crop types, with peak Kcb values 
for sorghum occurring in early July and peak Kcb values for winter wheat 
occurring in late April and early May. 

The Kcb curves for the study locations are similar to those in prior 
studies which estimated the basal crop coefficient using VI data. For 
example, Sánchez et al. (2012a) reported Kcb values estimated from VI 
data ranging from near zero to ~0.75 for barley cropland during a single 
growing season. The same study reported Kcb values ranging from zero 
to ~0.50 for grassland, which is slightly lower than the mean peak value 
of ~0.80 found in this study. However, it is important to note that 
Sánchez et al. (2012a) considered only one growing season, while Fig. 4 
considers >20 years of VI data. Campos et al. (2017) used the soil 
adjusted vegetation index (SAVI) to estimate Kcb for a site under maize 
and soybean rotation and found that Kcb reached a maximum value of 
0.95 under maize and 0.90 under soybean. These values are more 
comparable to the maximum Kcb values found for the cropland site 
(Figs. 4, 5). 

The dual crop coefficient method has been most commonly applied 
to cropland and grassland locations, and to our knowledge, no compa
rable studies have been carried out in forested ecosystems that would 
allow for a comparison of Kcb curves at the mixed hardwood forest and 
loblolly pine plantation sites. However, Allen et al. (1998) suggests a 
year-round Kcb value of 1.0 for conifer trees. In contrast, Fig. 4 suggests 
that even for evergreen species the Kcb value is not constant and fluc
tuates seasonally, which indicates that using a constant Kcb value may 
lead to incorrect estimates of ETc_adj. 

3.4. Comparison of modeled and measured soil moisture 

Model-estimated root zone volumetric soil moisture for the study 
ranged from 0.02 to 0.07 m3 m−3 under mixed hardwood forest, from 

0.08 to 0.33 m3 m−3 under loblolly pine, from 0.11 to 0.32 m3 m−3 

under cropland, and from 0.20 to 0.31 m3 m−3 under tallgrass prairie. 
Mean daily volumetric soil moisture was greatest year-round at the 
tallgrass prairie location, which had the finest soil texture among the 
study sites, and lowest year-round at the hardwood forest site, which 
had the coarsest soil texture. The extremely low values of soil moisture 
at the hardwood forest site are likely a result of the high sand content of 
the soil at the site (>80% sand, Table 2). 

Pearson correlation coefficient values across all sites indicate a 
moderate to high level of agreement between model estimated and 
measured root zone soil moisture. The model was able to estimate soil 
moisture dynamics moderately well at all sites, though some over
estimations and underestimations are evident at times at each site 
(Fig. 6). These discrepancies are most likely a result of the values of θ-10 
and θ-1500 measured at the sites. These values are shown in each sub- 
figure of Fig. 6 and represent the effective range of soil moisture 
values for each site, as the FAO-56 model uses these values as upper and 
lower limits on soil water storage. The greatest r values were found for 
the loblolly pine plantation site (r = 0.92), and the lowest values were 
found for the cropland site (r = 0.50) (Table 3). The range of r values 
from this study is comparable to those found by Schnur et al. (2010), 
who reported r values from 0.74 to 0.94 when applying a trained linear 
regression model to estimate 0-50 cm soil moisture values at distant, 
unmonitored sites using NDVI data. Our findings are also similar to those 
reported by Owe et al. (1988), who found an r value of 0.82 for their 
model, which used microwave brightness temperature and NDVI to es
timate soil moisture at an unmonitored location. 

Model error and bias were low at all sites, with mean absolute error 
(MAE) ranging from 0.03 to 0.06 m3 m−3 (Table 3). The greatest MAE 
values were found for the cropland and loblolly pine sites, while the 
lowest MAE value was found for the mixed hardwood forest site. The 
level of error found in the present study is greater than that reported by 
Sánchez et al. (2010), who reported RMSE values ranging from 0.01 to 
0.03 m3 m−3, but similar to that reported by Sánchez et al. (2012b), who 
reported RMSE values ranging from 0.01 to 0.11 m3 m−3. Mean bias 
error (MBE) ranged from -0.05 to 0.02 m3 m−3, with the greatest ab
solute MBE observed for the loblolly pine plantation and the lowest 
absolute MBE found for the mixed hardwood forest site. The level of bias 
found in the present study is also comparable to that reported by 
Sánchez et al. (2012b), who reported bias values ranging from 0.00 to 
0.04 m3 m−3. 

3.5. Comparison of soil moisture measurements from independent 
monitoring stations and Mesonet 

We also compared measured soil moisture under each land cover 
type to measured soil moisture at the nearest Mesonet station in order to 
determine differences in soil moisture dynamics and magnitude under 
different land cover types (Table 3). The greatest r value was found for 
the tallgrass prairie site (r = 0.77), and the lowest value was found for 
the loblolly pine plantation (r = 0.65). The moderately low correlation 

Table 3 
Pearson correlation coefficient (r), mean absolute error (MAE), and mean bias error (MBE) calculated by comparing daily volumetric water content estimated by the 
water balance model and measured volumetric water content each independent monitoring site (modeled v. measured), by comparing independent volumetric water 
content measured under each land cover type and measured volumetric water content at the Oklahoma Mesonet station nearest the monitoring site (measured v. 
Mesonet), and by comparing measured volumetric water content each independent monitoring site with SMAP soil moisture (Measured v. SMAP).   

Modeled v. Measured Measured v. Mesonet Measured v. SMAP 

Site r MAE MBE r MAE MBE r MAE MBE  
- m3 m−3 m3 m−3 - m3 m−3 m3 m−3 - m3 m−3 m3 m−3 

Loblolly pine plantation 0.92 0.06 -0.05 0.65 0.18 0.15 0.85 0.07 0.05 
Mixed hardwood forest 0.70 0.03 0.02 0.76 0.22 0.14 0.74 0.04 -0.02 
Cropland 0.50 0.06 0.02 0.70 0.16 0.10 0.56 0.15 0.11 
Tallgrass prairie 0.80 0.04 -0.02 0.75 0.09 0.06 0.83 0.12 0.04 
MEAN 0.73 0.05 -0.01 0.72 0.16 0.11 0.75 0.10 0.05  
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(r = 0.70) between soil moisture at the cropland site and the nearby 
Oklahoma Mesonet station may be a result of the dichotomous nature of 
soil moisture dynamics under cool-season crops (such as winter wheat) 
and warm-season native grasses growing at the Mesonet station (Pat
rignani and Ochsner, 2018). The soil moisture estimates from the model 
were more strongly correlated with the measured soil moisture data 
than were the data from the nearest Mesonet site for the loblolly pine 
plantation site and the tallgrass prairie site, but not for the other two 
sites. 

The error and bias levels were much greater between soil moisture 
measurements from the nearest Mesonet station and soil moisture at the 
independent monitoring sites compared to those found between model- 
estimated soil moisture and independent monitoring sites (Table 3, 
Measured v. Mesonet). Mean absolute error (MAE) for the nearest 
Mesonet site ranged from 0.09 to 0.22 m3 m−3, with the greatest MAE at 
the mixed hardwood forest and lowest MAE at the tallgrass prairie site. 
Mean bias error ranged from 0.06 to 0.15 m3 m−3, with the greatest MBE 
observed at the loblolly pine plantation and the lowest MBE at the 
tallgrass prairie. It is likely that these sites exhibited the highest and 
lowest levels of bias because of their large and small distances between 
the independent stations and the nearest Mesonet station, respectively 
(Table 1). While the dynamics of soil moisture between Mesonet and 
independent monitoring stations are moderately correlated, there are 
often large errors and biases, which highlights the need for improved 
estimations of soil moisture under these diverse land cover types. Our 
findings indicate that soil moisture estimates from the model developed 
here are better indicators of the soil moisture status across diverse land 
cover types than are soil moisture measurements from in situ monitoring 
stations located exclusively under grassland. 

3.6. Comparison of modeled and SMAP soil moisture data 

Finally, we compared model-estimated soil moisture data to NASA- 
USDA SMAP root zone soil moisture data at each site (Table 3). Our 
results indicate that while SMAP data capture soil moisture dynamics 
slightly better than the model at several sites, model-estimated soil 
moisture has lower MAE and MBE values on average across sites than 
SMAP data. This finding suggests that the method used here, if adapted 
to estimate soil moisture over large areas using 250 × 250 m resolution 

VI data, may be capable of accurately estimating full root zone soil 
moisture under a wide variety of land cover types at a much higher 
spatial resolution than most currently operational remote sensing soil 
moisture products. 

4. Conclusions and future work 

Soil moisture estimates developed using site-specific VI data and a 
simple water balance approach were generally correlated with inde
pendently measured soil moisture values for the root zone under diverse 
land cover types. Further, model-estimated soil moisture values were 
closer to the measured values under each land cover type than were soil 
moisture measurements under grassland at the nearest Oklahoma Mes
onet station. This is particularly of note because the water balance 
model applied here was developed specifically for agricultural cropping 
systems, but our results indicate that, with further improvements, the 
model can produce useful estimates of soil moisture when applied in 
other, non-agricultural vegetation types. 

The results shown here represent a valuable contribution to the field 
in that 1) our findings demonstrate that soil moisture under diverse 
vegetation types is substantially different from that at nearby grassland 
monitoring sites; 2) despite over- and under-estimating soil moisture 
during certain times, our model-estimated soil moisture values have a 
high level of accuracy and low bias across land cover types, as indicated 
by the results shown in Table 3; 3) model-estimated soil moisture values 
represent root zone conditions and thus may be more useful for some 
purposes than remote sensing soil moisture data, which typically 
represent conditions in the top 5 cm of soil; 4) the method incorporates 
site-specific VI data rather than generic tabular data, which allows the 
FAO-56 model to be applied to produce estimates of soil moisture under 
non-agricultural land cover types that were not considered in the orig
inal model; and 5) unlike most prior studies, the Kcb estimation method 
used here relies upon widely-available historical VI data rather than a 
site-specific calibration, making this method widely and easily 
applicable. 

Further, while the Oklahoma Mesonet is one of the foremost soil 
moisture monitoring networks in the world and provides data essential 
for many applications, the large discrepancies between soil moisture 
values measured at the Mesonet stations and in adjacent, contrasting 

Table A1 
Pearson correlation coefficient (r), mean absolute error (MAE), and mean bias error (MBE) for six Kcb estimation methods.  

Kcb method Land cover type r MAE MBE   

- m3 m−3 m3 m−3 

Kcb-EVI1 Mixed Hardwood Forest 0.70 0.03 0.02 
Loblolly Pine Plantation 0.92 0.06 -0.05 
Cropland 0.50 0.06 0.02 
Tallgrass Prairie 0.80 0.04 -0.02 

Kcb-EVI2 Mixed Hardwood Forest 0.69 0.03 0.02 
Loblolly Pine Plantation 0.96 0.05 -0.04 
Cropland 0.51 0.06 0.02 
Tallgrass Prairie 0.76 0.03 -0.02 

Kcb-Guerschman Mixed Hardwood Forest 0.67 0.03 0.02 
Loblolly Pine Plantation 0.97 0.04 -0.02 
Cropland 0.50 0.06 0.03 
Tallgrass Prairie 0.79 0.04 -0.02 

Kcb-Bausch Mixed Hardwood Forest 0.66 0.03 0.02 
Loblolly Pine Plantation 0.96 0.04 -0.01 
Cropland 0.48 0.06 0.03 
Tallgrass Prairie 0.74 0.03 -0.02 

Kcb-Kamble Mixed Hardwood Forest 0.69 0.03 0.02 
Loblolly Pine Plantation 0.96 0.04 -0.01 
Cropland 0.49 0.06 0.03 
Tallgrass Prairie 0.77 0.03 -0.02 

Kcb-Tasumi Mixed Hardwood Forest 0.66 0.03 0.02 
Loblolly Pine Plantation 0.96 0.04 -0.01 
Cropland 0.47 0.06 0.03 
Tallgrass Prairie 0.74 0.03 -0.02  
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land cover types indicates that ignoring heterogeneity in soil moisture 
across land cover types is likely to lead to significant errors when 
applying these data. Future work should aim to refine the approach 
developed here and to create a distributed model that applies the 
method over larger areas (i.e., state or regional scale). 
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Appendix A. Kcb estimation 

Raw EVI and NDVI data were converted to Kcb values using six different methods. Three EVI-based equations were tested: 

Kcb−EVI1 =
EVI − EVImin

EVImax − EVImin
(A.1)  

which follows the method described by Choudhury et al. (1994) and Glenn et al. (2010), where EVI is the mean observed EVI value of the defined area 
for each image, EVImin is the minimum EVI for a given location during the study period, and EVImax is the maximum EVI value for a given location 
during the study period. The second EVI-based equation was 

Kcb−EVI2 =
EVI

EVImax − EVImin
(A.2)  

which is similar to the previous equation, except that it allows for Kcb values greater than one, which is often observed in the FAO-56 methodology. A 
third EVI-based equation from Guerschman et al (2009) was also tested: 

Kcb−Guerschman = Kcb−max
(
1 − exp

(
−a × EVIα

r

))
(A.3)  

where α = 2.38 and a = 10.22. This equation and the parameter values used are the result of a model calibration across seven sites in Australia with a 
variety of land cover types, similar to the present study. 

In addition to the equations above, three NDVI-based equations were tested in order to determine which vegetation index is most useful for 
developing the basal crop coefficient. The three NDVI-based equations are: 

Kcb−Bausch = 1.36NDVI − 0.03 (A.4)  

from Bausch and Neale (1987), who developed the equation for a corn site in in Colorado, 

Kcb−Kamble = (1.4571 × NDVI) − 0.1725 (A.5)  

from Kamble et al. (2013), who developed the equation using data from a variety of crop types and locations. The final NDVI-based equation is 

Kcb−Tasumi = (1.18 × NDVI) + 0.04 (A.6)  

from Tasumi et al. (2006), who developed the equation for an area of mixed vegetation in New Mexico. 
Each set of Kcb values was tested within the FAO-56 model in order to determine which Kcb estimation method yielded the most accurate estimates 

of volumetric soil moisture as compared to soil moisture data measured at each monitoring site based on the Pearson correlation coefficient (r), mean 
absolute error (MAE), and mean bias error (MBE) (Table A1). 

Appendix B. ETc_adj model outputs 

Mean estimated annual ETc_adj ranged from 803 mm yr−1 in the hardwood forest to 839 mm yr−1 in the loblolly pine plantation, with intermediate 
values of 799 mm yr−1 at the cropland site and 752 mm yr−1 at the tallgrass prairie. Annual ETc_adj values ranged from 517 to 859 mm yr−1 for the 
mixed hardwood forest site; from 399 to 966 mm yr−1 for the loblolly pine plantation site; from 436 to 1028 mm yr−1 for the cropland site; and from 
315 to 935 mm yr−1 for the tallgrass prairie site. The greatest mean annual ETc_adj was found for the loblolly pine plantation, which is likely due to the 
high annual precipitation rate and therefore higher water availability at this location (Table 1). The lowest ETc_adj values were found at the tallgrass 
prairie location, which may be because the specified rooting depth for the tallgrass prairie site was the shallowest among all the study locations. 

Current estimates of ETc_adj compare relatively well with prior estimates of evapotranspiration (ET) in similar vegetation types. Prior work has 
estimated annual ET in Oklahoma grasslands ranging from to 640-810 mm yr−1 (Burba and Verma, 2005; Yimam et al., 2014). The current mean 
annual ETc_adj values for the tallgrass prairie site (752 mm yr−1) fall within the range of these prior estimates. Additionally, this mean ETc_adj value of 
752 mm yr−1 is very similar to that reported by Sun et al. (2018), who measured a single-year ET value of 728 mm using an eddy covariance system 
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installed nearby the independent tallgrass prairie monitoring site. 
Wagle et al. (2019) reported seasonal ET values ranging from 652-734 mm and a single-year total ET value of ~900 mm for a non-irrigated alfalfa 

field in central Oklahoma. These values are comparable to the mean annual ETc_adj value of 799 mm yr−1 found at the cropland site. Additionally, 
similar ET rates were found under agricultural land in central Oklahoma by Liu et al. (2010), who reported an annual value of 778 mm yr−1; by Burba 
and Verma (2005), who measured ET in winter wheat in north-central Oklahoma using an eddy covariance system and found annual values ranging 
from 710 mm to 750 mm; and by Yimam et al (2017), whose watershed-scale modeling study in north-central Oklahoma reported an estimated 
cropland ET value of 713 mm yr−1. 

Liu et al. (2010) reported an annual ET value of 854 mm in forest systems in north-central Oklahoma, which is very comparable to the mean annual 
estimated ETc_adj at the loblolly pine site (839 mm yr−1) and slightly higher than mean annual estimated ETc_adj at the mixed hardwood forest (803 mm 
yr−1). Doughty et al. (2016) reported ET values estimated from MODIS satellite data of 650 to >900 mm yr−1 in evergreen forest in southeast 
Oklahoma, which is comparable to the mean annual ETc_adj value estimated here for the pine plantation. Hennessey et al. (2004) reported ET values of 
~600-800 mm yr−1 in a loblolly pine plantation in southeastern Oklahoma, values which are slightly lower than those found in the present study. 
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Baroncini-Turrichia, G., Torres, E., Calera, A., Pérez-Gutiérrez, C., 2012a. Water 
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