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ARTICLE INFO ABSTRACT

Keywords: The second phase of the North America Multi-Model Ensemble (NMME-2) provides globally available
NMME-2 o Subseasonal-to-Seasonal (S2S) precipitation forecasts with a daily resolution. The S$2S precipitation forecasts are
Zg;;assonal-to-seasonal Precipitation Forecast getting increasing attention for their potentials in providing hydrometeorological forcing information for water

resources planning at an extended range. However, the forecast skills of many existing S2S forecast products will
significantly decrease when the lead time increases, hindering their applicability for watershed-scale hydrologic
modeling. Therefore, forecast validation and large-scale evaluation are of great importance for water resources
planning and hydrological applications. In this study, we comprehensively evaluate the S2S precipitation fore-
casts from the NMME-2 dataset over the contiguous United States (CONUS) and during the study period from
1982 to 2011. Three aspects of precipitation forecast capabilities are compared and analyzed: bias, skill scores,
and the ability to predict extreme precipitation events. The Parameter-elevation Regressions on Independent
Slopes Model (PRISM) is used as ground truth reference. Differs from other regional forecast validation study, we
further examined and analyzed the dependences of NMME-2 precipitation forecast skills according to different
seasonality, geographical locations, and lead times. Results show that the forecast biases are not sensitive to lead
times but are seasonally dependent of all NMME-2 models. Overestimations are found in the Western U.S. in
cooler seasons while underestimations are observed in the central regions of the U.S. in warmer seasons. The
forecast skill of all individual NMME-2 models generally decreases as increases of lead times. The simple model
averaging (SMA) of five NMME-2 models demonstrates a higher forecast skill than any individual NMME-2
models. Spatially, the highest forecast skill scores are observed at coastal areas in the Western U.S. with an
one-week lead time. As compared to the historical resampled forecasts, NMME-2 also shows better performance
in predicting extreme precipitation events above 99% percentiles and below 1% percentiles with higher prob-
ability of detections and lower false alarm ratios. The obtained results suggest the great potentials of NMME-2
precipitation forecasts in assisting ensemble hydrologic forecasts at the S2S scale over the CONUS.

Forecast Validation
Forecast Bias
Extreme Precipitation

1. Introduction

Precipitation is one of the most important components in the hy-
drologic cycle (Sorooshian et al., 2011). Accurate and reliable precipi-
tation forecasts with certain lead times could be beneficial in planning
and managing social economic activities, preventing financial and life
losses from water-related disasters (Akbari Asanjan et al., 2018, Palmer
2002). Different precipitation forecast products can be categorized by
the available lead times, such as short-, medium- and long-range forecast
products. At the short- and/or medium-ranges (i.e., 2-3 days and 7-10

days, respectively), Numerical Weather Prediction (NWP) models can
provide reliable and skillful forecasts globally (Bauer et al., 2015).
Especially, at the short- and/or medium ranges, NWP models could
generate skillful precipitation forecasts by taking advantages of the high
predictability of rainfall from initial atmospheric states, various types of
observations, and advanced data assimilation techniques. However, one
common critique on the NWP model is that its forecast skill decreases
rapidly and the associated forecast uncertainty increases dramatically,
when the forecast lead time extends two weeks and beyond (Alley et al.,
2019, Berner et al., 2011, Hamill and Juras 2006, Lin et al., 2005,
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Palmer et al., 2004, Ritter and Geleyn 1992, Shrestha et al., 2013, Sun
et al., 2014a). This is because NWP model heavily relies on the initial
states of atmosphere, and the predictability coming from the initial
states dissipates rapidly over lead time. At long-ranges (i.e., months,
seasons, years, and even decades), Earth System Models (ESMs) and
General Circulation Models (GCMs) coupled with dynamic oceanic and
land surface components are reliable alternatives. Both ESMs and GCMs
produce more skillful and informative climate outlooks than the NWP
models at longer forecast lead times, because by design, they are able to
incorporate both the local land surface conditions and sea surface
temperature (SST) circulations into the computation for future weather
and climate predictions (Vitart et al., 2017).

A forecast gap lies in the transitional period between the medium-
range weather forecasts and longer-range seasonal climate outlooks.
This transitional period is also referred to as the Subseasonal-to-Seasonal
(S2S) timescale, which defines a specific time range beyond 10 days and
up to 30 days into the future (White et al., 2017). At the S2S time range,
the forecast lead time is sufficiently long that most of the predictability
from the initial conditions would be lost but it is also too short for the
variability of the ocean to have a strong influence upon local weather
(Vitart et al., 2017). This unique physical feature of weather predict-
ability made precipitation forecast at the S2S range notoriously chal-
lenging and also makes S2S forecast often considered as a “desert of
predictability” (White et al., 2017).

The S2S hydrometeorological forecasts are important information
and have a great potential in providing seamless streamflow and flood
forecasts at the S2S range. Traditionally, river forecast centers and
weather service centers over the globe issue probabilistic seasonal
streamflow forecasts forced by seasonal and/or monthly climate out-
looks (Wood and Lettenmaier 2006). However, this kind of seasonal
streamflow forecasts can only reflect an increased or decreased risks of
flooding but do not have the ability to predict floods at the S2S range.
Meanwhile, the S2S hydrometeorological forecasts provide an oppor-
tunity in assisting streamflow forecasts, which not only reflects the
flooding risks but also provides additional information regarding the
timing, frequency, or severity of potential floods within seasons (White
et al., 2015). Accurate S2S hydrometeorological forecasts could also
help the operation of reservoirs in scheduling optimal water supplies
and hydropower generations given foreseeable dry and wet water con-
ditions (Sankarasubramanian et al., 2009, Yang et al., 2020; 2021).
Despite the potential benefits of S2S ensemble forecasts in water-energy
system operation (Ding et al., 2021), it also appears to be a new research
area to extend our existing knowledge about weather and climate
forecasts in different space and time (Vitart and Robertson 2018).

Previous studies concluded that the predictability of S2S forecast
comes from several sources, including initial atmospheric conditions
(Cohen et al., 2010, Stockdale et al., 2015), initial land surface soil
moisture (Asoka and Mishra 2015, Guo et al., 2011), initial snow con-
ditions (Thomas et al., 2016), and initial sea surface temperatures
(Chelton and Wentz 2005). In some recent studies, the planetary-scale
oceanic patterns are found to be the main predictability source of S2S
forecasts, and these interconnection climate indices include the El
Nino-Southern Oscillation (ENSO), Madden—Julian oscillation (MJO),
quasi-biennial oscillation (QBO) (Nardi et al., 2020, Pan et al., 2019b,
Yang et al., 2017). There are many existing efforts and programs that
focus on the hydrometeorological forecasts at the S2S timescales, such as
the European Center for Medium Range Weather Forecasts (ECMWF),
the Environment Canada (EC), the Japan Meteorological Agency (JMA),
the China Meteorological Administration (CMA), etc. Each of those
agencies uses different coupled GCMs and ESMs to obtain the precipi-
tation forecasts at the S2S range with different temporal and spatial
resolutions.

The North America Multi Model Ensemble (NMME) is a multi-agency
initiated and collaborative program that provides a variety of hydro-
meteorological forecasts at the S2S timescale (Kirtman et al., 2014a).
The NMME consists of the outputs from multiple coupled GCMs and
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ESMs, each providing independent retrospective forecasts (hereafter
referred to as “hindcasts”) and real-time forecasts. The NMME phase 1
project (NMME-1) was initially launched in 2014 and further transi-
tioned into Phase 2 (NMME-2) in more recent years. Both NMME-1 and
NMME-2 datasets provide monthly initialized hindcasts and forecasts
with lead-time up to 12 months. The major advancement of NMME-2
over the NMME-1 dataset is the provision of dynamically downscaled
forecasts, in which the new dataset provides daily precipitation forecasts
at the S2S range, while the outputs from the NMME-1 dataset only
provides forecasts with monthly resolution (Kirtman et al., 2014b).

There is a good number of existing research that investigated the
quality and accuracy of the hydrometeorological forecasts from NMME-
1 dataset. For example, Becker et al. (2014) and Krakauer (2019) eval-
uated the skill of precipitation and temperature forecasts from NMME-1
globally. And they found that the simple model averaging (SMA) of
NMME-1 models shows better forecast skill than any individual NMME-
1 models and the forecast skills vary depending on geographical regions
and seasons. Similar evaluation studies upon NMME-1 monthly hydro-
meteorological forecasts have been carried out in different regions. For
example, Cash et al. (2019) observed significant systematic error in both
precipitation and temperature forecasts from NMME-1 in two Southern
Asia regions and found the highest forecast skills are observed at the
shortest lead times. Shukla et al. (2019) found the skill of precipitation
forecasts from NMME-1 is higher during ENSO years over East Africa.
Slater et al. (2019) evaluated the skill of precipitation and temperature
forecasts from NMME-1 over seven geological regions of the continental
United States. Slater et al. (2019) found the highest forecast skill is
generally observed at the shortest lead time and the performances of
NMME-1 forecast are spatially and seasonally dependent. The study
from Slater et al. (2019) also consistently shows that higher forecast
skills can be gained by averaging multiple NMME-1 models and the skill
of hydrometeorological forecast from NMME-1 quickly declines to
marginal levels as lead time increases. To address the low forecast ac-
curacies issue associated with the NMME-1 dataset, many follow-on
studies focused on improving precipitation forecast from NMME-1
dataset. For example, Slater et al. (2017) deployed different multi-
model weighting techniques to improve the skill of NMME-1 monthly
precipitation forecast across Europe. Xu et al. (2019) applied several
machine learning and wavelet approaches to bias-correct and downscale
the monthly precipitation forecast from the NMME-1 dataset over China.
Khajehei et al. (2018) developed a Bayesian ensemble approach based
on a Copula function to bias-correct the NMME-1 monthly precipitation
forecast over the CONUS.

As compared to the studies on NMME-1 dataset, there is fewer
studies that investigate the quality of S2S precipitation forecasts from
the newer NMME-2 dataset. Among a limited number of studies, Wan-
ders and Wood (2016) evaluated the precipitation forecast from NMME-
2 globally on a bi-weekly basis. By aggregating the evaluation result into
three global regions, including the tropics, extratropic and northern
latitudes, they found the forecasts skill decreases over lead time as well
as performance discrepancies between different NMME-2 models. Zhou
and Kim (2018) evaluated the ability of NMME-2 in predicting the
wintertime atmospheric rivers (AR) and moisture flux over the North-
east Pacific in response to ENSO. They found NMME-2 dataset has sig-
nificant regional biases in anomalous landfalling AR frequency which
underlining challenges in forecasting regional precipitation events.
More recently, Baker et al. (2019) studied the precipitation forecasts of
Climate Forecast System version 2 (CFSv2) from the NMME-2 dataset
over the entire CONUS on a bi-weekly basis, and they found the forecast
skill of CFSv2 decreases over lead time rapidly, but the forecast biases
are insensitive to lead times. Guo and Nie (2020) evaluated the daily
precipitation forecasts of CFSv2 over east China. Their result indicates
the raw precipitation forecasts of CFSv2 are substantially biased and the
extreme precipitation events over east China have been underestimated
by CFSv2. Becker et al. (2020) studied the performances of precipitation
forecasts from NMME-2 globally. However, Becker et al. (2020)
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aggregated the daily forecast values from NMME-2 into monthly values
since their study focus on seasonal scale and is more focused on proving
the improvement of forecast quality corresponding to the iteration of
NMME models. To summarize the existing studies focusing on precipi-
tation forecasts from NMME-2, existing research either (1) targeted the
evaluation of NMME-2 at a spatial scale that is too large to provide a
useful reference for regional hydrologic studies, or (2) are only focusing
on monthly forecast values and overlook the S2S forecasts from NMME-
2, or (3) have only included a certain member of NMME-2 into the study
and did not comprehensively evaluate all NMME-2 members as a whole
with the consideration of lead times, seasonality and precipitation’s
geographical characteristics.

Thus, more inclusive and comprehensive evaluation of the S2S pre-
cipitation forecast from the NMME-2 data across CONUS is still critically
needed. According to the conclusion of many existing studies, although
the evaluation results of the seasonal precipitation forecast from NMME
over CONUS may have some consistency and similarities, it is still un-
known how exactly does precipitation forecast from different NMME-2
models perform at the S2S range over the entire CONUS. In addition,
the merit of the S2S precipitation forecast from NMME-2 in forecasting
extreme events has not been verified at large scales. And these missing
pieces of research, in return, limits further hydrologic applications of the
NMME-2 dataset, since potential maximum streamflow prediction is one
of the most important and desired outcomes of hydrologic forecasts at
the S2S range (Day 1985, Gobena and Gan 2010).

To fill the gap, as well as to provide valuable reference information
and knowledge for future hydrologic research on NMME-2, this study
aims to answer the following research questions: 1) How does the S2S
precipitation forecast from NMME-2 perform over the entire CONUS? 2)
What are the differences between S2S precipitation forecasts from
different NMME-2 models in terms of their performances over CONUS?
3) What is the forecast skill of the individual NMME-2 models at
different regions over the CONUS? 4) Do certain NMME-2 models
outperform others with the consideration of certain regions, lead times,
and seasons? and 5) what are the NMME-2 model’s performances in
predicting extreme precipitation events over the CONUS?

To answer these research questions, in this study, we evaluated the
S2S precipitation forecasts from five NMME-2 models and their grand
ensemble (i.e., all five NMME-2 models as a whole set) is collected and
analyzed over the CONUS. The study period is from 1982 to 2011. All
five NMME-2 models selected in this study provide daily S2S precipi-
tation forecast, except for the CFSv2, which was already studied by
Baker et al. (2019). The AN81d dataset generated from the Parameter-
elevation Regressions on Independent Slopes Model (PRISM) is used as
the reference dataset. The forecast bias and forecast skill are examined
since forecast bias and poor forecast skill are two major obstacles in
applying precipitation forecasts to hydrologic simulations (Zalachori
et al., 2012). In addition, the ability of S2S precipitation forecasts from
NMME-2 in predicting extreme precipitation events are further evalu-
ated and compared to the benchmark performances of the historical
resampled precipitation forecasts. During our evaluation study, the
forecast lead time is considered on a weekly basis (i.e., from week 1 to
week 4 to cover the whole S2S range). Comparison and analysis on the
forecast data quality are further conducted over nine National Centers
for Environmental Information (NCEI) climate regions and four seasons,
which are more inclusive and detailed as compared to the existing
NMME-2 evaluation studies mentioned above. For example, this study
extends the existing studies from Baker et al. (2019) and Wanders and
Wood (2016). Specifically, our study conducts a more representative
validation of five NMME-2 models, emphasizing on the forecast per-
formance evaluation at the weekly scale and over the entire CONUS. In
other words, our study provides a temporally-finer and spatially larger
evaluation as compared to that from Baker et al. (2019) and Wanders
and Wood (2016). Lastly, besides the traditional evaluation of forecast
biases and skill scores, we also included extensive validation experi-
ments focusing on the extreme rainfall performance and compared the
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forecast accuracy on different percentile thresholds of dry and wet
extremes.

The rest of this paper is organized as follows: In section 2, we present
data and study regions. Section 3 describes the evaluation metrics and
methodologies. Sections 4 and 5 present the results and discussions,
respectively. The main conclusions and findings are summarized in
Section 6.

2. Data and study regions

There is a total of seven different models available in the NMME-2
dataset. Among them, we select five NMME-2 models that provide
daily precipitation forecasts covering the S2S range. Table 1 presents the
basic information of the selected five NMME-2 models, including the
Canadian Coupled Climate Model version 3 and 4 (CanCM3, CanCM4)
from the Canada’s Climate Model Center (CMC), the Community
Climate System Model 4.0 (CCSM4) from the National Center for At-
mospheric Research (NCAR), the Forecast-oriented Low Ocean Resolu-
tion model using parameter set B (FLORBO1) from the Geophysical Fluid
Dynamics Laboratory (GFDL), and the Goddard Earth Observing System
version 5 model (GEOS5) from the National Astronautics and Space
Administration (NASA).

Each NMME-2 model generates ensemble forecasts through per-
turbed physics strategy and/or under different initial conditions: The
CanCM3, CanCM4, CCSM4, and GEOS5 models consist of 10 ensemble
members and the FLORBO1 model consists of 12 ensemble members.
The study period was set from 01/01/1982 to 12/31/2011 (30 years),
which overlaps with the hindcast/forecast period for all five NMME-2
models. All NMME-2 hindcast/forecast datasets are available at:
https://www.earthsystemgrid.org/search.html?Project=NMME.

The daily precipitation dataset AN81d generated from the
Parameter-elevation Regressions on Independent Slopes Model (here-
after referred to as PRISM) is used as a reference precipitation dataset in
this study. The PRISM data is available from 1981 to near-present in
gridded format with a spatial resolution of 4 km (~0.04°) across the
CONUS. The PRISM data combines surface observations with a digital
elevation model to account for the orographic enhancement of precip-
itation. In addition to rain-gauge records, the PRISM data also in-
corporates the Radar measurement into account when producing
corrected data over the central and eastern U.S. regions (Daly and
Bryant 2013). Since the PRISM dataset does not incorporate assimilated
information from numerical weather forecasting models or meteoro-
logical reanalysis, it represents an independent dataset suitable for hy-
drologic studies (Radcliffe and Mukundan 2017). Numerous hydrologic
studies have used PRISM precipitation data as a reliable reference for
model evaluation, bias-correction for remotely sensed precipitation
estimation products, and forecast verification studies (Ashfaq et al.,
2016, Oubeidillah et al., 2014, Prat and Nelson 2015, Widmann and
Bretherton 2000).

Figure 1 shows nine different climate regions across the CONUS,
which are defined by the National Centers for Environmental Informa-
tion (NCEI) (Karl and Koss 1984). These nine climatic regions separate
the CONUS into Northwest, West North Central, East North Central,
Northeast, Central, West, Southwest, South, and Southeast regions.
Within the NECI climate regions, the Sierra Nevada Mountain and the
Rocky Mountain are across the Northwest, West, Southeast, and West
North Central regions; and the Appalachian Mountain covers parts of the
Northeast and Southeast regions. In this study, we evaluate the precip-
itation forecast of the NMME-2 at each pixel across the CONUS and
obtain the spatially averaged results over these nine climate regions for
regional analysis. In this study, we analyze the results based on these
nine climatic regions, because rainfall presents different physical and
dynamical features and patterns over different regions over the CONUS,
i.e., orographic elevation induced rainfall, frontal precipitation, and/or,
convective systems.
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Table 1

A list of selected NMME-2 models.
Model Data period Temporal resolution Spatial resolution Lead time (Days) Ensemble members Reference
CanCM3 01/1981-08/2012 Daily 1°x1° up to 365 10 Merryfield et al. (2013)
CanCM4 01/1979-08/2012 Daily 1°x1° up to 365 10 Merryfield et al. (2013)
CCSM4 01/1982-12/2016 3-hourly/Daily 1°x1° up to 365 10 Vertenstein et al. (2010)
FLORBO1 01/1980-07/2014 Daily 0.5°x0.625° up to 365 12 Delworth et al. (2012)
GEOS5 01/1982-12/2012 Daily 1°x1° up to 274 10 Vernieres et al. (2012)

NCEI Climate Regions

45°N

30°N

45°N

30°N

120°wW 105°W

90°W 75°W

Fig. 1. NECI Climate Regions across the CONUS.

3. Methodology, procedures, and evaluation metrics

In this study, we first collected the NMME-2 precipitation forecasts
and PRISM dataset and then conducted initial data pre-processing. The
NMME-2 precipitation forecasts are produced at the beginning of each
month and the forecast lead time are up to 1 year (365 or 366 days) into
the future. We truncated all collected NMME-2 precipitation forecasts to
28 days (4 weeks) and then aggregated them into weekly forecast values
(e.g., day 1 to 7 as of week 1; day 8 to 14 as of week 2; day 15 to 21 as of
week 3; and day 22 to 28 as of week 4). Both NMME-2 and PRISM
datasets were re-gridded into 0.25° resolution using the same nearest
neighbor method for consistency. The grand ensemble of all selected
NMME-2 models (i.e., a total of 52 different realizations in Table 1) was
also constructed after the data pre-processing. We also re-organized the
collected precipitation forecasts from both individual NMME-2 models
and the 52-member grand ensemble into different seasons, i.e.,
December-January-February (DJF), March-April-May (MAM), June-
July-August (JJA), and September-October-November (SON). In other
words, the evaluation experiment comprehensively considers the fore-
cast skill and model bias by different climate regions, forecast lead
times, as well as the seasonality over the CONUS.

In this study, we use the commonly accepted approaches of pixel-
based and spatial forecast evaluation metrics. Four evaluation metrics
are included, i.e., the percentage bias (PBIAS), anomaly correlation
coefficient (ACC), quantile probability of detection (QPOD), and quan-
tile false alarm ratios (QFAR). The PBIAS and ACC of (i) the ensemble
means of individual NMME-2 models and (ii) the SMA of the grand
ensemble, are computed to evaluate forecast bias and forecast skill
quantitatively. The QPOD and QFAR metrics are used to evaluate the
capabilities of individual NMME-2 model in predicting extreme pre-
cipitation events at weekly scales. The evaluation of extreme precipi-
tation is as important as forecast bias and forecast skill, because the S2S

precipitation forecasts potentially serve as inputs to the ensemble
streamflow prediction (ESP) approach, which are the official approach
used in each National Weather Service’s River Forecast Centers for
estimating river stages and potential floods over the CONUS. Within the
ESP framework, the extreme streamflow values associated with extreme
precipitation events are one of the most important outcomes regarding
flood predictions (Day 1985, Gobena and Gan 2010). With this under-
standing, in this study, the ensemble spreads of individual NMME-2
models and the grand ensemble of five NMME-2 models are employed
to compute the QPOD and QFAR for extreme precipitation evaluation.
While there is no golden standard for defining extreme precipitation
events, we chose 99% and 95% percentiles, and 5% and 1% percentiles
as the thresholds of extreme precipitation events corresponding to flood
and drought events, respectively. Note that we only present the QPOD
and QFAR results for extreme events above 99% and below 1% in the
main article for conciseness, and the 95% and 5% events results are
included in the supplementary material for interested readers. Detailed
descriptions for the four employed evaluation metrics are presented as
follows.

3.1. Percentage bias (PBIAS)

The PBIAS measurement reflects the degree of the under- and/or
over- estimations of precipitation forecast that are vital for potential
future hydrologic applications. To quantify the bias pattern of NMME-2
precipitation forecasts over the CONUS, the PBIAS of the ensemble
means of single NMME-2 models and the SMA of the grand ensemble are
computed with Equation (1).

X—y

PBIAS = — x 100% (€D)]
y

Where X is long-term mean value of precipitation forecasts at a certain
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location over CONUS, ¥ is the long-term mean reference precipitation at
a certain location over CONUS. And PBIAS is the percentage differences
between mean forecast values and mean reference values over the study
period. Positive PBIAS values indicate overestimations by forecasts,
while negative PBIAS values indicate underestimations by forecasts.

3.2. Anomaly correlation coefficient (ACC)

The ACC is a widely used metric in the climate prediction commu-
nity. It measures the degree of association between forecast and
observed deviation from the climatology. The advantage of ACC over
some other metrics is that ACC can separate effects due to the existence
of forecast bias in evaluating forecast skill. The ACC score of 1 indicates
that the forecast provides perfect information and a score of zero means
the forecast contains no information at all. The ACC skill scores of the
ensemble mean of each individual NMME-2 model and the SMA of the
grand ensemble are calculated following Equation (2) (Murphy and
Epstein 1989).

ny xy—3 x>y

ACC =
Ve - (Dx —y/n Xy - ()

(2)

where x is the forecast/hindcast precipitation anomalies at a certain lead
time and y is reference precipitation anomalies at the same lead time, n
is the total number of hindcasts/forecast values made for that lead time,
and ACC is the anomaly correlation coefficient skill score for the fore-
casts/hindcasts.

3.3. Quantile probability of detection (QPOD), quantile false alarm ratio
(QFAR)

3.3.1. Quantile probability of detection (QPOD)

The QPOD is a statistical evaluation measurement, which is defined
as the probability of detection (POD) above a certain quantile threshold
(AghaKouchak et al., 2011, Wilks 2011). In this study, we used the
whole ensemble spreads of NMME-2 models to compute the QPOD.
Taking the CanCM3 model and extreme events above 99% percentiles as
an example: CanCM3 model produces ten forecast values at a certain
time step, and if any one of the ten forecast values has successfully
forecasted an extreme event exceeded 99% quantile according to its own
model output statistics, it will be count as a “hit”. The QPOD has the
advantage of ignoring the effect of forecast bias as it is a quantile-based
evaluation metric compared to the conventional probability of detection
(POD) (AghaKouchak et al., 2011, Wilks 2011). The QPOD ranges from
0 to 1 and the value of 1 is ideal, indicating all extreme events above/
below a certain percentile threshold are successfully forecasted. The
QPOD of single NMME-2 models and the grand ensemble of five NMME-
2 models considering their whole ensemble spreads can be calculated
with the following Equation (3):

Do U I (x5 > Xj-90) N I(i > Yoo)

QPOD = o
2oL > yoo)

3

Where n is the length of the forecast time series, and m is the ensemble
size of a certain forecast model. x;; is the forecast value by jth ensemble
member of a model at time step i, and xj_o9 is the 99% threshold of the
jth ensemble member according to its own statistics. Similarly, y; is the
reference value at time step i, and yo9 is the 99% threshold of the
reference precipitation according to its own statistics. I is the indicator
function (e.g., I(true) = 1,I(false) = 0), N and U represent set operations
(eg,1N1 =1,0Ul1 =1).

3.3.2. Quantile false alarm ratio (QFAR)

The QFAR is a categorical evaluation measurement, which is defined
as the False Alarm ratio (FAR) above a certain quantile threshold
(Mehran and AghaKouchak 2014). In this study, we used the whole
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ensemble spreads of NMME-2 models to compute the QFAR. Again,
taking the CanCM3 model as an example, which has ten ensemble
members: the CanCM3 model produces ten forecast values at a certain
time step, and if any one of the ten forecast values has made a forecast
exceeded 99% quantile according to its own model output statistics
while there’s no extreme event happened according to the reference, it
will be count as a “false alarm”. Since adopting quantile thresholds, the
QFAR also has the advantage of ignoring the effect of forecast bias
compared to the conventional false alarm ratio (FAR) (AghaKouchak
etal., 2011, Wilks 2011). The QFAR ranges from 0 to 1 and the value of
0 is ideal, indicating there’s no “false alarm” at all. The QFAR of single
NMME-2 models and the grand ensemble of five NMME-2 models
considering their whole ensemble spreads can be calculated with the
following Equation (4).

o U I (x> Xj-99) NI (i < Y99)

QFAR = v
Dm0 < yoo)

4

Where n is the length of the forecast time series, andm is the ensemble
size of a certain forecast model. x; is the forecast value by jth ensemble
member of a model at time step i, and xj_gg is the 99% threshold of the
jth ensemble member according to its own statistics. Similarly, y; is the
reference value at time step i, and yg9 is the 99% threshold of the
reference precipitation according to its own statistics. I is the indicator
function (e.g., I(true) = 1,I(false) = 0), N and U represent set operations
(eg,1Nn1 =1,0U1 =1).

3.3.3. Benchmarking QPOD and QFAR

In this study, we benchmark the QPOD and QFAR values of historical
resampled precipitation forecasts in predicting extreme precipitation
events. The historical resampled forecasts are commonly used as hy-
drometeorological inputs to the ESP framework for hydrologic forecasts
at S2S range. Assuming historical resampled precipitation forecast with
an ensemble size of m, if any single randomly drawn forecast values out
of m forecasts values have successfully predicted an extreme event
above/below a certain threshold according to the historical statistics, it
will be counted as a “hit”. Similarly, if any single randomly drawn
forecast values out of m forecasts values contain a value above/below a
certain threshold while there’s no such extreme events happened ac-
cording to the reference, it will be counted as a “false alarm”.

Since historical resampled forecasts are randomly drawn values from
historical records, they are totally independent of the actual weather
happened in the real world. Thus, theoretically, for any true positive
and/or true negative events, the QPOD and/or QFAR of historical
resampled forecasts are the same and can be computed with Equation

(5):

QPOD =1-0.99" (5)

dforecasis = OFAR,

ecast

According to Equation (5), the QPODeampiedforecasts and
QFAR esampiedforecasss With an ensemble size of 10 (CanCM3, CanCM4,
GEOS5, CCSM4), 12 (FLORBO01), and 52 (the grand ensemble of NMME-
2)are 0.10, 0.11, 0.40, respectively, for the extreme precipitation events
above 99% or below 1% percentiles. Since the historical resampled
forecasts randomly draw values from historical records, their perfor-
mances are only affected by the ensemble size but are independent of
forecast lead times.

4. Results
4.1. Forecast bias

Figure 2 presents the overall PBIAS of NMME-2 precipitation hind-
casts over CONUS. It consists of the results from five individual NMME-2
models (CanCM3, CanCM4, FLORB0O1, GEOS5, and CCSM4) and the
SMA of the grand ensemble of five NMME-2 models. In Fig. 2, the pos-
itive bias in cooler colors (blue) is associated with overestimation and
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Fig. 2. The overall pattern of PBIAS for NMME-2 precipitation hindcasts over the CONUS.

the negative bias in warmer colors (red) is associated with
underestimation.

According to Fig. 2, the highest level of model PBIAS of the NMME-2
dataset appears in central and western U.S., and the forecast biases are
relatively lower in eastern regions than that over the western regions.
This similar spatial variability of overall PBIAS can be observed across
individual NMME-2 models and the SMA. In addition, we notice that all
five NMME-2 models demonstrate both positive and negative PBIAS
with a “mosaic-like” pattern over the Northwest, West, West North
Central, and Southwest regions (Fig. 2a-e), where the Sierra Nevada
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Mountains and the Rocky Mountains ranges. On the contrary, across the
Northwest and Southeast regions where Appalachian Mountain is
located, the GEOS5 model (Fig. 2d) demonstrates a significant level of
overestimation while other NMME-2 models show a relatively smaller
level of biases. In the South region, all five NMME-2 models are
consistently underestimating precipitation. The SMA (Fig. 2f) has a very
similar pattern of spatial variability in the overall pattern of PBIAS
compared to the five individual single NMME-2 models.

The following Fig. 3 presents the PBIAS of NMME-2 precipitation
hindcasts across CONUS at different lead times (i.e., week 1 to week 4).
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Fig. 3. The pattern of PBIAS for NMME-2 precipitation hindcasts over the CONUS at different lead times (i.e., day 1 to 7: week 1, day 8 to 14: week 2, day 15 to 21:

week 3, and day 22 to 28: week 4).
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According to Fig. 3, only some minor differences are observed in
different climate regions and no obvious lead-time dependences of
PBIAS are observed for all NMME-2 members. At all lead times, the
spatial pattern of weekly PBIAS is very similar to the overall pattern of
PBIAS observed in Fig. 2. The SMA also shows similar behavior to the
five individual NMME-2 models at all lead times. Combining the results
from both Figs. 2 and 3, we observe that the overall model biases are not
sensitive to lead times, though individual model could be associated
with different levels of PBIAS, and the model errors are also spatially
varying across the CONUS.

In the following Fig. 4, we present the seasonal PBIAS of NMME-2
precipitation hindcasts over CONUS. According to Fig. 4, both the in-
dividual NMME-2 model and the SMA exhibit a strong PBIAS variation
in different seasons over the CONUS, and the individual model biases
may demonstrate significant changes from positive to negative or vice-
versa when the season changes. Specifically, in DJF, all NMME-2
models show significant overestimation at most parts of the North-
west, West, West North Central, and Southwest regions. In MAM, the
general behavior of the model overestimation is improved and the level
of overestimation of all individual models decreased comparing to that
in DJF. In MAM, we also notice that the spatial patterns of the obtained
PBIAS are very similar to the overall patterns of PBIAS as shown in prior
Fig. 2, suggesting the MAM is the most representative season to show
model’s error variability in space. In JJA, all NMME-2 models show a
significant level of underestimation at the Northwest, West, Southwest,
South, and West North Central regions. In SON, the level of the under-
estimation by all models are smaller than that in JJA, while the level of
overestimation increased in the Northwest region.

The results in Fig. 4 indicate that there are strong seasonal de-
pendences of model PBIAS at different regions across CONUS, especially
in DJF and JJA. Some noticeable model discrepancies are observed in

CanCM3

CanCM4

FLORBO1

GEOS5

CCsSM4

SMA
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different seasons. For example, in SON, the CanCM4 model exhibits a
more significant level of underestimation than other NMME-2 models in
the Southeast, South, Southwest, and West North Central regions. In
MAM, the GEOS5 model demonstrates a higher level of overestimation
than other NMME-2 models in the West North Central region, while a
higher level of underestimation is observed with the same GEOS5 model
comparing to other models in the Southwest, South, and Southeast
regions.

To better illustrate the large-scale spatial patterns of model biases
with a joint consideration of seasonality and lead time dependences, we
further computed and presented the regional averaged PBIAS values of
NMME-2 over nine NCEI climate regions for different seasons (DJF,
MAM, JJA, and SON) and lead times (weeks 1-4) in the following Fig. 5.
In Fig. 5, the cooler colors indicate overestimation, while the warmer
colors indicate underestimation. The numbers in each cell of Fig. 5
indicate the actual PBIAS values obtained for each model, lead time, and
season. According to the heat map of Fig. 5, the largest overestimations
made by all NMME-2 models occur in the West North Central region in
DJF. And significant underestimations are observed in the warmer sea-
sons of SON and JJA at most of the regions over CONUS except for the
Northwest. The layout pattern of nine NCEI climate regions in Fig. 5
(from left to right) is consistent with the geographic patterns of those
regions in the real-world layout (from west to east). According to the
quantitative values presented in Fig. 5 (from left to right), there is an
obvious decreasing trend of PBIAS from west to east. This numerical
trend and decreasing pattern are more obvious than that of different
seasonality and lead times. Specifically, the overall overestimation in
the Northwest, West, and West North Central regions observed in Fig. 2
appears to be mainly contributed by the overestimations that occurred
in DJF. And the underestimation observed in Fig. 2 appears to be mainly
contributed by the underestimations that occurred in warmer seasons of
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Fig. 4. The PBIAS of NMME-2 precipitation hindcasts within different seasons (i.e., DJF, MAM, JJA, SON) across CONUS.
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Fig. 5. Regional averaged PBIAS of NMME-2 precipitation hindcasts from the five NMME-2 models and an SMA model for each season (DJF, MAM, JJA, and SON)
and lead time (week 1 to 4) at the nine NCEI climate regions.

Week 2

1.0

CanCM3

CanCM4

FLORBO1

GEOS5

(DDV) Ua1D11420)) UoIIR|a110D) Ajewouuy

CCSM4

SMA

Fig. 6. The pattern of ACC for NMME-2 precipitation hindcasts over the CONUS at different lead times (weeks 1 to 4).



L. Zhang et al.

JJA and SON. In terms of the different lead times, we found that the
PBIAS values are not sensitive to the lead times since the colors of grid
boxes in Fig. 5 remain rather consistent along the x-axis within most of
the subplots. In JJA and SON, only CanCM4, FLORB01, CCSM4, and
SMA models show some noticeable variations of PBIAS over lead times
in the West, the West North Central, and the Southwest regions.

4.2. Forecast skill

To evaluate the forecast skills of NMME-2 precipitation hindcasts at
different lead times (week 1 to week 4) across CONUS, we calculated the
ACC values of the ensemble means of five NMME-2 models and the SMA
of the grand ensemble of NMME-2. The results are presented in Fig. 6. In
Fig. 6, warmer colors indicate higher ACC scores and cooler colors
indicate lower ACC scores. The red-colored numbers on the lower-right
corners of each subplot in Fig. 6 are the spatially averaged ACC value
over the entire CONUS.

According to the results in Fig. 6, except for the FLORBO1, the
forecast skill of all other NMME-2 models shows a decreasing trend over
lead times as their CONUS-averaged ACC values decrease rapidly from
week 1 (0.34 to 0.43) to week 2 (0.19 to 0.26), and the skill score re-
mains at a marginal level at week 3 (0.10 to 0.17) and week 4 (0.09 to
0.10). The CONUS-averaged ACC values of FLORBO1 are consistently
lower than other NMME-2 models, especially at week 1 and week 2. The
SMA shows a higher forecast skill than any other individual NMME-2
models at all lead times over the entire CONUS.

In addition, the results in Fig. 6 also indicate that spatially, all
NMME-2 models have the highest forecast skill over the coastal areas in
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the Northwest and West regions as compared to other regions in CONUS.
Higher ACC values can be observed in the Northwest, West, West North
Central, and some part of the Southwest Central regions, as compared
with the CONUS-averaged ACC values. However, the ACC values in the
South, Central, some parts of the Southwest and Northeast regions are
consistently lower than in other regions, especially at the longer lead
times (i.e., week 2 to week 4).

In the following Fig. 7, we present the ACC values in different seasons
of (a)DJF, (b)MAM, (c)JJA, and (d)SON at different lead times (week 1
to week 4). The difference between Fig. 7 and Fig. 6 is that the prior
Fig. 6 differentiated the forecast lead times but did not separate the
forecasts made in different seasons. In Fig. 7, we further grouped the
forecasts into different seasons and lead times for evaluation. The
warmer colors in Fig. 7 indicate higher ACC scores and cooler colors in
Fig. 7 indicate lower ACC scores, and the red-colored numbers on the
lower-right corners of each subplot in Fig. 7 are the spatially averaged
ACC value over the entire CONUS.

In Fig. 7, the weekly pattern of the ACC values in all seasons
generally follows similar behaviors as that shown in Fig. 6. The ACC
values of the NMME-2 models decrease rapidly from week 1 to week 2
and show marginal forecast skill in week 3 and week 4 in all seasons. The
FLORBOL1 is still an outlier compared with the other NMME-2 models as
it continuously presents lower CONUS-averaged ACC values. The SMA
of NMME-2 shows the highest CONUS-averaged ACC values at almost all
lead times in all seasons. It is also found that there are seasonal de-
pendences in the forecast skills according to the lead times. Taking SMA
results as an example, the highest ACC values at week 1 and week 3 are
observed in DJF and MAM, respectively. Although overall marginal
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Fig. 7. The pattern of ACC for NMME-2 precipitation hindcasts within different seasons (i.e., DJF, MAM, JJA, SON) at different lead times (weeks 1 to 4) over

the CONUS.
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forecast skill is observed at week 3 and week 4 in all seasons, a moderate
forecast skill (0.3 to 0.4) can be observed at some areas within different
seasons. In addition, at week 3 and week 4, moderate forecast skills are
observed (i) over the South, Southwest, some parts of the West, the West
North Central, and the Southeast in DJF; (ii) over the North Central, the
South, and the coastal area of the West regions in MAM,; (iii) over the
Southwest and the West North Central regions in JJA; and (iv) over the
Northwest, and the coastal areas of the West regions in SON,
respectively.

Figure 8 presents the regionally averaged ACC scores of NMME-2
precipitation hindcasts in different seasons (DJF, MAM, JJA, and SON)
and at different lead times (week 1 to week 4) over nine NCEI climate
regions. In Fig. 8, the lighter colors indicate lower ACC values, and the
darker colors indicate higher ACC values. The numbers in the figure are
the actual ACC scores. Similar to the presentation of Fig. 5, Fig. 8 follows
the pattern that the layout of nine NCEI climate regions from left to right
in Fig. 8 corresponds to the real-world geography from western to
eastern U.S. per the real-world layout.

The results in Fig. 8 indicate a spatially varying pattern of the pre-
cipitation forecast skill of NMME-2 models, when the seasonality and
lead time dependences are jointly considered. Specifically, in Fig. 8,
there is a significant decreasing trend of ACC values from the west to the
east, especially in MAM and JJA. In addition, we observe that the ACC
values are relatively higher at the shortest lead time (i.e., week 1), as
compared to that at longer lead times (i.e., week 2 to week 4) across all
regions and seasons. According to Fig. 8, in general, the highest overall
ACC value is likely to appear in the winter season (i.e., DJF). On the
contrary, the NMME-2 models tend to produce the lowest forecast skill
in the summer season (i.e., JJA) except for the Northwest and Southwest
regions. Except for the FLORBO1 model, all other NMME-2 models show
similar behaviors in most of the NECI climate regions and the different
models show similar performances over most of the lead times. The SMA
shows the highest ACC values than any single NMME-2 models under
most of the scenarios, which is expected as the SMA approach can
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eliminate the outliners and produce a more conservative forecast as
compared to each single NMME-2 model.

As a summary of this section 3.2, the following three important
findings are evidenced by the presented results: (1) the NMME-2 pre-
cipitation forecast skill consistently decreases over the lead times across
the CONUS in all seasons; (2) The raw forecast skill of NMME-2 dataset is
generally higher in cooler seasons than that in warmer seasons; And (3)
spatially, the raw forecast skill of all five employed NMME-2 models
tends to be higher in western regions than in eastern regions across the
CONUS, and the performance of different models is similar to each
other, except for the FLORBO1 model.

4.3. Capability in predicting extreme precipitation events

We evaluate the NMME-2 models’ capabilities in predicting extreme
precipitation events using the QPOD and QFAR. Here we obtain and
analyze the NMME-2 models’ capabilities in predicting extreme pre-
cipitation events above 99% and below 1% percentiles, respectively. The
results for extreme precipitation events above 95% and below 5% per-
centiles are available in the Supplementary Materials for interested
readers.

4.3.1. Extreme events above 99% threshold

The following Fig. 9 presents the QPOD of NMME-2 precipitation
hindcasts in predicting extreme precipitation events above 99%
threshold over CONUS at different lead times. In Fig. 9, the warmer
colors indicate higher QPOD values, and red-colored numbers at the
lower-right corners of each subplot is the spatially averaged QPOD
values over the entire CONUS.

The results from Fig. 9 indicate that the QPOD patterns of different
NMME-2 models are generally similar to each other with only minor
discrepancies at forecast lead time of week 1. Both the GEOS5 and
CCSM4 model generally show higher QPOD values than other NMME-2
models at week 1. According to the numerical QPOD values on each
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Fig. 8. Regional averaged ACC of NMME-2 precipitation hindcasts from the five NMME-2 models and an SMA model for each season (DJF, MAM, JJA, and SON) and
lead time (week 1 to 4) at the nine NCEI climate regions.
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Fig. 9. The QPOD (99% threshold) for NMME-2 precipitation hindcasts over the CONUS at different lead times (weeks 1 to 4).

subplot rows, all NMME-2 models, except for the FLORBO1, exhibit a
decreasing trend of QPOD value over the lead times. The FLORBO1
model produces the lowest QPOD value in week 1, but the QPOD value
increases from 0.11 to 0.20 over lead time. Spatially, the QPOD values at
the coastal areas of the Northwest and the West regions are higher than
those over other regions at all lead times. This result is consistent with
the ACC evaluation result presented in the previous section 3.2. The
QPOD values of the grand ensemble of 5 NMME-2 models (a total of 52
ensemble members) are presented in the last row in Fig. 9. The ensemble
results show that there is a significant increase in the QPOD values of the
grand ensemble compared to individual NMME-2 models with smaller
ensemble sizes.

Figure 10 presents the QFAR of NMME-2 precipitation hindcasts in
predicting extreme precipitation events above 99% percentiles over
CONUS at different lead times. In Fig. 10, the cooler colors indicate
higher QFAR values, and red-colored numbers at the lower-right corners
of each subplot is the spatially averaged QFAR values over the entire
CONUS. Note that in contrary to QPOD, lower QFAR values indicate
more superior performance in terms of predicting extremes.

According to Fig. 10, All single NMME-2 models’ QFAR values are
around or less than 0.1 across the CONUS. The GEOS5 and CCSM4
model, which shows slightly higher QPOD values than other NMME-2
models, also demonstrate relatively higher QFAR values. Comparing
to the spatially-averaged QFAR values within different rows in Fig. 10,
all NMME-2 models exhibit an increasing trend of QFAR value over the
lead times. Spatially, QFAR values are lower than average over the
coastal areas of the Northwest and the West regions at all lead times.
This result is consistent with the ACC evaluation result presented in the
previous section 3.2. The QFAR values of the grand ensemble of five
NMME-2 models (a total of 52 ensemble members) are presented in the
last row in Fig. 10. The result shows that with a larger ensemble size, the
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false alarm ratios of the grand ensemble of NMME-2 are significantly
larger than any single NMME-2 models.

We also compare the QPOD and QFAR of NMME-2 models (five
NMME-2 models and Grand Ensemble) with the benchmark values from
resampled forecasts as presented in Table 2.

By comparing the NMME-2 QPOD and QFAR values with the
benchmark values of the historical resampled forecasts, we can see all
individual NMME-2 models and the grand ensemble of NMME-2 have
shown superior performances in predicting extreme events exceeded
99% percentiles. All NMME-2 models have shown higher QPOD and
lower QFAR than the benchmarks. Although larger ensemble sizes may
bring higher QPOD values, it also increases QFAR values. Higher QPOD
values indicate higher chances of coverages of extreme precipitation
events above 99% percentiles by the ensemble spreads of precipitation
forecasts (NMME-2 or historical resampled forecasts). Lower QFAR
values indicate that when the ensemble spreads of precipitation fore-
casts reached above 99% percentiles, there are higher chances of such
extreme events eventually happen.

4.3.2. Extreme events below 1% threshold

Figure 11 presents the QPOD of NMME-2 precipitation hindcasts in
predicting extreme precipitation events below 1% percentiles over
CONUS at different lead times. In Fig. 11, the warmer colors indicate
higher QPOD values, and red-colored numbers at the lower-right corners
of each subplot is the spatially averaged QPOD values over the entire
CONUS.

According to Fig. 11, for all individual NMME-2 models, marginal
QPOD values are observed at most regions of CONUS. Relatively higher
QPOD values are only observed for certain models in certain regions and
at certain lead times. For example, CanCM4 model shows higher QPOD
values in the Southwest region at all lead times. GEOS-5 also presents
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Fig. 10. The QFAR (99% threshold) for NMME-2 precipitation hindcasts over the CONUS at different lead times (weeks 1 to 4).
Table 2
NMME-2 QPOD and QFAR of extreme events above 99% percentile.
QPOD Benchmark QFAR Benchmark
Week 1 Week 2 Week 3 Week 4 Week 1 Week 2 Week 3 Week 4
CanCM3 0.20 0.17 0.15 0.15 0.10 0.04 0.07 0.09 0.10 0.10
CanCM4 0.18 0.15 0.14 0.14 0.10 0.04 0.06 0.09 0.10 0.10
FLORBO1 0.11 0.19 0.19 0.20 0.11 0.06 0.09 0.12 0.13 0.11
CCSM4 0.28 0.19 0.16 0.15 0.10 0.07 0.08 0.09 0.10 0.10
GEOS5 0.35 0.16 0.17 0.14 0.10 0.10 0.07 0.08 0.08 0.10
Grand Ensemble 0.60 0.52 0.51 0.50 0.42 0.23 0.28 0.34 0.36 0.42

slightly higher QPOD values at some locations in the Southwest,
Southeast, and Northeast regions at week 1 and week 2. The QPOD of
the grand ensemble of NMME-2 presented at the last row of Fig. 11
shows significantly higher QPOD compared to single NMME-2 models
over the entire CONUS at all lead times.

Figure 12 below presents the QFAR with a 1% percentile threshold of
NMME-2 precipitation hindcasts over CONUS at different lead times. In
Fig. 12, the cooler colors indicate higher QFAR values, and red-colored
numbers at the lower-right corners of each subplot is the spatially
averaged QFAR values over the entire CONUS.

The overall QFAR patterns are similar to the overall QPOD patterns
shown in Fig. 11. Marginal QFAR values are observed at most of regions
in CONUS for all individual NMME-2 models. Higher QFAR values are
only found for certain models and at certain regions, mirroring Fig. 11.
CanCM4 and GEOSS5 show higher QFAR values at some locations in the
Southwest region at all lead times. The QFAR value of the grand
ensemble of NMME-2, which is presented at the last row of Fig. 11, is
significantly higher than that of each individual NMME-2 models over
the CONUS.
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We also compare the QPOD and QFAR of NMME-2 models (five
NMME-2 models and Grand Ensemble) in predicting extreme events
below 1% percentile thresholds with the benchmark values from
resampled forecasts as presented in Table 3.

Comparing the NMME-2 QPOD and QFAR values with the bench-
mark values of the historical resampled forecasts from Table 3, all in-
dividual NMME-2 models show higher QPOD values than the
benchmark. However, the QPOD values of the grand ensemble of
NMME-2 are slightly lower than but still comparable to the benchmarks.
Higher QPOD values indicate higher chances of coverages of extreme
precipitation events below 1% percentiles by the ensemble spreads of
precipitation forecasts (NMME-2 or historical resampled forecasts) and
vice versa. Lower QFAR values indicated that when the ensemble
spreads of precipitation forecasts fall below 1% percentiles, that there
are higher chances that such extreme events may eventually happen.
Considering both QPOD and QFAR values, it is reasonable to say that the
NMME-2 still presents overall better performances in predicting extreme
events below 1% percentiles than the benchmark does.
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Fig. 11. The QPOD (1% threshold) for NMME-2 precipitation hindcasts over the CONUS at different lead times (weeks 1 to 4).

5. Discussion

The PBIAS result shown in prior Sections 3.1 and 3.2 can be
explained along with the geographical characteristics and rainfall
mechanisms of the CONUS. The overall pattern of PBIAS in the winter
DJF season showed significant overestimations in the Northwest, the
West, and West North Central regions. For these regions, precipitation
events are dominated by synoptic-scale extratropical cyclones (ECs) and
atmospheric rivers (ARs) related weathers in cooler seasons (Zhang
et al., 2019). A number of previous studies have reported that GCMs
tend to produce too much low-volume precipitation in comparison with
reference (also known as the “drizzle effect”) when simulating synoptic
precipitation events (Hill 1993, Maraun 2013). Thus, the authors sus-
pect the observed overestimations at the above-mentioned regions in
cooler seasons are largely due to the “drizzle effect”. However, other
studies also suggest GCMs tend to underestimate high-volume pre-
cipitations related to convective weather systems in the Western US (e.g.
Norris et al., 2021). In this regard, our evaluation is limited as it only
reflects aggregated biases of precipitation forecasts from NMME-2,
which entangles all potential affecting factors. Thus, more detailed ex-
aminations of NMME-2 at regions in the Western U.S. should be carried
out to attribute the sources of bias in a more rigorous way. Although
significant overestimation was generally observed in the DJF, there were
also underestimations in some areas within the same regions in DJF.
These mixed behaviors of over- and under- estimations could be
attributed to the complex terrains brought by the Sierra Nevada
Mountain and the Rocky Mountain, which are likely to trigger
orographic precipitations with the nearby climatic regions. This also
suggests that the raw coarse spatial resolution of NMME-2 should be
considered through proper bias corrections and downscaling before any
further hydrologic applications. In contrast the PBIAS patterns in DJF,
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an overall underestimation of precipitation from NMME-2 was observed
in the South, the Southwest and part of the West North Central regions in
warmer seasons, especially in JJA. These regions lie in the middle of the
continent with nearly half of the precipitation contributed by mesoscale
convective systems (MCSs) in warmer seasons (Easterling et al., 2017,
Fritsch et al., 1986, Nesbitt et al., 2006). However, the convection sys-
tems are neither perfectly parameterized nor resolved for most of the
GCMs (Moncrieff 2019). Moreover, MCSs with even smaller spatial
scales normally operate within typical GCM grids, which surpass the
capability of GCMs and ESMs (Eden et al., 2012). As a result, it is
reasonable to suspect the observed underestimations at the South, the
Southwest and part of the West North Central regions in warmer seasons
are associated with sub-grid convective precipitation events.
Regarding the obtained forecast skill results, one major discrepancy
was identified between FLORBO1 and other NMME-2 models, as shown
in Fig. 6. The FLORBO1 model showed consistently lower forecast skill
throughout all lead times, while other NMME-2 models showed higher
forecast skill at week 1 and rapidly decreased to marginal levels at week
3 and week 4. This result agrees with the previous evaluation study upon
monthly NMME-1 precipitation forecasts by Slater et al. (2019), in
which the authors found the FLORBO1 model sometimes does not
display higher skill at the shortest lead time (one month). The obtained
result in our study further shown that within the one-month lead time (i.
e., week 1 to week 4), the FLORBO1 model still presents poorer perfor-
mances compared with other NMME models. Our obtained results
(Fig. 9) also exhibit that the application of the grand ensemble with
larger ensemble sizes generally shows better statistics than individual
NMME-2 models with smaller ensemble sizes. This observation strongly
supports the hypothesis that creating a grand model ensemble with a
larger ensemble size through multiple techniques (e.g., multi-model,
perturbed physics, and perturbed initial conditions etc.) will
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Fig. 12. The QFAR (1% threshold) for NMME-2 precipitation hindcasts over the CONUS at different lead times (weeks 1 to 4).
Table 3
NMME-2 QPOD and QFAR of extreme events below 1% percentile.
QPOD Benchmark QFAR Benchmark
Week 1 Week 2 Week 3 Week 4 Week 1 Week 2 Week 3 Week 4
CanCM3 0.12 0.10 0.12 0.12 0.10 0.04 0.06 0.09 0.09 0.10
CanCM4 0.16 0.13 0.14 0.14 0.10 0.06 0.09 0.10 0.11 0.10
FLORBO1 0.08 0.13 0.14 0.13 0.11 0.06 0.09 0.11 0.10 0.11
GEOS5 0.17 0.14 0.12 0.12 0.10 0.08 0.09 0.09 0.08 0.10
CCSM4 0.14 0.14 0.11 0.12 0.10 0.05 0.08 0.09 0.09 0.10
Grand Ensemble 0.38 0.39 0.38 0.40 0.42 0.20 0.27 0.31 0.32 0.42

effectively increase precipitation forecast skill and reliability.

The spatial dependences of forecast skill of all employed NMME-2
model are evident. Higher ACC values were observed over the coastal
areas of the Northwest, the West, and West North Central regions at all
lead times. Within these regions, the winter precipitation is mainly
associated with cyclonic (synoptic) scale weathers (Cayan and Roads
1984). Because of the life cycle of cyclones and their large spatial scales,
the corresponding precipitation events are generally easier for GCMs to
predict compared to other types of precipitation events (i.e., convective
and orographic) (Kumar et al., 2011, Zhu et al., 2014). Even at longer
lead times (week 2 to week 4), the ACC values at these regions are still
higher than at other regions. It is also noticeable that the regions and
seasons observed overestimations seem more likely to achieve higher
forecast skills if cross observing Fig. 5 and Fig. 8.

Our results regarding the extreme events suggest that there is a good
potential of NMME-2 forecasts to be used for hydrologic applications at
the S2S range. At the S2S range, precipitation forecasts generally do not
show reliable forecast skills and cannot be used deterministically. And
for this reason, ensemble precipitation forecasts with the ability to cover
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the extreme events with their ensemble spreads are widely used. Thus,
from a practical point of view, the abilities of ensemble precipitation
forecasts in predicting extreme events become extremely important.
According to Table 2 and Table 3, most NMME-2 models show superior
QPOD and QFAR values compared to the benchmark when predicting
extreme precipitation events above 99% percentiles and below 1%
percentiles. NMME-2 show less dominant performances when predicting
events below 1% percentiles compared to predicting events above 99%
percentiles, which indicates that NMME-2 may be better at predicting
floods than predicting droughts. But overall speaking, NMME-2 still
appears to be a better option with generally higher probabilities of de-
tections and lower false alarm ratios of predicting extreme events than
the historical resampled forecasts. This finding suggests that NMME-2
may be a better fit to the ESP framework than historical resample
forecasts in terms of hydrologic predictions at the S2S range. It is also
noteworthy to mention that the grand ensemble of NMME-2 models
should provide more information for water resources planning at the
S2S range to mitigate the impacts from floods and droughts compared to
individual NMME-2 models.
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Nonetheless, many challenges remain when applying the NMME-2
S2S precipitation forecast on hydrologic modeling and real-world
water resources planning. The first issue that needs to be addressed is
the substantial forecast bias. Although our result has demonstrated good
potentials of NMME-2 in predicting extreme events, the raw forecast
values need to be bias corrected before assisting real-world flood pre-
dictions (Brown and Seo 2010, Tiwari et al., 2021). Currently, most of
the popular bias correction approaches heavily rely on the “stationary
assumption”, where statistical moments are generalized from the his-
torical records and will be used to correct the raw forecast values
(Teutschbein and Seibert 2012). However, some recent studies have
identified trends in not only frequencies but also magnitudes of extreme
precipitation events in various regions over the globe (Madsen et al.,
2014, Miao et al., 2015, Sun et al., 2014b), which likely undermines the
efficacy of existing approaches in bias correcting extreme precipitation
forecast values. And the authors believe properly considering the “non-
stationary” in bias correction, especially for extreme values, might be a
major challenge for future studies.

Great efforts have also been made to to improve the marginal fore-
cast skill of the S2S precipitation forecasts by utilizing hydrometeoro-
logical forecasts from multiple sources and models to assist ensemble
hydrologic forecasting. We believe that one promising direction is to
construct a super NMME-2 ensemble, and further apply more sophisti-
cated multi-model averaging techniques to improve the forecast data
quality (Ji et al., 2020, Sloughter et al., 2007, Yang et al., 2018). Multi-
model ensemble with proper data quality control could further increase
the precipitation forecast skill across different temporal and spatial
resolutions. Based on the obtained results in this study, we observe that
in most of the cases, the SMA method can produce slightly higher
forecast skills than any individual NMME-2 models at all lead times.
Nevertheless, the improvements of SMA are still limited over individual
models. Authors believe that advanced model ensemble technique needs
to be used together with the fundamental enhancements of the GCMs
and ESMs, which provide better precipitation predictability and less
system and random errors in the S2S forecasts. For example, this could
be done by advancing the current land surface components of GCMs
(Dirmeyer et al., 2018, Zhou et al., 2020) or through better sub-grid
convective parameterizations (Eden et al., 2012).

From the perspective of hydrology community, exploiting the ben-
efits of deep learning techniques to post-process S2S precipitation
forecasts might be another feasible alternative (Akbari Asanjan et al.,
2018, Weyn et al., 2021), given the slow advances in fundamentally
enhancing the physical dynamics of coupled GCMs or ESMs. Most of the
previous studies have tried to correct the bias of GCM generated pre-
cipitation forecast separately, without considering the forecast skill.
However, our study implies that the forecasts bias and forecast skill are
somehow connected with each other. The performance of precipitation
forecasts can essentially be attributed to different climate and weather
patterns and mechanisms (Eden et al., 2012, Kirtman et al., 2014a). Only
correcting bias may lead to degradation of forecast skills (Mendoza
et al., 2017). Recently, it has been reported that taking the advantage of
deep learning techniques to handle additional resolved atmospheric
forecast variables to improve the S2S precipitation forecast skills first
then correcting the bias may provide some major improvements (Miao
etal., 2019, Pan et al., 2019a). Given the recent development of artificial
intelligence and other statistical tools from computer science, the uses of
machine learning methods to improve the NMME-2 S2S daily precipi-
tation forecasts may provide a variable way leading to successful fore-
cast adaptations for hydrologic applications. These new machine
learning approaches allow auxiliary information to be considered during
the bias-correction process, such as the forecast lead times, seasonality,
regional factors, and relevant atmospheric forecast variables, which are
all found to be important factors in improving the accuracy of S2S
precipitation forecasts pertinent to the presented sensitivity analysis in
our study over the CONUS.

Last but not least, it is also important for hydrologists to apply the
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improved and corrected S2S precipitation forecasts for hydrologic
forecasts at watersheds with different hydrometeorological conditions,
spatial and temporal resolutions (Cao et al., 2021, Li et al., 2019). After
the necessary post-processing and bias corrections, we encourage prac-
titioners to apply other popular metrics such as the Mean Squared Error,
the Ranked Probabilistic Skill Score (RPSS), the Continuous RPSS
(CRPSS), and other Categorical skill metrics, including the False Alarm
Ratio (FAR), the Probability of Detection (POD), the Critical Success
Index (CSI), and Equitable Threat Score (ETC) and etc. to conduct more
detailed examinations of S2S precipitation forecasts on daily basis for
regional studies. This would overcome the limitation of our study, in
which only the NMME-2 S2S forecasts on a weekly basis are studied with
a limited number of evaluation metrics. One of the major motivations for
our study is to identify trends and quantify the data quality of the
NMME-2 forecasts over the entire CONUS, and therefore, the streamflow
simulation capabilities and forecast data improvements will be investi-
gated in future studies.

To summary, the authors believe future studies on NMME-2 S2S
precipitation forecasts may include (1) proper bias corrections and
downscaling of the NMME-2 S2S precipitation forecasts at different re-
gions across the CONUS; (2) application of deep learning approaches to
provide more accurate and reliable NMME-2 precipitation forecasts,
especially at longer lead times; (3) hydrologic applications of the
NMME-2 S2S precipitation forecasts with ESP framework to further
investigate the efficacy of NMME-2 S2S precipitation forecasts over
traditional historical resample forecasts in streamflow forecasting.

6. Conclusion

In this study, the S2S precipitation forecasts of NMME-2 are
comprehensively evaluated across CONUS and during a hindcast period
of 1982-2011. Both deterministic evaluations of forecast bias (PBIAS)
and forecast skill (ACC), and probabilistic evaluations aiming at the
extreme precipitation events (QPOD, QFAR) have been conducted. The
spatial, seasonal, and lead time dependence of the performances of
NMME-2 daily precipitation forecasts have been analyzed over nine
NCEI climate regions. The extreme precipitation performances of five
NMME-2 models are also evaluated against benchmark resampled his-
torical forecasts. Our results highlight the strengths and weaknesses of
the NMME-2 S28S precipitation forecast and its potential for hydrologic
applications. The major findings and conclusions of this study are
summarized below.

1. The NMME-2 S2S precipitation forecasts show substantial biases
across CONUS. The forecast biases also demonstrate strong spatial
and seasonal dependences, but we found the biases are not sensitive
to forecast lead times. Five individual NMME-2 models and the SMA
of their grand ensemble show similar spatial bias patterns across the
CONUS. Based on our spatial analysis, significant overestimations of
the NMME-2 forecasts are observed in the western (Northwest, West,
and West North Central) regions in DJF season. And significant
model underestimations are identified in the South region of CONUS
in warmer seasons of JJA and SON.

2. In terms of forecast skill, a major discrepancy exists between the
FLORBO1 and the rest of NMME-2 models. Specifically, the FLORBO1
model consistently shows a lower precipitation forecast skill, espe-
cially at week-1 and week-2 lead times, as compared to other NMME-
2 models. The forecast skill of the rest of NMME-2 models is the
highest at week-1, tends to decrease rapidly from week-1 to week-2,
and remains at a marginal level at week-3 and week-4 across all
regions and in all seasons. Spatially, all NMME-2 models show higher
forecast skills in the western areas (Northwest and West regions).
The SMA of five NMME-2 members shows better deterministic
forecast skill than any single NMME-2 model under most comparison
scenarios.
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3. The NMME-2 S2S precipitation forecasts also show better potentials
in predicting extreme (above 99% and below 1%) precipitation
events at all lead times compared to historical resampled forecasts. In
addition, the formation of a grand ensemble of NMME-2 with a
bigger ensemble size can further increase the performance of NMME-
2 in predicting extreme events. Therefore, we believe the grand
ensemble of NMME-2 S2S precipitation forecasts is a good alterna-
tive to the historical resampled forecast within the ESP framework
for hydrologic applications.

4. Our study has presented more detailed evaluations of the precipita-
tion forecasts from NMME-2 within one month (week 1 to week 4)
compared to previous evaluations of NMME-1 monthly precipitation
forecasts across the entire CONUS. And our evaluation results should
be able to serve as an important reference for future hydrologic-
related studies utilizing NMME-2 at watershed scales across CONUS.
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