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A B S T R A C T   

The second phase of the North America Multi-Model Ensemble (NMME-2) provides globally available 
Subseasonal-to-Seasonal (S2S) precipitation forecasts with a daily resolution. The S2S precipitation forecasts are 
getting increasing attention for their potentials in providing hydrometeorological forcing information for water 
resources planning at an extended range. However, the forecast skills of many existing S2S forecast products will 
significantly decrease when the lead time increases, hindering their applicability for watershed-scale hydrologic 
modeling. Therefore, forecast validation and large-scale evaluation are of great importance for water resources 
planning and hydrological applications. In this study, we comprehensively evaluate the S2S precipitation fore
casts from the NMME-2 dataset over the contiguous United States (CONUS) and during the study period from 
1982 to 2011. Three aspects of precipitation forecast capabilities are compared and analyzed: bias, skill scores, 
and the ability to predict extreme precipitation events. The Parameter-elevation Regressions on Independent 
Slopes Model (PRISM) is used as ground truth reference. Differs from other regional forecast validation study, we 
further examined and analyzed the dependences of NMME-2 precipitation forecast skills according to different 
seasonality, geographical locations, and lead times. Results show that the forecast biases are not sensitive to lead 
times but are seasonally dependent of all NMME-2 models. Overestimations are found in the Western U.S. in 
cooler seasons while underestimations are observed in the central regions of the U.S. in warmer seasons. The 
forecast skill of all individual NMME-2 models generally decreases as increases of lead times. The simple model 
averaging (SMA) of five NMME-2 models demonstrates a higher forecast skill than any individual NMME-2 
models. Spatially, the highest forecast skill scores are observed at coastal areas in the Western U.S. with an 
one-week lead time. As compared to the historical resampled forecasts, NMME-2 also shows better performance 
in predicting extreme precipitation events above 99% percentiles and below 1% percentiles with higher prob
ability of detections and lower false alarm ratios. The obtained results suggest the great potentials of NMME-2 
precipitation forecasts in assisting ensemble hydrologic forecasts at the S2S scale over the CONUS.   

1. Introduction 

Precipitation is one of the most important components in the hy
drologic cycle (Sorooshian et al., 2011). Accurate and reliable precipi
tation forecasts with certain lead times could be beneficial in planning 
and managing social economic activities, preventing financial and life 
losses from water-related disasters (Akbari Asanjan et al., 2018, Palmer 
2002). Different precipitation forecast products can be categorized by 
the available lead times, such as short-, medium- and long-range forecast 
products. At the short- and/or medium-ranges (i.e., 2–3 days and 7–10 

days, respectively), Numerical Weather Prediction (NWP) models can 
provide reliable and skillful forecasts globally (Bauer et al., 2015). 
Especially, at the short- and/or medium ranges, NWP models could 
generate skillful precipitation forecasts by taking advantages of the high 
predictability of rainfall from initial atmospheric states, various types of 
observations, and advanced data assimilation techniques. However, one 
common critique on the NWP model is that its forecast skill decreases 
rapidly and the associated forecast uncertainty increases dramatically, 
when the forecast lead time extends two weeks and beyond (Alley et al., 
2019, Berner et al., 2011, Hamill and Juras 2006, Lin et al., 2005, 
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Palmer et al., 2004, Ritter and Geleyn 1992, Shrestha et al., 2013, Sun 
et al., 2014a). This is because NWP model heavily relies on the initial 
states of atmosphere, and the predictability coming from the initial 
states dissipates rapidly over lead time. At long-ranges (i.e., months, 
seasons, years, and even decades), Earth System Models (ESMs) and 
General Circulation Models (GCMs) coupled with dynamic oceanic and 
land surface components are reliable alternatives. Both ESMs and GCMs 
produce more skillful and informative climate outlooks than the NWP 
models at longer forecast lead times, because by design, they are able to 
incorporate both the local land surface conditions and sea surface 
temperature (SST) circulations into the computation for future weather 
and climate predictions (Vitart et al., 2017). 

A forecast gap lies in the transitional period between the medium- 
range weather forecasts and longer-range seasonal climate outlooks. 
This transitional period is also referred to as the Subseasonal-to-Seasonal 
(S2S) timescale, which defines a specific time range beyond 10 days and 
up to 30 days into the future (White et al., 2017). At the S2S time range, 
the forecast lead time is sufficiently long that most of the predictability 
from the initial conditions would be lost but it is also too short for the 
variability of the ocean to have a strong influence upon local weather 
(Vitart et al., 2017). This unique physical feature of weather predict
ability made precipitation forecast at the S2S range notoriously chal
lenging and also makes S2S forecast often considered as a “desert of 
predictability” (White et al., 2017). 

The S2S hydrometeorological forecasts are important information 
and have a great potential in providing seamless streamflow and flood 
forecasts at the S2S range. Traditionally, river forecast centers and 
weather service centers over the globe issue probabilistic seasonal 
streamflow forecasts forced by seasonal and/or monthly climate out
looks (Wood and Lettenmaier 2006). However, this kind of seasonal 
streamflow forecasts can only reflect an increased or decreased risks of 
flooding but do not have the ability to predict floods at the S2S range. 
Meanwhile, the S2S hydrometeorological forecasts provide an oppor
tunity in assisting streamflow forecasts, which not only reflects the 
flooding risks but also provides additional information regarding the 
timing, frequency, or severity of potential floods within seasons (White 
et al., 2015). Accurate S2S hydrometeorological forecasts could also 
help the operation of reservoirs in scheduling optimal water supplies 
and hydropower generations given foreseeable dry and wet water con
ditions (Sankarasubramanian et al., 2009, Yang et al., 2020; 2021). 
Despite the potential benefits of S2S ensemble forecasts in water-energy 
system operation (Ding et al., 2021), it also appears to be a new research 
area to extend our existing knowledge about weather and climate 
forecasts in different space and time (Vitart and Robertson 2018). 

Previous studies concluded that the predictability of S2S forecast 
comes from several sources, including initial atmospheric conditions 
(Cohen et al., 2010, Stockdale et al., 2015), initial land surface soil 
moisture (Asoka and Mishra 2015, Guo et al., 2011), initial snow con
ditions (Thomas et al., 2016), and initial sea surface temperatures 
(Chelton and Wentz 2005). In some recent studies, the planetary-scale 
oceanic patterns are found to be the main predictability source of S2S 
forecasts, and these interconnection climate indices include the El 
Niño–Southern Oscillation (ENSO), Madden–Julian oscillation (MJO), 
quasi-biennial oscillation (QBO) (Nardi et al., 2020, Pan et al., 2019b, 
Yang et al., 2017). There are many existing efforts and programs that 
focus on the hydrometeorological forecasts at the S2S timescales, such as 
the European Center for Medium Range Weather Forecasts (ECMWF), 
the Environment Canada (EC), the Japan Meteorological Agency (JMA), 
the China Meteorological Administration (CMA), etc. Each of those 
agencies uses different coupled GCMs and ESMs to obtain the precipi
tation forecasts at the S2S range with different temporal and spatial 
resolutions. 

The North America Multi Model Ensemble (NMME) is a multi-agency 
initiated and collaborative program that provides a variety of hydro
meteorological forecasts at the S2S timescale (Kirtman et al., 2014a). 
The NMME consists of the outputs from multiple coupled GCMs and 

ESMs, each providing independent retrospective forecasts (hereafter 
referred to as “hindcasts”) and real-time forecasts. The NMME phase 1 
project (NMME-1) was initially launched in 2014 and further transi
tioned into Phase 2 (NMME-2) in more recent years. Both NMME-1 and 
NMME-2 datasets provide monthly initialized hindcasts and forecasts 
with lead-time up to 12 months. The major advancement of NMME-2 
over the NMME-1 dataset is the provision of dynamically downscaled 
forecasts, in which the new dataset provides daily precipitation forecasts 
at the S2S range, while the outputs from the NMME-1 dataset only 
provides forecasts with monthly resolution (Kirtman et al., 2014b). 

There is a good number of existing research that investigated the 
quality and accuracy of the hydrometeorological forecasts from NMME- 
1 dataset. For example, Becker et al. (2014) and Krakauer (2019) eval
uated the skill of precipitation and temperature forecasts from NMME-1 
globally. And they found that the simple model averaging (SMA) of 
NMME-1 models shows better forecast skill than any individual NMME- 
1 models and the forecast skills vary depending on geographical regions 
and seasons. Similar evaluation studies upon NMME-1 monthly hydro
meteorological forecasts have been carried out in different regions. For 
example, Cash et al. (2019) observed significant systematic error in both 
precipitation and temperature forecasts from NMME-1 in two Southern 
Asia regions and found the highest forecast skills are observed at the 
shortest lead times. Shukla et al. (2019) found the skill of precipitation 
forecasts from NMME-1 is higher during ENSO years over East Africa. 
Slater et al. (2019) evaluated the skill of precipitation and temperature 
forecasts from NMME-1 over seven geological regions of the continental 
United States. Slater et al. (2019) found the highest forecast skill is 
generally observed at the shortest lead time and the performances of 
NMME-1 forecast are spatially and seasonally dependent. The study 
from Slater et al. (2019) also consistently shows that higher forecast 
skills can be gained by averaging multiple NMME-1 models and the skill 
of hydrometeorological forecast from NMME-1 quickly declines to 
marginal levels as lead time increases. To address the low forecast ac
curacies issue associated with the NMME-1 dataset, many follow-on 
studies focused on improving precipitation forecast from NMME-1 
dataset. For example, Slater et al. (2017) deployed different multi- 
model weighting techniques to improve the skill of NMME-1 monthly 
precipitation forecast across Europe. Xu et al. (2019) applied several 
machine learning and wavelet approaches to bias-correct and downscale 
the monthly precipitation forecast from the NMME-1 dataset over China. 
Khajehei et al. (2018) developed a Bayesian ensemble approach based 
on a Copula function to bias-correct the NMME-1 monthly precipitation 
forecast over the CONUS. 

As compared to the studies on NMME-1 dataset, there is fewer 
studies that investigate the quality of S2S precipitation forecasts from 
the newer NMME-2 dataset. Among a limited number of studies, Wan
ders and Wood (2016) evaluated the precipitation forecast from NMME- 
2 globally on a bi-weekly basis. By aggregating the evaluation result into 
three global regions, including the tropics, extratropic and northern 
latitudes, they found the forecasts skill decreases over lead time as well 
as performance discrepancies between different NMME-2 models. Zhou 
and Kim (2018) evaluated the ability of NMME-2 in predicting the 
wintertime atmospheric rivers (AR) and moisture flux over the North
east Pacific in response to ENSO. They found NMME-2 dataset has sig
nificant regional biases in anomalous landfalling AR frequency which 
underlining challenges in forecasting regional precipitation events. 
More recently, Baker et al. (2019) studied the precipitation forecasts of 
Climate Forecast System version 2 (CFSv2) from the NMME-2 dataset 
over the entire CONUS on a bi-weekly basis, and they found the forecast 
skill of CFSv2 decreases over lead time rapidly, but the forecast biases 
are insensitive to lead times. Guo and Nie (2020) evaluated the daily 
precipitation forecasts of CFSv2 over east China. Their result indicates 
the raw precipitation forecasts of CFSv2 are substantially biased and the 
extreme precipitation events over east China have been underestimated 
by CFSv2. Becker et al. (2020) studied the performances of precipitation 
forecasts from NMME-2 globally. However, Becker et al. (2020) 
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aggregated the daily forecast values from NMME-2 into monthly values 
since their study focus on seasonal scale and is more focused on proving 
the improvement of forecast quality corresponding to the iteration of 
NMME models. To summarize the existing studies focusing on precipi
tation forecasts from NMME-2, existing research either (1) targeted the 
evaluation of NMME-2 at a spatial scale that is too large to provide a 
useful reference for regional hydrologic studies, or (2) are only focusing 
on monthly forecast values and overlook the S2S forecasts from NMME- 
2, or (3) have only included a certain member of NMME-2 into the study 
and did not comprehensively evaluate all NMME-2 members as a whole 
with the consideration of lead times, seasonality and precipitation’s 
geographical characteristics. 

Thus, more inclusive and comprehensive evaluation of the S2S pre
cipitation forecast from the NMME-2 data across CONUS is still critically 
needed. According to the conclusion of many existing studies, although 
the evaluation results of the seasonal precipitation forecast from NMME 
over CONUS may have some consistency and similarities, it is still un
known how exactly does precipitation forecast from different NMME-2 
models perform at the S2S range over the entire CONUS. In addition, 
the merit of the S2S precipitation forecast from NMME-2 in forecasting 
extreme events has not been verified at large scales. And these missing 
pieces of research, in return, limits further hydrologic applications of the 
NMME-2 dataset, since potential maximum streamflow prediction is one 
of the most important and desired outcomes of hydrologic forecasts at 
the S2S range (Day 1985, Gobena and Gan 2010). 

To fill the gap, as well as to provide valuable reference information 
and knowledge for future hydrologic research on NMME-2, this study 
aims to answer the following research questions: 1) How does the S2S 
precipitation forecast from NMME-2 perform over the entire CONUS? 2) 
What are the differences between S2S precipitation forecasts from 
different NMME-2 models in terms of their performances over CONUS? 
3) What is the forecast skill of the individual NMME-2 models at 
different regions over the CONUS? 4) Do certain NMME-2 models 
outperform others with the consideration of certain regions, lead times, 
and seasons? and 5) what are the NMME-2 model’s performances in 
predicting extreme precipitation events over the CONUS? 

To answer these research questions, in this study, we evaluated the 
S2S precipitation forecasts from five NMME-2 models and their grand 
ensemble (i.e., all five NMME-2 models as a whole set) is collected and 
analyzed over the CONUS. The study period is from 1982 to 2011. All 
five NMME-2 models selected in this study provide daily S2S precipi
tation forecast, except for the CFSv2, which was already studied by 
Baker et al. (2019). The AN81d dataset generated from the Parameter- 
elevation Regressions on Independent Slopes Model (PRISM) is used as 
the reference dataset. The forecast bias and forecast skill are examined 
since forecast bias and poor forecast skill are two major obstacles in 
applying precipitation forecasts to hydrologic simulations (Zalachori 
et al., 2012). In addition, the ability of S2S precipitation forecasts from 
NMME-2 in predicting extreme precipitation events are further evalu
ated and compared to the benchmark performances of the historical 
resampled precipitation forecasts. During our evaluation study, the 
forecast lead time is considered on a weekly basis (i.e., from week 1 to 
week 4 to cover the whole S2S range). Comparison and analysis on the 
forecast data quality are further conducted over nine National Centers 
for Environmental Information (NCEI) climate regions and four seasons, 
which are more inclusive and detailed as compared to the existing 
NMME-2 evaluation studies mentioned above. For example, this study 
extends the existing studies from Baker et al. (2019) and Wanders and 
Wood (2016). Specifically, our study conducts a more representative 
validation of five NMME-2 models, emphasizing on the forecast per
formance evaluation at the weekly scale and over the entire CONUS. In 
other words, our study provides a temporally-finer and spatially larger 
evaluation as compared to that from Baker et al. (2019) and Wanders 
and Wood (2016). Lastly, besides the traditional evaluation of forecast 
biases and skill scores, we also included extensive validation experi
ments focusing on the extreme rainfall performance and compared the 

forecast accuracy on different percentile thresholds of dry and wet 
extremes. 

The rest of this paper is organized as follows: In section 2, we present 
data and study regions. Section 3 describes the evaluation metrics and 
methodologies. Sections 4 and 5 present the results and discussions, 
respectively. The main conclusions and findings are summarized in 
Section 6. 

2. Data and study regions 

There is a total of seven different models available in the NMME-2 
dataset. Among them, we select five NMME-2 models that provide 
daily precipitation forecasts covering the S2S range. Table 1 presents the 
basic information of the selected five NMME-2 models, including the 
Canadian Coupled Climate Model version 3 and 4 (CanCM3, CanCM4) 
from the Canada’s Climate Model Center (CMC), the Community 
Climate System Model 4.0 (CCSM4) from the National Center for At
mospheric Research (NCAR), the Forecast-oriented Low Ocean Resolu
tion model using parameter set B (FLORB01) from the Geophysical Fluid 
Dynamics Laboratory (GFDL), and the Goddard Earth Observing System 
version 5 model (GEOS5) from the National Astronautics and Space 
Administration (NASA). 

Each NMME-2 model generates ensemble forecasts through per
turbed physics strategy and/or under different initial conditions: The 
CanCM3, CanCM4, CCSM4, and GEOS5 models consist of 10 ensemble 
members and the FLORB01 model consists of 12 ensemble members. 
The study period was set from 01/01/1982 to 12/31/2011 (30 years), 
which overlaps with the hindcast/forecast period for all five NMME-2 
models. All NMME-2 hindcast/forecast datasets are available at: 
https://www.earthsystemgrid.org/search.html?Project=NMME. 

The daily precipitation dataset AN81d generated from the 
Parameter-elevation Regressions on Independent Slopes Model (here
after referred to as PRISM) is used as a reference precipitation dataset in 
this study. The PRISM data is available from 1981 to near-present in 
gridded format with a spatial resolution of 4 km (~0.04◦) across the 
CONUS. The PRISM data combines surface observations with a digital 
elevation model to account for the orographic enhancement of precip
itation. In addition to rain-gauge records, the PRISM data also in
corporates the Radar measurement into account when producing 
corrected data over the central and eastern U.S. regions (Daly and 
Bryant 2013). Since the PRISM dataset does not incorporate assimilated 
information from numerical weather forecasting models or meteoro
logical reanalysis, it represents an independent dataset suitable for hy
drologic studies (Radcliffe and Mukundan 2017). Numerous hydrologic 
studies have used PRISM precipitation data as a reliable reference for 
model evaluation, bias-correction for remotely sensed precipitation 
estimation products, and forecast verification studies (Ashfaq et al., 
2016, Oubeidillah et al., 2014, Prat and Nelson 2015, Widmann and 
Bretherton 2000). 

Figure 1 shows nine different climate regions across the CONUS, 
which are defined by the National Centers for Environmental Informa
tion (NCEI) (Karl and Koss 1984). These nine climatic regions separate 
the CONUS into Northwest, West North Central, East North Central, 
Northeast, Central, West, Southwest, South, and Southeast regions. 
Within the NECI climate regions, the Sierra Nevada Mountain and the 
Rocky Mountain are across the Northwest, West, Southeast, and West 
North Central regions; and the Appalachian Mountain covers parts of the 
Northeast and Southeast regions. In this study, we evaluate the precip
itation forecast of the NMME-2 at each pixel across the CONUS and 
obtain the spatially averaged results over these nine climate regions for 
regional analysis. In this study, we analyze the results based on these 
nine climatic regions, because rainfall presents different physical and 
dynamical features and patterns over different regions over the CONUS, 
i.e., orographic elevation induced rainfall, frontal precipitation, and/or, 
convective systems. 
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3. Methodology, procedures, and evaluation metrics 

In this study, we first collected the NMME-2 precipitation forecasts 
and PRISM dataset and then conducted initial data pre-processing. The 
NMME-2 precipitation forecasts are produced at the beginning of each 
month and the forecast lead time are up to 1 year (365 or 366 days) into 
the future. We truncated all collected NMME-2 precipitation forecasts to 
28 days (4 weeks) and then aggregated them into weekly forecast values 
(e.g., day 1 to 7 as of week 1; day 8 to 14 as of week 2; day 15 to 21 as of 
week 3; and day 22 to 28 as of week 4). Both NMME-2 and PRISM 
datasets were re-gridded into 0.25◦ resolution using the same nearest 
neighbor method for consistency. The grand ensemble of all selected 
NMME-2 models (i.e., a total of 52 different realizations in Table 1) was 
also constructed after the data pre-processing. We also re-organized the 
collected precipitation forecasts from both individual NMME-2 models 
and the 52-member grand ensemble into different seasons, i.e., 
December-January-February (DJF), March-April-May (MAM), June- 
July-August (JJA), and September-October-November (SON). In other 
words, the evaluation experiment comprehensively considers the fore
cast skill and model bias by different climate regions, forecast lead 
times, as well as the seasonality over the CONUS. 

In this study, we use the commonly accepted approaches of pixel- 
based and spatial forecast evaluation metrics. Four evaluation metrics 
are included, i.e., the percentage bias (PBIAS), anomaly correlation 
coefficient (ACC), quantile probability of detection (QPOD), and quan
tile false alarm ratios (QFAR). The PBIAS and ACC of (i) the ensemble 
means of individual NMME-2 models and (ii) the SMA of the grand 
ensemble, are computed to evaluate forecast bias and forecast skill 
quantitatively. The QPOD and QFAR metrics are used to evaluate the 
capabilities of individual NMME-2 model in predicting extreme pre
cipitation events at weekly scales. The evaluation of extreme precipi
tation is as important as forecast bias and forecast skill, because the S2S 

precipitation forecasts potentially serve as inputs to the ensemble 
streamflow prediction (ESP) approach, which are the official approach 
used in each National Weather Service’s River Forecast Centers for 
estimating river stages and potential floods over the CONUS. Within the 
ESP framework, the extreme streamflow values associated with extreme 
precipitation events are one of the most important outcomes regarding 
flood predictions (Day 1985, Gobena and Gan 2010). With this under
standing, in this study, the ensemble spreads of individual NMME-2 
models and the grand ensemble of five NMME-2 models are employed 
to compute the QPOD and QFAR for extreme precipitation evaluation. 
While there is no golden standard for defining extreme precipitation 
events, we chose 99% and 95% percentiles, and 5% and 1% percentiles 
as the thresholds of extreme precipitation events corresponding to flood 
and drought events, respectively. Note that we only present the QPOD 
and QFAR results for extreme events above 99% and below 1% in the 
main article for conciseness, and the 95% and 5% events results are 
included in the supplementary material for interested readers. Detailed 
descriptions for the four employed evaluation metrics are presented as 
follows. 

3.1. Percentage bias (PBIAS) 

The PBIAS measurement reflects the degree of the under- and/or 
over- estimations of precipitation forecast that are vital for potential 
future hydrologic applications. To quantify the bias pattern of NMME-2 
precipitation forecasts over the CONUS, the PBIAS of the ensemble 
means of single NMME-2 models and the SMA of the grand ensemble are 
computed with Equation (1). 

PBIAS =
x − y

y
× 100% (1)  

Where x is long-term mean value of precipitation forecasts at a certain 

Table 1 
A list of selected NMME-2 models.  

Model Data period Temporal resolution Spatial resolution Lead time (Days) Ensemble members Reference 

CanCM3 01/1981-08/2012 Daily 1◦×1◦ up to 365 10 Merryfield et al. (2013) 
CanCM4 01/1979-08/2012 Daily 1◦×1◦ up to 365 10 Merryfield et al. (2013) 
CCSM4 01/1982-12/2016 3-hourly/Daily 1◦×1◦ up to 365 10 Vertenstein et al. (2010) 
FLORB01 01/1980-07/2014 Daily 0.5◦×0.625◦ up to 365 12 Delworth et al. (2012) 
GEOS5 01/1982-12/2012 Daily 1◦×1◦ up to 274 10 Vernieres et al. (2012)  

Fig. 1. NECI Climate Regions across the CONUS.  
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location over CONUS, y is the long-term mean reference precipitation at 
a certain location over CONUS. And PBIAS is the percentage differences 
between mean forecast values and mean reference values over the study 
period. Positive PBIAS values indicate overestimations by forecasts, 
while negative PBIAS values indicate underestimations by forecasts. 

3.2. Anomaly correlation coefficient (ACC) 

The ACC is a widely used metric in the climate prediction commu
nity. It measures the degree of association between forecast and 
observed deviation from the climatology. The advantage of ACC over 
some other metrics is that ACC can separate effects due to the existence 
of forecast bias in evaluating forecast skill. The ACC score of 1 indicates 
that the forecast provides perfect information and a score of zero means 
the forecast contains no information at all. The ACC skill scores of the 
ensemble mean of each individual NMME-2 model and the SMA of the 
grand ensemble are calculated following Equation (2) (Murphy and 
Epstein 1989). 

ACC =
n

∑
xy −

∑
x

∑
y

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

n
∑

x2 − (
∑

x)
2

√

−

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

n
∑

y2 − (
∑

y)
2

√ (2)  

where x is the forecast/hindcast precipitation anomalies at a certain lead 
time and y is reference precipitation anomalies at the same lead time, n 
is the total number of hindcasts/forecast values made for that lead time, 
and ACC is the anomaly correlation coefficient skill score for the fore
casts/hindcasts. 

3.3. Quantile probability of detection (QPOD), quantile false alarm ratio 
(QFAR) 

3.3.1. Quantile probability of detection (QPOD) 
The QPOD is a statistical evaluation measurement, which is defined 

as the probability of detection (POD) above a certain quantile threshold 
(AghaKouchak et al., 2011, Wilks 2011). In this study, we used the 
whole ensemble spreads of NMME-2 models to compute the QPOD. 
Taking the CanCM3 model and extreme events above 99% percentiles as 
an example: CanCM3 model produces ten forecast values at a certain 
time step, and if any one of the ten forecast values has successfully 
forecasted an extreme event exceeded 99% quantile according to its own 
model output statistics, it will be count as a “hit”. The QPOD has the 
advantage of ignoring the effect of forecast bias as it is a quantile-based 
evaluation metric compared to the conventional probability of detection 
(POD) (AghaKouchak et al., 2011, Wilks 2011). The QPOD ranges from 
0 to 1 and the value of 1 is ideal, indicating all extreme events above/ 
below a certain percentile threshold are successfully forecasted. The 
QPOD of single NMME-2 models and the grand ensemble of five NMME- 
2 models considering their whole ensemble spreads can be calculated 
with the following Equation (3): 

QPOD =

∑n
i=1∪m

j=1I(xij > xj−99) ∩ I(yi > y99)
∑n

i=1I(yi > y99)
(3)  

Where n is the length of the forecast time series, and m is the ensemble 
size of a certain forecast model. xij is the forecast value by jth ensemble 
member of a model at time step i, and xj−99 is the 99% threshold of the 
jth ensemble member according to its own statistics. Similarly, yi is the 
reference value at time step i, and y99 is the 99% threshold of the 
reference precipitation according to its own statistics. I is the indicator 
function (e.g., I(true) = 1,I(false) = 0), ∩ and ∪ represent set operations 
(e.g., 1 ∩ 1 = 1, 0 ∪ 1 = 1). 

3.3.2. Quantile false alarm ratio (QFAR) 
The QFAR is a categorical evaluation measurement, which is defined 

as the False Alarm ratio (FAR) above a certain quantile threshold 
(Mehran and AghaKouchak 2014). In this study, we used the whole 

ensemble spreads of NMME-2 models to compute the QFAR. Again, 
taking the CanCM3 model as an example, which has ten ensemble 
members: the CanCM3 model produces ten forecast values at a certain 
time step, and if any one of the ten forecast values has made a forecast 
exceeded 99% quantile according to its own model output statistics 
while there’s no extreme event happened according to the reference, it 
will be count as a “false alarm”. Since adopting quantile thresholds, the 
QFAR also has the advantage of ignoring the effect of forecast bias 
compared to the conventional false alarm ratio (FAR) (AghaKouchak 
et al., 2011, Wilks 2011). The QFAR ranges from 0 to 1 and the value of 
0 is ideal, indicating there’s no “false alarm” at all. The QFAR of single 
NMME-2 models and the grand ensemble of five NMME-2 models 
considering their whole ensemble spreads can be calculated with the 
following Equation (4). 

QFAR =

∑n
i=1∪m

j=1I(xij > xj−99) ∩ I(yi < y99)
∑n

i=1I(yi < y99)
(4)  

Where n is the length of the forecast time series, andm is the ensemble 
size of a certain forecast model. xij is the forecast value by jth ensemble 
member of a model at time step i, and xj−99 is the 99% threshold of the 
jth ensemble member according to its own statistics. Similarly, yi is the 
reference value at time step i, and y99 is the 99% threshold of the 
reference precipitation according to its own statistics. I is the indicator 
function (e.g., I(true) = 1,I(false) = 0), ∩ and ∪ represent set operations 
(e.g., 1 ∩ 1 = 1, 0 ∪ 1 = 1). 

3.3.3. Benchmarking QPOD and QFAR 
In this study, we benchmark the QPOD and QFAR values of historical 

resampled precipitation forecasts in predicting extreme precipitation 
events. The historical resampled forecasts are commonly used as hy
drometeorological inputs to the ESP framework for hydrologic forecasts 
at S2S range. Assuming historical resampled precipitation forecast with 
an ensemble size of m, if any single randomly drawn forecast values out 
of m forecasts values have successfully predicted an extreme event 
above/below a certain threshold according to the historical statistics, it 
will be counted as a “hit”. Similarly, if any single randomly drawn 
forecast values out of m forecasts values contain a value above/below a 
certain threshold while there’s no such extreme events happened ac
cording to the reference, it will be counted as a “false alarm”. 

Since historical resampled forecasts are randomly drawn values from 
historical records, they are totally independent of the actual weather 
happened in the real world. Thus, theoretically, for any true positive 
and/or true negative events, the QPOD and/or QFAR of historical 
resampled forecasts are the same and can be computed with Equation 
(5): 

QPODresampledforecasts = QFARresampledforecasts = 1 − 0.99m (5) 

According to Equation (5), the QPODresampledforecasts and 
QFARresampledforecasts with an ensemble size of 10 (CanCM3, CanCM4, 
GEOS5, CCSM4), 12 (FLORB01), and 52 (the grand ensemble of NMME- 
2) are 0.10, 0.11, 0.40, respectively, for the extreme precipitation events 
above 99% or below 1% percentiles. Since the historical resampled 
forecasts randomly draw values from historical records, their perfor
mances are only affected by the ensemble size but are independent of 
forecast lead times. 

4. Results 

4.1. Forecast bias 

Figure 2 presents the overall PBIAS of NMME-2 precipitation hind
casts over CONUS. It consists of the results from five individual NMME-2 
models (CanCM3, CanCM4, FLORB01, GEOS5, and CCSM4) and the 
SMA of the grand ensemble of five NMME-2 models. In Fig. 2, the pos
itive bias in cooler colors (blue) is associated with overestimation and 
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the negative bias in warmer colors (red) is associated with 
underestimation. 

According to Fig. 2, the highest level of model PBIAS of the NMME-2 
dataset appears in central and western U.S., and the forecast biases are 
relatively lower in eastern regions than that over the western regions. 
This similar spatial variability of overall PBIAS can be observed across 
individual NMME-2 models and the SMA. In addition, we notice that all 
five NMME-2 models demonstrate both positive and negative PBIAS 
with a “mosaic-like” pattern over the Northwest, West, West North 
Central, and Southwest regions (Fig. 2a–e), where the Sierra Nevada 

Mountains and the Rocky Mountains ranges. On the contrary, across the 
Northwest and Southeast regions where Appalachian Mountain is 
located, the GEOS5 model (Fig. 2d) demonstrates a significant level of 
overestimation while other NMME-2 models show a relatively smaller 
level of biases. In the South region, all five NMME-2 models are 
consistently underestimating precipitation. The SMA (Fig. 2f) has a very 
similar pattern of spatial variability in the overall pattern of PBIAS 
compared to the five individual single NMME-2 models. 

The following Fig. 3 presents the PBIAS of NMME-2 precipitation 
hindcasts across CONUS at different lead times (i.e., week 1 to week 4). 

Fig. 2. The overall pattern of PBIAS for NMME-2 precipitation hindcasts over the CONUS.  

Fig. 3. The pattern of PBIAS for NMME-2 precipitation hindcasts over the CONUS at different lead times (i.e., day 1 to 7: week 1, day 8 to 14: week 2, day 15 to 21: 
week 3, and day 22 to 28: week 4). 
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According to Fig. 3, only some minor differences are observed in 
different climate regions and no obvious lead-time dependences of 
PBIAS are observed for all NMME-2 members. At all lead times, the 
spatial pattern of weekly PBIAS is very similar to the overall pattern of 
PBIAS observed in Fig. 2. The SMA also shows similar behavior to the 
five individual NMME-2 models at all lead times. Combining the results 
from both Figs. 2 and 3, we observe that the overall model biases are not 
sensitive to lead times, though individual model could be associated 
with different levels of PBIAS, and the model errors are also spatially 
varying across the CONUS. 

In the following Fig. 4, we present the seasonal PBIAS of NMME-2 
precipitation hindcasts over CONUS. According to Fig. 4, both the in
dividual NMME-2 model and the SMA exhibit a strong PBIAS variation 
in different seasons over the CONUS, and the individual model biases 
may demonstrate significant changes from positive to negative or vice- 
versa when the season changes. Specifically, in DJF, all NMME-2 
models show significant overestimation at most parts of the North
west, West, West North Central, and Southwest regions. In MAM, the 
general behavior of the model overestimation is improved and the level 
of overestimation of all individual models decreased comparing to that 
in DJF. In MAM, we also notice that the spatial patterns of the obtained 
PBIAS are very similar to the overall patterns of PBIAS as shown in prior 
Fig. 2, suggesting the MAM is the most representative season to show 
model’s error variability in space. In JJA, all NMME-2 models show a 
significant level of underestimation at the Northwest, West, Southwest, 
South, and West North Central regions. In SON, the level of the under
estimation by all models are smaller than that in JJA, while the level of 
overestimation increased in the Northwest region. 

The results in Fig. 4 indicate that there are strong seasonal de
pendences of model PBIAS at different regions across CONUS, especially 
in DJF and JJA. Some noticeable model discrepancies are observed in 

different seasons. For example, in SON, the CanCM4 model exhibits a 
more significant level of underestimation than other NMME-2 models in 
the Southeast, South, Southwest, and West North Central regions. In 
MAM, the GEOS5 model demonstrates a higher level of overestimation 
than other NMME-2 models in the West North Central region, while a 
higher level of underestimation is observed with the same GEOS5 model 
comparing to other models in the Southwest, South, and Southeast 
regions. 

To better illustrate the large-scale spatial patterns of model biases 
with a joint consideration of seasonality and lead time dependences, we 
further computed and presented the regional averaged PBIAS values of 
NMME-2 over nine NCEI climate regions for different seasons (DJF, 
MAM, JJA, and SON) and lead times (weeks 1–4) in the following Fig. 5. 
In Fig. 5, the cooler colors indicate overestimation, while the warmer 
colors indicate underestimation. The numbers in each cell of Fig. 5 
indicate the actual PBIAS values obtained for each model, lead time, and 
season. According to the heat map of Fig. 5, the largest overestimations 
made by all NMME-2 models occur in the West North Central region in 
DJF. And significant underestimations are observed in the warmer sea
sons of SON and JJA at most of the regions over CONUS except for the 
Northwest. The layout pattern of nine NCEI climate regions in Fig. 5 
(from left to right) is consistent with the geographic patterns of those 
regions in the real-world layout (from west to east). According to the 
quantitative values presented in Fig. 5 (from left to right), there is an 
obvious decreasing trend of PBIAS from west to east. This numerical 
trend and decreasing pattern are more obvious than that of different 
seasonality and lead times. Specifically, the overall overestimation in 
the Northwest, West, and West North Central regions observed in Fig. 2 
appears to be mainly contributed by the overestimations that occurred 
in DJF. And the underestimation observed in Fig. 2 appears to be mainly 
contributed by the underestimations that occurred in warmer seasons of 

Fig. 4. The PBIAS of NMME-2 precipitation hindcasts within different seasons (i.e., DJF, MAM, JJA, SON) across CONUS.  
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Fig. 5. Regional averaged PBIAS of NMME-2 precipitation hindcasts from the five NMME-2 models and an SMA model for each season (DJF, MAM, JJA, and SON) 
and lead time (week 1 to 4) at the nine NCEI climate regions. 

Fig. 6. The pattern of ACC for NMME-2 precipitation hindcasts over the CONUS at different lead times (weeks 1 to 4).  
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JJA and SON. In terms of the different lead times, we found that the 
PBIAS values are not sensitive to the lead times since the colors of grid 
boxes in Fig. 5 remain rather consistent along the x-axis within most of 
the subplots. In JJA and SON, only CanCM4, FLORB01, CCSM4, and 
SMA models show some noticeable variations of PBIAS over lead times 
in the West, the West North Central, and the Southwest regions. 

4.2. Forecast skill 

To evaluate the forecast skills of NMME-2 precipitation hindcasts at 
different lead times (week 1 to week 4) across CONUS, we calculated the 
ACC values of the ensemble means of five NMME-2 models and the SMA 
of the grand ensemble of NMME-2. The results are presented in Fig. 6. In 
Fig. 6, warmer colors indicate higher ACC scores and cooler colors 
indicate lower ACC scores. The red-colored numbers on the lower-right 
corners of each subplot in Fig. 6 are the spatially averaged ACC value 
over the entire CONUS. 

According to the results in Fig. 6, except for the FLORB01, the 
forecast skill of all other NMME-2 models shows a decreasing trend over 
lead times as their CONUS-averaged ACC values decrease rapidly from 
week 1 (0.34 to 0.43) to week 2 (0.19 to 0.26), and the skill score re
mains at a marginal level at week 3 (0.10 to 0.17) and week 4 (0.09 to 
0.10). The CONUS-averaged ACC values of FLORB01 are consistently 
lower than other NMME-2 models, especially at week 1 and week 2. The 
SMA shows a higher forecast skill than any other individual NMME-2 
models at all lead times over the entire CONUS. 

In addition, the results in Fig. 6 also indicate that spatially, all 
NMME-2 models have the highest forecast skill over the coastal areas in 

the Northwest and West regions as compared to other regions in CONUS. 
Higher ACC values can be observed in the Northwest, West, West North 
Central, and some part of the Southwest Central regions, as compared 
with the CONUS-averaged ACC values. However, the ACC values in the 
South, Central, some parts of the Southwest and Northeast regions are 
consistently lower than in other regions, especially at the longer lead 
times (i.e., week 2 to week 4). 

In the following Fig. 7, we present the ACC values in different seasons 
of (a)DJF, (b)MAM, (c)JJA, and (d)SON at different lead times (week 1 
to week 4). The difference between Fig. 7 and Fig. 6 is that the prior 
Fig. 6 differentiated the forecast lead times but did not separate the 
forecasts made in different seasons. In Fig. 7, we further grouped the 
forecasts into different seasons and lead times for evaluation. The 
warmer colors in Fig. 7 indicate higher ACC scores and cooler colors in 
Fig. 7 indicate lower ACC scores, and the red-colored numbers on the 
lower-right corners of each subplot in Fig. 7 are the spatially averaged 
ACC value over the entire CONUS. 

In Fig. 7, the weekly pattern of the ACC values in all seasons 
generally follows similar behaviors as that shown in Fig. 6. The ACC 
values of the NMME-2 models decrease rapidly from week 1 to week 2 
and show marginal forecast skill in week 3 and week 4 in all seasons. The 
FLORB01 is still an outlier compared with the other NMME-2 models as 
it continuously presents lower CONUS-averaged ACC values. The SMA 
of NMME-2 shows the highest CONUS-averaged ACC values at almost all 
lead times in all seasons. It is also found that there are seasonal de
pendences in the forecast skills according to the lead times. Taking SMA 
results as an example, the highest ACC values at week 1 and week 3 are 
observed in DJF and MAM, respectively. Although overall marginal 

Fig. 7. The pattern of ACC for NMME-2 precipitation hindcasts within different seasons (i.e., DJF, MAM, JJA, SON) at different lead times (weeks 1 to 4) over 
the CONUS. 
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forecast skill is observed at week 3 and week 4 in all seasons, a moderate 
forecast skill (0.3 to 0.4) can be observed at some areas within different 
seasons. In addition, at week 3 and week 4, moderate forecast skills are 
observed (i) over the South, Southwest, some parts of the West, the West 
North Central, and the Southeast in DJF; (ii) over the North Central, the 
South, and the coastal area of the West regions in MAM; (iii) over the 
Southwest and the West North Central regions in JJA; and (iv) over the 
Northwest, and the coastal areas of the West regions in SON, 
respectively. 

Figure 8 presents the regionally averaged ACC scores of NMME-2 
precipitation hindcasts in different seasons (DJF, MAM, JJA, and SON) 
and at different lead times (week 1 to week 4) over nine NCEI climate 
regions. In Fig. 8, the lighter colors indicate lower ACC values, and the 
darker colors indicate higher ACC values. The numbers in the figure are 
the actual ACC scores. Similar to the presentation of Fig. 5, Fig. 8 follows 
the pattern that the layout of nine NCEI climate regions from left to right 
in Fig. 8 corresponds to the real-world geography from western to 
eastern U.S. per the real-world layout. 

The results in Fig. 8 indicate a spatially varying pattern of the pre
cipitation forecast skill of NMME-2 models, when the seasonality and 
lead time dependences are jointly considered. Specifically, in Fig. 8, 
there is a significant decreasing trend of ACC values from the west to the 
east, especially in MAM and JJA. In addition, we observe that the ACC 
values are relatively higher at the shortest lead time (i.e., week 1), as 
compared to that at longer lead times (i.e., week 2 to week 4) across all 
regions and seasons. According to Fig. 8, in general, the highest overall 
ACC value is likely to appear in the winter season (i.e., DJF). On the 
contrary, the NMME-2 models tend to produce the lowest forecast skill 
in the summer season (i.e., JJA) except for the Northwest and Southwest 
regions. Except for the FLORB01 model, all other NMME-2 models show 
similar behaviors in most of the NECI climate regions and the different 
models show similar performances over most of the lead times. The SMA 
shows the highest ACC values than any single NMME-2 models under 
most of the scenarios, which is expected as the SMA approach can 

eliminate the outliners and produce a more conservative forecast as 
compared to each single NMME-2 model. 

As a summary of this section 3.2, the following three important 
findings are evidenced by the presented results: (1) the NMME-2 pre
cipitation forecast skill consistently decreases over the lead times across 
the CONUS in all seasons; (2) The raw forecast skill of NMME-2 dataset is 
generally higher in cooler seasons than that in warmer seasons; And (3) 
spatially, the raw forecast skill of all five employed NMME-2 models 
tends to be higher in western regions than in eastern regions across the 
CONUS, and the performance of different models is similar to each 
other, except for the FLORB01 model. 

4.3. Capability in predicting extreme precipitation events 

We evaluate the NMME-2 models’ capabilities in predicting extreme 
precipitation events using the QPOD and QFAR. Here we obtain and 
analyze the NMME-2 models’ capabilities in predicting extreme pre
cipitation events above 99% and below 1% percentiles, respectively. The 
results for extreme precipitation events above 95% and below 5% per
centiles are available in the Supplementary Materials for interested 
readers. 

4.3.1. Extreme events above 99% threshold 
The following Fig. 9 presents the QPOD of NMME-2 precipitation 

hindcasts in predicting extreme precipitation events above 99% 
threshold over CONUS at different lead times. In Fig. 9, the warmer 
colors indicate higher QPOD values, and red-colored numbers at the 
lower-right corners of each subplot is the spatially averaged QPOD 
values over the entire CONUS. 

The results from Fig. 9 indicate that the QPOD patterns of different 
NMME-2 models are generally similar to each other with only minor 
discrepancies at forecast lead time of week 1. Both the GEOS5 and 
CCSM4 model generally show higher QPOD values than other NMME-2 
models at week 1. According to the numerical QPOD values on each 

Fig. 8. Regional averaged ACC of NMME-2 precipitation hindcasts from the five NMME-2 models and an SMA model for each season (DJF, MAM, JJA, and SON) and 
lead time (week 1 to 4) at the nine NCEI climate regions. 
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subplot rows, all NMME-2 models, except for the FLORB01, exhibit a 
decreasing trend of QPOD value over the lead times. The FLORB01 
model produces the lowest QPOD value in week 1, but the QPOD value 
increases from 0.11 to 0.20 over lead time. Spatially, the QPOD values at 
the coastal areas of the Northwest and the West regions are higher than 
those over other regions at all lead times. This result is consistent with 
the ACC evaluation result presented in the previous section 3.2. The 
QPOD values of the grand ensemble of 5 NMME-2 models (a total of 52 
ensemble members) are presented in the last row in Fig. 9. The ensemble 
results show that there is a significant increase in the QPOD values of the 
grand ensemble compared to individual NMME-2 models with smaller 
ensemble sizes. 

Figure 10 presents the QFAR of NMME-2 precipitation hindcasts in 
predicting extreme precipitation events above 99% percentiles over 
CONUS at different lead times. In Fig. 10, the cooler colors indicate 
higher QFAR values, and red-colored numbers at the lower-right corners 
of each subplot is the spatially averaged QFAR values over the entire 
CONUS. Note that in contrary to QPOD, lower QFAR values indicate 
more superior performance in terms of predicting extremes. 

According to Fig. 10, All single NMME-2 models’ QFAR values are 
around or less than 0.1 across the CONUS. The GEOS5 and CCSM4 
model, which shows slightly higher QPOD values than other NMME-2 
models, also demonstrate relatively higher QFAR values. Comparing 
to the spatially-averaged QFAR values within different rows in Fig. 10, 
all NMME-2 models exhibit an increasing trend of QFAR value over the 
lead times. Spatially, QFAR values are lower than average over the 
coastal areas of the Northwest and the West regions at all lead times. 
This result is consistent with the ACC evaluation result presented in the 
previous section 3.2. The QFAR values of the grand ensemble of five 
NMME-2 models (a total of 52 ensemble members) are presented in the 
last row in Fig. 10. The result shows that with a larger ensemble size, the 

false alarm ratios of the grand ensemble of NMME-2 are significantly 
larger than any single NMME-2 models. 

We also compare the QPOD and QFAR of NMME-2 models (five 
NMME-2 models and Grand Ensemble) with the benchmark values from 
resampled forecasts as presented in Table 2. 

By comparing the NMME-2 QPOD and QFAR values with the 
benchmark values of the historical resampled forecasts, we can see all 
individual NMME-2 models and the grand ensemble of NMME-2 have 
shown superior performances in predicting extreme events exceeded 
99% percentiles. All NMME-2 models have shown higher QPOD and 
lower QFAR than the benchmarks. Although larger ensemble sizes may 
bring higher QPOD values, it also increases QFAR values. Higher QPOD 
values indicate higher chances of coverages of extreme precipitation 
events above 99% percentiles by the ensemble spreads of precipitation 
forecasts (NMME-2 or historical resampled forecasts). Lower QFAR 
values indicate that when the ensemble spreads of precipitation fore
casts reached above 99% percentiles, there are higher chances of such 
extreme events eventually happen. 

4.3.2. Extreme events below 1% threshold 
Figure 11 presents the QPOD of NMME-2 precipitation hindcasts in 

predicting extreme precipitation events below 1% percentiles over 
CONUS at different lead times. In Fig. 11, the warmer colors indicate 
higher QPOD values, and red-colored numbers at the lower-right corners 
of each subplot is the spatially averaged QPOD values over the entire 
CONUS. 

According to Fig. 11, for all individual NMME-2 models, marginal 
QPOD values are observed at most regions of CONUS. Relatively higher 
QPOD values are only observed for certain models in certain regions and 
at certain lead times. For example, CanCM4 model shows higher QPOD 
values in the Southwest region at all lead times. GEOS-5 also presents 

Fig. 9. The QPOD (99% threshold) for NMME-2 precipitation hindcasts over the CONUS at different lead times (weeks 1 to 4).  
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slightly higher QPOD values at some locations in the Southwest, 
Southeast, and Northeast regions at week 1 and week 2. The QPOD of 
the grand ensemble of NMME-2 presented at the last row of Fig. 11 
shows significantly higher QPOD compared to single NMME-2 models 
over the entire CONUS at all lead times. 

Figure 12 below presents the QFAR with a 1% percentile threshold of 
NMME-2 precipitation hindcasts over CONUS at different lead times. In 
Fig. 12, the cooler colors indicate higher QFAR values, and red-colored 
numbers at the lower-right corners of each subplot is the spatially 
averaged QFAR values over the entire CONUS. 

The overall QFAR patterns are similar to the overall QPOD patterns 
shown in Fig. 11. Marginal QFAR values are observed at most of regions 
in CONUS for all individual NMME-2 models. Higher QFAR values are 
only found for certain models and at certain regions, mirroring Fig. 11. 
CanCM4 and GEOS5 show higher QFAR values at some locations in the 
Southwest region at all lead times. The QFAR value of the grand 
ensemble of NMME-2, which is presented at the last row of Fig. 11, is 
significantly higher than that of each individual NMME-2 models over 
the CONUS. 

We also compare the QPOD and QFAR of NMME-2 models (five 
NMME-2 models and Grand Ensemble) in predicting extreme events 
below 1% percentile thresholds with the benchmark values from 
resampled forecasts as presented in Table 3. 

Comparing the NMME-2 QPOD and QFAR values with the bench
mark values of the historical resampled forecasts from Table 3, all in
dividual NMME-2 models show higher QPOD values than the 
benchmark. However, the QPOD values of the grand ensemble of 
NMME-2 are slightly lower than but still comparable to the benchmarks. 
Higher QPOD values indicate higher chances of coverages of extreme 
precipitation events below 1% percentiles by the ensemble spreads of 
precipitation forecasts (NMME-2 or historical resampled forecasts) and 
vice versa. Lower QFAR values indicated that when the ensemble 
spreads of precipitation forecasts fall below 1% percentiles, that there 
are higher chances that such extreme events may eventually happen. 
Considering both QPOD and QFAR values, it is reasonable to say that the 
NMME-2 still presents overall better performances in predicting extreme 
events below 1% percentiles than the benchmark does. 

Fig. 10. The QFAR (99% threshold) for NMME-2 precipitation hindcasts over the CONUS at different lead times (weeks 1 to 4).  

Table 2 
NMME-2 QPOD and QFAR of extreme events above 99% percentile.   

QPOD Benchmark QFAR Benchmark  

Week 1 Week 2 Week 3 Week 4 Week 1 Week 2 Week 3 Week 4 

CanCM3  0.20  0.17  0.15  0.15  0.10  0.04  0.07  0.09  0.10  0.10 
CanCM4  0.18  0.15  0.14  0.14  0.10  0.04  0.06  0.09  0.10  0.10 
FLORB01  0.11  0.19  0.19  0.20  0.11  0.06  0.09  0.12  0.13  0.11 
CCSM4  0.28  0.19  0.16  0.15  0.10  0.07  0.08  0.09  0.10  0.10 
GEOS5  0.35  0.16  0.17  0.14  0.10  0.10  0.07  0.08  0.08  0.10 
Grand Ensemble  0.60  0.52  0.51  0.50  0.42  0.23  0.28  0.34  0.36  0.42  
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5. Discussion 

The PBIAS result shown in prior Sections 3.1 and 3.2 can be 
explained along with the geographical characteristics and rainfall 
mechanisms of the CONUS. The overall pattern of PBIAS in the winter 
DJF season showed significant overestimations in the Northwest, the 
West, and West North Central regions. For these regions, precipitation 
events are dominated by synoptic-scale extratropical cyclones (ECs) and 
atmospheric rivers (ARs) related weathers in cooler seasons (Zhang 
et al., 2019). A number of previous studies have reported that GCMs 
tend to produce too much low-volume precipitation in comparison with 
reference (also known as the “drizzle effect”) when simulating synoptic 
precipitation events (Hill 1993, Maraun 2013). Thus, the authors sus
pect the observed overestimations at the above-mentioned regions in 
cooler seasons are largely due to the “drizzle effect”. However, other 
studies also suggest GCMs tend to underestimate high-volume pre
cipitations related to convective weather systems in the Western US (e.g. 
Norris et al., 2021). In this regard, our evaluation is limited as it only 
reflects aggregated biases of precipitation forecasts from NMME-2, 
which entangles all potential affecting factors. Thus, more detailed ex
aminations of NMME-2 at regions in the Western U.S. should be carried 
out to attribute the sources of bias in a more rigorous way. Although 
significant overestimation was generally observed in the DJF, there were 
also underestimations in some areas within the same regions in DJF. 
These mixed behaviors of over- and under- estimations could be 
attributed to the complex terrains brought by the Sierra Nevada 
Mountain and the Rocky Mountain, which are likely to trigger 
orographic precipitations with the nearby climatic regions. This also 
suggests that the raw coarse spatial resolution of NMME-2 should be 
considered through proper bias corrections and downscaling before any 
further hydrologic applications. In contrast the PBIAS patterns in DJF, 

an overall underestimation of precipitation from NMME-2 was observed 
in the South, the Southwest and part of the West North Central regions in 
warmer seasons, especially in JJA. These regions lie in the middle of the 
continent with nearly half of the precipitation contributed by mesoscale 
convective systems (MCSs) in warmer seasons (Easterling et al., 2017, 
Fritsch et al., 1986, Nesbitt et al., 2006). However, the convection sys
tems are neither perfectly parameterized nor resolved for most of the 
GCMs (Moncrieff 2019). Moreover, MCSs with even smaller spatial 
scales normally operate within typical GCM grids, which surpass the 
capability of GCMs and ESMs (Eden et al., 2012). As a result, it is 
reasonable to suspect the observed underestimations at the South, the 
Southwest and part of the West North Central regions in warmer seasons 
are associated with sub-grid convective precipitation events. 

Regarding the obtained forecast skill results, one major discrepancy 
was identified between FLORB01 and other NMME-2 models, as shown 
in Fig. 6. The FLORB01 model showed consistently lower forecast skill 
throughout all lead times, while other NMME-2 models showed higher 
forecast skill at week 1 and rapidly decreased to marginal levels at week 
3 and week 4. This result agrees with the previous evaluation study upon 
monthly NMME-1 precipitation forecasts by Slater et al. (2019), in 
which the authors found the FLORB01 model sometimes does not 
display higher skill at the shortest lead time (one month). The obtained 
result in our study further shown that within the one-month lead time (i. 
e., week 1 to week 4), the FLORB01 model still presents poorer perfor
mances compared with other NMME models. Our obtained results 
(Fig. 9) also exhibit that the application of the grand ensemble with 
larger ensemble sizes generally shows better statistics than individual 
NMME-2 models with smaller ensemble sizes. This observation strongly 
supports the hypothesis that creating a grand model ensemble with a 
larger ensemble size through multiple techniques (e.g., multi-model, 
perturbed physics, and perturbed initial conditions etc.) will 

Fig. 11. The QPOD (1% threshold) for NMME-2 precipitation hindcasts over the CONUS at different lead times (weeks 1 to 4).  
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effectively increase precipitation forecast skill and reliability. 
The spatial dependences of forecast skill of all employed NMME-2 

model are evident. Higher ACC values were observed over the coastal 
areas of the Northwest, the West, and West North Central regions at all 
lead times. Within these regions, the winter precipitation is mainly 
associated with cyclonic (synoptic) scale weathers (Cayan and Roads 
1984). Because of the life cycle of cyclones and their large spatial scales, 
the corresponding precipitation events are generally easier for GCMs to 
predict compared to other types of precipitation events (i.e., convective 
and orographic) (Kumar et al., 2011, Zhu et al., 2014). Even at longer 
lead times (week 2 to week 4), the ACC values at these regions are still 
higher than at other regions. It is also noticeable that the regions and 
seasons observed overestimations seem more likely to achieve higher 
forecast skills if cross observing Fig. 5 and Fig. 8. 

Our results regarding the extreme events suggest that there is a good 
potential of NMME-2 forecasts to be used for hydrologic applications at 
the S2S range. At the S2S range, precipitation forecasts generally do not 
show reliable forecast skills and cannot be used deterministically. And 
for this reason, ensemble precipitation forecasts with the ability to cover 

the extreme events with their ensemble spreads are widely used. Thus, 
from a practical point of view, the abilities of ensemble precipitation 
forecasts in predicting extreme events become extremely important. 
According to Table 2 and Table 3, most NMME-2 models show superior 
QPOD and QFAR values compared to the benchmark when predicting 
extreme precipitation events above 99% percentiles and below 1% 
percentiles. NMME-2 show less dominant performances when predicting 
events below 1% percentiles compared to predicting events above 99% 
percentiles, which indicates that NMME-2 may be better at predicting 
floods than predicting droughts. But overall speaking, NMME-2 still 
appears to be a better option with generally higher probabilities of de
tections and lower false alarm ratios of predicting extreme events than 
the historical resampled forecasts. This finding suggests that NMME-2 
may be a better fit to the ESP framework than historical resample 
forecasts in terms of hydrologic predictions at the S2S range. It is also 
noteworthy to mention that the grand ensemble of NMME-2 models 
should provide more information for water resources planning at the 
S2S range to mitigate the impacts from floods and droughts compared to 
individual NMME-2 models. 

Fig. 12. The QFAR (1% threshold) for NMME-2 precipitation hindcasts over the CONUS at different lead times (weeks 1 to 4).  

Table 3 
NMME-2 QPOD and QFAR of extreme events below 1% percentile.   

QPOD Benchmark QFAR Benchmark  

Week 1 Week 2 Week 3 Week 4 Week 1 Week 2 Week 3 Week 4 

CanCM3  0.12  0.10  0.12  0.12  0.10  0.04  0.06  0.09  0.09  0.10 
CanCM4  0.16  0.13  0.14  0.14  0.10  0.06  0.09  0.10  0.11  0.10 
FLORB01  0.08  0.13  0.14  0.13  0.11  0.06  0.09  0.11  0.10  0.11 
GEOS5  0.17  0.14  0.12  0.12  0.10  0.08  0.09  0.09  0.08  0.10 
CCSM4  0.14  0.14  0.11  0.12  0.10  0.05  0.08  0.09  0.09  0.10 
Grand Ensemble  0.38  0.39  0.38  0.40  0.42  0.20  0.27  0.31  0.32  0.42  
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Nonetheless, many challenges remain when applying the NMME-2 
S2S precipitation forecast on hydrologic modeling and real-world 
water resources planning. The first issue that needs to be addressed is 
the substantial forecast bias. Although our result has demonstrated good 
potentials of NMME-2 in predicting extreme events, the raw forecast 
values need to be bias corrected before assisting real-world flood pre
dictions (Brown and Seo 2010, Tiwari et al., 2021). Currently, most of 
the popular bias correction approaches heavily rely on the “stationary 
assumption”, where statistical moments are generalized from the his
torical records and will be used to correct the raw forecast values 
(Teutschbein and Seibert 2012). However, some recent studies have 
identified trends in not only frequencies but also magnitudes of extreme 
precipitation events in various regions over the globe (Madsen et al., 
2014, Miao et al., 2015, Sun et al., 2014b), which likely undermines the 
efficacy of existing approaches in bias correcting extreme precipitation 
forecast values. And the authors believe properly considering the “non- 
stationary” in bias correction, especially for extreme values, might be a 
major challenge for future studies. 

Great efforts have also been made to to improve the marginal fore
cast skill of the S2S precipitation forecasts by utilizing hydrometeoro
logical forecasts from multiple sources and models to assist ensemble 
hydrologic forecasting. We believe that one promising direction is to 
construct a super NMME-2 ensemble, and further apply more sophisti
cated multi-model averaging techniques to improve the forecast data 
quality (Ji et al., 2020, Sloughter et al., 2007, Yang et al., 2018). Multi- 
model ensemble with proper data quality control could further increase 
the precipitation forecast skill across different temporal and spatial 
resolutions. Based on the obtained results in this study, we observe that 
in most of the cases, the SMA method can produce slightly higher 
forecast skills than any individual NMME-2 models at all lead times. 
Nevertheless, the improvements of SMA are still limited over individual 
models. Authors believe that advanced model ensemble technique needs 
to be used together with the fundamental enhancements of the GCMs 
and ESMs, which provide better precipitation predictability and less 
system and random errors in the S2S forecasts. For example, this could 
be done by advancing the current land surface components of GCMs 
(Dirmeyer et al., 2018, Zhou et al., 2020) or through better sub-grid 
convective parameterizations (Eden et al., 2012). 

From the perspective of hydrology community, exploiting the ben
efits of deep learning techniques to post-process S2S precipitation 
forecasts might be another feasible alternative (Akbari Asanjan et al., 
2018, Weyn et al., 2021), given the slow advances in fundamentally 
enhancing the physical dynamics of coupled GCMs or ESMs. Most of the 
previous studies have tried to correct the bias of GCM generated pre
cipitation forecast separately, without considering the forecast skill. 
However, our study implies that the forecasts bias and forecast skill are 
somehow connected with each other. The performance of precipitation 
forecasts can essentially be attributed to different climate and weather 
patterns and mechanisms (Eden et al., 2012, Kirtman et al., 2014a). Only 
correcting bias may lead to degradation of forecast skills (Mendoza 
et al., 2017). Recently, it has been reported that taking the advantage of 
deep learning techniques to handle additional resolved atmospheric 
forecast variables to improve the S2S precipitation forecast skills first 
then correcting the bias may provide some major improvements (Miao 
et al., 2019, Pan et al., 2019a). Given the recent development of artificial 
intelligence and other statistical tools from computer science, the uses of 
machine learning methods to improve the NMME-2 S2S daily precipi
tation forecasts may provide a variable way leading to successful fore
cast adaptations for hydrologic applications. These new machine 
learning approaches allow auxiliary information to be considered during 
the bias-correction process, such as the forecast lead times, seasonality, 
regional factors, and relevant atmospheric forecast variables, which are 
all found to be important factors in improving the accuracy of S2S 
precipitation forecasts pertinent to the presented sensitivity analysis in 
our study over the CONUS. 

Last but not least, it is also important for hydrologists to apply the 

improved and corrected S2S precipitation forecasts for hydrologic 
forecasts at watersheds with different hydrometeorological conditions, 
spatial and temporal resolutions (Cao et al., 2021, Li et al., 2019). After 
the necessary post-processing and bias corrections, we encourage prac
titioners to apply other popular metrics such as the Mean Squared Error, 
the Ranked Probabilistic Skill Score (RPSS), the Continuous RPSS 
(CRPSS), and other Categorical skill metrics, including the False Alarm 
Ratio (FAR), the Probability of Detection (POD), the Critical Success 
Index (CSI), and Equitable Threat Score (ETC) and etc. to conduct more 
detailed examinations of S2S precipitation forecasts on daily basis for 
regional studies. This would overcome the limitation of our study, in 
which only the NMME-2 S2S forecasts on a weekly basis are studied with 
a limited number of evaluation metrics. One of the major motivations for 
our study is to identify trends and quantify the data quality of the 
NMME-2 forecasts over the entire CONUS, and therefore, the streamflow 
simulation capabilities and forecast data improvements will be investi
gated in future studies. 

To summary, the authors believe future studies on NMME-2 S2S 
precipitation forecasts may include (1) proper bias corrections and 
downscaling of the NMME-2 S2S precipitation forecasts at different re
gions across the CONUS; (2) application of deep learning approaches to 
provide more accurate and reliable NMME-2 precipitation forecasts, 
especially at longer lead times; (3) hydrologic applications of the 
NMME-2 S2S precipitation forecasts with ESP framework to further 
investigate the efficacy of NMME-2 S2S precipitation forecasts over 
traditional historical resample forecasts in streamflow forecasting. 

6. Conclusion 

In this study, the S2S precipitation forecasts of NMME-2 are 
comprehensively evaluated across CONUS and during a hindcast period 
of 1982–2011. Both deterministic evaluations of forecast bias (PBIAS) 
and forecast skill (ACC), and probabilistic evaluations aiming at the 
extreme precipitation events (QPOD, QFAR) have been conducted. The 
spatial, seasonal, and lead time dependence of the performances of 
NMME-2 daily precipitation forecasts have been analyzed over nine 
NCEI climate regions. The extreme precipitation performances of five 
NMME-2 models are also evaluated against benchmark resampled his
torical forecasts. Our results highlight the strengths and weaknesses of 
the NMME-2 S2S precipitation forecast and its potential for hydrologic 
applications. The major findings and conclusions of this study are 
summarized below.  

1. The NMME-2 S2S precipitation forecasts show substantial biases 
across CONUS. The forecast biases also demonstrate strong spatial 
and seasonal dependences, but we found the biases are not sensitive 
to forecast lead times. Five individual NMME-2 models and the SMA 
of their grand ensemble show similar spatial bias patterns across the 
CONUS. Based on our spatial analysis, significant overestimations of 
the NMME-2 forecasts are observed in the western (Northwest, West, 
and West North Central) regions in DJF season. And significant 
model underestimations are identified in the South region of CONUS 
in warmer seasons of JJA and SON.  

2. In terms of forecast skill, a major discrepancy exists between the 
FLORB01 and the rest of NMME-2 models. Specifically, the FLORB01 
model consistently shows a lower precipitation forecast skill, espe
cially at week-1 and week-2 lead times, as compared to other NMME- 
2 models. The forecast skill of the rest of NMME-2 models is the 
highest at week-1, tends to decrease rapidly from week-1 to week-2, 
and remains at a marginal level at week-3 and week-4 across all 
regions and in all seasons. Spatially, all NMME-2 models show higher 
forecast skills in the western areas (Northwest and West regions). 
The SMA of five NMME-2 members shows better deterministic 
forecast skill than any single NMME-2 model under most comparison 
scenarios. 
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3. The NMME-2 S2S precipitation forecasts also show better potentials 
in predicting extreme (above 99% and below 1%) precipitation 
events at all lead times compared to historical resampled forecasts. In 
addition, the formation of a grand ensemble of NMME-2 with a 
bigger ensemble size can further increase the performance of NMME- 
2 in predicting extreme events. Therefore, we believe the grand 
ensemble of NMME-2 S2S precipitation forecasts is a good alterna
tive to the historical resampled forecast within the ESP framework 
for hydrologic applications. 

4. Our study has presented more detailed evaluations of the precipita
tion forecasts from NMME-2 within one month (week 1 to week 4) 
compared to previous evaluations of NMME-1 monthly precipitation 
forecasts across the entire CONUS. And our evaluation results should 
be able to serve as an important reference for future hydrologic- 
related studies utilizing NMME-2 at watershed scales across CONUS. 
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