
1.  Introduction
The terrestrial biosphere cycles about 15.7% of atmospheric carbon each year, with roughly equal amounts 
being assimilated through photosynthesis and released through respiration (Baldocchi & Penuelas, 2019). 
The climate mitigation benefit of biological carbon sequestration can arise if more of the assimilated carbon 
enters long-turnover pools in vegetation and soil than is released from them. However, the expansion of 
human land use continues to erode the area of carbon-rich old-growth forests (FAO, 2012) and a growing 
fraction (about 7%) are managed (Hansen et al., 2013) at increasing intensity (Fox et al., 2007). The inten-
sifying use of the Earth’s ecosystems has negative implications for biological carbon sequestration for two 
reasons. First, ecosystem management typically involves the replacement of ecosystems with high stand-
ing biomass and moderate productivity with those with low standing biomass and high productivity (Erb 
et al., 2016). As a result, human land use has doubled the carbon turnover rate compared to undisturbed 
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Plain Language Summary  Two metrics of ecosystem productivity—vegetation biomass 
accumulation (net primary production, NPP) and net ecosystem carbon gain (NEP)—are often used 
interchangeably, as their difference, heterotrophic respiration, is assumed a relatively constant fraction 
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natural systems (Erb et al., 2016). Second, the increasing disturbance frequency that accompanies inten-
sive land management stimulates heterotrophic activity and the mineralization rate of existing soil C pools 
(Lewis & Wheeler, 2019; Noormets et al., 2015). Thus, land-use intensification tends to increase both net 
primary productivity (NPP) and RSH, with unclear consequences for net ecosystem production (NEP).

The primary management practice in cultivated lands, including forests, is fertilization (Galloway 
et al.,  2008; Magnani et al.,  2007; Noormets et al.,  2015), that increases productivity and shifts biomass 
allocation toward aboveground tissues (Chen et al., 2013). In addition, even non-fertilized ecosystems have 
experienced increased nutrient availability due to the global reach of atmospheric deposition of industrial 
pollution (Galloway et al., 2008). The lower carbon cost of belowground resource acquisition under fer-
tilization allows for increased aboveground growth and productivity. The extent to which this increased 
observable productivity (Campbell et  al.,  2017) translates to a greater land carbon sink remains a topic 
of investigation (Xia et al., 2017), and the multitude of processes involved suggest a possible divergence 
between NPP and NEP. First, the increased aboveground and decreased belowground detritus production 
are unlikely to simply offset one another in terms of soil C inputs, as the differences in chemical composi-
tion and physical protection from decomposer and invertebrate communities allow belowground detritus 
to persist longer in the soil than aboveground detritus (Adamczyk et al., 2019; Clemmensen et al., 2013; 
Godbold et al., 2006). Second, increased nutrient availability in the soil tends to suppress microbial activity 
through stoichiometric and substrate availability effects (Averill & Waring, 2018) and symbiotic interac-
tions (Kuzyakov & Gavrichkova, 2010). Recent analyses have also demonstrated tight coupling between 
allocation and carbon use efficiency (the ratio of NEP to gross primary production or gross photosynthesis) 
(Campioli et al., 2015; Fernandez-Martinez et al., 2014; Vicca et al., 2012) at high nutrient availability, re-
flective of the reduced respiratory and allocation costs associated with both root and rhizosymbiont support 
(Treseder, 2004; Treseder et al., 2007).

Alongside increasing anthropogenic management pressures on the biosphere (Erb et al., 2016; Krausmann 
et al., 2013), the intensifying hydrological cycle is also leading to more frequent and more intensive drought 
events (Huntington, 2006). The universally negative effect of drought on plant productivity is assumed to 
translate to a lower land carbon sink (Kolus et al., 2019), even though its interactions with changing nutri-
ent availability and other global change factors (including drought, but also elevated CO2 and temperature) 
are only beginning to be explored (Nogueira et al., 2018; Samuelson et al., 2018; Siebert et al., 2019; Ward 
et al., 2015). We have shown earlier that the fertilization-induced decrease in the drought sensitivity thresh-
old at the VA study site of this replicated experiment was detectable in the sensitivity of canopy conductance 
to water availability and evaporative demand (Ward et al., 2015). This change in conductance was attrib-
uted to a lower ratio of root area to leaf area, which is also expected to lead to lower soil autotrophic and 
heterotrophic respiration, and modulates the response of NEP to drought. Using a range-wide replicated 
experiment of water and nutrient availability in loblolly pine (Pinus taeda) plantations (Will et al., 2015), 
the current study set out to quantify the drought sensitivity of NPP, RSH, and NEP at different nutrient avail-
abilities. We show consistent divergence of NPP and NEP responses to drought, and the amplified response 
to fertilization as a result of modest and predictable responses of RSH.

2.  Materials and Methods
2.1.  Study Domain and Sites

The study was carried out in three replicated full factorial experiments of nutrient and water availability, 
with two levels of each, established as a part of the PINEMAP study (Pine Integrated Network: Education, 
Mitigation, and Adaptation Project, www.pinemap.org). The study sites were located in the climatic ex-
tremes of the natural range of loblolly pine (Figure 1a)—Taylor County, Florida (30°12′22″N, 83°52′12″W), 
McCurtain County, Oklahoma (34°01′47″N, 94°49′23″W), and Buckingham County, Virginia (37°27′37″N, 
78°39′50″W). Each experiment consisted of four replicate plots (800 m2 treatment area, with measurements 
constrained to the central 300 m2) of ambient control (C), fertilization (F), throughfall reduction or drought 
(D), and combination (FD) treatment. The throughfall reduction was achieved with troughs covering 30% 
of the plot area (Figure 1b), and removing 30% of the throughfall (Bracho et al., 2018; Will et al., 2015). 
The main site climate, soil, and vegetation characteristics are shown in Table 1. The fertilization treatment 
targeted optimal mineral nutrient availability for growth (Fox et al., 2007), and included nitrogen (urea 
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at 432 kg ha−1), phosphorus (diammonium phosphate at 140 kg ha−1), potassium (potash at 112 kg ha−1). 
Micronutrients were supplied as granular oxysulfate micronutrient mix (Southeast Mix, Cameron Chem-
icals, Inc., Virginia Beach, VA, USA) at a rate of 22.4 kg ha−1, which contained 5% boron, 2% copper, 6% 
manganese, 6% sulfur, and 5% zinc. The fertilizers were broadcast applied by hand in March and April of 
2012 (Will et al., 2015).

2.2.  Measurements

Tree biomass, productivity, soil total, and heterotrophic respiration were measured as described in Bracho 
et  al.  (2018). Briefly, the diameter at breast height and height of all trees in the core area of the treat-
ment plots were measured each winter, and the annual biomass increment was calculated using allometric 
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Figure 1.  The native range of loblolly pine (shaded area) in the Southeast United States and the locations of the 
through-fall reduction and fertilization experiments (green, left). Throughfall reduction troughs (−30%) at the Virginia 
study site (right). Photo: A. Laviner.

Florida Oklahoma Virginia

Climate and site characteristics

  MAT (°C) 19.4 16.6 13.6

  MAP (mm) 1,450 1,300 1,120

  Soil texture (0–30 cm) Fine sand Fine sandy loam Silty clay loam

  Soil [C] (mg g−1) 20.5 13.3 37.4

  Soil [N] (mg g−1) 0.73 0.80 1.30

Vegetation characteristics

  Age (yr) 9 5 10

  Tree density (stems ha−1) 1,720 ± 87 1,610 ± 102 789 ± 68

  Basal area (m2 ha−1) 22.4 ± 2.2 1.8 ± 0.3 13.2 ± 0.7

  Height (m) 10.5 ± 0.5 2.9 ± 0.15 8.8 ± 0.2

  Diameter (cm) 12.5 ± 0.7 3.6 ± 2.9 14.4 ± 0.5

  Foliar [N] (%)a

    C and D 1.38 ± 0.05 1.29 ± 0.03 1.18 ± 0.01

    F and FD 1.58 ± 0.02 1.47 ± 0.03 1.70 ± 0.06

Note. Vegetation characteristics are shown as the mean ± SD of four replicated plots of each of the four treatments.
aC, D, F, and FD refer to the control, drought, fertilization, and fertilization plus drought treatments.

Table 1 
Site Climate, Soil, and Vegetation Characteristics in 2011, Before the Start of the Throughfall Exclusion Treatments in 
the Summer of 2012. Foliar N was measured in the summer of 2012, following fertilizer application
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relationships (Gonzalez-Benecke et al., 2014, 2016). Aboveground net primary production (ANPP) was cal-
culated as the sum of woody biomass increment plus litterfall, belowground net primary production (BNPP) 
was calculated as the increment of coarse roots, and total net primary production (TNPP) was their sum. 
Soil CO2 efflux was measured on three randomly located locations in each treatment plot, using LI-8100, LI-
6400, or LI-6200 (Licor, Lincoln, NE, USA) infrared gas analyzers, and paired polyvinylchloride collars. For 
total soil CO2 production, 10-cm collars were inserted 2–5 cm into the ground, and for root-excluded het-
erotrophic CO2 production 32–35 cm collars were inserted 30–33 cm into the ground (Bracho et al., 2018). 
The similarity of soil CO2 efflux between paired shallow and deep collar locations was verified before collar 
installation, and the heterotrophic fraction estimate was corrected for the initial difference. Heterotrophic 
CO2 production estimate was based on measurements taken between 30 and 80 days after the installation of 
the collars and severing the roots, as this was a period of stable ratios of the deep to shallow collar effluxes 
(McElligott et al., 2016; Templeton et al., 2015). The 48 collar pairs at each site were measured over the 
course of a year on five to eight separate campaigns during 1 year at each site. Total soil CO2 efflux from the 
shallow collars was measured for multiple years, during 2012–2015.

Soil temperature (Ts) was measured continuously throughout the study (2012–2015) in triplicate in each 
treatment plot using CWS655 probes (Campbell Scientific, USA), and were used to produce continuous RS 
time series for each plot based on the empirical relationships between observed RS and simultaneous manu-
al measurements of Ts (Bracho et al., 2018). Annual RSH fluxes were estimated by multiplying the plot-level 
RS estimates with the plot-level mean RSH:RS ratio. This approach did not differ from estimates where the 
smaller number of RSH measurements were scaled directly with Ts (Bracho et al., 2018). RSA was estimated 
as the difference between plot-level RS and RSH, and net ecosystem productivity (NEP) was estimated as the 
difference between TNPP and RSH.

2.3.  Statistical Analysis

The global treatment effects of throughfall exclusion and fertilization on carbon fluxes were analyzed based 
on annually integrated fluxes. The sample size for the statistical analysis was 192 (3 sites × 4 treatments × 4 
replicates × 4 years). The year was used as a repeated measure, site as a random factor, and the fertilization 
and drought treatments were the main effects. The main and interactive effects of drought and fertilization 
were determined with repeated measures ANOVA using the Kenward-Roger method for calculating the 
denominator degrees of freedom to account for the small sample size (PROC MIXED, SAS v 9.4, SAS Insti-
tute). Site differences were estimated with site, D and F as interacting main effects, and year as a repeated 
measure. The significance of site and treatment differences was estimated with Tukey’s honestly significant 
difference (HSD) test at α < 0.05 level. Marginally significant effects at 0.05 < α < 0.1 are noted individu-
ally. The site-by-treatment interactions were not statistically significant, allowing us to summarize global 
treatment effects across the study domain. Compared to the site-specific analysis (Bracho et al., 2018), the 
current study has one fewer study site. Data from GA were excluded from the current analysis because of 
deviations in RSH measurement protocol at that site.

3.  Results and Discussion
Despite large latitudinal differences in productivity and respiration fluxes, the three study sites spanning 
the native range of the species (6.5°C in MAT and 300 mm in MAP) exhibited universal patterns in the 
divergence of NPP and NEP to the drought and fertilization treatments. Plant productivity (TNPP) and het-
erotrophic soil CO2 efflux (RSH) were greater in FL than in OK and VA (Figure 2a, 2c, and 2e), whereas the 
autotrophic soil CO2 efflux was similar and higher in FL and OK than VA (Figure 2g). Accounting for the 
site differences, the responses to drought and fertilization treatments were consistent across locations dur-
ing the 4-year study period (Figures 2b, 2d, 2f, and 2h, Table 2), even though the magnitude and timing var-
ied (Bracho et al., 2018). The nearly twofold regional differences, and treatment responses to drought and 
fertilization in total and belowground net primary production (TNPP and BNPP) were reflected in opposite 
changes in the heterotrophic soil CO2 efflux (RSH), possibly mediated by the fresh carbohydrate control of 
exudation and soil microbial activity (Meier et al., 2017; Mitra et al., 2019). Fertilization increased produc-
tivity (TNPP: +9%, p = 0.0005; BNPP: +12%, p = 0.0003), and decreased RSA (−12%, p = 0.068) and RSH (−7%, 
p = 0.0024). At the individual site level (Bracho et al., 2018), fertilization effects on TNPP were significant 
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at all sites (p < 0.005), with no interaction with drought treatment, but with significant year by fertilization 
interaction at the OK site—the fertilization effect disappeared by the fourth year of measurement. RSH re-
sponses to fertilization were statistically significant at OK and VA, but not in FL (Bracho et al., 2018). In the 
current analysis, with site as a random factor, RSH decreased significantly in response to fertilization (both in 
absolute and normalized scale; Table 2; Figures 2f and 3f), leading to much greater proportional increases in 
NEP than in TNPP (89% vs. 9%; Figures 2b and 3h; Table 2). Drought did not significantly affect productivity 
in the current cross-site analysis (although at site level, TNPP decreased in OK; Bracho et al., 2018). As the 
result of a lower heterotrophic fraction of soil CO2 efflux (RSH:RS ratio, Figure 3b), drought increased NEP 
and carbon sequestration efficiency (NEP:NPP; Figure 3h and 3j). The different partitioning of respiratory 
costs among sites and in response to drought and fertilization treatments led to the divergence between 
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Figure 2.  Four-year weighted mean annual fluxes by site (left column; weighted mean ± SE) and by experimental 
treatment (right)—total net primary production (TNPP; a, b), belowground net primary production (BNPP; c, d), 
soil heterotrophic CO2 efflux (RSH; e, f), and soil autotrophic CO2 efflux (RSA; g, h). All values are repeated measures 
weighted mean ± SE). The letters indicate Tukey’s HSD post-hoc comparisons between treatments—different letters 
indicate statistically significant difference at α < 0.05 level. The asterisk indicates a difference from categories with the 
same letter at α < 0.1 level (BNPP). The significance of main treatment effects is shown in Table 2.
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TNPP and NEP. NEP was comparable in VA and FL, despite their nearly twofold difference in TNPP (Fig-
ures 2a and 3g). While TNPP and BNPP increased by about 10% under fertilization, and showed a minimal 
response to drought treatment, NEP increased in response to both fertilization (threefold) and drought (>2-
fold at ambient nutrient availability) across all sites (Figure 3h).

The central role of nutrient status in affecting carbon allocation and various carbon conversion efficien-
cy metrics has been demonstrated in several recent syntheses (Campioli et  al.,  2015; Fernandez-Mar-
tinez et al.,  2014; Vicca et al.,  2012). Both the biomass production efficiency (BPE=NPP:GPP; Campioli 
et al., 2015; Vicca et al., 2012) and ecosystem carbon use efficiency (CUE=NEP:GPP; Fernandez-Martinez 
et al., 2014) are higher in nutrient-rich than nutrient-poor forests. These findings suggest that both RSA and 
RSH must respond to nutrient availability, but the current study is the first experimental assessment in this 
regard. The marginally significant decrease of RSA under fertilization (Table 2; Figures 2 and 3) is consistent 
with the body of evidence that improved nutrient availability shifts allocation from belowground toward 
aboveground tissues (Chen et al., 2013). However, given that BNPP and TNPP were both derived from fixed 
allometric equations, direct confirmation of such presumed change is not possible with the current data set. 
Overall, assuming that autotrophic respiration is 50% of GPP (Waring et al., 1998), the carbon sequestration 
efficiencies (NEP:TNPP) in Figure 3j convert to CUE of about 0.05 (control), 0.13–0.14 (D & F treatments), 
and 0.16 (combined treatment), similar to the estimates of Fernandez-Martinez et al. (2014).

Our results are unique in that RSA increased under drought, whereas in most other studies RSA declined 
instead (Hinko-Najera et al., 2015; Huang et al., 2018; Li et al., 2018; Risk et al., 2012; Sun et al., 2019). We 
attribute this to the more moderate treatment design (−30% throughfall exclusion in the current study vs. 
−40%, −50%, or even −100% seasonal exclusion in others), and unusually high precipitation in the second 
and third year of the current study (Bracho et al., 2018; Will et al., 2015), which likely ameliorated any 
physiological drought responses. The slight increase in RSA under drought suggests that the effect was barely 
strong enough to trigger enhanced root growth and increased exploration of soil volume (Ward et al., 2015). 
On the other hand, the small (−7%) but universal decline in RSH, especially when normalized for BNPP 
(−19%; Figure 3f), that was consistent across sites, is a response that has not been described in most earlier 
studies. The results of Siebert et al. (2019) indicate that this may be due to the differential responses of soil 
invertebrates (more sensitive) and microbes (less sensitive) to soil moisture. In some studies, drought plots 
have had higher temperature, which may have compensated for the negative effects of lower moisture on 
RSH (Schindlbacher et al., 2012), but in the current study, soil temperature did not differ between the water 
availability treatments (data not shown). Thus, the observed differences in RSH in the current study are 
solely in response to soil moisture.

The progressive decline in RSH in proportion to BNPP (Figure  3f) from single to combined treatments 
suggests active control by plants of carbohydrate exudation to the soil environment based on resource 
availability. The drought treatment would have reduced plant carbohydrate status while increasing sink 
strength, whereas the fertilization treatment increased nutrient availability for plants, and made them less 
dependent on rhizosymbionts for nutrient mineralization. Both aspects are consistent with the idea of tight 
coupling between plant nutrient demand, and energy limitation of the decomposer community (Averill & 
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Flux Drought Fertilization D × F Ratio Drought Fertilization D × F

TNPP 0.146 0.0005 0.4825 RSH:TNPP 0.0009 <0.0001 0.0823

BNPP 0.1119 0.0003 0.4978 RSA:TNPP 0.0013 0.0048 0.1910

RSH <0.0001 0.0024 0.0798 RSH:BNPP 0.0027 <0.0001 0.1464

RSA 0.0112 0.0680 0.4497 RSA:BNPP 0.0007 0.0024 0.2231

NEP 0.0218 <0.0001 0.0284 NEP:TNPP 0.0009 <0.0001 0.0823

RSH:RS <0.0001 0.4421 0.2696

Abbreviations: BNPP, belowground net primary production; NEP, net ecosystem production; TNPP, total net primary 
production.

Table 2 
P-Values of Drought (D) and Fertilization (F) Main Effects and Their Interaction Across all Years and Sites for Main 
Carbon Fluxes and Their Ratios



Geophysical Research Letters

Waring, 2018; Mitra et al., 2019) that use fresh plant-derived carbohydrates to “prime” the decomposition 
of more complex organic molecules (Kuzyakov, 2010). The additive sensitivity of RSH to drought and fertili-
zation explains the increased carbon sequestration efficiency (Figure 3j), and the change in the ranking of 
sites by NEP compared to TNPP (Figures 2a, 3g and 3h).
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Figure 3.  The ratio of soil heterotrophic respiration to total soil CO2 efflux (RSH:RS; a, b), ratio of RSA to belowground 
productivity (RSA:BNPP; c, d), ratio of soil heterotrophic respiration to BNPP (RSH:BNPP; e, f), net ecosystem production 
(NEP; g, h) and carbon sequestration efficiency (NEP:TNPP ratio; i, j) across sites (left column) and among treatments 
(right column). All values are repeated measures weighted means ± SE. The letters indicate Tukey’s HSD post-hoc 
comparisons between treatments—different letters indicate statistically significant difference at α < 0.05 level. The 
asterisk indicates a difference from categories with the same letter at α < 0.1 level (RSA:BNPP). The significance of main 
treatment effects is shown in Table 2.
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The observed divergence of TNPP and NEP responses to water and nutrient availability have far-reaching 
implications for (1) modeling of ecosystem carbon fluxes, (2) projections of ecosystems’ capacity to mitigate 
climate change, and (3) the profitability of forest production when timber income and carbon sequestration 
benefits are considered together. Although the current study was conducted in simple-structured managed 
plantation forests, the principles of resource-availability-driven patterns of allocation and plant-microbe 
interactions are universal and apply to all ecosystems. Therefore, we conclude that the results of this study 
can be used to validate ecosystem and land surface models. Given that RSH is among the most poorly con-
strained fluxes in the carbon cycle and a universally recognized weakness in land surface models (Law-
rence et al., 2019; Wieder et al., 2019), improved understanding and more realistic representation of this 
process in models deserves renewed focus. Increasing anthropogenic nutrient inputs through fertilization, 
agricultural runoff, and atmospheric deposition are worldwide, and this increase in resource availability 
affects mycorrhizal and other symbiotic relationships formed by plants (Meier et al., 2017), which, in turn, 
manifest in carbon allocation patterns (Litton et al., 2007; Waring et al., 2010), detritus production path-
ways, and carbon sequestration efficiency. For climate mitigation, ecosystems’ value is, in part, measured 
by their ability to sequester carbon in long-lived pools, which is equal to long-term average NEP, accounting 
for episodic disturbances and removals (also called net biome production, NBP). Given that the higher fre-
quency of droughts projected for the coming decades might manifest primarily through higher atmospheric 
evaporative demand (Novick et al., 2016), the NEP gain under mild drought suggested by the current study 
is a significant benefit, especially as the TNPP cost of the drought was minimal. Notably, the NEP benefit 
was greater at lower nutrient availability (as is expected in extensively managed public- and small landown-
er-owned forests). On the other hand, realizing this potential may be hampered by longer and more severe 
droughts that can reduce both TNPP and NEP (Bracho et al., 2012; Schwalm et al., 2012; Yang et al., 2018), 
and by elevated RSH under excessive soil disturbance in intensively managed production forests (Noormets 
et al., 2015). Finally, if forests become valued not only for their harvestable timber production but also for 
their carbon sequestration potential (https://ecosystemservicesmarket.org/), less productive sites on nutri-
ent-poor and marginal lands may exhibit similar NEP to more productive sites due to lower RSH, and thus 
offer the landowners an alternative revenue source.

Data Availability Statement
All data are archived at and available from the Terra-C database at the University of Florida (http://terrac.
ifas.ufl.edu/index.asp).
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