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Given a hereditary property H of graphs and some p ∈ [0, 1], the edit distance function 
edH(p) is (asymptotically) the maximum proportion of “edits” (edge-additions plus edge-
deletions) necessary to transform any graph of density p into a member of H. For any 
fixed p ∈ [0, 1], edH(p) can be computed from an object known as a colored regularity 
graph (CRG). This paper is concerned with those points p ∈ [0, 1] for which infinitely 
many CRGs are required to compute edH on any open interval containing p; such a p
is called an accumulation point. We show that, as expected, p = 0 and p = 1 are indeed 
accumulation points for some hereditary properties; we additionally determine the slope of 
edH at these two extreme points. Unexpectedly, we construct a hereditary property with 
an accumulation point at p = 1/4. Finally, we derive a significant structural property about 
those CRGs which occur at accumulation points.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

A hereditary property of graphs is a family of graphs which is closed under isomorphism and under vertex-deletion. A 
principal hereditary property is of the form Forb(H) where H is some fixed graph and Forb(H) is the family of all graphs 
which do not contain H as an induced subgraph. In fact, all hereditary properties have the form 

⋂
F∈F Forb(F ) where F

is some family of graphs. In other words, every hereditary property is defined by some collection of forbidden induced 
subgraphs. It will be convenient to compress notation and write

Forb(F)
def=

⋂
F∈F

Forb(F ).

A hereditary property H is said to be non-trivial if it contains graphs of unbounded order. Equivalently, thanks to Ram-
sey’s theorem, H is non-trivial if H = Forb(F) for some family F which does not contain both a clique and an anti-clique. 
Observe that if H is non-trivial, then, in fact, H contains graphs of every order.

The edit distance function For two graphs G, H on vertex set V , we define the normalized edit distance between G and H to 
be
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dist(G, H)
def= |E(G) � E(H)|(|V |

2

) ,

where � denotes the symmetric difference. Informally, dist(G, H) measures the number of “edits” (that is, edge-additions 
plus edge-deletions) required to transform G into H .

If H is a non-trivial hereditary property, then we may extend this definition to discuss the edit distance between G and 
H by

dist(G,H)
def= min

{
dist(G, H) : H ∈ H s.t. V (H) = V (G)

}
.

Note that dist(G, H) is well-defined since H is closed under isomorphism and contains graphs of every order. Finally, the 
edit distance function of H is defined by

edH(p)
def= limsup

n→∞
max

{
dist(G,H) : |V (G)| = n, |E(G)| =

⌊
p

(
n

2

)⌋}
, for p ∈ [0,1].

Informally, edH(p) records the maximum number of edits required to transform any (large) graph of density p into a 
member of H.

The edit distance function was formally defined by Balogh–Martin [2], where it was shown that edH is concave down. 
In a different context, Marchant–Thomason [6] showed that edH is continuous. For a more detailed discussion of the edit 
distance function and an in-depth review of known results, see [8].

The first result in this paper concerns the behavior of the edit distance function near p = 0 and near p = 1.

For a family of graphs F , define χ(F) def= min
{
χ(F ) : F ∈ F

}
and χ(F) def= min

{
χ(F ) : F ∈ F

}
where χ denotes the 

clique-cover number. Suppose that F does not contain an anti-clique (i.e. χ(F) ≥ 2). By selecting a uniformly random 
(χ(F) − 1)-coloring of the vertices of a graph and deleting any edges induced by each color class, we observe that the 
resulting graph is F -free; thus we may bound

edForb(F)(p) ≤ p

χ(F) − 1
.

While this bound is not tight for many families F , any known improvements are minuscule when p is sufficiently small. 
We show that this is no accident:

Theorem 1.1. Let F be a family of graphs. If F does not contain an anti-clique, then

lim
p→0+

1

p
edForb(F)(p) = 1

χ(F) − 1
.

Similarly, if F does not contain a clique, then

lim
p→1−

1

1− p
edForb(F)(p) = 1

χ(F) − 1
.

In other words, this result determines the slope of the edit distance function at 0 and at 1, provided the forbidden family 
avoids cliques and anti-cliques.

Remark 1.2. If F contains an anti-clique (resp. clique), then the slope of edForb(F) at 0 (resp. 1) is a less interesting question. 
This is because, if F contains an anti-clique (resp. clique), then Proposition 2.4 gives that one can compute edForb(F) over 
the interval [0, 1/2] (resp. [1/2, 1]) via a finite number of structures called p-core CRGs, which we describe below.

Computing the edit distance function A colored regularity graph (CRG) K is a clique, together with a partition of its vertices 
into black and white V (K ) = V B(K ) 	 VW (K ) and a partition of its edges into black, white and gray E(K ) = EB(K ) 	
EW (K ) 	 EG(K ).

The term CRG was, to our knowledge, coined by Alon and Stav [1] but the idea traces back throughout studies of 
hereditary properties using Szemerédi’s regularity lemma [11] such as that by Bollobás and Thomason [3,4].

For a CRG K and a graph F , we say that F 
→ K if there is a function φ : V (F ) → V (K ) such that

• For any uv ∈ E(F ), either φ(u) = φ(v) ∈ V B(K ) or φ(u)φ(v) ∈ EB(K ) ∪ EG(K ).
• For any uv /∈ E(F ), either φ(u) = φ(v) ∈ VW (K ) or φ(u)φ(v) ∈ EW (K ) ∪ EG(K ).

This notion extends naturally to families of graphs, where we say that F 
→ K if there is some F ∈ F with F 
→ K . 
Otherwise, we say that F �
→ K . For a nontrivial hereditary property H = Forb(F), denote by K(H) the set of all CRGs K
for which F �
→ K .
2
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For p ∈ [0, 1], we associate to a CRG K a matrix MK (p) ∈RV (K )×V (K ) defined by

(
MK (p)

)
xy

def=

⎧⎪⎨
⎪⎩
p if x = y ∈ VW (K ) or if xy ∈ EW (K ),

1− p if x = y ∈ V B(K ) or if xy ∈ EB(K ),

0 if xy ∈ EG(K ).

From MK (p), we derive the function

gK (p)
def= min

{〈μ,MK (p)μ〉 : μ ∈ �K }
,

where �K ⊆ [0, 1]V (K ) is the set of all probability masses on V (K ) and 〈·, ·〉 is the standard scalar product. Note that �K is 
naturally identified with the (|V (K )| − 1)-dimensional simplex.

For any non-trivial hereditary property H and any p ∈ [0, 1],
edH(p) = inf

K∈K(H)
gK (p) = min

K∈K(H)
gK (p). (1)

Balogh–Martin [2] proved the first equality and Marchant–Thomason [6] proved the second. In particular, for any fixed 
p ∈ [0, 1], the edit distance function of H is determined by a single CRG.

Accumulation points of the edit distance function Inspired by the known edit distance functions, Martin [8] conjectured the 
following extension of eq. (1):

Conjecture 1.3 (Martin [8, Conjecture 1]). For any ε > 0 and any non-trivial hereditary property H, there is some finite subset K′ ⊆
K(H) such that

edH(p) = min
K∈K′ gK (p), for all p ∈ (ε,1 − ε).

In order to approach questions of this form, we introduce the following definition.

Definition 1.4 (Regular points and accumulation points of the edit distance function). Let H be a non-trivial hereditary property. 
A point p0 ∈ [0, 1] is said to be a regular point of H if there is some ε > 0 and a finite subset K′ ⊆K(H) such that

edH(p) = min
K∈K′ gK (p), for every p ∈ (p0 − ε, p0 + ε) ∩ [0,1].

Conversely, p0 is said to be an accumulation point of H if p0 is not a regular point. Informally, p0 is an accumulation 
point of H if infinitely many CRGs are required to determine edH in any (relatively) open interval containing p0.

Appealing to compactness, Conjecture 1.3 is equivalent to the statement: If H is a non-trivial hereditary property, then 
every point in (0, 1) is a regular point of H.

Martin and Riasanovsky [10, Theorem 39] proved that H does not have any accumulation points in the interval 
(
1 −

ϕ−1, ϕ−1
) = (2 − ϕ, ϕ − 1) = (0.382 . . . , 0.618 . . .) where ϕ = 1.618 . . . is the golden ratio. However, in this paper, we show 

Conjecture 1.3 to be false:

Theorem 1.5. p = 1/4 is an accumulation point of Forb
({K1,4, C5, C6, C7, . . .}

)
.

Martin [8, Question 5] additionally asked if p = 0 is indeed a accumulation point of Forb(K3,3) and of Forb(K2,t) for 
t ≥ 9. We answer this question affirmatively.

Theorem 1.6. p = 0 is an accumulation point of Forb(K3,3) and of Forb(K2,t) for all t ≥ 9.

This result follows from a general classification for when p = 0 is an accumulation point of a hereditary property (see 
Theorem 4.1).

Beyond this, we show that Forb(K3,3) has no other accumulation points.

Theorem 1.7. For any t ∈N , Forb(Kt,t) has no accumulation points in the interval (0, 1].

In order to prove the above theorem, we establish a significant structural property about those CRGs which occur at 
accumulation points for a general hereditary property (see Theorem 4.18). We hope that this result can be beneficial to 
future researchers; however, it requires considerable set-up, so we are unable to state this result in the introduction.

Unfortunately, we were unable to rule out the possibility that Forb(K2,t) has additional accumulation points, though we 
believe that it does not.
3
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Outline of the paper We begin the paper by recalling background information about the edit distance function and CRGs in 
Section 2. In Section 3 we establish Theorem 1.1; in order to do so, we prove a variant of the Erdős–Stone theorem. We 
then prove Theorems 1.5, 1.6 and 1.7 in Section 4, where we additionally establish a significant structural property about 
those CRGs which occur at accumulation points of a general hereditary property. Finally, we conclude with a few remarks 
and open questions in Section 5.

2. Preliminaries

In this section, we recall necessary definitions and results about CRGs and the edit distance function.

Proposition 2.1 (Martin [7, Theorem 10v]). If H= Forb(F) is a non-trivial hereditary property, then for any p ∈ [0, 1],

edH(p) = edH(1− p), whereH = Forb
({F : F ∈ F}).

This, in particular, allows us to restrict our attention to the interval [0, 1/2], since any results in this interval may be 
immediately translated to a result on [0, 1]. This is a common approach in the literature, and we employ it throughout the 
remainder of this paper.

Definition 2.2. Let K be a CRG and let p ∈ (0, 1). K is said to be a p-core CRG if

gK ′(p) > gK (p)

for every proper sub-CRG K ′ ⊂ K .
Equivalently, K is a p-core CRG if there is a unique μ ∈ �K which achieves gK (p) and this μ has full support [7, 

Proposition 12].

Note that any CRG K has a p-core sub-CRG L satisfying gL(p) = gK (p).
The above definition makes sense for p ∈ {0, 1} as well, yet it is not useful since the edit distance function is easy to 

compute for these values. We will therefore define p-core CRGs for p ∈ {0, 1} structurally; these definitions are justified by a 
limiting argument (see Remark 2.5). Explicitly, Proposition 2.4 shows that the definition of 0-core characterizes p-core CRGs 
for all p ∈ (0, 1/2] and that the definition of 1-core characterizes p-core CRGs for all p ∈ [1/2, 1). Note that Proposition 2.4
also implies that all edges of a 1/2-core CRG are gray.

Definition 2.3. Let K be a CRG.

• We say that K is 0-core if K consists only of white and gray edges and EW (K ) ⊆ (V B(K )
2

)
.

• We say that K is 1-core if K consists only of black and gray edges and EB(K ) ⊆ (VW (K )
2

)
.

Proposition 2.4. Fix p ∈ (0, 1) and let K be a p-core CRG.

1. (Marchant–Thomason [6, Lemma 3.23]) If p ∈ (0, 1/2], then K is 0-core.
2. (Marchant–Thomason [6, Lemma 3.23]) If p ∈ [1/2, 1), then K is 1-core.
3. (Martin [7, Lemma 15]) Suppose that p ∈ (0, 1/2] and that μ ∈ �K achieves gK (p). For every u ∈ VW (K ), we have

μ(u) = gK (p)

p
.

Furthermore, for every u ∈ V B(K ), the weighted-gray-degree of u satisfies

dG(u)
def=

∑
v∈V (K ): uv∈EG(K )

μ(v) = p − gK (p)

p
+ 1 − 2p

p
μ(u).

We remark that dG (u) ≤ 1 −μ(u) for any u ∈ V (K ) since uu /∈ EG(K ) for any vertex u. Additionally, there is an analogue 
to part 3 in the case that p ∈ [1/2, 1), though we will not require it thanks to Proposition 2.1.

Remark 2.5. If K is a 0-core CRG, then it can be shown that there is some p0 > 0 such that K is p-core for all 0 < p < p0. 
Similarly, if K is a 1-core CRG, then there is some p1 > 0 such that K is p-core for all 1 − p1 < p < 1.

This observation is not used to prove any of the results in this paper, so we leave the proof to the reader. We simply 
include this remark to further justify the definition of 0-core and 1-core CRGs.
4
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Recall that for a non-trivial hereditary property H = Forb(F), we used K(H) to denote the set of all CRGs K for which 
F �
→ K . We next introduce analogous notation for the CRGs in K(H) which are also p-core for a given p.

Definition 2.6. Let H = Forb(F) be a non-trivial hereditary property. For p ∈ [0, 1], we denote by Kp(H) the set of all 
p-core CRGs K for which F �
→ K .

The most important class of CRGs are those consisting only of gray edges.

Definition 2.7. For non-negative integers w, b, the CRG K (w, b) consists of w white vertices and b black vertices and has 
all gray edges.

Proposition 2.8 (Martin [7, Theorem 7]). Let K and L be CRGs. If K ⊕ L denotes the CRG formed by connecting K and L with all gray 
edges, then

1

gK⊕L(p)
= 1

gK (p)
+ 1

gL(p)
.

In particular:

1. For 0 < p < 1,

gK (w,b)(p) =
(
w

p
+ b

1− p

)−1

.

2. Let K be any 0-core CRG. If K has w white vertices and K ′ is the sub-CRG induced by the black vertices of K , then

gK (p) =
(
w

p
+ 1

gK ′(p)

)−1

, for all p ∈ (0,1).

Intuitively, replacing a non-gray edge of a CRG K with a gray edge can only decrease gK . This is formally summarized in 
the following statement.

Claim 2.9. Fix p ∈ (0, 1), let K be a p-core CRG and suppose that there is some x �= y ∈ V (K ) with xy /∈ EG(K ). If K ′ is the CRG 
formed by re-coloring the edge xy gray, then gK (p) > gK ′ (p).

Proof. Let μ ∈ �K be the probability mass achieving gK (p); since K is p-core we know that μ has full support. Now, it is 
easy to see that

gK ′(p) ≤ 〈μ,MK ′(p)μ〉 = 〈μ,MK (p)μ〉 − 2
(
MK (p)

)
xyμ(x)μ(y) < 〈μ,MK (p)μ〉 = gK (p). �

We will explicitly require the following consequence that holds for all CRGs, not just those that are p-core.

Proposition 2.10. Let K be any CRG and fix p ∈ (0, 1). If |VW (K )| ≤ w and |V B(K )| ≤ b,

gK (p) ≥ gK (w,b)(p).

Furthermore, the above inequality is strict if one of the following holds:

• |VW (K )| < w, or
• |V B(K )| < b, or
• K is p-core and has at least one non-gray edge.

Proof. Comparing with part 1 of Proposition 2.8, we observe that gK (w,b)(p) > gK (w ′,b′)(p) whenever either w < w ′ and 
b ≤ b′ or w ≤ w ′ and b < b′ . Thus the full claim follows by applying Claim 2.9 to any p-core sub-CRG L ⊆ K with gL(p) =
gK (p). �
5
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3. Slope of the edit distance function at zero

This section is dedicated to proving Theorem 1.1. Appealing to the symmetry established in Proposition 2.1, it suffices to 
show only that if F is a family of graphs not containing an anti-clique, then

lim
p→0+

1

p
edForb(F)(p) = 1

χ(F) − 1
.

Certainly F �
→ K (χ(F) − 1, 0), so

edForb(F)(p) ≤ gK (χ(F)−1,0)(p) = p

χ(F) − 1
, for all p ∈ [0,1];

thus the upper bound is clear. Furthermore, observe that edForb(F)(p) ≥ edForb(F )(p) for any F ∈ F . Since we can always 
find an F ∈F for which χ(F ) = χ(F), in order to prove Theorem 1.1, it suffices to show the following:

Theorem 3.1. Let H be a graph with χ = χ(H) ≥ 2. For any ε > 0, there is some p0 > 0 such that

edForb(H)(p) ≥ (1− ε)
p

χ − 1
, whenever 0 < p < p0.

The main ingredient in the proof of Theorem 3.1 is the following variant of the Erdős–Stone theorem [5]. Note that this 
result is purely graph-theoretic and does not involve the edit distance function and CRGs.

Lemma 3.2. Let H be a graph, set χ = χ(H) and fix ε > 0. There exists an integer n0 = n0(H, ε) and a number α = α(H, ε) > 0 such 
that the following holds:

If G is a graph on n > n0 vertices with

δ(G) >

(
1− 1

χ − 1
+ ε

)
n,

and c : V (G) → X is any coloring with |c−1(x)| < αn for each x ∈ X, then G contains a (not-necessarily-induced) copy of H, all of 
whose vertices are colored differently under c.

Proof. Let Kr(t) denote the complete r-partite graph wherein each part has t vertices. Since H is a subgraph of Kχ (|V (H)|)
it suffices to prove the claim only for the graphs Kr(t).

We prove by induction on r that there are appropriate constants n0(r, t) 
def= n0

(
Kr(t), ε

)
and α(r, t) def= α

(
Kr(t), ε

)
. Employ-

ing the convention that 1
0 = +∞, we may consider the case of r = 1 as our base case. Here, K1(t) is simply an anti-clique 

of size t , and so the result follows from setting α(1, t) = 1/t and n0(1, t) = t .
For the induction step, fix r ≥ 2 and set

T
def= 2t

ε
, n0(r, t)

def= n0(r − 1, T ), and α(r, t)
def= min

{
α(r − 1, T ),

ε

2rt

(
T

t

)−(r−1)t}
. (2)

Note that by making ε slightly smaller if necessary, we may suppose that T is an integer; hence the above quantities are 
well-defined.

Let G = (V , E) be a graph on n > n0(r, t) vertices with δ(G) >
(
1 − 1

r−1 + ε
)
n, and let c : V → X be any coloring with 

|c−1(x)| < αn for all x ∈ X , where α = α(r, t). We must show that G contains a copy of Kr(t), all of whose vertices are 
colored differently under c. From eq. (2) and the induction hypothesis, we know that G contains a copy of Kr−1(T ), all of 
whose vertices receive different colors under c. Label the parts of this Kr−1(T ) as U1, . . . , Ur−1.

Define the set

A
def=

{
(v,W1, . . . ,Wr−1) ∈ V ×

(
U1

t

)
× · · · ×

(
Ur−1

t

)
: N(v) ⊇

r−1⋃
i=1

Wi

}
,

where N(v) denotes the neighborhood of the vertex v . We claim that we have succeeded in finding our desired copy 
of Kr(t) if |A| ≥ (T

t

)r−1 · rt · αn. Indeed, if this is the case, then there is some (W1, . . . , Wr−1) such that B def= {
v ∈ V :

(v, W1, . . . , Wr−1) ∈ A
}
satisfies |B| ≥ rt ·αn. Since each color class of c has size at most αn, this implies that there is some 

B ′ ⊆ B with |B ′| ≥ rt , all of whose vertices have distinct colors under c. Removing vertices of B ′ that share a color with 
a vertex in W1 ∪ · · · ∪ Wr−1 leaves at least t vertices; these t vertices along with W1, . . . , Wr−1 form our desired copy of 
Kr(t).

Therefore, the remainder of the proof is dedicated to proving that |A| ≥ (T)r−1 · rt · αn.
t

6
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For v ∈ V , set f (v) def= ∣∣N(v) ∩ ⋃r−1
i=1 Ui

∣∣. We begin by bounding

∑
v∈V

f (v) =
∑

u∈⋃r−1
i=1 Ui

deg(u) > T · (r − 1) ·
(
1− 1

r − 1
+ ε

)
n. (3)

Now, let S be the collection of all v ∈ V for which f (v) ≥ T · (r − 1) · (1 − 1
r−1 + ε

2

)
. Observe that

∑
v∈V

f (v) ≤ |S| · T · (r − 1) + (
n − |S|) · T · (r − 1) ·

(
1− 1

r − 1
+ ε

2

)

= T · (r − 1) ·
[(

1− 1

r − 1
+ ε

2

)
n +

(
1

r − 1
− ε

2

)
|S|

]
.

Comparing with eq. (3), we thus bound

|S| > r − 1

2
· εn ≥ εn

2
.

Now, for each v ∈ S , it must be the case that

|N(v) ∩ Ui | ≥ r − 1

2
· εT ≥ εT

2
, for each i ∈ [r − 1],

since otherwise

f (v) < T · (r − 2) + r − 1

2
· εT = T · (r − 1) ·

(
1− 1

r − 1
+ ε

2

)
;

contradicting the definition of S .
Since T = 2t/ε, we thus have |N(v) ∩ Ui | ≥ t for all v ∈ S and all i ∈ [r − 1]; therefore,

|A| ≥ |S| ≥ εn

2
.

Combining this inequality with eq. (2), we finally bound(
T

t

)r−1

· rt · αn ≤ εn

2
≤ |A|,

which concludes the proof. �
Returning to the edit distance function and CRGs, we next derive a simple consequence of Proposition 2.4.

Claim 3.3. Fix p, ε such that 1/2 > ε > p > 0 and r ∈N and let K be a p-core CRG. Suppose that gK (p) < (1 − ε)
p
r and let μ ∈ �K

be the probability mass (with full support) achieving gK (p). Then for each v ∈ V B(K ),

dG(v) > 1− 1

r
+ ε

r
, and μ(v) <

p

r
.

Proof. Set g = gK (p). From part 3 of Proposition 2.4, we know that

dG(v) = p − g

p
+ 1− 2p

p
μ(v) >

p − g

p
> 1− 1 − ε

r
,

which establishes the first piece of the claim. For the second part of the claim, since dG (v) ≤ 1 −μ(v) and p < ε, we obtain

p − g

p
+ 1− 2p

p
μ(v) ≤ 1− μ(v) =⇒ μ(v) ≤ g

1− p
<

1− ε

1− p
· p

r
<

p

r
. �

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Suppose the claim is false and let H be a counterexample with χ = χ(H) ≥ 2 minimum. Since H is 
a counterexample, there is some ε > 0 and some monotone sequence pn → 0 such that, for each n ∈ N , there is a pn-core 
CRG 	n for which

I. H �
→ 	n , and
7
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II. edForb(H)(pn) = g	n (pn) < (1 − ε)
pn

χ − 1
.

By passing to a subsequence if necessary, we can ensure the following:

Claim 3.4. Each 	n has only black vertices.

Proof. First, we know that |VW (	n)| < χ(H) for each n, so by passing to a subsequence if necessary, we may suppose that 
|VW (	n)| = w for each n ∈N . Suppose for the sake of contradiction that w > 0 and let 	′

n be the sub-CRG induced by the 
black vertices of 	n . Note that 	′

n is nonempty since otherwise 	n = K (w, 0) which has g	n (pn) = pn
w ≥ pn

χ−1 ; contradicting 
property II. Applying part 2 of Proposition 2.8, we bound

1

g	n (pn)
= w

pn
+ 1

g	′
n
(pn)

=⇒ g	′
n
(pn) < (1− ε)

pn
χ − w − 1+ εw

.

Now, if w = χ − 1, then g	′
n
(pn) < pn/ε. On the other hand, certainly |	′

n| < |V (H)| or else H 
→ 	n , so, through 
Proposition 2.10,

g	′
n
(pn) ≥ gK (0,|V (H)|)(pn) = 1− pn

|V (H)| >
pn
ε

for n sufficiently large; a contradiction.
We must therefore have 1 ≤ w ≤ χ − 2. Let H ′ be any induced subgraph of H which has χ(H ′) = χ − w; we know that 

2 ≤ χ(H ′) ≤ χ − 1. Now, it must be the case that H ′ �
→ 	′
n for every n, or else H 
→ 	n . Thus, for every n,

edForb(H ′)(pn) ≤ g	′
n
(pn) < (1− ε)

pn
χ − w − 1+ εw

< (1 − ε)
pn

χ(H ′) − 1
;

contradicting the minimality of the graph H . �
We now know that each 	n consists only of black vertices. Let μn denote the probability mass achieving g	n (pn). Fix n

and N0 sufficiently large to be chosen later; we will consider n to be large, but fixed, whereas we will consider N0 → ∞. 
Define the graph G , which has vertex partition V (G) =	x∈V (	n)

Vx where |Vx| = �μn(x) · N0�, and whose edge-set consists 
of all edges between Vx and V y whenever xy ∈ EG(	n). In other words, G is formed by retaining only the gray edges of 	n

and then blowing up each vertex x ∈ V (	n) into an independent set of size �μn(x) · N0�. Also, let c : V (G) → V (	n) be the 
coloring defined by c(v) = x if v ∈ Vx . We seek to show that G has large minimum degree and that each color class of c is 
sufficiently small so that we may apply Lemma 3.2.

We begin with a few observations about the structure of G .
Firstly, setting N def= |V (G)|, we certainly have

N =
∑

x∈V (	n)

�μn(x) · N0� =⇒ N0 − |V (	n)| < N ≤ N0.

Next, consider any v ∈ V (G) and suppose that c(v) = x. By applying Claim 3.3 and property II, we bound

deg(v) =
∑

y∈V (	n): xy∈EG(	n)

�μn(x) · N0� ≥ dG(x) · N − |V (	n)|

≥
(
1− 1

χ − 1
+ ε

χ − 1

)
N − |V (	n)|.

Finally, by selecting n sufficiently large so that pn < ε, for any x ∈ V (	n)

|c−1(x)| = �μn(x) · N0� ≤ μn(v) · N + |V (	n)| < pn
χ − 1

· N + |V (	n)|,

thanks again to Claim 3.3 and property II.
Thus, by first selecting n sufficiently large (so that pn is sufficiently small) and then selecting N0 (and hence N) suffi-

ciently large compared to |V (	n)|, we may apply Lemma 3.2 to the graph G to find a copy of H , all of whose vertices are 
colored differently under c.

Suppose that φ : V (H) → V (G) realizes H as such a subgraph of G and consider the map c ◦ φ : V (H) → V (	n). Since 
the vertices of this copy of H are all colored differently under c, we know that c ◦ φ is an injection. We therefore find that 
c ◦ φ maps edges of H to gray edges of 	n and maps non-edges of H to either white or gray edges of 	n . This, however, 
means that H 
→ 	n; contradicting property I. �
8
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4. Accumulation points

We begin by establishing a necessary and sufficient condition for 0 to be an accumulation point of a hereditary property. 
Thanks to Proposition 2.1, there is an analogous classification for when 1 is an accumulation point.

Theorem 4.1. Let H = Forb(F) be a non-trivial hereditary property and set χ = χ(F). For p ∈ (0, 1/2), define

qH(p)
def= min

{
gK (p) : |VW (K )| = χ − 1, K ∈ K0(H)

}
.

p = 0 is a regular point of H if and only if

edH(p) = qH(p), for all p sufficiently small.

Proof. Recalling that K0(H) is the set of 0-core CRGs in K(H), we observe that 
{
K ∈ K0(H) : |VW (K )| = χ − 1

}
is finite. 

Indeed, if F ∈F has χ(F ) = χ , then F 
→ K whenever K is a 0-core CRG, |VW (K )| ≥ χ −1 and |V B(K )| ≥ |V (F )|. Therefore 
qH(p) is well-defined and also the “if” direction is immediate.

To establish the “only if” direction, suppose that p = 0 is a regular point of H; thus, we can find some finite family 
K′ ⊆K(H) with the property that

edH(p) = min
K∈K′ gK (p)

for all p sufficiently small. Certainly we may assume that K′ ⊆K0(H).
Set

N
def= max

K∈K′|V B(K )|,
and consider some K ∈ K′ . If |VW (K )| = χ − 1, then gK (p) ≥ qH(p) by definition, so suppose that |V W (K )| = w ≤ χ − 2. 
In this case, we apply Proposition 2.10 to bound

gK (p) ≥ gK (w,N)(p) = (1 − p)p

(1 − p)w + pN
>

p

χ − 1
= gK (χ−1,0)(p),

provided p < 1/(N + 1). Since certainly K (χ − 1, 0) ∈K0(H), we have shown that, for all p sufficiently small,

qH(p) ≥ edH(p) = min
K∈K′ gK (p) ≥ qH(p). �

Using Theorem 4.1, we can quickly verify that p = 0 is indeed an accumulation point for some hereditary properties.

Proof of Theorem 1.6. First, set H = Forb(K3,3). If K ∈ K0(H) has exactly one white vertex, then K has at most two black 
vertices. Since K3,3 �
→ K (1, 2), an appeal to Proposition 2.10 implies that

qH(p) = p(1 − p)

1+ p
, for every p ∈ (0,1/2).

However, Marchant and Thomason [6, Example 5.19] showed that there is a monotone sequence pn → 0 such that

edH(pn) <
pn(1− pn)

1+ pn
, for every n ∈N.

Thus, thanks to Theorem 4.1, we know that p = 0 is indeed an accumulation point of H.
Next set H = Forb(K2,t) for any t ≥ 9. Observe that if K ∈ K0(H) has exactly one white vertex, then K has at most one 

black vertex. Since K2,t �
→ K (1, 1) for t ≥ 2, another appeal to Proposition 2.10 implies that

qH(p) = p(1− p), for every p ∈ (0,1/2).

However, Martin and McKay [9, Theorem 8 & Corollary 9] showed that there is a monotone sequence pn → 0 such that

edH(pn) < pn(1 − pn), for every n ∈N.

Thus, again thanks to Theorem 4.1, we know that p = 0 is indeed an accumulation point of H. �
We prove that p = 0 is the only accumulation point of Forb(K3,3) in the proof of Theorem 1.7 in Section 4.1.
Before we get to this, we prove Theorem 1.5. To do so, we need an intermediate result. Firstly, for two CRGs K , L, denote 

by K ∨ L the CRG formed by connecting K and L with all-white edges. Next, denote by Pn the n-vertex CRG with only black 
vertices, whose gray edges form an n-vertex path and all of whose other edges are white.
9
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Lemma 4.2. For any n1, . . . , n
 ∈ N , there is some ε > 0 such that

gPn1∨...∨Pn

(p) > p, for all p ∈ (1/4− ε,1/4 + ε)

Proof. Since gK is a continuous function for any CRG K , it suffices to show only that

gPn1∨...∨Pn

(1/4) > 1/4.

Since any sub-CRG of Pn1 ∨ . . . ∨Pn

also has the form Pm1 ∨ . . . ∨Pmt for some m1, . . . , mt ∈ N , we may assume, without 

loss of generality, that K def= Pn1 ∨ . . . ∨Pn

is 1/4-core.

For a vertex v ∈ V (K ), denote by NG(v) def= {u ∈ V (K ) : uv ∈ EG(K )} the gray-neighborhood of v . Set g = gK (1/4) and 
let μ ∈ �K be the probability mass achieving g .

By applying part 3 of Proposition 2.4, we know that

2μ(v) + 1− 4g =
∑

u∈NG(v)

μ(u), for all v ∈ V (K ).

Supposing that |V (K )| = n, summing both sides over all v ∈ V (K ) then yields

2 + n(1 − 4g) =
∑

v∈V (K )

∑
u∈NG(v)

μ(u) =
∑

v∈V (K )

|NG(v)| · μ(v)

= 2−
∑

v:|NG(v)|=1

μ(v) − 2
∑

v:|NG(v)|=0

μ(v)

=⇒ g = 1

4
+ 1

4n

∑
v:|NG(v)|=1

μ(v) + 1

2n

∑
v:|NG(v)|=0

μ(v) >
1

4
,

since μ has full support and K certainly has at least one vertex v ∈ V (K ) with |NG(v)| ∈ {0, 1}. �
We now demonstrate a hereditary property which has an accumulation point at p = 1/4.

Proof of Theorem 1.5. Set H = Forb(F) where F = {K1,4, C5, C6, . . .}. We begin by determining K0(H).

Claim 4.3.

K0(H) = {
K (1,0)

} ∪ {
Pn1 ∨ . . . ∨Pn


: n1, . . . ,n
 ∈N
}
.

Proof. Since F does not contain an anti-clique, we know that K (1, 0) ∈ K0(H). Furthermore, since K1,4 
→ K (2, 0) and 
K1,4 
→ K (1, 1), we observe that K (1, 0) is the only member of K0(H) which has at least one white vertex.

Next it is easy to observe that K1,4 �
→ Pn1 ∨ . . . ∨Pn

and that if Cm 
→ Pn1 ∨ . . . ∨Pn


, then m ≤ 4. Thus, all that is left 
to show is that if K ∈K0(H) has only black vertices, then K =Pn1 ∨ . . . ∨Pn


for some n1, . . . , n
 ∈N .
Again, since K1,4 �
→ K , we observe that every vertex of K is incident to at most two gray edges. Beyond this, if K

contains an n-vertex gray-edge cycle, then Cm 
→ K for every n ≤ m ≤ 2n. We conclude that the gray-edges of K form a 
linear forest and so we have established the claim. �

We are now ready to show that p = 1/4 is an accumulation point of H. Suppose to the contrary that there exists some 
ε > 0 and some finite family K′ ⊆K(H) such that

edH(p) = min
K∈K′ gK (p), for all p ∈ [1/4,1/4+ ε).

Certainly we may suppose that ε < 1/4 and that K′ ⊆K0(H).
Now, we know that gK (1,0)(p) = p for all p ∈ [0, 1], so by additionally applying Lemma 4.2 and using the fact that K′ is 

finite, we observe that there is some ε1 > 0 for which

edH(p) = min
K∈K′ gK (p) ≥ p, for all p ∈ [1/4,1/4+ ε1). (4)

However, for n ≥ 3, letting u ∈ �Pn denote the uniform distribution, we compute

gPn (p) ≤ 〈u,MPn (1/4)u〉 = 1− p + p · (n − 2)(n − 3) + 2(n − 1)
2

= p − 4p − 1 + 4p
2
.

n n n n

10
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Therefore, since F �
→Pn , we see that for any p > 1/4 and n sufficiently large, we have

edH(p) ≤ gPn (p) < p,

contradicting eq. (4). �
Remark 4.4. The above proof actually establishes a slightly stronger claim; namely, if C is any collection of cycles satisfying

• If Cm ∈ C , then m ≥ 5, and
• For every n ≥ 3, there is some n ≤m ≤ 2n for which Cm ∈ C ,

then Forb({K1,4} ∪ C) has an accumulation point at p = 1/4.

4.1. CRGs at accumulation points

In this section, we establish structural properties of CRGs at accumulation points of the edit distance function.
In order to do so, we will require the framework established by Marchant and Thomason [6]. In their paper, Marchant 

and Thomason work with a function different from the edit distance function, which they show to be equivalent to 1 − edH
(see [6, Section 2.2]). Moreover, they use somewhat different notation. Below we translate their framework to our situation 
of edit distance, and we modify their notation to be more consistent with our own.

We first define a class of objects closely related to CRGs.

Definition 4.5. A colored graph G is a clique with a coloring of its edges using the colors black, white and gray: E(G) =
EB(G) 	 EW (G) 	 EG(G). We use |G| to denote the number of vertices of a colored graph G .

For a colored graph G and a number p ∈ [0, 1], define the following quantities:

• For an edge e ∈ E(G), the p-weight of e is defined as

wp(e)
def=

⎧⎪⎨
⎪⎩
p if e ∈ EW (G),

1− p if e ∈ EB(G),

0 if e ∈ EG(G).

• For v ∈ V (G), the p-degree of v is defined as

dp(v)
def=

∑
u∈V (G)

wp(uv).

• Finally, the maximum-p-degree of G is defined as

�p(G)
def= max

v∈V (G)
dp(v).

The only difference between a colored graph and a CRG is that a colored graph does not come equipped with a coloring 
of its vertices.

Definition 4.6. For two colored graphs G, H , we say that G � H if there is an injection φ : V (G) → V (H) so that

• If uv ∈ EB(G), then φ(u)φ(v) ∈ EB(H) ∪ EG(H), and
• If uv ∈ EW (G), then φ(u)φ(v) ∈ EW (H) ∪ EG(H), and
• If uv ∈ EG(G), then φ(u)φ(v) ∈ EG(H).

In other words, G � H if G is formed from H by deleting some vertices and recoloring some gray edges with either 
white or black. Note that � is a partial-order on the set of colored graphs and that G ⊆ H =⇒ G � H .

A single colored graph is uninteresting on its own — we instead need to work with sequences of colored graphs.

Definition 4.7. A colored graph sequence is a sequence of colored graphs (Gn)n∈N of unbounded order.

It is useful to think of a colored graph sequence as being an approximation of a CRG, though we will see later that 
colored graph sequences can encode more intricate information.

From a single CRG, we can generate a colored graph sequence by “blowing-up” the vertices into colored cliques:
11
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Definition 4.8. Let K be a CRG and let m ∈ N . The colored graph m × K has vertex-set V =	x∈V (K ) Vx where |Vx| =m for 
every x ∈ V (K ). Furthermore, all edges between vertices in Vx have the same color as the vertex x ∈ V (K ), and all edges 
between Vx and V y have the same color as the edge xy ∈ E(K ).

In the opposite direction, the following definition lays out a template for passing from a colored graph sequence to a 
CRG.

Definition 4.9. Let (Gn)n∈N be a colored graph sequence and let K be a CRG. We say that K (Gn) if for every m ∈ N , 
there is some nm ∈ N for which m × K � Gnm .

Observe that if K (Gn), then for any m ∈N , there are, in fact, infinitely many n’s for which m × K � Gn . Furthermore, 
certainly if K ⊆ L and L (Gn), then also K (Gn).

To motivate the above definition, consider a graph H ; we may identify H with a colored graph by coloring the edges of 
H black and coloring the non-edges of H white. Observe that for a CRG K , if H 
→ K , then H � m × K for m sufficiently 
large (namely, m ≥ |V (H)|). Therefore, if (Gn) is a colored graph sequence with the property that H �� Gn for all n, then for 
any CRG K with K (Gn), it must be the case that H �
→ K .

We will require the following results of Marchant and Thomason from [6]. First, a CRG L is said to be an extension of a 
CRG K if K is obtained by deleting a single vertex from L.

Lemma 4.10 (Marchant–Thomason [6, Lemma 3.11]). Let (Gn)n∈N be a colored graph sequence and suppose that K is a CRG for which 
K (Gn). Then for any μ ∈ �K , there is an extension L of K for which L (Gn) and the vertex {v} = V (L) \ V (K ) satisfies

∑
u∈V (K )

μ(u)wp(uv) ≤ limsup
n→∞

�p(Gn)

|Gn| .

Lemma 4.11 (Marchant–Thomason [6, Lemmas 3.13 & 3.22]). Fix p ∈ (0, 1/2), let K be a p-core CRG and let μ ∈ �K be the probability 
mass achieving gK (p). Suppose that L is an extension of K such that∑

u∈V (K )

μ(u)wp(uv) < gK (p),

where {v} = V (L) \ V (K ). If L′ is any sub-CRG of L which is p-core and has gL′(p) = gL(p), then gL′(p) < gK (p) and |VW (L′)| ≥
|VW (K )|.

The bulk of the arguments in this section are built on variants of the following observation, which, informally, states that 
a large number of black vertices of a 0-core CRG behave as if they were a single white vertex.

Proposition 4.12. Let K be a 0-core CRG and fix n ∈N . If |VW (K )| = t and |V B(K )| ≥ n, then n × K (t + 1, 0) � n × K .

Proof. Let V1, . . . , Vt+1 be the vertex partition of V (n × K (t + 1, 0)) defined in Definition 4.8; label Vi = {v1i , . . . , vni }. 
Additionally, let W1, . . . , Wt , B1, . . . , Bm be the vertex partition of V (n × K ) where W1, . . . , Wt correspond to the white 
vertices of K and B1, . . . , Bm correspond to the black vertices of K . Label Wi = {w1

i , . . . , w
n
i } and Bi = {b1i , . . . , bni }.

Define the map φ : V (n × K (t + 1, 0)) → V (n × K ) by

φ(v j
i ) =

{
w j

i if i ∈ [t],
b1j if i = t + 1,

which is well-defined and an injection since m ≥ n. Since K is 0-core, all edges induced by φ(V i) for any i ∈ [t + 1] are 
either white or gray, and all edges between φ(Vi) and φ(V j) for i �= j ∈ [t+1] are gray. Therefore n × K (t+1, 0) � n × K . �

The following result was implicitly established by Marchant and Thomason in the proof of Theorem 3.25 in [6].

Lemma 4.13. Fix p ∈ (0, 1/2), let (Gn)n∈N be a colored graph sequence and set

w = sup
{
t ∈N ∪ {0} : K (t,0) (Gn)

}
.

If w is finite, then there is a p-core CRG K such that K (Gn), K has at least w white vertices and

gK (p) ≤ limsup
�p(Gn)

.

n→∞ |Gn|

12
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Proof. Set

�p
def= limsup

n→∞
�p(Gn)

|Gn| .

Suppose for the sake of contradiction that the claim is false; we aim to show that K (w + 1, 0) (Gn). Under this 
assumption, we begin by defining a sequence of p-core CRGs (	n)n∈N such that

• |VW (	n)| ≥ w , and
• 	n (Gn), and
• g	n (p) > g	n+1(p).

Begin with 	1 = K (w, 0), which is p-core, has w white vertices and 	1 (Gn) by definition. Assuming 	n has been 
defined, we define 	n+1 as follows:

Let L be an extension of 	n guaranteed by Lemma 4.10, so L (Gn) and∑
u∈V (	n)

μ(u)wp(uv) ≤ �p < g	n (p),

where {v} = V (L) \ V (	n) and the latter inequality holds by assumption. Now, let 	n+1 be any p-core sub-CRG of L with 
g	n+1(p) = gL(p). Since 	n+1 ⊆ L and L (Gn), we must have 	n+1 (Gn). Additionally, thanks to Lemma 4.11, we know 
that g	n+1 (p) < g	n (p) and that |VW (	n+1)| ≥ |VW (	n)| ≥ w . Thus, 	n+1 satisfies the claimed properties.

We claim now that K (w + 1, 0) (Gn), which will contradict the definition of w and conclude the proof. Firstly, if 
|VW (	n)| > w for some n ∈ N , then K (w +1, 0) ⊆ 	n and so K (w +1, 0) (Gn). We may thus suppose that |VW (	n)| = w
for each n ∈N .

Fix any N ∈ N . Since g	1 (p) > g	2(p) > · · · , we know that the 	n ’s are distinct; thus, since each 	n has exactly w
white vertices, there must be some t ∈ N for which |V B(	t)| ≥ N . Now, since 	t (Gn), there is some t′ ∈ N for which 
N × 	t � Gt′ . Thus, by applying Proposition 4.12, we have N × K (w + 1, 0) � N × 	t � Gt′ . Since N ∈ N was arbitrary, we 
conclude that K (w + 1, 0) (Gn), which concludes the proof. �

We next demonstrate a more refined construction of a colored graph sequence from a single CRG wherein we “blow-up” 
the vertices into colored cliques of various sizes.

Definition 4.14. Let K be a CRG and fix any μ ∈ �K . For a positive integer n, denote by K [μ, n] the colored graph with 
vertex-partition V (K [μ, n]) =	x∈V (K ) Vx where |Vx| = �μ(x) · n� for every x ∈ V (K ). Furthermore, all edges between ver-
tices in Vx have the same color as the vertex x ∈ V (K ), and all edges between Vx and V y have the same color as the edge 
xy ∈ E(K ).

Notice that if k = |V (K )|, then m × K = K [u, km] where u ∈ �K is the uniform distribution.
Sequences of colored graphs constructed in this manner mirror the properties of the original CRG.

Proposition 4.15. Fix p ∈ (0, 1/2]. If K is a p-core CRG and μ ∈ �K is the probability mass achieving gK (p), then

gK (p) = lim
n→∞

�p(K [μ,n])
|K [μ,n]| .

Proof. For notational ease, set Gn
def= K [μ, n], and note that

|Gn| =
∑

x∈V (K )

�μ(x) · n� =⇒ |Gn| = n + O (1),

for n sufficiently large.
Fix any v ∈ V (Gn) and suppose that v ∈ Vx where x ∈ V (K ). If x ∈ VW (K ), then

dp(v) = p · (�μ(x) · n� − 1
)
,

since v is connected by white edges to every u ∈ Vx and by gray edges to every other vertex of Gn . Thus, for n sufficiently 
large, we have

dp(v)

|Gn| = p · μ(x) + O (1/n) = gK (p) + O (1/n),

thanks to part 3 of Proposition 2.4.
13
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On the other hand, if x ∈ V B(K ), then v is connected by black edges to every u ∈ Vx and by either gray or white edges 
to every other vertex of Gn , so

dp(v) = (1− p) · (�μ(x) · n� − 1
) + p ·

∑
y∈V (K ):xy∈EW (K )

�μ(y) · n�

= (1− p) · (�μ(x) · n� − 1
) + p ·

(
|Gn| − �μ(x) · n� −

∑
y∈V (K ):xy∈EG(K )

�μ(y) · n�
)

.

Thus, by again appealing to part 3 of Proposition 2.4, for n sufficiently large, we have

dp(v)

|Gn| = (1− p)μ(x) + p · (1− μ(x) − dG(x)
) + O (1/n)

= (1− p)μ(x) + p ·
(
1− μ(x) − p − gK (p)

p
− 1− 2p

p
μ(x)

)
+ O (1/n)

= gK (p) + O (1/n).

We conclude that
�p(Gn)

|Gn| = gK (p) + O (1/n),

and so the claim follows. �
To go further, we consider modifying a CRG by replacing a white vertex by a collection of black vertices.

Definition 4.16. A dalmatian CRG of size 
 is a CRG consisting of 
 black vertices with all white edges.
Let K be a 0-core CRG with |VW (K )| = w , fix an integer 
 ∈ N and an integer 1 ≤ r ≤ w . The CRG K 
(r) is defined by 

replacing r of K ’s white vertices by dalmatian CRGs of size 
 and otherwise leaving K unchanged.

Dalmatian CRGs were introduced by Martin–Riasanovsky [10].
The following lemma expands on Proposition 4.12 and is the key step in the main result of this section. Intuitively, it 

states that if a collection of black vertices in a 0-core CRG behave a single white vertex (as per Proposition 4.12), then they 
actually behave like a dalmatian CRG.

Lemma 4.17. Let K , L be CRGs where K is 0-core and fix n ∈ N . Let m be another positive integer and let μ ∈ �L be any probability 
mass satisfying m · μ(x) ≥ n for all x ∈ V B(L).

If |VW (K )| = s > t = |VW (L)| and n × K � L[μ, m], then also n × Kn(r) � L[μ, m] for any 1 ≤ r ≤ s − t.

Proof. Observe that if r > 1, then Kn(r) = (
Kn(r−1)

)n
(1). Furthermore, Kn(1) is still 0-core and |V W (Kn(1))| = |VW (K )| −

1. Thus, it suffices to establish the claim only for r = 1 since then the full claim follows by a straight-forward induction.
Let W1, . . . , Ws, B1, . . . , Bk be the vertex partition of the colored graph n ×K given by Definition 4.8, where the Wi ’s cor-

respond to the white vertices of K and the Bi ’s correspond to the black vertices of K . Similarly, let W ′
1, . . . , W

′
t , B ′

1, . . . , B
′
k′

be the vertex partition of the colored graph L[μ, m] given by Definition 4.14. Furthermore, let φ : V (n × K ) → V (L[μ, m])
be an injection which exhibits n × K � L[μ, m].

Fix any i �= j ∈ [s] and 
 ∈ [t]; since each edge between Wi and W j is gray and all edges inside W ′

 are white, it cannot 

be the case that both φ(Wi) ∩ W ′

 and φ(W j) ∩ W ′


 are nonempty. Since s > t , we may therefore suppose, without loss of 
generality, that φ(Ws) ⊆ ⋃k′

i=1 B ′
i . Similarly, all edges within Ws are white and all edges within each B ′

i are black, so no two 
vertices of Ws can be mapped to the same B ′

i . Thus, labeling Ws = {w1, . . . , wn}, and relabeling the B ′
i ’s if necessary, we 

may suppose that φ(wi) ∈ B ′
i .

Now, again since K is 0-core, every edge incident to wi is white or gray. Furthermore, since all edges within each B ′
i are 

black, we observe that φ−1(B ′
i) = {wi} for all i ∈ [n]. Additionally, since φ exhibits n × K � L[μ, m], we know that all edges 

between B ′
i and φ(v) for any i ∈ [n] and any v ∈ V (n × K ) \ Ws must be gray.

We now turn our attention to n × Kn(1), which we can consider to have vertex-partition

W1, . . . ,Ws−1, D1, . . . , Dn, B1, . . . , Bk,

where D1, . . . , Dn correspond to the black vertices in the new dalmatian set. Consider a function φ′ : V (n × Kn(1)) →
V (L[μ, m]) with the following properties:

• φ′(v) = φ(v) for all v ∈ W1 ∪ · · · ∪ Ws−1 ∪ B1 ∪ · · · ∪ Bk , and
14
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• φ′(d) ∈ B ′
i for all i ∈ [n] and all d ∈ Di .

By the assumption on m and μ, for all i ∈ [n], we have |B ′
i| ≥ n = |Di |, so such a φ′ exists which is also an injection. Based 

on the properties of φ laid out above, this φ′ realizes n × Kn(1) � L[μ, m]. �
We are now ready to state and prove the main result in this section.

Theorem 4.18. Let H = Forb(F) be a non-trivial hereditary property, fix p ∈ (0, 1/2) and suppose that there is a sequence of CRGs 
(	n)n∈N with the following properties:

I. There is a sequence pn → p for which 	n ∈Kpn (H), and
II. limsupn→∞|VW (	n)| = w, and
III. The 	n’s are pairwise distinct.

Then there is a p-core CRG K with the following properties:

1. K ∈Kp(H), and
2. gK (p) ≤ limsupn→∞ g	n (pn), and
3. |VW (K )| = s > w, and
4. For any integer 1 ≤ r ≤ s − w and any positive integer 
, F �
→ K 
(r).

Proof. By passing to a subsequence of (	n), we can guarantee the following additional properties:

IV. pn ∈ (0, 1/2), so 	n ∈K0(H), and (property I)
V. |VW (	n)| = w , and (property II and the fact that w < χ(F) is a non-negative integer)
VI. |V B(	n)| ≥ n. (Properties III and V)

Let μn ∈ �	n be the probability mass achieving g	n (pn). For each n ∈N , we can locate some integer Nn such that

i. μn(x) · Nn ≥ n for all x ∈ V (	n), and (μn has full support)

ii.

∣∣∣∣g	n (pn) −
�pn (	n[μn,Nn])

|	n[μn,Nn]|
∣∣∣∣ <

1

n
. (Proposition 4.15)

Set Gn
def= 	n[μn, Nn]. Note that property i implies n × 	n ⊆ Gn and that property ii implies

limsup
n→∞

�pn (Gn)

|Gn| = limsup
n→∞

g	n (pn).

Furthermore,

|�pn (Gn) − �p(Gn)| =
∣∣∣∣ max
v∈V (Gn)

dpn (v) − max
v∈V (Gn)

dp(v)

∣∣∣∣ ≤ max
v∈V (Gn)

|dpn (v) − dp(v)| ≤ |Gn| · |pn − p|,
so, since pn → p,

limsup
n→∞

�p(Gn)

|Gn| = limsup
n→∞

g	n (pn).

We claim next that K (w + 1, 0) (Gn). Indeed, Properties V and VI allow us to apply Proposition 4.12 to find that 
n × K (w + 1, 0) � n × 	n ⊆ Gn , where the last inclusion follows from property i.

Thus, thanks to Lemma 4.13, we may find some p-core CRG K such that |VW (K )| = s > w and K (Gn). Since K (Gn), 
we know that F �
→ K ; hence K ∈Kp(H). Furthermore,

gK (p) ≤ limsup
n→∞

�p(Gn)

|Gn| = limsup
n→∞

g	n (pn).

To finish the claim, fix any 1 ≤ r ≤ s − w and any 
 ∈ N . In order to show that F �
→ K 
(r), it suffices to show that 
K 
(r) (Gn).

Fix any integer N ≥ 
. Since K (Gn), there must be some n ≥ N for which N × K � Gn . Thus, property i allows us to 
apply Lemma 4.17 to see that also N × K N(r) � Gn . We conclude that

N × K 
(r) ⊆ N × K N(r) � Gn,

and so K 
(r) (Gn) as needed. �

15
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We can now show that Forb(Kt,t) is free of accumulation points in (0, 1].

Proof of Theorem 1.7. Set H = Forb(Kt,t).
To begin, we note that p = 1/2 is never an accumulation point of any hereditary property due to [10, Theorem 39].
Next, observe that if K ∈ K1(H), then K has at most one white vertex and fewer than χ(Kt,t) = t black vertices. In 

particular, K1(H) is finite and so H has no accumulation points in (1/2, 1].
Now, fix p ∈ (0, 1/2) and suppose for the sake of contradiction that p is an accumulation point of H. Thus, we may find 

some sequence pn → p and a sequence of CRGs (	n)n∈N for which

• 	n ∈Kpn (H), and
• The 	n ’s are distinct, and
• edH(pn) = g	n (pn).

Since edH is continuous, this implies that

lim
n→∞ g	n (pn) = edH(p).

Thus, we may apply Theorem 4.18 to the sequence (	n). Let K be the p-core CRG guaranteed by Theorem 4.18 and note 
that |VW (K )| ≥ 1. Since Kt,t is bipartite and K has at least one white vertex, we know that K has exactly one white vertex 
and that |V B(K )| ≤ t − 1. Furthermore, K ∈Kp(H) and

gK (p) ≤ limsup
n→∞

g	n (pn) = edH(p) =⇒ gK (p) = edH(p).

Thus, Proposition 2.10 uniquely determines K = K (1, t − 1). However, K (1, t − 1)1(1) = K (0, t) and, since χ(Kt,t) = t , we 
know that Kt,t 
→ K (0, t). This contradicts part 4 of Theorem 4.18 and so we have established the claim. �

Unfortunately, we have been unable to rule out the possibility of other accumulation points for Forb(K2,t), t ≥ 9, though 
we believe that none exist.

Remark 4.19. Our proof of Theorem 1.7 actually establishes a stronger claim. Set H = Forb(Kt,t), fix p ∈ (0, 1] and fix any 
sequence pn → p. If there are CRGs 	n ∈ Kpn (H) with limn→∞ g	n (pn) = edH(p), then the sequence (	n) is eventually 
constant.

5. Concluding remarks

While we gained a better understanding of accumulation points of the edit distance function in this paper, we still have 
many questions. For instance, for which p can a hereditary property have an accumulation point at p?

Question 5.1. Let A be the set of all p ∈ [0, 1/2] for which there is some non-trivial hereditary property with an accumula-
tion point at p. What can be said about the set A? In particular:

• What is supA?
• Is A an interval?

Currently, all that we know about the set A is that 0, 1/4 ∈ A and that supA ≤ 1 − ϕ−1 = 0.382 . . . where ϕ = 1.618 . . .
is the golden ratio. The latter follows from the work of Martin and Riasanovsky [10, Theorem 39]. The work of Martin–
Riasanovsky additionally suggests that perhaps supA ≤ 1/3 (cf. [10, Section 2.3 & Proposition 35]).

We expect that, at the very least, 1/n ∈ A for all integers n ≥ 4. Indeed, one could likely build on the ideas in the proof 
of Theorem 1.5 and construct a family F of (n −2)-regular graphs so that the property Forb({K1,n} ∪F) has an accumulation 
point at p = 1/n.

Beyond this, it is worth pointing out that our construction of a hereditary property with an accumulation point at 
p = 1/4 from Theorem 1.5 required an infinite set of forbidden graphs. It is natural to wonder if this was necessary.

Question 5.2. Suppose that H = Forb(F) where F is finite. Can H have any accumulation points in (0, 1)?

We expect a negative answer, though, since this is the first systematic investigation into the accumulation points of the 
edit distance function, our current knowledge is severely limited. Regardless of the answer to the above question, we are 
confident to conjecture the following extension of Theorem 1.7.

Conjecture 5.3. For any s, t ∈N , Forb(Ks,t) has no accumulation points in the interval (0, 1].
16
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We note that it is necessary to go beyond the ideas used in Theorem 1.7 in order to establish this conjecture. Indeed, for 
every k ≥ 4, Marchant–Thomason [6, Theorem 3.27] constructed infinitely many 1/k-core CRGs achieving edForb(K1,k)(1/k); 
therefore, the analogue of Remark 4.19 fails to hold in these cases.

Despite this, the same reasoning used in Theorem 1.7 implies that Forb(Ks,t) is free of accumulation points in [1/2, 1]
and that if p ∈ (0, 1/2) happens to be an accumulation point, then K (1, min{s, t} − 1) achieves edForb(Ks,t )(p).

We furthermore believe that accumulation points are relatively rare.

Conjecture 5.4. Any non-trivial hereditary property has only finitely many accumulation points.

Finally, we believe that accumulation points can occur only in one half of the interval (0, 1).

Conjecture 5.5. For any non-trivial hereditary property, either (0, 1/2] or [1/2, 1) is free of accumulation points.
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[5] P. Erdős, A.H. Stone, On the structure of linear graphs, Bull. Am. Math. Soc. 52 (12) (1946) 1087–1091.
[6] E. Marchant, A. Thomason, Extremal graphs and multigraphs with two weighted colours, in: Fete of Combinatorics and Computer Science, in: Bolyai 

Soc. Math. Stud., vol. 20, János Bolyai Math. Soc., Budapest, 2010, pp. 239–286.
[7] R. Martin, The edit distance function and symmetrization, Electron. J. Comb. 20 (3) (2013) 26.
[8] R.R. Martin, The edit distance in graphs: methods, results, and generalizations, in: Recent Trends in Combinatorics, in: IMA Vol. Math. Appl., vol. 159, 

Springer, Cham, 2016, pp. 31–62.
[9] R.R. Martin, T. McKay, On the edit distance from K2,t-free graphs, J. Graph Theory 77 (2) (2014) 117–143.

[10] R.R. Martin, A.W.N. Riasanovsky, On the edit distance function of the random graph, Comb. Probab. Comput. (2022), https://doi .org /10 .1017 /
S0963548321000353, in press.

[11] E. Szemerédi, Regular partitions of graphs, in: Problèmes combinatoires et théorie des graphes, Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976, in: 
Colloq. Internat. CNRS, vol. 260, CNRS, Paris, 1978, pp. 399–401.
17

http://refhub.elsevier.com/S0012-365X(22)00063-2/bib18175DC9C7B5FA3B0030C87FC52AC931s1
http://refhub.elsevier.com/S0012-365X(22)00063-2/bib7C0098E52C909AA742911A56F6C7917Fs1
http://refhub.elsevier.com/S0012-365X(22)00063-2/bibE7ADB51EDBE277EF82CD9C9C7E13CA6Bs1
http://refhub.elsevier.com/S0012-365X(22)00063-2/bibE7ADB51EDBE277EF82CD9C9C7E13CA6Bs1
http://refhub.elsevier.com/S0012-365X(22)00063-2/bib2A9035E11EF9B59A3061EA4DA4655A14s1
http://refhub.elsevier.com/S0012-365X(22)00063-2/bibB1DAC65157A2DBA7EE303C023DD9DA11s1
http://refhub.elsevier.com/S0012-365X(22)00063-2/bib23BD03F2724D92B9D792B16C7BD0C383s1
http://refhub.elsevier.com/S0012-365X(22)00063-2/bib23BD03F2724D92B9D792B16C7BD0C383s1
http://refhub.elsevier.com/S0012-365X(22)00063-2/bibC7812F590679506B4D0C12D77CB46062s1
http://refhub.elsevier.com/S0012-365X(22)00063-2/bibEEAF675A64A7740F5BB402ADF4DCECC4s1
http://refhub.elsevier.com/S0012-365X(22)00063-2/bibEEAF675A64A7740F5BB402ADF4DCECC4s1
http://refhub.elsevier.com/S0012-365X(22)00063-2/bib6DB23B6C4283261333C252642CED0FC7s1
https://doi.org/10.1017/S0963548321000353
https://doi.org/10.1017/S0963548321000353
http://refhub.elsevier.com/S0012-365X(22)00063-2/bib53F351B5669B33C0EA63FC16D205CC6Es1
http://refhub.elsevier.com/S0012-365X(22)00063-2/bib53F351B5669B33C0EA63FC16D205CC6Es1

	Accumulation points of the edit distance function
	1 Introduction
	2 Preliminaries
	3 Slope of the edit distance function at zero
	4 Accumulation points
	4.1 CRGs at accumulation points

	5 Concluding remarks
	Declaration of competing interest
	References


