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A New Method to Find the
Forced Response of Nonlinear
Systems With Dry Friction
Coulomb friction has an influence on the behavior of numerous mechanical systems. Cou-
lomb friction systems or dry friction systems are nonlinear in nature. This nonlinear
behavior requires complex and time-demanding analysis tools to capture the dynamics of
these systems. Recently, efforts have been made to develop efficient analysis tools able to
approximate the forced response of systems with dry friction. The objective of this paper
is to introduce a methodology that assists in these efforts. In this method, the piecewise
linear nonlinear response is separated into individual linear responses that are coupled
together through compatibility equations. The new method is demonstrated on a number
of systems of varying complexity. The results obtained by the new method are validated
through the comparison with results obtained by time integration. The computational sav-
ings of the new method are also discussed. [DOI: 10.1115/1.4050686]

1 Introduction

Nonlinear dynamical systems are relevant to practical engineer-
ing systems. This paper focuses on a subset of these nonlinear
dynamic systems involving dry friction or Coulomb friction. Dry
friction has an influence on a variety of civil, mechanical, and
aerospace applications [1–7]. For example, underplatform friction
dampers have been intentionally included in the design of bladed
disks in turbomachinery to mitigate unwanted vibration that
occurs during operation under a number of conditions [8–11].
Also, there are efforts to mitigate earthquake hazards by develop-
ing energy dissipation devices for buildings and infrastructures to
enhance their safety and reliability [12,13]. These mechanisms
employ friction damping such as frictional sliding bearings in
their designs to reduce the level of vibration experienced in the
structures. In these applications and many others, nonlinearity is
often localized in a particular area of the system; however, the
models used to capture the dynamics of these systems are often
very computationally expensive. As a result, there is considerable
research focused on methods and techniques for estimating and
understanding the impact of dry friction in the response of com-
plex dynamic systems in an efficient manner.

In order to properly predict the dynamics of these Coulomb
friction systems, several techniques have been developed to han-
dle their nonlinear features that cannot be captured using tradi-
tional linear techniques. For example, numerical integration (NI)
methods such as Runge–Kutta methods [14] have been developed
for the analysis of general nonlinear systems. Although NI pro-
vides a good approximation for nonlinear responses of most non-
linear dynamical systems, its computational cost is often
prohibitive when the system is high dimensional due to the need
to keep the time-step size small to obtain accurate results. Another
set of approaches based on the harmonic balance method have
been implemented to analyze the periodic responses of complex
Coulomb friction systems. These hybrid frequency/time (HFT)
domain methods [15–19] can be combined with reduced-order
modeling techniques to speed up the computation. Although HFT
domain techniques provide a relatively efficient analysis tool for
Coulomb friction systems, the computational cost of these meth-
ods can still be considerable if numerous harmonics are required
to compute the system response.

Recently, a few hybrid analytical-numerical methods named
the hybrid symbolic-numeric computational method [20,21] and
the bilinear amplitude approximation (BAA) method [22,23] have
been developed to better understand the dynamics of a subset of
systems experiencing piecewise linear nonlinearities that result
from intermittent contact. These methods are more efficient than
traditional NI and HFT methods since they use efficient linear
techniques in their response approximation process. The BAA
method, in particular, has been developed to approximate the peri-
odic response of piecewise linear nonlinear systems and has been
implemented to study the vibrational response of complex struc-
tural systems such as bladed disks with intermittent contact
[24,25]. Moreover, the efficiency of the BAA method has enabled
the design of new energy harvesters that operate effectively over
large frequency ranges [26]. This work builds upon a method to
analyze the response of systems with dry friction called the fric-
tion response approximation method (FRAMe) [27], whose key
idea stems from the BAA method, and was used to analyze one
and three degree-of-freedom systems. In FRAMe, the overall non-
linear steady-state response is deconstructed into time intervals
where the system behaves linearly. A nonlinear optimization
solver is then employed to determine the time intervals and
unknown coefficients in the symbolic expressions for the
responses in each time interval. A nonlinear vibrational cycle is
then approximated by stitching together these linear responses.

The remainder of the paper is organized as follows: The meth-
odology section discusses how FRAMe can be applied to a gener-
alized N-degree-of-freedom (DOF) system. The result section
discusses the performance of FRAMe as compared to NI for a sin-
gle DOF system and several higher dimensional systems. Along
with these results, an analysis was conducted on a five DOF sys-
tem with base excitation to determine the ideal location for a fric-
tion damper. Lastly, the conclusion section emphasizes the main
points made throughout this work.

2 Methodology

In this section, FRAMe is introduced and presented as a tech-
nique for effectively determining the forced response of nonlinear
systems subject to dry friction. The idea behind FRAMe is that
the overall system response can be computed efficiently by com-
puting the response of the system in its individual linear states and
then enforcing the appropriate boundary conditions between these
states. Figure 1 shows an N-DOF mass-spring-damper system
with a single friction damper. The system is harmonically forced
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and experiences two types of damping: viscous and friction damp-
ing. The mass, stiffness, and damping coefficients are mi; ki, and
ci, respectively, and fd refers to the friction damper. The static
frictional force is given as fs ¼ lsP and the kinetic frictional force
is force is given as fk ¼ lkP. Note that ls and lk are the coeffi-
cients of static and kinetic friction and P is a loading force value
for the damper. Figure 2 shows the friction characteristics for the
systems analyzed in this paper. The direction of the frictional
force is dependent on the relative velocity of the masses subjected
to the friction damper (i.e., the friction force opposes the relative
velocity of the masses). The system’s overall motion can be
defined by three states that depend on the relative velocity of the
components that connect to the friction damper: (1) positive rela-
tive velocity, (2) negative relative velocity, and (3) zero velocity.
The system is sliding while in states (1) and (2) and sticking while
in state (3). The number of DOF reduces by one while in state (3)
and the forces due to the static displacement of the stuck mass
must be properly accounted for. Note that the friction damper can
be placed between any of the masses or between the first mass and
the ground.

The equations describing the system dynamics for the N-DOF
system can be separated into its three states denoted by subscripts
s1, s2, and re, where re is the reduced DOF system

M€us1ðtÞ þ C _us1ðtÞ þKus1ðtÞ ¼ fðtÞ � fr

M€us2ðtÞ þ C _us2ðtÞ þKus2ðtÞ ¼ fðtÞ þ fr

Mre€us3ðtÞ þ Cre _us3ðtÞ þKreus3ðtÞ ¼ f reðtÞ þ fc

(1)

½M;C;K� are the mass, damping, and stiffness matrices of the N-
DOF system; ½Mre;Cre;Kre� are the mass, damping, and stiffness
matrices of the reduced DOF system; fðtÞ is the periodic forcing
vector for the N-DOF system; f reðtÞ is the periodic external

forcing vector for this system when it is in the stuck state (where
the system is reduced by one DOF); fr is a forcing vector that con-
tains the frictional force; and fc is a the forcing vector that results
for state (3) when one of the masses is stuck and includes any of
the static loads induced on the masses by a spring that is not in its
unstretched position. In this work, the viscous damping matrix
used was proportional to the stiffness matrix.

The coordinate transformation shown below shifts the coordi-
nate systems to their static equilibrium position. For states (1) and
(2), the static displacement (i.e., ds1 and ds2) is due to the friction
force and for state (3), the static displacement (i.e., ds3) is due to
the displacement of the stuck mass. The new coordinates and their
static displacements are given as

us1ðtÞ ¼ ~us1 þ ds1; ds1 ¼ �K�1fr

us2ðtÞ ¼ ~us2 þ ds2; ds2 ¼ K�1fr

us3ðtÞ ¼ ~us3 þ ds3; ds3 ¼ K�1
re fc

(2)

The updated equations describing the system dynamics in the
shifted coordinate systems for the three states are given by

M€~u s1ðtÞ þ C _~u s1ðtÞ þK~us1ðtÞ ¼ fðtÞ
M€~u s2ðtÞ þ C _~u s2ðtÞ þK~us2ðtÞ ¼ fðtÞ

Mre
€~u s3ðtÞ þ Cre

_~u s3ðtÞ þKre~us3ðtÞ ¼ f reðtÞ
(3)

Note that the first two expressions in Eq. (3) have the same coordi-
nates except for a translation shift due to the friction force chang-
ing signs. Next, applying the modal transformations ~us1ðtÞ
¼ U~qs1; ~us2ðtÞ ¼ U~qs2, and ~us3ðtÞ ¼ Ure~qs3, where ~qs1; ~qs2, and
~qs3 are modal coordinates and U and Ure are the mode shape
matrices for the N-DOF system and the reduced DOF system,
respectively. Equation (3) can be projected along U and Ure to
obtain

UTMU€~q s1ðtÞþUTCU _~q s1ðtÞþUTKU~qs1ðtÞ¼UTfðtÞ
UTMU€~q s2ðtÞþUTCU _~q s2ðtÞþUTKU~qs2ðtÞ¼UTfðtÞ
UT

reMreUre
€~q s3ðtÞþUT

reCreUre
_~q s3ðtÞ

þUT
reKreUre~qs3ðtÞ¼UT

ref reðtÞ

(4)

Since the damping matrix is proportional to the stiffness matrix,
the mass, damping, and stiffness matrices are all diagonalized by
the modal projection yielding

€~qs1;cðtÞ þ 2fcxn;c
_~qs1;cðtÞ þx2

n;c~qs1;cðtÞ ¼ fs1;c; c ¼ 1;…; ns1

€~qs2;jðtÞ þ 2fjxn;j
_~qs2;jðtÞ þx2

n;j~qs2;jðtÞ ¼ fs2;j; j ¼ 1;…; ns2

€~qs3;kðtÞ þ 2fre;kxnre ;k
_~qs3;kðtÞ þx2

nre;k
~qs3;kðtÞ ¼ fs3;k; k ¼ 1;…; nre

(5)

where ½xn;xnre � are undamped frequencies of the system; ½f; fre�
are viscous damping ratios; fsi are the forcing in modal

Fig. 1 General N-DOF mass-spring-damper system with single friction damper

Fig. 2 Friction force characteristics: when the relative velocity
is negative, the frictional force is positive; when the relative
velocity is positive, the frictional force is negative; and when
the relative velocity is zero, the friction force can be any value
along the dashed line
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coordinates; and ns1; ns2, and nre correspond to the number of
retained modes in the reduced system. The solution to the differ-
ential equations in Eq. (5) are composed of both the homogenous
and particular solutions for states (1), (2), and (3)

~qs1;cðtÞ ¼ Gc sinðxt� /c þ aÞ
þ e�fcxn;ct½C1;c cosðxd;ctÞ þ C2;c cosðxd;ctÞ�

~qs2;jðtÞ ¼ Gj sinðxt� /j þ aÞ
þ e�fjxn;j t½C3;j cosðxd;jtÞ þ C4;j cosðxd;jtÞ�

~qs3;kðtÞ ¼ Gre;k sinðxt� /re;k þ aÞ
þ e�fre;kxnre ;k t½C5;k cosðxdre;ktÞ þ C6;k cosðxdre ;ktÞ�

(6)

½G;Gre� are coefficients for the particular solution, ½/;/re� are the
phase shifts for the particular solution, a is an additional phase
shift caused by the nonlinearity, ½C1;C2;C3;C4;C5;C6� are the
amplitudes of the transient response, and ½xd;xdre � are the damped
frequencies. Note that the unknowns in Eq. (6) are
½C1;C2;C3;C4;C5;C6� and a, the rest of the variables can be com-
puted from linear vibration theory. It is important to note that
½C1;C2;C3;C4;C5;C6� are for transient response amplitudes after
switching and are nonzero due to the switching occurring
repeatedly.

The relative displacement, ur ¼ unl2 � unl1 , generally experien-
ces two different vibrational cycles and they are referred to as
cases (1) and (2). For case (1), a sticking state does not occur and
the nonlinear vibrational response is comprised of linear states (1)
and (2) as shown in Fig. 3(a). For case (2), two sticking states
occur during the response, which is composed of states (1), (2),
and (3) as is shown in Fig. 3(b). Note that there are two additional
cases where sticking only occurs at one location during the vibra-
tion cycle. These cases are discussed in the Appendix for com-
pleteness; however, they did not occur in the results presented in
this work. Moreover, all of these cases may also have period-2 or
higher responses as well. Although not studied in this work, these
responses can be readily computed using FRAMe by increasing
the number of transitions between states accordingly. One can
also readily observe that the solution can capture harmonic distor-
tion effects due to the nonlinearity; although these effects may be
weak for case (1), they can become much stronger for case (2) as
is evident from Fig. 3.

The amplitudes of the transient response (½C1;C2;C3;
C4;C5;C6�), the phase shift a, and the time periods spent in states
(1), (2), and (3) are unknown quantities. To solve for these quanti-
ties, displacement and velocity continuity at the transition
between states as well as matching forces when the system enters
state (3) is enforced. The overall steady-state system response is
then obtained by stitching together the individual responses for
the system in each state. This method can be used to conduct a fre-
quency sweep to determine the system response over a wide

frequency spectrum to capture multiple resonant frequencies and
the corresponding amplitudes of motion for a given excitation
level.

Each case has a set of particular compatibility equations that
were derived by understanding the piecewise linear nonlinear
nature of the response. The overall system response is generated
for each case by connecting the appropriate linear responses to
each other. There are different expressions for states (1), (2), and
(3) as shown in Eq. (6) and at a particular time, they can be equal
to each other. For example, with regard to case (1), the displace-
ment at the transition from state (1) to (2) is the same value at that
instant for both expressions (i.e., T1 in Fig. 3(a)). For both cases,
the displacement at the beginning of the vibrational cycle is equal
to the displacement at the end of the cycle. The displacement con-
tinuity equations are used to enforce this behavior. The velocity
continuity equations are based on the fact that the velocity is equal
to zero at the maximum and minimum displacements. Note that
for case (1), there are only two time periods that need to be deter-
mined. For case (2), there are additional time periods that are
required due to the inclusion of state (3) in the response. There-
fore, the number of unknowns increases and additional equations
to constrain the system response are needed and were chosen
based on force balancing. The force balance equations are based
on the criteria for motion to begin at the friction damper by over-
coming the static frictional force. At the instant motion starts to
occur, the forces acting on the system are equal to the maximum
frictional force. This occurs at the beginning of the vibrational
cycle and at the transition from state (3) to state (2). The equations
to ensure compatibility between states for case (1) are based only
on the displacement and velocity continuity. The equations to
ensure compatibility between states for case (2) are based on con-
tinuity of displacement and velocity as well as balancing the force
when the system exits state (3). The compatibility equations for
cases (1) and (2) are shown below (note that the superscript n
refers to all of the DOFs except the ith DOF):

Case (1)
Velocity continuity

_ur;s1ð0Þ ¼ 0

_ur;s1ðT1Þ ¼ 0

_ur;s2ðT1Þ ¼ 0

_ur;s2ðTÞ ¼ 0

_un
s1ð0Þ ¼ _un

s2ðTÞ
_un
s1ðT1Þ ¼ _un

s2ðT1Þ

(7)

Displacement continuity

us1ð0Þ ¼ us2ðTÞ
us1ðT1Þ ¼ us2ðT1Þ

Fig. 3 (a) The vibrational response of case (1) and (b) the vibrational response of case (2)
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Therefore case 1 has 4N þ 2 compatibility equations as shown in
Eq. (7).

Case (2)
Velocity continuity

_ur;s1ð0Þ ¼ 0

_ur;s1ðT1Þ ¼ 0

_ur;s2ðT1 þ T2Þ ¼ 0

_ur;s2ðT1 þ T2 þ T3Þ ¼ 0

_un
s1ð0Þ ¼ _us3ðTÞ

_un
s1ðT1Þ ¼ _us3ðT1Þ

_us3ðT1 þ T2Þ ¼ _un
s2ðT1 þ T2Þ

_un
s2ðT1 þ T2 þ T3Þ ¼ _us3ðT1 þ T2 þ T3Þ

(8)

Displacement continuity

ur;s1ð0Þ ¼ ur;s2ðT1 þ T2 þ T3Þ
ur;s1ðT1Þ ¼ ur;s2ðT1 þ T2Þ
u
n
s1ð0Þ ¼ us3ðTÞ

u
n
s1ðT1Þ ¼ us3ðT1Þ

us3ðT1 þ T2Þ ¼ u
n
s2ðT1 þ T2Þ

u
n
s2ðT1 þ T2 þ T3Þ ¼ us3ðT1 þ T2 þ T3Þ

Force balance

fið0Þ�kiur;s1ð0Þ�kiþ1ðunl1i;s1ð0Þ�uiþ1;s1ð0ÞÞ
þcð _unl1i;s1ð0Þ� _uiþ1;s1ð0ÞÞ¼ fs

fiðT1þT2Þ�kiur;s2ðT1þT2Þ�kiþ1ðunl1i;s2ðT1þT2Þ
�uiþ1;s2ðT1þT2ÞÞþcð _unl1i;s2ðT1þT2Þ� _uiþ1;s2ðT1þT2ÞÞ¼�fs

Therefore, case 2 has 8N compatibility equations as shown in
Eq. (8).

The optimization problem is formulated by moving all terms in
Eqs. (7) and (8) to the left side of the equations to yield a set of
objective functions to be minimized. Note that the number of
unknown variables for Eq. (7) is 2ns1 þ 2ns2 þ 2 and the number
of unknown variable for Eq. (8) is 2ns1 þ 2ns2 þ 4nre þ 4. The
system will have more compatibility equations than unknown var-
iables if the number of modes retained is less than the number of
DOF; otherwise, the number of compatibility equations and
unknown variables will be equal. Note that the method is well-
suited to solve the steady-state response for any periodic excita-
tion and not just a single harmonic forcing term. The only part of
the formulation that changes is the form of the particular solution
in Eq. (6), which is considered known from linear vibration theory
and not solved for using the compatibility equations.

3 Results

In this section, results for several systems of increasing com-
plexity are presented and discussed. FRAMe and time integration
were both used to generate forced response plots for comparison
purposes. Recall that the amplitudes of the transient response
(½C1;C2;C3;C4;C5;C6�), the phase shift a, and the time periods
spent in states (1), (2), and (3) are unknown parameters. To solve
for these parameters, the MATLAB function “lsqnonlin,” a nonlinear
optimization solver, was utilized with the appropriate compatibil-
ity conditions (e.g., Eqs. (7) and (8)). This MATLAB function is a
Jacobian-based solver and requires a Jacobian matrix to complete
its computational process. For the results in this work, a Jacobian
matrix is approximated using the finite difference method, which
has been automatically implemented in the solver. A random

number generator was used to generate the initial guesses for the
unknown parameters in Eq. (6) for the first frequency point in the
analysis. The first frequency point results in a steady-state
response experiencing case (1). Note that high magnitude excita-
tion was specifically chosen to induce case (1) initially to demon-
strate how FRAMe can transition from case (1) to case (2)
seamlessly. For case (1), T1 is the only time period that needs to
be solved for. The initial guess for T1 was chosen to be half of the
time period of the vibration cycle T. Note that T ¼ 2p=x, where
x is the excitation frequency. The next frequency point uses the
results obtained from the first frequency as the new initial guess
for all of the unknown parameters. The process of using the result
from the previous frequency point as the new initial guess for the
next frequency point is continued for the remainder of the fre-
quency sweep. The CPU time for the first frequency point is used
when comparing the computational time of FRAMe to time inte-
gration to ensure a fair comparison between the methods. Note
that for time integration, the initial conditions used were zero and
the system was time integrated until it reached a steady-state value
(i.e., the difference in the amplitude between consecutive peaks
was below a threshold).

3.1 One Degree of Freedom System. Consider the system
shown in Fig. 1 with N¼ 1 subjected to the forcing, f ðtÞ ¼
fo sinðxtÞ that experiences both viscous and friction damping. A
frequency sweep analysis was conducted on this system with both
FRAMe and numerical integration. The system and forcing
parameters used were m¼ 1 kg, c¼ 1 N�s/m, P¼ 9.5 N,
lk ¼ 0:2; ls ¼ 0:4, k¼ 50 N/m, and fo¼ 4N. A frequency versus
amplitude plot is shown in Fig. 4(a) and contains a frequency
range where the system experiences both cases (1) and (2). The
frequency sweep begins near the peak amplitude where the system
is experiencing case (1) and then sweeps to the left and right from
the peak. When the system experiences case (1), Eq. (7) simplifies
to:

Velocity continuity

_us1ð0Þ ¼ 0

_us1ðT1Þ ¼ 0

_us2ðT1Þ ¼ 0

_us2ðTÞ ¼ 0

(9)

Displacement continuity

us1ðT1Þ ¼ us2ðT1Þ
us1ð0Þ ¼ us2ðTÞ

Criteria were developed to determine at which frequency point the
transition from case (1) to (2) occurred. Each frequency point in
the case (1) frequency range was checked to see if the following
criteria were satisfied. The criteria being that jf ðT1Þ � kuðT1Þj >
fs and jf ðT1 þ T2Þ � kuðT1 þ T2Þj > fs. Once these criteria were
no longer satisfied, the resultant forces acting on the system, at the
maximum or minimum displacement, were no longer greater than
the maximum frictional force and state (3) would occur. At this
frequency point, the set of compatibility equations for case (2)
were used. The compatibility equations for case (2) (i.e., Eq. (8))
are shown below for this single DOF system:

Velocity continuity

_us1ð0Þ ¼ 0

_us1ðT1Þ ¼ 0

_us2ðT1 þ T2Þ ¼ 0

_us2ðT1 þ T2 þ T3Þ ¼ 0
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Displacement continuity

us1ðT1Þ ¼ us2ðT1 þ T2Þ
us1ð0Þ ¼ us2ðTÞ

(10)

Force balance

f ð0Þ � kus1ð0Þ ¼ fs

f ðT1 þ T2Þ � kus2ðT1 þ T2Þ ¼ �fs

Fig. 4 (a) The frequency versus amplitude plot for the one DOF system with a friction damper. The solid line
is the result obtained by FRAMe and the circles correspond to numerical integration. (b) Relative amplitude
percent difference plot.

Fig. 5 The forced response of N-DOF systems with a friction damper. The solid line is the result obtained by
FRAMe and the circles are the results obtained by numerical integration.
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Figure 4(b) shows the relative amplitude percent difference of
FRAMe with respect to time integration over the entire frequency
range. Note that FRAMe has an extremely low percent difference
in the peak response region and the relative percent difference
increases in the transition from sliding to sticking; however, the
relative percent difference is less than 1% even in the small ampli-
tude regime where there is sticking. For this very simple system,
the computational time for numerical integration was 1.05 s/fre-
quency point and 0.178 s/frequency point for FRAMe, which is
almost an order of magnitude faster.

3.2 Mutlidegree-of-Freedom Systems

3.2.1 Computational Savings. Consider an N-DOF system,
similar to the system shown in Fig. 1, with the Nth mass excited
by a harmonic forcing and the first mass connected to the wall by
a friction damper. Note that four different N values are presented
in this work (i.e., N � 50; 100; 300; 500). The system parameters
are mi ¼ 0:1 kg, ki¼ 500N/m, (i ¼ 1;…;N) b ¼ 0:01, fo¼ 1N,
P¼ 0.1 N, lk ¼ ls ¼ l ¼ 1. Figure 5 shows amplitude versus fre-
quency plots for the Nth mass for a number of N values. Time
integration was used to determine the steady-state amplitudes for
five different frequency points for each N value. Figure 5 shows
the excellent agreement between numerical integration and
FRAMe.

Figure 6 presents the relative percent difference at the peak
amplitude and the computational time required to estimate the
response using a number of different modes (i.e., 1, 10, N=2, and
N) in the calculation. In particular, Fig. 6(a) shows a very low dif-
ference at the peak (less than 0.025%) when using as few as a sin-
gle mode for systems up to 500 DOFs. There is no clear pattern in
how the difference is related to the number of modes used in the
calculation. In the cases studied, using 10 modes seemed to give
the best results; however, the estimate is very accurate irrespective
of the number of modes used. The accuracy of FRAMe depends
on a couple of factors including the tolerance setting of the opti-
mization solver (similar issue when performing numerical integra-
tion) and how accurate the Jacobian matrix in the optimization
solver is computed. In Fig. 5(a), FRAMe shows a bit higher error
when the system is high dimensional (N¼ 500). This is due to the
fact that the Jacobian matrix was approximated using the finite
difference method in this work. It is generally harder for the opti-
mization solver to find a “very accurate” solution when analyzing
a complex system if an analytical Jacobian matrix is not provided.

The choice of number of modes used in the estimate does
impact the computational time for the algorithm as is shown in
Fig. 6(b). Irrespective of the number of modes used in FRAMe,

the computational cost increases as the number of DOFs increase.
Figure 6(b) shows that FRAMe is generally at least one to two
orders of magnitude faster than time integration. When comparing
FRAMe using ten modes or less to time integration one can see
the real computational savings as N increases from 50 to 500. The
savings move from less than two orders of magnitude to over four
orders of magnitude. Moreover, there is still very good agreement
between FRAMe and time integration with less than 0.025% rela-
tive difference at the peak.

3.2.2 Parametric Study. In this section, all of the results were
obtained using FRAMe to study the five DOF system shown in
Fig. 7. Note that the base displacement is given by the harmonic
function, uo ¼ U sinðxtÞ. The system parameters were m
¼ 5000 kg, k¼ 3000 N/m, b ¼ 0:01, U¼ . 005 m, and lk ¼ ls
¼ l ¼ 1. In this work, different levels of the loading force value
(P) were considered to measure its impact on the displacement of
the fifth mass. The tested values for P were 1N, 2N,…10 N.
Also, different location options for the friction damper were con-
sidered and those five options are shown in Fig. 7. The excitation
frequency range considered excited the first and second modes of
the system.

Figure 8 shows the impact of increasing the loading force value
and changing the location of the friction damper on the amplitude
of the fifth mass when exciting the first and second modes. In Fig.
8(a), the amplitude was at its lowest value when the damper was
placed at location 1 and the loading force value was 10N. The
amplitude was at its highest value when the damper was placed at
location 5 and the loading force value was 1N. Figure 8(a) shows
a clear trend in increasing the loading on the friction damper and
placing it closer to the excitation source to minimize the ampli-
tude of the fifth mass while the first mode is excited. The trend
changes when the second mode of the system is excited. In
Fig. 8(b), the amplitude was at its lowest value when the damper
was placed at location 4 and the loading force value was 10N.

4 Conclusions and Discussion

Understanding the effects of dry friction on the dynamics of
complex dynamic systems is important in many fields. This work
introduces a method to quickly estimate the response amplitude
and resonant frequencies of these nonlinear systems. This new
technique is called the FRAMe. FRAMe uses the fact that often
the overall dynamics of these systems can be reconstructed by
connecting the responses of the system in each of its linear states.
This idea stems from the bilinear amplitude approximation
method. There are a set of unknown parameters for the linear

Fig. 6 (a) The relative amplitude percent difference plot and (b) the CPU time for all the N values using
FRAMe and time integration
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systems that are computed by enforcing the appropriate compati-
bility conditions for the transitions between the linear states. The
key benefit of FRAMe is that it estimates the nonlinear system
response by connecting a set of linear responses, which are very
efficiently computed. The results presented in this work use a
built-in MATLAB optimization function, which is a traditional local
solver; however, the method is well-suited to be paired with a
variety of global optimization methods that do not depend on ini-
tial values. Although the computational savings of using FRAMe
over numerical integration for small systems is minor, a signifi-
cant computational saving is achieved by applying FRAMe to
high dimensional systems.

The piecewise linear nonlinear response of Coulomb friction
systems is efficiently and accurately predicted by using FRAMe.
The new method was demonstrated on a variety of systems of
increasing complexity. The results for the one degree-of-freedom
system and several higher dimensional systems were also calcu-
lated by using time integration for validation purposes. The com-
putational cost for numerical integration increased directly with
the dimension of the system; however, the computational cost of
FRAMe increased much less dramatically as the dimensionality of
the system increased, while still maintaining accurate results.
Lastly, a study was conducted on a five degree-of-freedom system
with base excitation. Different locations for the friction damper
and levels of loading force values were used to show the effective-
ness of the method in efficiently carrying out parametric studies of
systems with friction dampers.

Coulomb friction nonlinearities present themselves in a broad
array of circumstances in nature and engineering applications, and
can exhibit a variety of complex behaviors particularly when mul-
tiple friction nonlinearities exist. This work presents a new
method that was created to initially handle a subset of these

complex cases. In particular, it is focused on multidegree-of-
freedom systems with a single friction nonlinearity. Work to
extend this method to multiple friction nonlinearities is currently
underway. A key challenge is the dramatically increasing number
of states that become possible as the number of friction nonlinear-
ities increase. Moreover, combining this method with existing
methods, like the generalized bilinear amplitude approximation
method [23–25], to analyze systems with piecewise linear stiff-
ness and friction is another promising direction of future work.
Another important point is that the current method is focused on
the steady-state response of systems excited by any form of peri-
odic excitation. This steady-state response can capture various
stick and slip behaviors in combination as long as the response is
periodic. A technique that can handle transient, chaotic, or other
nonstationary dynamics requires a different solution process such
as a modified version of the recently developed hybrid symbolic
numeric computational method [20,21]. These methods can work
in combination to rapidly solve for any system response of
high dimensional nonlinear systems with a single friction
nonlinearity.
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Appendix

For completeness, the compatibility equations for two addi-
tional cases are given in the Appendix. Although these cases did
not occur in the results presented in this work, they can occur if
the system is subject to an oscillating normal load in the friction
damper.

Case 3: State (3) Occurs at Maximum Displacement Only.
Figure 9 shows the response of the relative displacement, ur, when
state (3) occurs at the maximum displacement of the relative coor-
dinate. The case 3 compatibility equations are given by

Velocity continuity

_ur;s1ð0Þ ¼ 0

_ur;s1ðT1Þ ¼ 0

_ur;s2ðT1 þ T2Þ ¼ 0

_ur;s2ðTÞ ¼ 0

_un
s1ð0Þ ¼ _un

s2ðTÞ
_un
s1ðT1Þ ¼ _us3ðT1Þ

_us3ðT1 þ T2Þ ¼ _un
s2ðT1 þ T2Þ

(11)

Displacement continuity

ur;s1ðT1Þ ¼ ur;s2ðT1 þ T2Þ
us1ð0Þ ¼ us2ðTÞ
u
n
s1ðT1Þ ¼ us3ðT1Þ0

us3ðT1 þ T2Þ ¼ u
n
s2ðT1 þ T2Þ

Force balance

FiðT1 þ T2Þ � kiur;s2ðT1 þ T2Þ � kiþ1ðunl1i;s2ðT1 þ T2Þ
� uiþ1;s2ðT1 þ T2ÞÞ þ cð _unl1i;s2ðT1 þ T2Þ � _uiþ1;s2ðT1 þ T2ÞÞ ¼ �fs

Case 4: State (3) Occurs at Minimum Displacement Only.
Figure 10 shows the response of the relative displacement, ur,
when state (3) occurs at the minimum displacement of the relative
coordinate. The case 4 compatibility equations are given by

Velocity continuity

_ur;s1ð0Þ ¼ 0

_ur;s1ðT1Þ ¼ 0

_ur;s2ðT1Þ ¼ 0

_ur;s2ðT1 þ T2Þ ¼ 0

_un
s1ð0Þ ¼ _us3ðTÞ

_un
s1ðT1Þ ¼ _un

s2ðT1Þ
_un
s2ðT1 þ T2Þ ¼ _us3ðT1 þ T2Þ

(12)

Displacement continuity

ur;s1ð0Þ ¼ ur;s2ðT1 þ T2Þ
us1ðT1Þ ¼ us2ðT1Þ
u
n
s1ð0Þ ¼ us3ðTÞ

u
n
s2ðT1 þ T2Þ ¼ us3ðT1 þ T2Þ

Force balance

Fið0Þ � kiur;s1ð0Þ � kiþ1ðunl1i;s1ð0Þ � uiþ1;s1ð0ÞÞ

þ cð _unl1i;s1ð0Þ � _uiþ1;s1ð0ÞÞ

¼ fs
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