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Abstract

Semiconductor quantum dots/graphene heterostructure nanohybrids combine the advantages of the
enhanced light-matter interaction and spectral tunability of quantum dots (QDs) and high charge
mobility in graphene as a charge transport pathway, providing a unique platform for exploration of
photodetectors with high performance. In particular, the QDs/graphene nanohybrids allow
resolution to the critical issue of charge transport in QDs-only photodetectors stemming from the low
charge mobility associated with both QD surface defect states and inter-QD junctions. Furthermore,
the achieved capability in industrial-scale fabrication of graphene and colloidal QDs has motivated
efforts in research of QDs/graphene nanohybrids focal plane arrays that are expected to be not only
high performance and low cost, but also light-weight, flexible and wearable. This paper aims to
highlight recent progress made in the research and development of QDs/graphene nanohybrid
photodetectors and discuss the challenges remained towards their commercial applications.

1. Introduction

Graphene regards to a monolayer of carbon atoms arranged in a two-dimensional honeycomb lattice [1, 2] Its
discovery in 2004 has not only led the 2010 Nobel Prize in Physics to Geim and Novoselov, but also an intensive
interest in research and development for a large spectrum applications taking advantage of graphene’s unique
physical properties of high charge carrier mobility predicted to be up to 200,000 cm*V~'-s~ ' at room
temperature, broadband optical transparency of 97.7% from near ultraviolet to mid-infrared, high mechanical
strength, flexibility and chemical stability [ 1-4]. Graphene can be viewed as an atomically thin (thickness ~0.34
nm) film and can be grown using chemical vapor deposition in large area [5, 6] with compatibility to the
established microfabrication processes[7] for graphene-based devices and circuits for applications in electronic,
photonic, optoelectronic, sensors, etc [8—16].

Graphene-based photodetectors[1, 17—19] present a particular interesting topic considering the broadband
absorption of ~2.3% per graphene sheet. However, graphene is a semimetal with a zero bandgap Eg [4], which
has limited its use in a similar way to conventional semiconductors of well-defined Eg. This has motivated a
recent exploration of quantum dots (QDs) on graphene heterostructure nanohybrids (QDs/graphene, which is
aspecific form of more general graphene/semiconductor nanohybrids) for photodetection with a high
photoconductive gain and hence high responsivity [20-35]. These QDs/graphene nanohybrids build on the
exciting progress made recently in colloidal QDs of a larger number semiconductors [36—52] and graphene [ 14,
53-56]. The QDs/graphene nanohybrids take advantage of the strong quantum confinement of QDs with
enhanced light—matter interaction, spectral tunability by controlling their composition, shape, dimension,
functionality, and carrier doping [57, 58], and of the extraordinary charge mobility of graphene at room
temperature [1, 3, 53, 56]. In these devices, there are two main steps to realize the optical-to-electrical signal
conversion. First, the QDs play the role of photosensitizers and absorb the incident photons. The produced
excitons (or electron-hole pairs) can then be dissociated at the QDs/graphene interface by the built-in electric
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Figure 1. A few examples of the QDs/graphene nanohybrid photodetectors for UV, Visible, IR and UV-Vis-IR broadband detection.
Reproduced with permission. [23] Copyright 2017, American Chemical Society. Reproduced with permission. [25] Copyright 2019,
American Chemical Society. Reproduced with permission. [67] Copyright 2020, John Wiley and Sons. Reproduced with permission.
[76] Copyright 2021, John Wiley and Sons. Reproduced with permission. [75] Copyright 2017, American Chemical Society.

field associated to the QD/graphene band-edge alignment. Secondly, the free charge carriers are transferred
from QDs to graphene channel under the same built-in field and collected by the source and drain electrodes on
the channel. The high mobility in exceeding 1.0 x 10* cm*V™~'s~! experimentally achieved in graphene at
room temperature [18, 59], which could be further enhanced through sample optimization, can lead to high
photoconductive gain (G) > 10'° in various QDs /graphene nanohybrids photodetectors [23, 25, 27, 60—67]
and hence high photoresponsivity (R) and figure-of-merit specific detectivity (D*) [24, 26, 27].

After the first report of Pubs QDs/graphene photodetectors by Konstantinos et alin 2012 [27], many QDs/
graphene nanohybrid photodetectors have been explored in ultraviolet (UV), visible (vis), and infrared (IR)
spectra [23, 26,27, 68-72]. High D" values in the range of 10''—10'° Jones have been reported in a broad
spectrum ranging from IR (0.8 —3 pum) [27], visible (400 nm — 700 nm)[73] to UV detections (300 nm — 400
nm) [25-27, 73], figure 1 illustrates several examples of the QDs/graphene nanohybrid photodetectors
[23,25, 66,74, 75]. On an all-printable ZnO QDs/graphene UV photodetector, the presence of an atomically
thin insulating surface layer on ZnO QDs was found to block the charge transfer from QD to graphene, and
removing such a layer has demonstrated critical to the achievement ofhigh G ~ 3.6 x 10°,R ~ 9.9 x 10* A
W~ ',and D*of 1 x 10'*Jones in this device [23]. Gong et al reported a broadband photosensitizer based on
FeS, nanocubes (NCs) that exhibits a strong localized surface plasmonic resonance (LSPR) effect with enhanced
light absorption and expanded spectral range beyond the cutoff of FeS, covering the UV—visible-SWIR (SWIR
regards to short-wave IR) broadband with responsivities reaching 1.08 x 10° AW ™' [26]. Ni et al reported
broadband UV to mid-infrared (MIR) photodetection using plasmonic Si QDs doped with boron (B) for LSPR
enhancement. These B-doped Si QDs/graphene photodetectors exhibited high G ~10'%, R ~ 10° AW, and
D* ~10" Jones [74]. Besides doping semiconductor QDs to produce LSPR for broadband and enhanced
absorption, metal /semiconductor core/shell QDs use plasmonic metal cores for light trapping, which can lead
to improved light absorption on semiconductor shell. Using a template modulated colloidal approach for
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synthesizing AuCu core (~7.1 nm in diameter) [76—78], followed with growth of metal-halide perovskite shell
(CsPbCls) shell [66], enhanced light absorption was observed in the AuCu/CsPbCl; core/shell QDs as
compared to CsPbCl; QDs of comparable total diameter~10 nm. A remarkable 30 times-enhanced
photoresponse in AuCu/CsPbCl; core/shell QDs/graphene nanohybrid photodetectors, as compared to the
counterparts of CsPbCl; QD/graphene, was observed and attributed to the light trapping by AuCu core and
enhanced light absorption in CsPbCl; shell, as confirmed in a Finite-Difference Time-Domain (FDTD)
simulation [79]. A recent work by Alamri et al[80] combined the plasmonic effects from WS, nanodiscs grown
on graphene and from Ag nanoparticles (AgNPs), leading to a seven-fold enhancement in photoresponse.
Recently, Grotevent et al employed the HgTe QDs combined with graphene forming HgTe QDs/graphene
nanohybrids photodetectors. The spectral sensitivity of this device has been extended to MIR range up to 3 ym.
At80K, the D*~6 x 10%Jonesata wavelength of 2.5 ym and a frequency of 67 Hz was obtained [ 75].

QDs/graphene nanohybrids can be fabricated by depositing QDs on graphene using various low-cost,
scalable methods including spin-coating [52, 74, 81-84], inkjet printing [16, 23, 85-89] and direct growth [80,
90-92], which illustrates additional advantages of QD/graphene nanohybrids including low cost, monolithic,
flexible, wearable, etc In addition, different QDs targeting at different spectral ranges may be mixed or pixelated
for multi-color, broadband photodetection [24, 85]. Moreover, a 288 x 388 channel focal plane array of PbS
QDs/graphene nanohybrid photodetectors have been integrated with Si-based readout circuit, illustrating the
potential of QD/graphene nanohybrid photodetectors for practical applications [21].

Despite progress made in research and development of QDs/graphene nanohybrid photodetectors,
challenges remain and must be addressed before commercial applications of these photodetectors can be
realized. A major challenge is in atomic-scale control of the QDs/graphene heterojunction interface that directly
affects the exciton dissociation and charge transfer, which in turn impact the device performance including both
photoresponse and response speed. For example, an atomically thin Zn acetate or Zn(Ac) layer on the ZnO QDs
can completely block the charge transfer from ZnO QDs to graphene and lead to negligible photoresponse to UV
light. When this surface layer is removed, improved photoresponse by orders of magnitude can be obtained [23].
On the other hand, many QDs such as PbS and CsPbX; (X = Cl, Br, I), have surface states due to the presence of
defects and dangling bonds on the QDs surface, which not only lead to QDs decomposition in ambient but also
behave as charge traps at the QDs/graphene interface that degrade both photoresponse and response speed by
orders of magnitude [67, 93]. Ligand-exchange has been adopted for passivation of such surface states and hence
improvement of photodetector performance [23, 24, 27, 94, 95]. Vafaie et al developed an efficient ligand-
exchange route that tailors the halide passivants and removes unwanted organic species, and improves charge
transport. In PbS QDs based photodetectors, this ligand-exchange protocol gave rise to a high external quantum
efficiency of 80% at 1550 nm, D*~ 8 x 10'! Jones, and a 10 ns response time [96]. Gong et al replaced insulating
oleic acid and oleylamine with conducting 3-mercaptopropionic acid ligands in the CsPbCl; QDs/graphene
photodetectors with significantly improved device stability and performance [25]. It should be noted that the
approaches developed for such interface engineering are QDs specific and hence cannot be applied universally.
This means a continuous effort in research and development of various new interface engineering approaches
for high-efficiency charge transfer across the QDs/graphene interface and for longevity of the QD /graphene
nanohybrids devices will be a focus of future research with discovery of new functional QDs. Another major
challenge is the limited light absorption in QDs/graphene nanohybrids that have a thin layer of QDs. It should
be realized that multilayer QDs may have enhanced light absorption while the benefit can be significantly
reduced by the inter-QD junctions that are hurdles to charge transport [24, 29, 97]. Development of schemes for
light management will be important in future research to enhance light absorption of the very thin QD layer.
Finally, an additional challenge is associated with device nonuniformity due to lack of a precise control in QDs
(dimension, surface states, distribution on graphene, stacking in multilayer cases, etc) and QDs/graphene
interface. All of the above present a series of roadblocks that must be removed to achieve high performance,
uniformity and yield in commercial application of QDs/graphene based focal plane arrays.
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