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Abstract
Semiconductor quantumdots/graphene heterostructure nanohybrids combine the advantages of the
enhanced light–matter interaction and spectral tunability of quantumdots (QDs) and high charge
mobility in graphene as a charge transport pathway, providing a unique platform for exploration of
photodetectors with high performance. In particular, theQDs/graphene nanohybrids allow
resolution to the critical issue of charge transport inQDs-only photodetectors stemming from the low
chargemobility associatedwith bothQD surface defect states and inter-QD junctions. Furthermore,
the achieved capability in industrial-scale fabrication of graphene and colloidal QDs hasmotivated
efforts in research ofQDs/graphene nanohybrids focal plane arrays that are expected to be not only
high performance and low cost, but also light-weight, flexible andwearable. This paper aims to
highlight recent progressmade in the research and development ofQDs/graphene nanohybrid
photodetectors and discuss the challenges remained towards their commercial applications.

1. Introduction

Graphene regards to amonolayer of carbon atoms arranged in a two-dimensional honeycomb lattice [1, 2] Its
discovery in 2004 has not only led the 2010Nobel Prize in Physics toGeim andNovoselov, but also an intensive
interest in research and development for a large spectrum applications taking advantage of graphene’s unique
physical properties of high charge carriermobility predicted to be up to 200,000 cm2·V−1·s−1 at room
temperature, broadband optical transparency of 97.7% fromnear ultraviolet tomid-infrared, highmechanical
strength, flexibility and chemical stability [1–4]. Graphene can be viewed as an atomically thin (thickness∼0.34
nm)film and can be grownusing chemical vapor deposition in large area [5, 6]with compatibility to the
establishedmicrofabrication processes[7] for graphene-based devices and circuits for applications in electronic,
photonic, optoelectronic, sensors, etc [8–16].

Graphene-based photodetectors [1, 17–19] present a particular interesting topic considering the broadband
absorption of∼2.3%per graphene sheet. However, graphene is a semimetal with a zero bandgap Eg [4], which
has limited its use in a similar way to conventional semiconductors of well-definedEg. This hasmotivated a
recent exploration of quantumdots (QDs) on graphene heterostructure nanohybrids (QDs/graphene, which is
a specific formofmore general graphene/semiconductor nanohybrids) for photodetectionwith a high
photoconductive gain and hence high responsivity [20–35]. TheseQDs/graphene nanohybrids build on the
exciting progressmade recently in colloidalQDs of a larger number semiconductors [36–52] and graphene [1–4,
53–56]. TheQDs/graphene nanohybrids take advantage of the strong quantum confinement ofQDswith
enhanced light–matter interaction, spectral tunability by controlling their composition, shape, dimension,
functionality, and carrier doping [57, 58], and of the extraordinary chargemobility of graphene at room
temperature [1, 3, 53, 56]. In these devices, there are twomain steps to realize the optical-to-electrical signal
conversion. First, theQDs play the role of photosensitizers and absorb the incident photons. The produced
excitons (or electron-hole pairs) can then be dissociated at theQDs/graphene interface by the built-in electric
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field associated to theQD/graphene band-edge alignment. Secondly, the free charge carriers are transferred
fromQDs to graphene channel under the same built-in field and collected by the source and drain electrodes on
the channel. The highmobility in exceeding 1.0×104 cm2·V−1·s−1 experimentally achieved in graphene at
room temperature [18, 59], which could be further enhanced through sample optimization, can lead to high
photoconductive gain (G)>1010 in variousQDs/graphene nanohybrids photodetectors [23, 25, 27, 60–67]
and hence high photoresponsivity (R) andfigure-of-merit specific detectivity (D*) [24, 26, 27].

After thefirst report of PubsQDs/graphene photodetectors byKonstantinos et al in 2012 [27], manyQDs/
graphene nanohybrid photodetectors have been explored in ultraviolet (UV), visible (vis), and infrared (IR)
spectra [23, 26, 27, 68–72]. HighD* values in the range of 1011−1016 Jones have been reported in a broad
spectrum ranging from IR (0.8−3μm) [27], visible (400 nm− 700 nm)[73] toUVdetections (300 nm− 400
nm) [25–27, 73],figure 1 illustrates several examples of theQDs/graphene nanohybrid photodetectors
[23, 25, 66, 74, 75]. On an all-printable ZnOQDs/grapheneUVphotodetector, the presence of an atomically
thin insulating surface layer onZnOQDswas found to block the charge transfer fromQD to graphene, and
removing such a layer has demonstrated critical to the achievement of highG∼3.6×109,R∼9.9×108 A
W−1, andD* of 1×1014 Jones in this device [23]. Gong et al reported a broadband photosensitizer based on
FeS2 nanocubes (NCs) that exhibits a strong localized surface plasmonic resonance (LSPR) effect with enhanced
light absorption and expanded spectral range beyond the cutoff of FeS2 covering theUV–visible-SWIR (SWIR
regards to short-wave IR) broadbandwith responsivities reaching 1.08×106 AW−1 [26]. Ni et al reported
broadbandUV tomid-infrared (MIR) photodetection using plasmonic SiQDs dopedwith boron (B) for LSPR
enhancement. These B-doped SiQDs/graphene photodetectors exhibited highG∼1012,R∼109 AW−1, and
D*∼1013 Jones [74]. Besides doping semiconductorQDs to produce LSPR for broadband and enhanced
absorption,metal/semiconductor core/shell QDs use plasmonicmetal cores for light trapping, which can lead
to improved light absorption on semiconductor shell. Using a templatemodulated colloidal approach for

Figure 1.A few examples of theQDs/graphene nanohybrid photodetectors forUV,Visible, IR andUV-Vis-IR broadband detection.
Reproducedwith permission. [23]Copyright 2017, AmericanChemical Society. Reproducedwith permission. [25]Copyright 2019,
AmericanChemical Society. Reproducedwith permission. [67]Copyright 2020, JohnWiley and Sons. Reproducedwith permission.
[76]Copyright 2021, JohnWiley and Sons. Reproducedwith permission. [75]Copyright 2017, AmericanChemical Society.
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synthesizing AuCu core (∼7.1 nm in diameter) [76–78], followedwith growth ofmetal-halide perovskite shell
(CsPbCl3) shell [66], enhanced light absorptionwas observed in the AuCu/CsPbCl3 core/shell QDs as
compared toCsPbCl3QDs of comparable total diameter∼10 nm.A remarkable 30 times-enhanced
photoresponse inAuCu/CsPbCl3 core/shell QDs/graphene nanohybrid photodetectors, as compared to the
counterparts of CsPbCl3QD/graphene, was observed and attributed to the light trapping byAuCu core and
enhanced light absorption inCsPbCl3 shell, as confirmed in a Finite-Difference Time-Domain (FDTD)
simulation [79]. A recent work byAlamri et al[80] combined the plasmonic effects fromWS2 nanodiscs grown
on graphene and fromAgnanoparticles (AgNPs), leading to a seven-fold enhancement in photoresponse.
Recently, Grotevent et al employed theHgTeQDs combinedwith graphene formingHgTeQDs/graphene
nanohybrids photodetectors. The spectral sensitivity of this device has been extended toMIR range up to 3μm.
At 80K, theD*∼6×108 Jones at awavelength of 2.5μmand a frequency of 67Hzwas obtained [75].

QDs/graphene nanohybrids can be fabricated by depositingQDs on graphene using various low-cost,
scalablemethods including spin-coating [52, 74, 81–84], inkjet printing [16, 23, 85–89] and direct growth [80,
90–92], which illustrates additional advantages ofQD/graphene nanohybrids including low cost,monolithic,
flexible, wearable, etc In addition, differentQDs targeting at different spectral rangesmay bemixed or pixelated
formulti-color, broadband photodetection [24, 85].Moreover, a 288×388 channel focal plane array of PbS
QDs/graphene nanohybrid photodetectors have been integratedwith Si-based readout circuit, illustrating the
potential ofQD/graphene nanohybrid photodetectors for practical applications [21].

Despite progressmade in research and development ofQDs/graphene nanohybrid photodetectors,
challenges remain andmust be addressed before commercial applications of these photodetectors can be
realized. Amajor challenge is in atomic-scale control of theQDs/graphene heterojunction interface that directly
affects the exciton dissociation and charge transfer, which in turn impact the device performance including both
photoresponse and response speed. For example, an atomically thin Zn acetate or Zn(Ac) layer on the ZnOQDs
can completely block the charge transfer fromZnOQDs to graphene and lead to negligible photoresponse toUV
light.When this surface layer is removed, improved photoresponse by orders ofmagnitude can be obtained [23].
On the other hand,manyQDs such as PbS andCsPbX3 (X=Cl, Br, I), have surface states due to the presence of
defects and dangling bonds on theQDs surface, which not only lead toQDs decomposition in ambient but also
behave as charge traps at theQDs/graphene interface that degrade both photoresponse and response speed by
orders ofmagnitude [67, 93]. Ligand-exchange has been adopted for passivation of such surface states and hence
improvement of photodetector performance [23, 24, 27, 94, 95]. Vafaie et al developed an efficient ligand-
exchange route that tailors the halide passivants and removes unwanted organic species, and improves charge
transport. In PbSQDs based photodetectors, this ligand-exchange protocol gave rise to a high external quantum
efficiency of 80% at 1550 nm,D*∼ 8×1011 Jones, and a 10 ns response time [96]. Gong et al replaced insulating
oleic acid and oleylaminewith conducting 3-mercaptopropionic acid ligands in theCsPbCl3QDs/graphene
photodetectors with significantly improved device stability and performance [25]. It should be noted that the
approaches developed for such interface engineering areQDs specific and hence cannot be applied universally.
Thismeans a continuous effort in research and development of various new interface engineering approaches
for high-efficiency charge transfer across theQDs/graphene interface and for longevity of theQD/graphene
nanohybrids devices will be a focus of future researchwith discovery of new functional QDs. Anothermajor
challenge is the limited light absorption inQDs/graphene nanohybrids that have a thin layer ofQDs. It should
be realized thatmultilayerQDsmay have enhanced light absorptionwhile the benefit can be significantly
reduced by the inter-QD junctions that are hurdles to charge transport [24, 29, 97]. Development of schemes for
lightmanagement will be important in future research to enhance light absorption of the very thinQD layer.
Finally, an additional challenge is associatedwith device nonuniformity due to lack of a precise control inQDs
(dimension, surface states, distribution on graphene, stacking inmultilayer cases, etc) andQDs/graphene
interface. All of the above present a series of roadblocks thatmust be removed to achieve high performance,
uniformity and yield in commercial application ofQDs/graphene based focal plane arrays.
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