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Bilinear Systems With Initial
Gaps Involving Inelastic
Collision: Forced Response
Experiments and Simulations
In this paper, the forced response of a two degrees-of-freedom (DOF) bilinear oscillator
with initial gaps involving inelastic collision is discussed. In particular, a focus is placed
upon the experimental verification of the generalized bilinear amplitude approximation
(BAA) method, which can be used for the accurate estimation of forced responses for
bilinear systems with initial gaps. Both experimental and numerical investigations on the
system have been carried out. An experimental setup that is capable of representing the
dynamics of a 2DOF oscillator has been developed, and forced response tests have been
conducted under swept-sine base excitation for different initial gap sizes. The steady-
state response of the system under base excitation was computed by both traditional time
integration and BAA. It is shown that the results of experiments and numerical predictions
are in good agreement especially at resonance. However, slight differences in the responses
obtained from both numerical methods are observed. It was found that the time duration
where the DOFs are in contact with each other predicted by BAA is longer than that pre-
dicted by time integration. Spectral analyses have also been conducted on both experimen-
tal and numerical results. It was observed that in a frequency range where intermittent
contact between the masses occurs, super-harmonic components of the excitation frequency
are present in the spectra. Moreover, as the initial gap size increases, the frequency band
where the super-harmonic components are observed decreases. [DOI: 10.1115/1.4051493]
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1 Introduction
In many engineering disciplines, it is becoming important to

conduct vibration analysis of damaged structures because the vibra-
tion responses can be utilized for structural health monitoring and
damage detection. However, in many cases, damaged structures
show nonlinearities in their dynamic responses, which hinders the
application of traditional vibration tools such as modal analysis
and frequency response analysis. In particular, structures with
breathing cracks [1–4] and delaminated composites [5] are known
to behave as piecewise-linear (PWL) nonlinear dynamical
systems because they involve repetitive opening and closing of
mechanical boundaries. Namely, the dynamics of PWL systems
include sudden changes in the system characteristics, especially
the stiffness of the oscillators. Therefore, even if the PWL system
is simple, it shows strong nonlinearities in its dynamic responses.
Since the pioneering work by Shaw and Holmes [6], many

studies have been conducted to understand the fundamental
nature of PWL systems and to explore their practical importance
[7–11]. For instance, Ing et al. studied the dynamics of PWL
systems that are close to glazing incidence [12]. Dyskin et al.
studied resonances of impact oscillators [13]. They also studied
the dynamics of a chain of bilinear oscillators [10] and showed
that there are some patterns of resonance in the chain of oscillators.
Andreaus and De Angelis conducted numerical studies on the
dynamic response of a single degree-of-freedom (DOF) oscillator
excited by a base acceleration and constrained by unilateral con-
straints [14]. Later they conducted experimental studies on the

single DOF oscillator subjected to unilateral constraints under har-
monic excitation [15,16]. Furthermore, they investigated the influ-
ence of geometrical and mechanical characteristics of isolation
and mitigation devices on the vibro-impact system experimentally
and numerically [17,18]. Moreover, the computation of nonlinear
vibration problems such as contact phenomena using time integra-
tion requires a small time-step size to produce accurate results.
Recently, efforts for reducing such computational costs have been
made by several researchers [1,7,19–22]. In particular, an approxi-
mation method to produce forced response of bilinear systems has
been proposed by Jung et al. [23], which is called the bilinear ampli-
tude approximation (BAA) method. This method was then extended
to be able to handle bilinear systems with gaps or prestress between
the oscillators [24]. The method is able to produce an accurate
approximation of the forced response of bilinear systems, which
arise from mechanical systems involving repetitive opening and
closing of contacting surfaces, or inelastic collision between the
DOF. BAA has also been applied to study the dynamics of high
dimensional bladed disks with intermittent contact due to cracks
[25,26]. However, the method has never been validated with exper-
imental data. Therefore, in this paper, special attention is given to
the experimental verification of the BAA method through compar-
ison between the results obtained by BAA, time integration, and
most importantly, experimental data. By providing the experimental
verification of BAA, it is expected that it be used for predicting
dynamic responses of various bilinear systems with high fidelity.
Obtaining high-fidelity experimental data for PWL systems is chal-
lenging, mostly because the changes in the dynamics of the PWL
systems are non-smooth. Among the PWL systems, several exper-
imental studies have been conducted for impact oscillators. For
instance, a forced response study has been conducted on a 1DOF
impact oscillator consisting of a mass rolling on a parabolic
surface and a rigid stop by Todd and Virgin [27], where chaotic
behavior and multiple impacts were observed. Virgin et al. also
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studied an impact oscillator and showed that rich dynamical beha-
vior can be seen experimentally [28]. Bureau et al. conducted an
experimental bifurcation analysis of an impact oscillator [29]. Skur-
ativskyi et al. also investigated a 1DOF impact oscillator with a
compliant obstacle numerically and experimentally and reported
various rich dynamical behavior including grazing bifurcation and
chaos [30]. Numerical and experimental studies have also been con-
ducted for impacting pendulums [31,32]. They investigated the
bifurcation behaviors of impacting pendulums from both numerical
and experimental studies. To date, however, no experimental work
has been conducted on PWL systems involving inelastic collision,
which arise in systems involving soft contact, or repetitive
opening and closing of mechanical interfaces such as cracks,
mechanical interfaces, or delamination. This paper is organized as
follows. In Sec. 2, the mathematical model for nonlinear time inte-
gration is introduced, and the experimental setup that represents the
behavior of the bilinear system is presented. In Sec. 3, results of
parameter estimation for the experimental setup are presented. In
Sec. 4, the results of numerical and experimental forced responses
are presented. In particular, the accuracy and applicability of
BAA are discussed in detail. Conclusions of the paper are given
in Sec. 5.

2 Methodology
This section provides a mathematical model of a 2DOF PWL

oscillator, as well as an overview of BAA. The experimental
setup for the forced response study is then presented.

2.1 Mathematical Model. First, a mathematical model of the
2DOF PWL system of interest is discussed. The system consists
of two independent single DOF systems with an initial gap
between the DOFs. This system has two states where the system
dynamics is linear, which are referred to as open and closed
states. The open state means that the DOFs are not in contact
with each other, whereas the closed state means that they are in
contact with each other. Figure 1(a) shows the initial state of the
2DOF PWL model of interest where each of the two masses is con-
nected to a base by a spring and a damper. The masses are separated
by an initial gap g0. The contact between the masses and the base is
frictionless. m1 and m2 denote the masses of the DOFs, c1 and c2 are
the damping coefficients, and k1 and k2 are the spring constants.
Now, consider that the system is excited by a base excitation
x0(t). Then the masses start to move, where x1 and x2 are the dis-
placements of the masses measured from their static equilibria, as
is shown in Fig. 1(b). The state of the PWL system switches
between the open state and closed state depending on the relative
displacement between x1 and x2. Now, consider introducing a gap
function, g(x1, x2), that represents the gap between the masses
with the existence of an initial gap g0, i.e.,

g(x1, x2) = g0 + x2 − x1 (1)

When g(x1, x2) > 0, the 2DOF system is in its open state with no
contact between the oscillators as is shown in Fig. 1(b). On the
other hand, when g(x1, x2)⩽ 0, the system is in the closed state
where the oscillators are connected to each other with slight allow-
ance of penetration between the masses, as is shown in Fig. 1(c).
Since the system is assumed to follow Newton’s third law, there
is a contact force between the masses when they are in the closed

state. In this study, the contact force is computed by the penalty
method. Namely, the contact force is defined as a product
between contact stiffness k′ and the gap function. The equation of
motion of the 2DOF PWL system is written as

m1ẍ1 + c1ẋ1 + k1x1 = c1ẋ0 + k1x0 + fc(x1, x2)

m2ẍ2 + c2ẋ2 + k2x2 = c2ẋ0 + k2x0 − fc(x1, x2)
(2)

where fc(x1, x2) is the contact force that hinders the masses from
penetration, which is written as

fc(x1, x2) = k′g(x1, x2) (3)

The contact stiffness k′ switches depending on the relative displace-
ment between x1 and x2. Namely, k′ is equal to k* when the oscil-
lator has penetration or k′ = 0, i.e.,

k′ = k∗, g(x1, x2) ⩽ 0
0, g(x1, x2) > 0

{
(4)

2.2 Bilinear Amplitude Approximation. The generalized
BAA method proposed by Tien and D’Souza [24] is a technique
to approximate the forced response of PWL systems efficiently
and accurately. The BAA method approximates the nonlinear
response of PWL nonlinear oscillators by stitching together the
linear responses of the system in its open and sliding states. It is
noted that the sliding state in BAA is a generalization of the
closed state discussed in Sec. 2.1 for systems with multi-DOFs
involving contact where the DOFs can move not only in the direc-
tion of contact but also in the directions that are perpendicular to the
direction of contact. Contact stiffness is used to minimize the pen-
etration between the contacting DOFs when the system is in the
sliding state. For a general n DOF mechanical system with piece-
wise linearity, the equations of motion of the sliding and open
states are written as

Msẍs + Csẋs +Ksxs = F(t) + Fg (5)

Moẍo + Coẋo +Koxo = F(t) (6)

where xs and xo denote the vectors of generalized coordinates for
the sliding and the open systems; Ms, Cs, Ks are the mass,
damping, and stiffness matrices for the sliding state; Mo, Co, Ko

are the mass, damping, and stiffness matrices for the open state;
F(t) is the external forcing vector; and Fg is a constant force
caused by the contact stiffness when gaps or prestress exist. Denot-
ing the displacement of the ith DOF measured from the static equi-
librium position for the open system as xi and the displacement of
the ith DOF measured from the static equilibrium position for the
sliding system as x̃i, a coordinate transformation can be defined,
i.e., xi = x̃i + δi for i= 1,…, n, where δi is the static equilibrium dis-
placement of the masses caused by the contact stiffness k*. After
applying this coordinate transformation to the sliding system
only, (5) can be written as

Ms
¨̃xs + Cs

˙̃xs +Ksx̃s = F(t) (7)

where xs = x̃s + δ and δ =K−1
s Fg.

By applying a modal coordinate transformation x̃s =Φsq̃s and
xo =Φoqo on (6) and (7), they can be written as

ΦT
s MsΦs

¨̃qs +ΦT
s CsΦs

˙̃qs +ΦT
s KsΦsq̃s =ΦT

s F(t) (8)

(a) (b) (c)

Fig. 1 (a) The initial state of the 2DOF PWLmodel with an initial gap, (b) open state, and
(c) closed state
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ΦT
o MoΦoq̈o +ΦT

o CoΦoq̇o +ΦT
o KoΦoqo =ΦT

o F(t) (9)

where Φs and Φo are the modal matrices for the sliding and open
states, respectively, and q̃s and qo are the corresponding modal
coordinates. Equations (8) and (9) can then be decoupled because
of the orthonormality of the modes and are expressed as a set of
independent equations as

¨̃qs,i + 2ζs,iωs,i ˙̃qs,i + ω2
s,iq̃s,i = f s,i (i = 1, . . . , ns) (10)

q̈o,i + 2ζo,iωo,iq̇o,i + ω2
o,iqo,i = f o,i (i = 1, . . . , no) (11)

where ns and no are the number of modes for the sliding and open
states, respectively; ζs,i and ζo,i are the modal damping ratios; ωs,i

and ωo,i are the undamped natural frequencies; and fs,i and fo,i are
the modal forces.
Since Eqs. (10) and (11) are decoupled, the analytical solution of

each equation can be expressed as a combination of the linear tran-
sient response and the linear steady-state response as follows:

q̃s,i = e−ζs,iωs,i t[s1,i sinωsd,it + s2,i cosωsd,it]

+
(fs,iω2

s,i) cos (ωt − θs,i + α)����������������������������������
[1 − (ω/ωs,i)2]2 + 2ζs,i(ω/ωs,i)2

√

qo,i = e−ζo,iωo,i t[o1,i sinωod,it + o2,i cosωod,it]

(12)

+
(fo,iω2

o,i) cos (ωt − θo,i + α)�����������������������������������
[1 − (ω/ωo,i)2]2 + 2ζo,i(ω/ωo,i)2

√ (13)

where s1,i, s2,i, o1,i, and o2,i are scalar coefficients of the linear
transient responses to be determined; ωsd,i and ωod,i are the
damped natural frequencies corresponding to the natural frequen-
cies ωs,i and ωo,i; and θs,i = tan−1 2ζs,iωs,iω/(ω2

s,i − ω2)
( )

and
θo,i = tan−1 2ζo,iωo,iω/(ω2

o,i − ω2)
( )

. The angle α is the phase differ-
ence between the excitation and the steady-state responses. The

coefficients α, o1,i, o2,i, s1,i, and s2,i in Eqs. (12) and (13) are the
unknown coefficients that are determined by enforcing the compat-
ibility conditions on the physical displacement and velocity at the
moment when the system switches its state [24]. The compatibility
conditions are enforced by minimizing the differences in displace-
ments and velocities by an optimization solver with respect to
those coefficients and the time in the sliding state. This produces
an approximate solution of the underlying bilinear system.
The equations of motion in (2) are solved using a traditional

Runge–Kutta time integration method and the BAA method intro-
duced in this section, and the results are compared with the mea-
surements in Sec. 4.

2.3 Experimental Setup. This section describes the experi-
mental setup that is capable of simulating and measuring the
dynamics of PWL nonlinear oscillators. These experiments
involve inelastic collisions of oscillators with an initial gap
between the masses. Figure 2 shows the experimental setup. The
system consists of two moving components with adjustable
masses, which are placed on a linear guide system, and their move-
ments are aligned along a single direction. The entire experimental
setup is fixed on an electrodynamic shaker table (SSV-750,
San-Esu, Japan) so that the base excitation to the system can be
applied. The setup is placed such that the direction of the shaker’s
excitation coincides with the direction of the linear guide. Springs
are attached to the two sliding components and they are connected
to a fixture that is fixed to the shaker table. By adjusting the position
where the springs are attached to the fixture, the length of the initial
gap between the sliding components can be adjusted. In order to
simulate an inelastic collision between the oscillators, viscoelastic
rubber sheets (GP-35L, Naigai Rubber Industry, Japan) are attached
to the surfaces of the moving components that are in contact with
each other during oscillation. By adjusting the mass of the compo-
nents, the natural frequencies can be adjusted. This is necessary
because the masses of the components need to be adjusted so that
their natural frequencies differ in order to ensure that the compo-
nents collide with each other during the oscillation. The

(a) (b)

Fig. 2 Experimental setup of the oscillator: (a) overview and (b) magnified view near the
place where contact takes place

(a) (b)

Fig. 3 Measured and estimated forced responses: (a) forced responses of
mass 1 and (b) forced responses of mass 2
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displacements of the moving components and the table are mea-
sured by laser displacement sensors (IL-300, Keyence, Japan).

3 Parameter Estimation
First, experiments have been conducted to estimate the parame-

ters in (2) by studying the forced response of each single DOF
system. This process was necessary to account for the masses of
the springs themselves and the viscous frictional forces of the
linear guide rail and the ones due to the dynamic deformation of
the springs.
First, forced response tests were conducted to obtain forced

responses of each single DOF system. Each separate single DOF
system was excited by a swept-sine base excitation to find the reso-
nant frequency of the systems described in Sec. 2.3. The responses
are shown in Fig. 3. It is noted that these experiments were con-
ducted such that no contact between the masses occurs. Assuming
a harmonic base excitation of the form x0=X0e

jωt, the resulting
response can also be written as a harmonic function, xi=Xie

jωt.
By substituting these into (2) with fc(x1, x2)= 0, the displacement
amplitude of the single DOF system for the base excitation can
be analytically obtained as (see, e.g., Ref. [33])

Xi =

�������������������������������
1 + (2ζiω/ωi)2

1 − ω/ωi

( )2[ ]2
+ (2ζiω/ωi)2

√√√√√ X0 (14)

where ω is the excitation frequency of the shaker, ωi is the natural
frequency of the ith oscillator, and ζi is the damping ratio. Based on
(14), forced responses were computed with the initial sets of param-
eters shown in Table 1. These responses are plotted in Fig. 3.
Second, using the measured and computed responses of the

single DOF systems, a weighted nonlinear least-squares method
was used to estimate the effective masses, equivalent spring con-
stants, and equivalent damping coefficients of the single DOF
systems. The parameter estimation was formulated as an optimiza-
tion problem that minimized the difference between the measured
and computed forced responses at resonance:

min
pi

f i(pi) := sΔX2
i (pi) + rΔω2

i (pi) for i = 1, 2 (15)

where pi= [mi, ci, ki, s, r], mi is the equivalent mass, ci is the
damping coefficient, ki is the spring constant, and s and r are vari-
able weighting coefficients. ΔXi(pi) and Δωi(pi) are defined as

ΔXi(pi) =
Xi(pi) − X̃i

X̃i
(16)

Δωi(pi) =
ωi(pi) − ω̃i

ω̃i
(17)

where X̃i is the measured amplitude of displacement at the reso-
nance and ω̃i is the measured resonant frequency. The minimization
was then performed based on Eq. (15) with the upper and lower
bound constraints as shown in Table 2, and an equality constraint
s+ r= 1. The minimization was conducted using the function
“fmincon” in MATLAB. The estimated values of the parameters
based on the minimization are shown in Table 1, and the calculated
forced responses with the estimated parameters are shown in Fig. 3.

The weighting coefficients converged to s= 0.76 and r= 0.24 for
mass 1 and s= 0.49 and r= 0.51 for mass 2. The interpretation of
the estimated values is as follows. First, the optimization process
is attempted to increase the values of k1 and k2 or decrease the
values of m1 and m2 because the resonant frequencies of the oscil-
lators with the initial parameter values are larger than those obtained
from the experiments. Therefore, it is reasonable to see that the
values of k1 and k2 are both increased. This also corresponds to
the additional stiffness due to the frictional force of the linear
guide rail. The increase in m2 makes sense because of the additional
inertial effect due to the spring motions. The decrease in m1 was
unexpected, however, this is due to the fact that the measured
damping of the oscillator 1 was higher than that of the oscillator
2, and the optimization solver is needed to increase c1 and decrease
m1 because it needed to increase the value of k1.
Slight differences between the measured and computed responses

with the estimated parameters have been observed. These differ-
ences are attributed to the fact that the viscous friction between
the linear guide also creates a slight nonlinearity from a frictional
effect. However, the predicted amplitudes of displacement at the
resonances with the optimized parameter values are in good agree-
ment with the measured amplitudes. This agreement is important
because the amplitude of oscillations of the system is used for dis-
cussing the validity of BAA.

4 Forced Response Analysis
With the parameters obtained in the previous section, nonlinear

forced response analyses of the 2DOF system have been conducted
using time integration and BAA. The results are then compared with
the experimental results.

4.1 Convergence Study. First, convergence studies were con-
ducted to investigate the effects of penalty coefficient k* on the
response. The 2DOF system represented by (2) is constructed in
the MATLAB Simulink environment and excited by a swept-sine har-
monic excitation with an amplitude of 10mm and a frequency
ranging from 1 to 6Hz. A fourth-order Runge–Kutta method
(ode4) was used as the time integration solver with a fixed time-step
size of 0.001 s. In Fig. 4, forced responses of the system are shown
for various values of k*. One can see that the value of k* greatly
affects the results of the forced response. The results do converge
when k* reaches 1.0 × 105N/m. Therefore, in order to reduce
the computational cost while maintaining the numerical accuracy,
k*= 1.0 × 105N/m was used to compute the nonlinear forced
responses that are shown in Sec. 4.2.

4.2 Nonlinear Forced Response. Both experimental forced
response tests and numerical forced response calculations have
been done for the 2DOF PWL system. In particular, the effects of
gap size between the masses on the response and the validity of
BAA are discussed. Namely, three gap values are chosen, i.e., g0
= 0mm, 2mm, and 11mm.
First, forced response tests have been conducted with swept-sine

base excitation for the 2DOF PWL system. The excitation has been
applied for 1–6Hz.
Next, to obtain the steady-state response of the system, forced

response calculations have been conducted by numerical time inte-
gration and BAA. At each frequency, the measured displacement at
the base is used for evaluating x0 in (2). Also, the estimated

Table 2 The constraints for parameter estimation

mi(kg) ci(N s/m) ki(N/m) s r

Upper bound 3.00 50.00 430.00 1 1
Lower bound 1.80 0.00 380.00 0 0

Table 1 The initial and estimated value of the experimental
setup

Symbols m1(kg) c1(N s/m) k1(N/m) m2(kg) c2(N s/m) k2(N/m)

Initial value 1.84 25.00 386.72 2.39 25.00 386.72
Estimated
value

1.80 31.14 430.00 2.46 19.13 417.78
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parameters discussed in Sec. 3 have been used for the numerical
simulations. The contact parameter value of k* for time integration
is equal to 1.0 × 105N/m, which was obtained from the convergence
study shown in Sec. 4.1.
First, forced response results for g0= 0mm are discussed.

Figure 5 shows the displacement amplitude of both masses versus
the excitation frequency for g0= 0mm. As can be seen, results pro-
duced by time integration and BAA are in excellent agreement for
the entire frequency range. Moreover, they qualitatively agree with
the experimental result especially at resonance, with at most 3%
error in the maximum amplitude and 5% in the resonant frequency.
However, there are some differences in the results of time integra-
tion or BAA and that of the experiment. This may suggest that the
mathematical model with the estimated parameter values is not
accurate enough to quantitatively capture not only the resonance
but also the dynamics with frequencies that are higher or lower
than the resonant frequency. To take a closer look at the behavior
of the masses at the resonance, the time histories of the gap function
for a period of oscillation computed by time integration and BAA

are shown in Fig. 6. Note that the horizontal axes of Fig. 6 are nor-
malized with respect to the period of excitation. When the gap func-
tion becomes equal to or slightly less than zero, it means that the
system is in the closed state. As can be seen, both time integration
and BAA produced a gap function between 0 and 10mm. However,
some differences between time integration and BAA are observed.
Namely, time integration produced a shorter closed state than that
produced by BAA.
Second, forced response results for g0= 2mm are discussed.

Figure 7 shows the displacement amplitude of both masses versus
the excitation frequency for g0= 2mm. Again, the results computed
by time integration and BAA are in excellent agreement for the
entire frequency range. Note that the response computed by BAA
does not contain results with the excitation frequency below 1.25
Hz or above 5.5Hz because the contact between the masses do
not occur in these frequency ranges. Time histories of the gap func-
tion at the resonance are shown in Fig. 8. As can be seen, the dura-
tion of the closed state predicted by time integration is still shorter
than that predicted by BAA. However, the duration of the closed
state predicted by BAA has become slightly shorter than that pre-
dicted by BAA for the case with g0= 0mm.
Finally, the results of the forced responses with a larger gap size,

i.e., g0= 11mm, are discussed. In Fig. 9, there is a primary reso-
nance at 2.1Hz and a secondary resonance at 2.7Hz in the results
from experiments. This phenomenon is also observed in time inte-
gration with slight differences in the maximum amplitude and fre-
quencies, as seen in Fig. 9. On the other hand, the response
produced by BAA is smooth at the resonance and does not show
the multiple resonances. Figure 10 shows the time histories of the
gap function at 2.4Hz. The contact duration predicted by time inte-
gration is still shorter than that predicted by BAA. However, the dis-
crepancy between the results of time integration and BAA,
especially in terms of the duration of the closed state, is smaller
than that observed for the cases with g0= 0 and g0= 2mm. This

(a) (b)

Fig. 4 Convergence study with respect to contact parameter: (a) response of
mass 1 and (b) response of mass 2

(a) (b)

Fig. 5 Measured and computed forced responses when g0=0mm: (a) forced
responses of mass 1 and (b) forced responses of mass 2

(a) (b)

Fig. 6 Time histories of the gap function for g0=0mm at 2.4Hz:
(a) time integration and (b) BAA
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is because the contact duration becomes small as the gap size
becomes large, and the contact states predicted by both methods
become close to each other. However, the phenomenon of multiple
resonances is not observed in the results computed by BAA. This
may be due to the fact that BAA does not capture some frequency
components in the response, as will be discussed in Sec. 4.3.
It is noted that as the initial gap size increases, the difference

between the time history obtained by time integration and that
obtained by BAA decreases, as can be seen in Figs. 6, 8, and 10.
This is because the duration of contact period decreases as the
initial gap size increases. As can be seen in Fig. 8(a), the time inte-
gration method predicts that the gap function increases up to 4mm
after the contact and it stays below 5mm until the normalized time is
0.45. Then it increases again and reaches its maximum. On the other
hand, based on the results of BAA as shown in Fig. 8(b), the gap
function is forced to be in the closed state when the normalized
time is between 0 and 0.4. This strict enforcement of the closed
state is achieved by an artificial penalty damping factor that is
applied when the masses are in contact with each other [24]. This
damping effect is not included in the model used for time integra-
tion. Therefore, since this enforcement of the closed state generates
the difference between the results obtained by time integration and

BAA, if this time period decreases due to an increase in the initial
gap, BAA will approximate the dynamics of the system better, as
seen in Fig. 10.

4.3 Spectral Analysis. In order to further examine the dynam-
ics of the system, particularly when the masses are in the frequency
ranges where intermittent contact takes place, spectral analyses
have been applied to both experimental and numerical forced
responses. For the experimental data, the wavelet transform has
been applied to observe the instantaneous spectrum of the experi-
mental data in frequency because the experiment involved a rela-
tively fast frequency sweep. The bump wavelet was applied as
the mother wavelet in the wavelet analysis. For numerical
responses, the fast Fourier transform (FFT) was applied to
compute the frequency spectrum at each excitation frequency.
Note that both the wavelet transform and FFT produce comparable
results. Figure 11 shows the spectral distribution of the measured
and numerically computed responses of both masses with g0= 2
mm. For numerically computed responses, both time integration
and BAA have been considered. In Figs. 11(a) and 11(d ), one
can observe an order line that represents the frequency component
of the excitation frequency for the entire frequency range. Further-
more, one can also see the super-harmonic components, or the fre-
quency components that are integer multiples of the excitation
frequency in the frequency range from 1.5Hz to 4Hz for
both masses. This means that there is intermittent contact between
the masses in that frequency range, because intermittent contact
of masses is known to produce super-harmonics. Also in
Figs. 11(b) and 11(e), one can see that time integration produces
the order line representing the frequency component that is identical
to the excitation frequency. Furthermore, one can also observe the
super-harmonic components that are observed in the experiments.
Note that a subharmonic occurs at about 5Hz and there is also a
zero frequency component present in time integration, but these
do not occur in the experiments.
The results computed by BAA are shown in Figs. 11(c) and

11( f ). Again, the spectral distributions computed by BAA do not

(a) (b)

Fig. 7 Measured and computed forced responses when g0=2mm: (a) forced
responses of mass 1 and (b) forced responses of mass 2

(a) (b)

Fig. 8 Time histories of the gap function for g0=2mm at 2.4Hz:
(a) time integration and (b) BAA

(a) (b)

Fig. 9 Measured and computed forced responses where g0=11mm:
(a) forced responses of mass 1 and (b) forced responses of mass 2
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contain results when the excitation frequency is below 1.5Hz or
above 5.5Hz, because the contact between the masses do not
occur in these frequency ranges. Namely, the response is linear in
these frequency ranges, and these linear responses contain the fre-
quency component that is identical to the excitation frequency,
which is denoted by the dashed line. As can be seen in
Figs. 11(c) and 11( f ), in addition to the line corresponding to the
excitation frequency, a frequency component that is twice the exci-
tation frequency is also observed. Other than these frequency com-
ponents, no other super-harmonic components are observed, even
when the intermittent contact between the masses is strong. This
means that BAA does not produce higher harmonics in the
response, even though it captures the behavior of intermittent
contact between the masses. This aligns with the key idea behind
BAA, which assumes that there are only two states in the dynamics
of the bilinear system, i.e., closed and open states. It is interesting
to note that BAA does not have any subharmonic or zero
frequency components, which, unlike time integration, matches
the experiments. Furthermore, it is noted that there is a possibility
that higher order nonlinearity has been induced at the contact. For

instance, for g0 = 2mm at 2.4Hz, the gap function produced by
BAA is closed from 0 to approximately 0.4 normalized time and
open for the rest of the vibration cycle, as can be seen in
Fig. 8(b). This means that the contact was assumed to be perfectly
inelastic or soft. On the other hand, from 0 to approximately 0.4 nor-
malized time, the gap function produced by time integration is open
with a non-zero gap opening of 3–4mm. This means that the contact
between the masses was not perfectly inelastic. This behavior of the
masses generated higher order harmonics in the spectra of the
response of both masses. Since we observe the higher order har-
monics, both in the results of experiments and of time integration
as shown in Fig. 11 such phenomenon likely occurred during the
experiments.
Figure 12 shows the spectral distributions of the displacement of

both masses with a larger initial gap size, g0= 11mm. As seen in
Figs. 12(a) and 12(d ), measured displacements contain not only
the frequency component that is identical to the excitation fre-
quency but also the super-harmonic components especially in the
vicinity of the resonances. By comparing Fig. 11(a) or 11(d ) with
Fig. 12(a) or 12(d ), one can see that the width of the frequency
bands where the super-harmonic components are observed are nar-
rower in Fig. 12(a) or 12(d ), than those observed in Fig. 11(a) or
11(d ). This trend is shown even more dramatically in the results
for time integration, as shown in Figs. 12(b) and 12(e). Namely,
the frequency band where super-harmonic components are
observed is much smaller than that observed in Figs. 11(b) and
11(e). Since the occurrence of super-harmonic components in the
response indicates that intermittent contact between the masses
occurs, this result indicates that when the gap size between the
masses increases, the frequency band where intermittent contact
occurs decreases. This means that as the gap size increases, the
masses tend to make less contact with each other as they vibrate.
Indeed, the time history of the gap function at resonance shown
in Fig. 10(a) shows that the duration of contact is short, which jus-
tifies this argument. Figures 12(c) and 12( f ) show the results com-
puted by BAA. As can be seen, the intermittent contact between the

(a) (b)

Fig. 10 Time histories of the gap function for g0=11mm at 2.4
Hz: (a) time integration and (b) BAA

(a) (b) (c)

(d) (e) (f)

Fig. 11 Spectral distribution of displacements where g0= 2mm: (a) experimental result of mass 1, (b) response of mass
1 computed by time integration, (c) response of mass 1 computed by BAA (dashed line indicates the first-order line), (d)
experimental result of mass 2, (e) response of mass 2 computed by time integration, and (f) response of mass 2 com-
puted by BAA (dashed line indicates the first-order line)
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masses occurs only in the vicinity of the resonance. This is in agree-
ment with the results given by time integration. This time for BAA,
almost no super-harmonic component is observed in the response,
which means that even though intermittent contact between the
masses occurs in the frequency range, the contact is so mild that
it almost has no effect on the dynamics of the masses. This indicates
that for the prediction of the dynamics of bilinear systems involving
higher harmonic components over a very short time period, such as
during impact, further extension of the method may be necessary to
fully capture the dynamics. However, it is important to note that
BAA does match time integration quite well (see Fig. 9), and
there is a bigger difference between the experiment and both com-
putational methods.

5 Conclusions
In this paper, the forced response of bilinear systems with initial

gaps involving inelastic collision was investigated by numerical
simulation and experiments. A focus was placed upon the experi-
mental verification of the generalized BAA, which was developed
for the accurate estimation of forced responses of bilinear
systems. By conducting spectral analyses on the experimental
results and numerical forced responses of the bilinear system, it
was shown that super-harmonic components of the excitation fre-
quency can be observed. Moreover, for a small gap size, time inte-
gration appeared to match the higher harmonic content of the
experiments better than BAA. This is due to the assumptions in
the BAA method that lead to some simplifications in the response
that remove some of the higher order harmonics. At the same
time, BAA was a better match of the experiments than time inte-
gration when considering subharmonics. Furthermore, it was
shown that as the gap size becomes large, the frequency range
that includes super-harmonic components becomes narrow. To
further expand the capability of BAA, extension of the method to
account for higher-order dynamics would be beneficial.
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