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ABSTRACT

A general formulation of piecewise linear systems with dis-
continuous force elements is provided in this paper. It has been
demonstrated that this class of nonlinear systems is of great im-
portance due to their ability to accurately model numerous scien-
tific and engineering phenomena. Additionally, it is shown that
this class of nonlinear systems can demonstrate a wide spectrum
of nonlinear motions and in fact, the phenomenon of weak chaos
is observed in a mechanical assembly for the first time.

Despite such importance, efficient methods for fast and ac-
curate evaluation of piecewise linear systems’ responses are
lacking and the methods of the literature are either incompat-
ible, very slow, very inaccurate, or bear a combination of the
aforementioned deficiencies. To overcome this shortcoming, a
novel symbolic-numeric method is presented in this paper that is
able to obtain the analytical response of piecewise linear systems
with discontinuous elements in an efficient manner. Contrary to
other efficient methods that are based on stationary steady state
dynamics, this method will not experience failure upon the oc-
currence of complex motion and is able to capture the entirety of
the dynamics.

INTRODUCTION
The use of discontinuous models to emulate the behavior
of various natural phenomena has been studied considerably for
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a number of physical systems [1,2]. As a significant subset of
discontinuous systems, piecewise linear (PWL) models form an
important class with applications in most fields of science and
especially engineering [3, 4]. Their strength in capturing the
physics of systems with gaps or prestress, owing to the exis-
tence of cracks, joints or intermittent contacts, is considerable
and further signifies their importance [5, 6]. Alternatively, an-
other class of discontinuous systems are also formed due to the
existence of elements that inherently exhibit discontinuous na-
ture. The relative motion between contacting surfaces in many
systems can be thought of as a discontinuous element that results
in Coulomb friction which has the capability to fundamentally
alter the dynamical behavior of these systems [7, 8]. Accurate
models for numerous applications in mechanical, civil, marine,
and aerospace engineering can lead to piecewise linear systems
with discontinuous force elements being observed [9, 10]. It is
necessary to state that PWL systems with discontinuous force el-
ements (PWLDFE) are not only of great significance due to their
exceptional modeling capabilities, but are also important from
a theoretical point of view since a wide range of motions (non-
chaotic, weakly chaotic and chaotic) can be generated by them.

Studying the dynamical behavior of the combination of
PWL systems with such alternative discontinuous elements is a
powerful tool for many applications. Due to the nonlinear nature
of such models, the employment of linear techniques is typically
inadequate [11] and other approaches are employed. The math-
ematical foundation of such systems, commonly referred to as
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differential inclusions, is studied in detail by Filippov [12] and
no analytical solutions exists for the general case of such sys-
tems. The arduous mathematics of differential inclusions, and
consequently PWL systems, obligated engineers to employ sim-
plifying assumptions that resulted in inaccurate estimations of
the dynamical behavior of these systems. Indirect fundamen-
tal mathematical methods were also introduced and adapted to
qualitatively capture some dynamical characteristics [13]. Con-
trary to the general approaches of mathematicians, researchers in
various fields of engineering attempted to propose approximate
solutions or to only focus on special cases that were of signif-
icant importance to a desired application. Nakhla proposed the
harmonic balance method to calculate the periodic steady-state
solution of nonlinear systems [14]. His method was adapted by
Lau and Zhang [15] to be suitable for PWL systems. Many al-
ternative methods have since been proposed that are capable of
accurately approximating the periodic steady state response of
PWL systems. Saito el al. developed one such method that ex-
ploits both the frequency and time domain to estimate the steady
state system response [16]. Recent studies that propose novel
methods for obtaining the steady state response of PWL sys-
tems are mainly focused on their capability in treating higher
dimensional systems [17—19] but it should be stated that all the
preceding methods are susceptible to failure in case of complex
periodic responses. Additionally, these methods are ineffective
for non-periodic steady state responses, which are known to oc-
cur in PWLDFE systems. Recently, a novel analytical-numerical
method was developed [20,21] that is able to obtain an arbitrary
response of PWL systems. The proposed method is computation-
ally efficient and does not limit its scope to systems with periodic
steady state responses and serves as the foundation in which this
work is built upon.

It is also important to mention that due to the lack of efficient
techniques, researchers have been forced to utilize numerical in-
tegration (NI) methods to evaluate the response of this class of
systems. The employment of NI methods such as Runge-Kutta
or Adams-Bashforth is computationally expensive and, in many
cases, excessively time consuming. In addition to this short-
coming, due to numerical error, NI methods might fail to cap-
ture the entirety of the dynamics, especially in the case of stick-
slip scenarios. The problem with NI methods runs deeper when
such systems start to demonstrate nonlinear phenomena such as
chaotic behavior [20].

To overcome the aforementioned shortcomings in evaluating
and analyzing PWLDFE systems, a new method is introduced in
this work. The methodology presented in this work is based on
mathematically manipulating the PWLDFE system in intervals
that are in fact continuous. Using such techniques, it is possible
to convert the strongly nonlinear problem to a series of systems
that are linear in specified intervals; thereby enabling the use of
linear modal transformations and an analytical determination of
the response in each time interval. The proposed method can be

considered as an adaptive fusion of numerical methods that are
utilized to speed up the process of identifying the switch from
one interval to another and analytical methods. Consequently,
this hybrid symbolic numerical computational (HSNC) method
is more accurate, faster and more reliable than traditional NI
methods.

To demonstrate the merits of the proposed method and to
verify its validity, a multi-degree of freedom mass-spring-damper
system with intermittent contact and friction is studied and the
time response is obtained and compared with the results of NI. It
is shown that the HSNC method’s runtime is hundreds to thou-
sands of times faster than conventional NI methods. It is note-
worthy to state that the chaos encountered in this paper does not
exhibit conventional chaotic characteristics and is considered to
be weakly (or slowly) chaotic by some references [22-24]. The
fact that this phenomenon has never been reported in mechanical
systems adds to its theoretical significance. It is also important to
note that the accuracy and speed superiority of the HSNC method
to NI improves as the system studied increases in dimension.

The remainder of this work is structured in the following
manner. Section 2 introduces the methodology of the HSNC ap-
proach and explains the procedure that one must follow to ob-
tain accurate results. Section 2 also offers a detailed prelude
on PWLDFE systems. Section 3 demonstrates the capabilities
of the HSNC method by simulating a number of PWLDFE sys-
tems. Section 4 presents the conclusions and detailed discussions
on the obtained results.

METHODOLOGY

The methodology for computing the response of PWLDFE
systems using HSNC is presented in this section. First, a math-
ematical description of PWLDFE systems is given. Next, the
HSNC method [21] originally created for PWL systems is ex-
tended for PWLDFE systems. Although the use of HSNC in this
work is focused on industrial oriented applications, it also has
academic applications due ot the scientific value of PWLDFE
systems.

PWLDFE standard formulation

HSNC can be used to obtain the total response of PWLDFE
systems but, prior to its detailed introduction, it is important to
establish a standard formulation of PWLDEFE systems. The for-
mulation here is focused on mechanical systems, as illustrated in
Fig. 1, however the same idea can be employed for any PWLDFE
system that can be solved analytically in the specified intervals.

The standard formulation of PWLDFE systems in this pa-
per consists of a multi-degree of freedom mass-spring-damper
system with intermittent contact and Coulomb friction. The in-
termittent contact can represent cracks or gaps between jointed
assemblies in mechanical systems. The only assumption in this
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FIGURE 1: CONFIGURATION OF PWLDFE SYSTEMS IN
THIS WORK.

work is that the PWLDFE systems are proportionally damped
since a disproportionate damping would complicate the process
of modal decomposition yet presents no significant scientific
novelty. Equation (1) mathematically defines PWLDFE systems
in the form of a differential inclusion.

MK (1) + Cx(r) + Kx(r) — Fsin(wr) € 2(x(1)), (1)

where M, C, and K represent the mass, damping, and stiffness
matrices, respectively. Vectors X(7), X(¢), x(7) and F correspond
to the system’s acceleration, velocity, position and excitation
magnitude. Symbol € is conventionally used in defining differ-
ential inclusions. The right hand side of the differential inclu-
sion, which represents the discontinuity from Coulomb friction,
is defined as

—emy gsign(x1 (1))
-@(X(t)) = _;u'kngaSSSign(X(t)) = 5 (2)
— emygsign (%, (1))

where L represents the coefficient of kinetic friction, which in
general can vary between from mass to mass even though that
is not shown in Eq. (2) . Vs is the vector representation of
the masses and is identical to the components of the principal
diagonal elements of the M matrix. It is written in the vector
form to have dimensional compatibility. It is important to note
that matrices C and K will change due to intermittent contact.
It should be noted that when a subsystem has a zero velocity
and becomes stuck, the magnitude of the friction force will be
equal to the sum of all the forces acting on the subsystem and
its direction will oppose the motion. The static friction force on
the subsystem can vary up until it reaches the maximum static
friction denoted as p;m;g.

To further elucidate the intermittent contact’s dynamics, it
can be noted that the subsystems (individual masses) that have
intermittent contact pairs can have two distinct configurations.
One configuration is where the subsystems’ intermittent contact

pair does not experience contact and the subsystems are “open”.
Alternatively when the intermittent contact pair starts to have
contact, then the configuration will be considered “closed”. The
status of the configuration is contingent upon the position of the
two intertwined subsystems and configuration parameters. This
is shown in Fig. 2 in detail. Mathematically speaking, when
xi(t) —xi41(f) — ¢; < O the intermittent contact pairs would not
experience contact, but for x;(¢) — x;4;(f) — ¢; > 0 the contact
pairs will be in contact. It is important to note that the method
works just as well when there is more than one intermittent con-
tact pair in the model. The parameter ¢; represents the gap from
the ' mass to its next adjacent intermittent contact pair when the
springs are unstretched. To further elaborate on this model and
its characteristics, it is assumed that the " and i 4+ 1" subsys-
tems have intermittent contact. Assume that for the case where
the intermittent contact’s status is open the motion is described
by Eq. (1). Upon a change in the positions of the subsystems and
an alteration in the configuration’s status, from open to close, the
equation of motion can be rewritten as

Mx(¢) + C'x(t) + K'x(t) — Fsin(wt) € 2(x(t)) + Ferey,  (3)

where C’ and K’ are calculated as

| | | | | |

4)
where the indicated rows and columns of Eq.(4) are the i and
i+ 1" To elaborate on the meaning of the constant vector Z .,
it is beneficial to discuss the contact in detail. When the adjacent
subsystems experience contact, the spring force of the intermit-
tent contact can be written as

k(X —xip1— @ ), 5)
—— =~

inconstant ~ constant

By updating matrices C and K as illustrated in Eq. (4), the
inconstant terms are included in the new dynamics but the con-
stant portion of the intermittent contact pair’s spring force re-
mains unaccounted for. Therefore, they are stored in the i'" and
i+ 1" columns of ., as

* * T
Fete = [ =k (—0) +k* (=) ---]". (6)
It should be noted that the dotted elements in C’, K’ and
Zse are determined in accordance with other intermittent contact

pairs.
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FIGURE 2: SCHEMATIC VIEW OF THE POSSIBLE CON-
FIGURATIONS FOR PWLDFE SYSTEMS WITH INTERMIT-
TENT CONTACT.

The left hand side of Eq.(3) is compatible with modal anal-
ysis but the right hand side does cause certain issues. In addition
to the presence of constant forces caused by intermittent contact
pairs (%), the friction force presents issues of its own. The
friction force on each subsystem is contingent upon the direction
of its motion and changes sign upon having a change in the di-
rection of motion. Additionally, it is possible and quite probable
that some subsystems experience moments of staticity and this
can greatly affect the general equations of motion. To elucidate
this scenario, assume that the i subsystem of the studied sys-
tem represented by Eq. (3) goes into staticity; this results in a
change in the equation of motion. Mathematically speaking, the
staticity requires that ¥; = 0, x; = 0 and x; = cte and due to the
fact that the i subsystem is no longer dynamic, the i row of
Eq. (3) must be eliminated. The i column of the matrices M
and C are multiplied by &; = 0 and x; = 0, respectively and, since
their values are zero during staticity, they produce no force ele-
ment. Contrary to the i’ column of M and C, the i column of
K is multiplied by the constant term x; = cte and produces i — 1
force elements (where some are zero depending on the problem).
These force elements exist for the entire duration of staticity and
must be carefully accounted for. To rewrite the problem after the

staticity of the /' subsystem, it is reasonable to eliminate the i
row and column of matrices M, C and K and obtain the new re-
duced mass, damping and stiffness matrices Myed, Creq and Kyeq
where the i column of the K matrix affects the dynamics. The
resulting constant force vector % is introduced as

€ = [Kii -+ Ki_1)i Kignyi - K”i](Tn—le xxi, ()

Subsequently, the new equation of motion can be repre-
sented as

Mredg(t) + Credg(t) + KredX(t) _Eredsm(wt) € @red (X(t)) - %7

®)
where F.q and Zq are vectors F and 2 respectively with the
i"" row eliminated.

It can now be noted that the correct analysis of these sys-
tems is dependent upon the treatment of varying forces that are
constant in certain intervals (2, € and .%.). To properly model
such systems, it is necessary to identify these constant forces and
crucial to fully explore the possible scenarios. The next section
will delineate the methodology utilized by HSNC to obtain the
response of such strongly nonlinear systems. It is also helpful to
state the most general form of this problem that contains all the
constant force vectors and can be denoted as

MredX(?) + CreaX () + KreaX(t) — Fregsin(or) €
9l'ed (K([)) —-% + ﬁcte; (9)

HSNC

As stated previously, the PWLDFE systems benefit from
a linear formulation except for constant terms representing the
frictional forces, the intermittent contact pairs’ spring forces and
the constant forces coming from the occurrence of staticity. The
first step in HSNC concentrates on finding the switches between
states but, prior to this step, it is necessary to eliminate the con-
stant terms via mathematical manipulations. This is done by in-
troducing new temporary coordinate systems.

Temporary coordinates to eliminate constant
forces To obtain a fully linear formulation, it is essential to
eliminate the constant terms. Temporary coordinate systems for
each interval that the force vectors remain constant are used to
remove the force vectors.

To elucidate this step in detail, it is beneficial to delve into
the mathematical procedure. Assume the system of Eq. (9). A
new set of coordinates will be introduced that eliminates all the
constant forces when used. The new coordinates can be defined
as X/ () = x(¢) — y and v is obtained in accordance with Eq. (10)
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below. Based on the different physical scenarios (friction, inter-
mittent contact, staticity or any of their combinations) the corre-
sponding formula of 7y changes.

+K'x 2
Y=< —Kpeq ' X € for sole staticity (10)

+K ! x.Z,, for sole intermittent contact

for sole friction

After doing so, the governing equation of motion can be written
as

MK/ (1) + CX'(r) + Kx'(1) — Fsin(wr) = 0, an

It is now feasible to implement modal transformation to decou-
ple the coupled differential equations and obtain the equations
of motion in modal coordinates. To do so, the modal coordinate
is defined as x'(r) = wq(¢). It should be noted that the modal
matrix ¥ should be obtained based on the system matrices (mass
and stiffness since the system is assumed to be proportionally
damped) corresponding to that interval and, upon having inter-
mittent contact or staticity, it is expected to observe an alteration
in y. After applying the modal transformation, assuming a n
degree of freedom dynamic system, the decoupled equations of
motion in modal coordinates can be obtained as

Y Myi(r) + ' Cya(r) + v Kyq(r) = y' Fsin(or), (12)
or alternatively
Gi(t) +2&i0,Gi(1) + o5.qi(t) = fisin(wt), i=1,---,n. (13)

Now, one can employ fundamental vibrational analysis to acquire
the response of the decoupled differential equations. For an un-
derdamped case

qi(t) = e GiOn! [clsin(wdit) +czc0s(a)dit)]

N fisin(or — 6;) ’ (14)

oiyf(1-(27) + (252)

where f, @,, @;, & and ® represent the modal force, undamped
natural frequency, damped natural frequency, viscous damping
ratio and excitation frequency, respectively. c¢; and ¢, are con-
stant terms that are identified based on the initial values of the
system, and 6 is calculated as 6 = ran™! Z)";?Z)”; ) The analyti-
cal response of the Eq. (11) is now obtained;nthis solution is only

valid for a limited interval where the equations of motion remain
continuous. After the alteration of the equations of motion due to
the effects of discontinuous force elements, the proposed coordi-
nates systems are no longer correct and a new set of coordinate
systems must be calculated and implemented. The coordinate
systems used in the structure of HSNC are temporary otherwise
the system would simply behave as a linear system.

Switches: Definition, categorization and detection
After reformulating the problem and obtaining the analytical re-
sponse, the next step consists of finding the interval in which the
doscontinuous force vectors remain constant. To do so is to find
the moments where the governing equations of motion switches
from one continuous equation to another.

Definition 1. (Switch) Switch is the transition from one con-
tinuous interval of the governing equations to another. The dis-
continuities in the governing equations that result in a switch are
caused by a change in contact status, a change in the direction of
friction forcing or a change in the staticity state.

In order to find the switches in PWLDFE systems and to un-
derstand their underlying effects, it is essential to study them in
detail. Two types of switches may occur in PWLDFE systems
that have substantial differences and affect the system in dissim-
ilar manners. Based on their impact on the dynamical behavior
of the system, they are categorized as minor or major switches.

Major switch

Definition 2. (Major switch) A switch is labelled as major
if it changes the dynamical characteristics of a subsystem.

There are two types of major switches in PWLDFE systems
that occur as a result of the activation of intermittent contact pairs
or the staticity of (a) subsystem/s.

Type L. Type I major switches are those that are triggered by
intermittent contact pairs. When such switches occur, a change
in matrices C or K or both is unavoidable and subsequently the
dynamical characteristics of the system, such as natural frequen-
cies and damping ratios, are affected.

Type II. Type II major switches take place when one sub-
system gets stuck in its position. The staticity of a subsystem
affects the governing equations of motion by transforming the
connected system into two separated systems. This event parti-
tions the mass, damping and stiffness matrices and prompts fun-
damental changes to the dynamical characteristics of the system.
It is important to note that the return of a previously static sub-
system to motion is also considered as this type of switch.

Next, consider the triggering condition for each type of ma-
jor switch.

Triggering Condition (Type I). Assume that two adjacent
subsystems have intermittent contact as depicted in Fig. (2). It
is evident that the switch happens when the intermittent contact
pair starts to experience contact (changing of the status of the
intermittent contact pair from open to closed) or starts to lose
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one (changing of the status of the intermittent contact pair from
closed to open). Each of the scenarios happen when Eq. (15),
called the gap function, switches its sign.

Gi(t) = xi(t) —xit1(t) — @i (15)

To have the formatting compatible with the structure of HSNC,
the definition of Eq. (15) is rewritten in discrete time and without
loss of generality as

Gi(k) = xi(k) — xit1 (k) — ¢, (16)

where k represents the evaluation of the function in the k" step.
Consequently, the condition that triggers a type I major switch
can be mathematically described as

Gi(k)Gi(k+1) <0, (17)

Although trivial, it should be noted that the switching con-
dition might be triggered multiple times during the simulation
but only the earliest should be considered since it represents the
occurrence of a discontinuity in the equation of motion. In fact,
the earliest switch of any type in any of the subsystems serves as
a critical switch since it indicates the invalidity of the obtained
solution for further evaluation of the system’s response.

Triggering Condition (Type II). The triggering condition
corresopnding to type II major switches has complexities of its
own because contrary to the preceding case, it cannot be summa-
rized using one equation. To clearly discuss the triggering con-
dition, it is best to seperate the switch into two scenarios. The
first scenario occurs when the i subsystem is moving and then
reaches zero velocity. In this scenario, to check for the occur-
rence of a major switch requires checking if the i subsystem
gets stuck or not. Mathematically speaking, for this scenario, the
triggering condition is

Acting force on the " subsystem| < sig, (18)
g y u

which means that after the subsystem stops, the acting force can-
not overcome static friction and the subsystem does not move.
The acting force on the i subsystem is defined as the vector
sum of all external forces acting on the mass including the spring,
damper and excitation forces, and i, represents the coefficient of
static friction.

The second scenario occurs when the i subsystem is static.
The forces acting on the i subsystem are constantly checked to

detect the first instance when the acting forces overcome static

friction and begin to move the stuck subsystem. Mathematically
speaking this can be expressed as

| Acting force on the " subsystem| > pgm;g. 19)

In fact this condition ensures that the acting forces are greater
than static friction.

Definition 3. (Minor switch) A switch is categorized as mi-
nor if its occurrence does not affect the dynamical characteristics
of the subsystem.

The only type of minor switch for the discontinuities con-
sidered in this work is the alteration of the direction of friction
where the subsystem does not get stuck (instantaneous staticity).
This discontinuity will only result in a change in the sign of the
friction force that is being exerted onto the corresponding sub-
system. Minor switches are still very important since they do
generate a discontinuity in the governing equations of motion
that prevent the use of linear techniques.

Triggering Condition. The minor switches occur as a result
of a change in the direction of the motion of a subsystem and
their triggering condition corresponds to a change in the sign of
the velocity of a subsystem. This can be expressed as

Xi(k)xi(k+1) <0 and
| Acting force on the i/ subsystem| > pym;g, (20)

It should be noted that the triggering conditions for each type
of switch must be checked when evaluating the analytical solu-
tion in Eq. (14). To efficiently detect these switches one can use
an adaptive numerical scheme.

Adaptive numerical techniques To check for the oc-
currence of switches, it is required to evaluate the response of
the system using the analytical response given in Eq. (14). It
is noteworthy to mention that even for a specified system with
fixed parameters, consecutive switches may happen in a variety
of time scales (e.g. ranging from milliseconds to tens of sec-
onds). If one used a constant time step to evaluate the response,
then one would need a tiny time step, which would place an un-
necessarily heavy computational burden on the method. To cope
with this issue, two time steps are proposed that attempt to create
an adaptive structure for faster evaluation. The smaller time step
is used to construct a vector that evaluates the response of the sys-
tem for a small amount of time (usually 200 — 1000 steps) and
checks for the occurrence of any early switches. If no switch is
detected, the method changes to the larger time increment (about
190 — 990 times larger) and evaluates the response up to a prede-
termined time (usually thrice the period of the external excitation
to ensure the capture of at least one switch). After the detection
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Motion Identification:
The motion of every subsystem is checked
and subsequently categorized as

Discontinuous Element Identification:
Based on the motion and status of every subsystem, the
existence and numerical value of constant force vectors

Temporary Coordinate Introduction:
To eliminate the constant force vectors from the
equation of motion and to obtain a fully linear

The final point of the system’s response is
introduced to the HSNC algorithm as the
initial condition for the next iteration.
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FIGURE 3: DETAILED SCHEMATIC VIEW OF THE HSNC ALGORITHM FOR PWLDFE SYSTEMS.

of one switch (e.g., a minor switch) the time vector’s final value
is changed from the predetermined time to the time where the
switch was found to shorten the search space and the same algo-
rithm goes on to identify all the switches.

As stated previously, the triggering conditions of switches
indicate the change in the sign of a known function and therefore
the algorithm only identifies the occurrence of a switch in an in-
terval of the size of the time step. To significantly enhance the
accuracy of the method, the MATLAB’s fzero nonlinear solver
method is utilized to spot the exact time where the switch condi-
tion is triggered. Instead of providing the solver with one initial
guess, the two time instances before and after the triggering of
the switch condition are provided as the bounds. This makes the
solving process fast and accurate.

PWLDFE system response By checking for the oc-
currence of all the switches (minor and major) in all of the sub-
systems, a vector is created which contains all the time instances
where switches happen. It is known that the obtained responses
are only correct until the first switch occurs (where the equa-
tion of motion remains continuous). The minimum value of the
switch time vector is the final time where the results are valid
and the response should be obtained up to that point and that
point should serve as the initial conditions for the next iteration
of response evaluation. This same process then repeats stitching
together the individual linear responses to obtain the complete
response of the PWLDFE system. Figure 3 demonstrates a de-
tailed schematic view of the HSNC algorithm used in this work.

RESULTS

To demonstrate the effectiveness of the method the system
shown in Fig. (4) is studied. The system under study is a 2-
DOF mass-spring-damper system with friction that experiences
intermittent contact between the two masses.

ki, ci
F,(t) F2 (%)
ky,cq k3, c, ks, c3
J\/\/\_ m4q m; J\/\/\_

[T— T— [T—
|- L |

N i

i Coulomb

X1 friction X2

FIGURE 4: TWO DOF PWLDFE SYSTEM STUDIED.

The parameters of the aforementioned system are selected to
demonstrate two scenarios that highlight the effectiveness of the
HSNC method. The parameters of the system, for both scenarios,
are provided in Table 1 and are all in SI units. 3 represents the
proportionality coefficient and is used to calculate the damping
matrix as C = K.

In the first scenario, the parameters are chosen to demon-
strate the effetiveness of HSNC over NI when a very small step
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TABLE 1: NUMERICAL VALUES OF THE SYSTEM PARAMETERS FOR SIMULATION.

Scenario m; my ki kp k3 ﬁ M

us R 12 ® L 1

1 1 2 5
2 1 2 5

10 40 0.1
10 40 O

0.6 0.75 22500
06 075 225 150

-15000 175.5151 100 0.2

17.5515 100 0.2

size is needed. The second scenario highlights a deficiency in
NI methods that cannot be fixed by reducing the step size since
the motion is weakly chaotic and the small numerical error in NI
will cause a systematic failure in obtaining accurate results. The
validity, accuracy and runtime of HSNC are compared to NI to
illustrate the capabilities of the method.

The NI method used in this work is the Adams-Bashforth
four-step method with a fixed time increment. For the first sce-
nario, the response of the system is obtained using the HSNC
method and then compared with the NI method with two differ-
ent step sizes (€ = le > and € = le~%). The response computed
by NI for both time steps is shown in Fig. (5) and highlights
the change in solution from the two different time steps. A more
complicated adaptive time step approach would be required to
accurately solve this problem using NI, which would be compu-
tationally expensive and require a very small time step to obtain
an accurate solution. It should be noted that the initial condi-
tions of the simulation for both scenarios are x; (0) = 0.2,x,(0) =
—0.1,%;(0) = =5 and X, (0) = —2.

As mentioned in the introduction, PWLDFE systems are not
only important from a modeling perspective but are also theo-
retically significant since they are capable of producing a wide
range of dynamical motions. Simple PWL systems are known
to illustrate chaotic motion as study [20] suggests. The prior ex-
ample of this section also demonstrates a case where this system
produces a steady-state periodic motion. In addition to the afore-
mentioned motions, this work will show that PWLDFE systems
are also capable of illustrating weakly chaotic motion where the
divergence of two infinitesimally close trajectories does not oc-
cur exponentially. It is important to note that this weakly chaotic
motion has not previously been reported for mechanical systems.
The response of the system exhibiting weakly chaotic motion is
presented in Fig. 6

Figure 6 shows the trajectories of the HSNC response start
to diverge from the NI response; however, unlike chaos that di-
verges exponentially, this weakly chaotic system diverges slowly
and is only clearly seen after nearly 100 seconds. It is also im-
portant to note that the runtime of HSNC is significantly smaller;
for the simulation in Fig. 6, NI takes 900 seconds while HSNC
take 6.31 seconds, which is about 142 times faster than NI. Also
as the dimension of the system grows, HSNC’s computational

via HSNC
X, via HSNC
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FIGURE 5: TIME EVALUATION OF THE SYSTEM VIA
HSNC AND NI WITH 2 DIFFERENT STEP SIZES.

performance with respect to NI continues to increase signifi-
cantly [20]. Although one might think that the divergence of NI
from the response of HSNC is a result of numerical error (and not
weak chaos), but this is not the case, which will be demonstrated
in the next example.

To better demonstrate the weakly chaotic behavior, the phase
portrait of the system is presented in Fig. 7. In fact, Fig. 7
illustrates the existence of the elements of chaos in the system.
Since the majority of the response computed by HSNC is done
analytically, with only computational tools to determine switches
in the system, its response is closer to the exact response and
weak chaos will not affect the accuracy of its outcome as severely
as NI, which introduces computational errors at every time step.
To highlight the weakly chaotic behavior of the PWLDFE system
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FIGURE 6: TIME EVALUATION OF THE SYSTEM VIA
HSNC AND NI TO ILLUSTRATE WEAK CHAOS.

under study, the initial conditions are varied slightly (8§ = 1)
and the response is obtained using HSNC. As it can be observed
from Fig. (8), the divergence occurs very slowly.

All the simulations and scenarios of this section are com-
puted using a msi GL63 8RC laptop and it should be noted that
the runtime of HSNC varies based on the choice of numerical
methods in this algorithm. Nonetheless, regardless of the pro-
cessing unit, HSNC will be hundreds of times faster than con-
ventional NI methods.

CONCLUSION AND DISCUSSION

The importance of piecewise linear systems with discontin-
uous force elements (PWLDFE), due to their modeling capabili-
ties and their significance from theoretical perspectives, are high-
lighted in this work. They are known to be very accurate mod-
els of numerous physical phenomena or to be highly compati-
ble simplifications of more sophisticated mechanical assemblies.
Their importance necessitates methods that can obtain their re-
sponses efficiently and accurately. Consequently a novel method
was proposed for this class of nonlinear systems that relied on
a fusion of numerical and analytical methods. The proposed
method is shown to be significantly faster than conventional NI
methods. Moreover, the HSNC method presses its advantage in

3 2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2
x, [m]

FIGURE 7: PHASE PORTRAIT OF THE SYSTEM UN-
DER STUDY INDICATING A STRANGE ATTRACTOR OB-
TAINED USING HSNC.
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FIGURE 8: DIVERGENCE OF TWO INFINITESIMALLY
CLOSE TRAJECTORIES DUE TO SLOW CHAOS (6 = le~©).

cases where the PWLDFE systems demonstrate signs of chaos.
The existence of chaos makes the use of NI methods ineffective,
since the errors in these methods will cause the system to even-
tually diverge from its true response. It is also noteworthy to
state that the PWLDFE systems have been observed to demon-
strate weakly chaotic motion in this work, which has not been
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previously observed in mechanical systems.

The occurrence of weak chaos is a phenomenon that requires
more attention since its characteristics vary from conventional
chaos. Weak chaos is a relatively untouched subject since it has
been only observed to happen in limited cases [24]. The observa-
tion of this phenomenon in this work, in a mechanical assembly,
can lead to a more detailed exploration and their possible appli-
cation in numerous fields ranging from nonlinear dynamics to

cryptography.
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