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ABSTRACT: Five libraries of natural and synthetic phenolic acids
containing five AB;, ten constitutional isomeric AB,, one AB,, and ich 9
one AB; were previously synthesized and reported by our wcod s X Moo RO~ 7 "
laboratory in 5 to 11 steps. They were employed to construct [:> - R°@“o ” o :
seven libraries of self-assembling dendrons, by divergent genera- @_QO oL S SUp,amolecula,
tional, deconstruction, and combined approaches, enabling the w0 M JHJCO Ro é? E>243 Helical Column
discovery of a diversity of supramolecular assemblies including CysP-Hiecy, Ro
Frank—Kasper phases, soft quasicrystals, and complex helical "< (LD wen_pem " @\_ O .
organizations, some undergoing deracemization in the crystal state. H’z:’cp e “°©~°@
However, higher substitution patterns within a single dendron E>H;co & O o R°%ooo L LR
were not accessible. Here we report three libraries consisting of 30 Mqo_@_« Hico-() RO d d Supramolecular
wed bow AB, Sphere Containing
3 * R=CyH;s RO po 10 Crowns

[l Metrics & More | @ Supporting Information

Modular-Orthogonal Ni-Catalyzed RQ Self-Assembly
Borylation & Cross-Coupling Q

symmetric and nonsymmetric constitutional isomeric phenolic  wso
acids with unprecedented sequenced patterns, including two AB,,

three AB;, eight AB,, five AB;, six ABg, three AB,, two ABg, and one ABy synthesized by accelerated modular-orthogonal Ni-
catalyzed borylation and cross-coupling. A single etherification step with 4-(n-dodecyloxy)benzyl chloride transformed all these
phenolic acids, of interest also for other applications, into self-assembling dendrons. Despite this synthetic simplicity, they led to a
diversity of unprecedented self-organizing principles: lamellar structures of interest for biological membrane mimics, helical
columnar assemblies from rigid-solid angle dendrons forming Tobacco Mosaic Virus-like assemblies, columnar organizations from
adaptable-solid angle dendrons forming disordered micellar-like nonhelical columns, columns from supramolecular spheres, five
body-centered cubic phases displaying supramolecular orientational memory, rarely encountered in previous libraries forming
predominantly Frank—Kasper phases, and two Frank—Kasper phases. Lessons from these self-organizing principles, discovered
within a single generation of self-assembling dendrons, may help elaborate design principles for complex helical and nonhelical
organizations of synthetic and biological matter.

H INTRODUCTION

plete self-interruption of their synthesis—that is, zero
reactivity—was discovered by our laboratory in convergent,'’

Dendrimers and dendrons are branched, perfectly mono-
disperse macromolecules' prepared by iterative divergent,”
convergent,3 combined divergent-convergent,4 and deconstruc-
tion” methodologies. They contain a predictable large number
of chain ends® and smaller hydrodynamic volumes than those
of the corresponding linear compounds.” These two features
have facilitated a bridge between numerous disciplines
including chemistry, physics, biology, nanomedicine, nano-
technology, and many others. De Gennes predicted a decrease
in the reactivity of the functional groups on the periphery of
dendrimers constructed by the divergent method.” This
reactivity dependence on generation number was first observed
during the divergent synthesis of the classic PAMAM
dendrimers”™® and subsequently during the divergent—
convergent enlargement of dendronized polymers.” A com-
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divergent, and combined convergent—divergent4 dendrimer
synthesis as well as in the polymerization of self-assembling
dendronized monomers.'" Depending on their generation
number, most dendrons and dendrimers are liquid or
amorphous solids.”> Our laboratory discovered simple
strategies for the design of constitutional isomeric quasi-
equivalent self-organizing dendrons, dendrimers, and dendron-
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ized polymers that mimic the structure and function of simple
biological systems, by combining chemically dissimilar units in
their structure * The history of this discovery was written by
invitation."” This concept is related, but not identical, to the
hydrophobic effect of proteins, nucleic acids, carbohydrates,
and cell membranes, since it mediates self-assembly not only in
water but also in organic solvents and in the bulk state. Related
concepts evolved from many other laboratories.'* The original
self-assembling compounds were constructed from benzyl
ether dendrons functionalized with aliphatic, fluorinated,
semifluorinated, and oligooxyethylene fragments'>"> and
subsequently were expanded to other constructs to be
discussed in more detail later. They led to the immediate
discovery of helical self—organizations,16 Frank—Kasper
phases,'” and soft quasicrystals'® that were subsequently
found in many other forms of soft matter such as block
copolymers, lipids, surfactants, giant molecules, and DNA-
grafted nanoparticles."”~** More recently they evolved in
biological membrane mlmlcs * and into a single component
delivery system for mRNA.”> The dream of self-organized
complex soft matter is to reach the perfectlon of periodic arrays
self-organized from inorganic materials”® that are assembled
from a small number of atoms as well as that of biological
macromolecules that is self-organized from millions of atoms.
Bridging between these two extreme size dimensions requires
the elucidation of the mechanism of self-organization and the
correlation with the molecular structure of their building
blocks. Toward this goal our laboratory expanded self-
assemblin constitutional isomeric AB,,>’* AB;,”’*° mixed
AB,—AB, benzyl ether dendrons, dendrlmers, and dendron-
1zed pol mers " into biphenyl-4-methyl ether,””* phenylpropyl
ether,””" hybrid AB,, AB; ethers,”’® and biphenylpropyl
ethers™”" to discover, predict, and even organize a “nano-
periodic table” of self-assembling dendrons.””” The principles
elaborated with these libraries of self-assembling dendrons are
valid for degrees of rotation mediated by a sequence of sp>—
sp°—sp>—sp” bonds for the benzyl ether and sp’—sp’—sp’—
sp°—sp>—sp” bonds for the phenylpropyl ether dendrons. We
envisaged that the conformational freedom of self-assembling
dendrons could be restricted by limiting their 1nternal bonds to
only sp’—sp® bonds. However, until recently,”® no method-
ology existed to access these structures in high yield for
branching numbers above AB;. Here we report the synthesis,
self-assembly, and structural and retrostructural analysis of a
new class of self-assembling dendrons based on n-phenylene
units connected exclusively by sp*—sp” bonds with branching
numbers ranging from AB, to an unprecedented AB,y, many of
them being constitutional isomers with defined-sequence.
Their synthesis relies on natural polyphenols and phenolic
acids as starting building blocks and an all Ni-catalyzed
borylation and cross-coupling based on methodologies,
including mixed-ligand, developed in our laboratory.*®

B RESULTS AND DISCUSSION

Selection and Synthesis of Precursors for the
Modular-Orthogonal Preparation of Phenolic Acids.
Four phenols and four phenolic acids (Figure 1), all of
renewable natural origins,2 were selected as starting materials
for the modular-orthogonal synthesis of the new phenolic
acids.

The four phenolic acids from Figure 1 were previously
employed as starting building blocks in the synthesis of the
constitutional isomeric AB, and AB, benzyl ether''¥%!7%273b

@ Ho@ Ho’©\ou Ho’@OH

OH OH OH
Phenol Pyrocatechol Resorcinol Pyrogallol
COOH COOH COOH COOH
HO HO OH HO OH
OH OH OH
p-Hydroxybenzoic Protocatechuic «-Resorcylic Gallic
acid acid acid acid

Figure 1. Natural phenols and phenolic acids employed in the
synthesis of symmetric and nonsymmetric constitutional isomeric AB,
to ABy phenolic acids.

Scheme 1. Synthesis of Boronic Ester and Boronic Acid

Building Blocks”

Ry i X: BH iv
Rz—Q—Br 3a: Ry =Ry = H; Rz OCH; (80%)
1a: Ry = H; Ry = OCH; 3b: Ry = R, = OCHg; Ry = H (85%)

—_—
Rz (96-97%) Ry (ez—as%)
1b: Ry = Ry = OCH; Rs 3c: Ry = Ry = OCHg; R, = H (64%)

3d: Ry = R; = Ry = OCHj (62%)

H3CO 2a: Ry = Ry = H; Ry = OCH; (97%) Ry
i, i 2b: Ry= R, = OCHy; Ry = H (96%) | vorvi OH
HO ———» | 2c:Ry=R;=0CHy; Ry = H Rz B
(65% over | 2d:Ry= Rz =Ry = OCH, (65%) (65-97%) OH
HiCO 14 two steps) RJ

4a: Ry = Ry = H; Rz = OCH3 (97%)
4b: Ry = R, = OCHy; Ry = H (87%)
4c: Ry = Ry = OCHy; Ry = H (65%)
4d: Ry = Ry = Ry = OCHy (91%)

“Reagents and conditions: (i) NH,Br, H,0,, AcOH, 23 °C, 4 h; (ii)
NBS, NaH, MeOH, CHCl,, — 60 to 23 °C, 2 h; (iii) (CH,0),50,,
NaOH, H,0 (reflux), 6 h; (iv) 10 mol % NiCL(dppp), 20 mol %
dppf, Et;N, toluene, 100 °C, 18 h; (v) (a) Mg, cat. I,, THF (reflux),
40 min; (b) B(OCHj;);, —10 °C, 4 h; (c) HCI, 23 °C, 0.5 h; (vi) (a)
n-BuLi, THF, —78 °C, 0.5 h; (b) B(OCHs;);, —78 °C, 4 h; (c) HCI,
23 °C, 0.5 h.

Scheme 2. Synthesis of Symmetric and Nonsymmetric
Mesylated Building Blocks”

Symmetric Mesylated Building Blocks
R4

R4
RZ—Q—COOH —» Rz—@—coocm—> R —@—COOCHs
K (89-97%) (88-99%) R

3 3
5a:R;=H; R, =R;=OH 6a: Ry=H; RZ-R3 OH (89%)  7a: Ry=H; R, = Ry = OMs (88%)
5b:Ry=Ry= OH; R;=H 6b:Ry=Ry=OH; R, =H (97%)  T7b: Ry = Ry = OMs; R, = H (97%)
5¢: Ry=R, =Ry = OH 6c: Ry =R, = Ry = OH (96%) 7c: Ry = R, = Ry = OMs (99%)

Nonsymmetric Mesylated Building Blocks

HO HO, BnO
iii iv
HO COOCH3; ——3» O’@—COOCHs —>» 0 COOCH;,4
(96%) ©%) I
HO 6c Et0” O 8 Et0” ~O 9
BnO BnO
v vi
—_— Ho—§i>—coocu3 B Mso—§i>—coocri3
(98%) (93%)
HO 10 MsO "

“Reagents and conditions: (i) cat. H,SO,, MeOH (reflux), 14 h; (ii)
MsCl, pyridine, DCM, 0 to 23 °C, S h; (iii) (EtO);CH, Amberlyst 15,
toluene (reflux), 16 h; (iv) BnCl, K,CO,;, DMF, 120 °C, 12 h; (v) cat.
HCl, MeOH, 23 °C, 0.5 h; (vi) MsCl, pyridine, DCM, 0 to 23 °C, 16
h.

and phenylpropyl ether””" self- assembling dendrons. The four

phenols from Figure 1 were used as starting building blocks in

the synthesis of biphenyl-4-methyl (CEJ)*’® and biphenyl-
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Table 1. Synthesis of Symmetric Constitutional Isomeric, Sequence-Defined AB, to AB, Permethylated Phenolic Esters

R1‘
OR
Ry’ B +
OR
Ry’

R;=R3=H; Ry = OCH,
R1=R2=0CH3; R3=H

B(OR):

R, COOCH;,

5% Ni'CI(1-naphthyl) (PCys),, KsPO4(H,0)s 5,

THF, 23°C,2 h

AB, Permethylated

N@/W
& £

Ri=H; R;=R;=0Ms
Ry=R3;=0Ms; R;=H

=R.= ‘R, = o =R,=R.=
Ry=Ry=OCHi Ry =H_f )(or B(oH), "1™ R2=Rs=OMs
[¢]

Ry =R;=R;=0CH;

AB, HicO I

%

H3CO COOCH;

2 h, 5% Cat.: 100%? (98%)”

m.p.= 108 °C
H,CO |
}COOCHa
H;CO
2 h, 5% Cat.: 100% (97%)
m.p.=85°C
AB; u.co m

H:co~’_H—{ /-COOCH;

0%

H;CO

36 h, 10% Cat.: (61%)
14 h, 10% Cat.: 100% (85%)
m.p. =149°C

AB

H;CO v

4
H3CO Q
H3CO @ O COOCH;,3

H;CO

2 h, 5% Cat.: 100% (39%)
m.p. =96 °C

HsCO v
H;CO
COOCH,
H,CO
H;CO
2 h, 5% Cat.: 100% (39%)
m.p. =129 °C
ABg H,CO Vi
oL
H;co~_H—\")-cooch,
HJCO
H,CO
HsCO

24 h, 10% Cat.: (5%)
16 h, 10% Cat.: 100% (60%)
14 h, 10% Cat.: 100% (93%)°

10% Ni"CI(1-naphthyl)(PCy3),, PCy3,K3PO4(H;0)0 7,

dioxane, 100 °C, 14-16 h

OCH3 Vil

H3CO
H;CO

(" H—\)-coocH,

H5CO

2 h, 5% Cat.: 100% (98%)
m.p. =112°C

Vil

2 h, 5% Cat.: 100% (95%)
m.p. =158 °C
ocH, IX
H;CO
g0
()—()-coocr
H;CO
H;CO
OCH;4

24 h, 10% Cat.: (0%)
16 h, 10% Cat.: 100% (75%)
m.p. =165 °C

- Phenolic Esters
n=2234,6,9

ABg i€ OCHs x

H3CO
H,CO

Hsco—_H—\")-coocH,

H;CO

2 h, 5% Cat.: 100% (94%)
m.p. =118°C

H,CO OCH; XI

H;CO OCH;

2 h, 5% Cat.: 100% (93%)
m.p.=179°C

ABg H,co ocH, Xl

H,CO
Hic0~{’_H—(»-COOCH;
H.CO

H,CO

H;CO OCH,

24 h, 10% Cat.: (0%)
16 h, 10% Cat.: 100% (69%)
14 h, 10% Cat.: 100% (86%)°

m.p.=110°C

“Conversion. “Isolated yield. “Yield by nonsymmetric method.

m.p. =189 °C

propyl ether™*”" self-assembling dendrons. In the current
synthetic methodology, the phenol group can provide both the
aryl mesylate electrophile for the borylation reaction®®*" and
the corresponding borylate or boronic acid nucleophiles; all of
them are required in the Ni-catalyzed Suzuki—Miyaura cross-
coupling reaction (Scheme 1). Therefore, they are orthogonal
functional groups.

4-Methoxy- and 3,4-dimethoxy-1-bromobenzene (2a, 2b)
(Scheme 1) were synthesized by the bromination of veratrole
and anisole in 97% and 98% yield, respectively, with NH,Br/
H,0, in CH;COOH.” 3,5-Dimethoxy-1-bromobenzene is
commercially available and was used as received. 2,6-
Dimethoxyphenol was brominated with N-bromosuccinimide
(NBS) after deprotonation with NaH in a mixture of CHCl,
and MeOH,”" followed by methylation with Me,SO, in
acetone to generate 3,4,5-trimethoxy-1-bromobenzene (65%).
Compounds 3a to 3d were prepared by the Ni-catalyzed
borylation of 2a to 2d in 62% to 85% isolated yield with the

17726

mixed ligand dppp/dppf according to procedures elaborated in
our laboratory.”** The boronic acids 4a to 4d were prepared
from the corresponding aryl bromides 2a to 2d in 65% to 97%
yield by conventional aryl Grignard or lithium methodologies
(Scheme 1). Scheme 2 outlines the synthesis of the mesylated
compounds 7a—c. They were obtained in 88% to 99% yield
starting from 6a—c that were obtained by the esterification of
the corresponding phenolic acids Sa—c in 89% to 97% yield.
Detailed procedures are available in the SL

Accelerated Synthesis of Constitutional Isomeric,
Sequence-Defined, Symmetric AB,, AB;, AB,, AB,, and
AB, Permethylated Phenolic Esters. The Ni-catalyzed
Suzuki—Miyaura cross-coupling of the multifunctional boronic
esters 3a—d and boronic acid aryl nucleophiles 4a—d from
Scheme 1 with the aryl electrophiles 7a—c from Scheme 2 was
performed with the o-Ni"Cl(1-naphthyl)(PCy,), catalytic
system with K;PO,(H,0);, or K;PO,(H,0),, as base in
the absence or presence of excess PCy;. This catalyst was

https://doi.org/10.1021/jacs.1c08502
J. Am. Chem. Soc. 2021, 143, 17724-17743
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Scheme 3. Synthesis of Protected Constitutional Isomeric Nonsymmetric Permethylated Phenolic Esters and Protected

Mesylated Building Blocks

BnO

BnO

MsO MsO
o
H3CO—<;>—|§;‘0 X H;CO O O COOCH; COOCH; H;CO @ O COOCH;, COOCH;,
3a 60% *+ 20%
H3CO O 75% Q 17% 98% Q 97%
o 12a 13a
H,,CO—@—B{ >< Gl H,CO H5CO ned M2 pcd 15a
o CysP-Ni-PCy;  H,cO BnO BnO H;CO MsO MsO
3b
H5CO H300 O O COOCH; COOCH; H,CO @ O COOCH, COOCH;3
o
B >< K3PO4(H20); ; + (1) Hp, PdIC, DCM,
(o} THF, 23°C, 2 h H;CO O 37% H;CO 42% MeOH, 12 h, 23°C H;CO H;CO
HCO 3¢ 45% 48% 0
94% 94%
H3CO, cl HsCO 120 H,CO 136 o) Mscl, pyridine,  13°© 1 MCO 45
o I H;CO BnO BnO DCM, 8 h, 0 — 23 °C H3CO,  MsO, MsO
H5CO B Cy;P-Ni-PCy; o
o X Iy—-coocr Iy—p-cooen, {p-cooon,
H,CO  3d Oe HycO 37% + 56%
H;CO 46% H,CcO Q 43% H;CO O 92%
K3PO4(H20)s 12¢ 13¢c 15¢
THF,23°C,2h OCH; OCH; OCH;3
H;CO  BnO BnO, sO
BnO H;CO O O COOCH, O COOCH, H;CO @ O COOCH, O COOCH;
MsO—@—COOCH3 H.CG +
3
54% Q 44% o
MO 4 HyCO a7y, €0 45% HyCO 88% HiCO O 95
H,CO OCH; 12d  H,CO  OCH,;13d H;CO OCH; HiCO OCH;

developed in our laboratory™™ and provides quantitative cross-
coupling reactions at room temperature (23 °C) for sterically
nonhindered aryl electrophiles.

The aryl mesylates 7a and 7b from Scheme 2 cross-couple
with the boronic esters 3a—d from Scheme 1 with 100%
conversion and 93 to 99% isolated yields in THF at room
temperature in 2 h to produce eight permethylated phenolic
esters (Table 1): two constitutional isomeric AB, (I and II,
gray box), four constitutional isomeric AB, (IV, V, VII, VIJ,
yellow box), and the two constitutional isomeric ABg (X, XI,
green box). Under the same reaction conditions, the aryl
mesylate 7c¢ from Scheme 2 provided maximum 61% isolated
yield of the AB; (III, pink color), while the AB; (VI) was
obtained in only 5% isolated yield. No reaction was observed
in attempts to synthesize the AB¢ (IX) and the AB, (XII) in 24
h reaction time. Reducing the amount of water, n, in the
K;PO, base from 3.2 to 0.7, changing the aryl nucleophile from
boronic ester to the more reactive boronic acid,**8 increasing
the reaction temperature to 100 °C (see green reaction
conditions in Table 1) and using a reaction time of 14—16 h
produced 100% conversion although only 85% to 60% isolated
yields for III, VI, IX, and XII (Table 1). Compounds VI and
XII were also obtained with 100% conversion and 93% to 86%
isolated yields by a nonsymmetric method to be discussed
later. It is important to mention that, despite its very high
activity, the o-catalyst Ni"CI(1-naphthyl)(PCy,), is air stable
since it enters the catalytic cycle of the cross-coupling at a
different step from conventional Ni(II) catalysts.”® The
synthesis of all compounds from Table 1 was also performed
with precursors to this catalyst’*”* but with much lower
conversion at longer reaction times.

All methyl ethers of the constitutional isomeric phenolic
esters from Table 1 were quantitatively demethylated with
BBr; in CH,Cl, to provide the corresponding phenolic esters
I, to XII, (Table S1). They were isolated in 78% to 99%
yields.

Accelerated Synthesis of Constitutional Isomeric,
Sequence-Defined, Nonsymmetric AB,, AB;, ABs, AB,,
and ABg Phenolic Esters. The dimesylate 7a undergoes

cross-coupling with 100% conversion under mild conditions
while the trimesylate 7c does not (Table 1). Therefore, we
protected the 3-position of 6c to give benzyl ether 10 that was
subsequently converted to the dimesylate 11, via the two-step
process illustrated in Scheme 2. This protection involved the
modification of a previously developed method*” to protect 6c.
The resulting 11 was cross-coupled with 3a—d both in the
presence of Ni"Cl(1-naphthyl)(PCys), and in the presence of
Ni"'Cl(9-anthracenyl) (PCy;),”*" with K;PO,(H,0);, as base.
Surprisingly, two series of cross-coupled products were isolated
from this reaction (Scheme 3).

A first series that is completely cross-coupled at the 4- and 5-
mesylate positions yielded, depending on the structure of the
catalyst and of the boronic ester employed, compounds 12a
(60%, 76%), 12b (37%, 45%), 12¢ (37%, 46%), and 12d (54%,
47%). The second series of compounds—13a (20% 17%), 13b
(42%, 48%), 13c (56%, 43%), and 13d (44%, 45%)—were
products most likely resulting from the reductive demesylation
of 11 at the 4-position. These two series of compounds were
obtained in high enough yields to permit their 3-benzyl ether
deprotection by hydrogenolysis followed by mesylation of their
3-phenol position to generate two new series of starting
building blocks, 14a—d and 15a—d, that were used for the
synthesis of nonsymmetric constitutional isomeric phenolic
acid derivatives. This reductive demesylation step raised
mechanistic questions that will not be addressed in this
study. Table 2 summarizes the synthesis of two constitutionally
isomeric AB, (XIII, XIV, colored in yellow), AB; (XV, XVIII,
XXI, colored in dark blue), AB; (XVII, XX, colored in light
blue), AB, (XVI, XIX, XXII, colored in dark brown), and ABy
(XXIII, XXIV, colored in light brown) nonsymmetric
constitutional isomeric permethylated phenolic acids. They
were realized via the cross-coupling of the mesylates 14a—d
with aryl boronic acids 4a—d. The green reaction conditions
(Table 2) involving dioxane as solvent at 100 °C and a 14 to
16 h reaction time provided 100% conversion with 72% to 97%
isolated yields when Ni''Cl(1-naphthyl)(PCy;),,
K;PO,(H,0),, was used as catalyst. All methyl ethers of the
constitutional isomeric phenolic esters from Table 2 were
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Table 2. Synthesis of Nonsymmetric Constitutional Isomeric, Sequence-Defined AB, to ABg Permethylated Phenolic Esters

R4’
OR
Ry’ B
OR
R3'
R;=R; =H; R, = OCH;
R1 — R2 L OCH;,; R3 =H

R1=R3=0CH; R;=H
Ri=R;=R3= 0CH3

+
B(OR):

]
""—o:X

AB4 H,co  ocH, Xl

W),
H;co—~!_H—(\~~Cco0cH,
W)

H,CO

14 h, 10% Cat.: 100%? (96%)?
m.p.=70.2°C

XIv
3

Hco—\ /)
Hico—_)—\~,)-coocH,

H,CO

14 h, 10% Cat.: 100% (92%)
m.p. = 165.8 °C

ABsH,co ocH, XV

H,CO
HiCo—~{_)—\")~COOCH;
§ )

H;CO

16 h, 10% Cat.: 100% (75%)
m.p. =82.1°C

Rz

or B(OH), Rz

R, MsO

5% Ni'"Cl(1-naphthyl)(PCy;),, K3PO4(H,0)3 5,

THF,23°C, 2 h AB,, Permethylated

COOCH;

Ry=R; = H; R, = OCH;,

R3
29
R1 = R2 s OCH3; R3 =H

Ry Ri=Rs=0CHg R, =H
Ri=R;= R3=0CH3

AB7H,co oOcCH, XVI

H,CO
Hsco—_)—\")~coocH,
H,CO
9,

H3c° OCH3
16 h, 10% Cat.: 100% (72%)
m.p.=99.7°C

ABg o, XVII

H,Co—\ /)
H,co—_N—(")-coocH,
HyCO
W),

H;CO OCH;
14 h, 10% Cat.: 100% (92%)
m.p.=83.8°C

H,CO XVl

W,
Hsc0—~_N—\~COoO0CH,
H,CO
9,

H,CO OCH;

14 h, 10% Cat.: 100% (82%)
m.p.=71.5°C

“Conversion. “Isolated yield.

Y

Phenolic Esters

10% Ni''CI(1-naphthyl)(PCys);, PCys, KsPO4(Hz0)o 7, n=4,56,7,8
dioxane, 100 °C, 14-16 h
H,CO OCH, XIX H,CO XX

H3CO H3CO, W,

¢ COOCH;  Hico—/_)—\")-coocH,
HsCO H3CO
H,CO H,CO

OCH; H,CO OCH,
16 h, 10% Cat.: 100% (73%) 16 h, 10% Cat.: 100% (88%)
m.p. = 189.2 °C m.p. = 134.3 °C
H,CO OCH; XX ABg H,CO OCH; XXin
hco &7 heo 4
» COOCH,  H;co—{_N—("))-coocH,
H,CO H,CO
H;CO H,;CO
OCH;,3 H,CO OCH;
14 h, 10% Cat.: 100% (78%) 16 h, 10% Cat.: 100% (97%)
m.p. =80.2°C m.p.=176.4°C
H,CO XXI OCH; XXIV
H,CO
H,CO. O H,CO
5 COOCH;  Hico—{/_—("-coocH,
Haco cho
H,CO H,CO

OCH;

14 h, 10% Cat.: 100% (92%)
Colorless liquid

H;CO OCH;
24 h, 5% Cat.: 0% (0%)
16 h, 10% Cat.: 100% (80%)
m.p. =61.6 °C

quantitatively demethylated with BBr; in CH,Cl, to provide
the corresponding phenolic esters XIII, to XXIV,, (Table S2).
They were isolated in 69% to 96% yields.

Accelerated Synthesis of Constitutional Isomeric,
Sequence-Defined, Nonsymmetric AB;, AB,, and AB;
Phenolic Esters. The cross-coupling of the less sterically
hindered nonsymmetric aryl mesylates 15a—d from Scheme 3
was accomplished with the boronic esters 3a—d at room
temperature in THF with 100% conversion and 75% to 95%
isolated yields in 2 h with the least active catalyst Ni"CI(1-
naphthyl) (PCy,),, K;PO,(H,0);,, to provide the constitu-
tionally isomeric AB; (XXV, XXVI, colored in magenta), AB,
(XXVII, XXVIII, colored in yellow), and AB¢ (XXIX, XXX,
colored in blue) (Table 3). All methyl ethers of the
constitutional isomeric phenolic esters from Table 3 were
quantitatively demethylated with BBr;>® in CH,Cl, to provide
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the corresponding phenolic esters XXVp to XXXp (Table S3).
They were isolated in 82% to 98% isolated yields.

One-Step Synthesis and Structural and Retrostruc-
tural Analysis of Constitutional Isomeric Symmetric
Supramolecular Dendrimers Based on AB,, AB;, AB,,
ABg, and AB, Dendrons. All phenolic esters I, to XXX, were
etherified with 4-(n-dodecyloxy)benzyl chloride in DMF by
using K,COj as base at 60 °C to provide the corresponding
self-assembling dendrons I; to XXX, (Table 4). The
etherification process was monitored by a combination of
TLC, NMR, HPLC, and MALDI-TOF and reached
completion in a maximum of 16 h. For selected compounds,
the ester group from the apex of the dendron was transformed
by basic hydrolysis into —COOH and by reduction with
LiAlH, into —CH,OH. The most surprising result was that
after purification by column chromatography on silica gel with

https://doi.org/10.1021/jacs.1c08502
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Table 3. Synthesis of Nonsymmetric Constitutional Isomeric, Sequence-Defined AB; to AB; Permethylated Phenolic Esters

5% NI'CI(1-naphthyl)(PCy3),, KsPO4(H,0)s 5, THF, 23°C, 2 h

AB,, Permethylated Phenolic Esters

MsO
%} X romoon

Ra-n R, = OCH, Ry =Rj = H; Ry = OCH,
=OCHyRs=H R, O Ry=R;=OCHy; Ry =H
R1 R;,-OCH, Ry=H Ry =R, = OCHy: Ry = H

R;=R; =Ry = OCH, R, R; Ri1=R2=Ry=0CH,

AB, XXVII

3co cho

H,CO OCH; CH, HsCO OCH,
2h, 5% Cat.: 100% (95%)° 2h, 5% Cat.: 100% (75%) 2h, 5% Cat.: 100% (91%)
Colorless liquid Colorless liquid m.p. =144.2°C

“Conversion. “Isolated yield.

H,C!

AB,
3CO o]
H4CO H;CO HyCO
COOCH, COOCH; COOCH, COOCH, COOCH,
H:CO HCO HyCO H,CO HiCo—\ /)

n=3,4,5

XXVIl ABs
H;CO OCH,

COOCH;4
OCH; H;CO OCH; H3;CO OCH;3
2h, 5% Cat.: 100% (92%) 2h, 5% Cat.: 100% (95%) 2h, 5% Cat.: 100% (91%)
m.p. = 114.1°C m.p. =56.5°C m.p.=28.2°C

ethyl acetate/hexane gradient as eluent, it was found, by a
combination of DSC and X-ray diffraction, that all dendrons
were self-organized into supramolecular dendrimers regardless
of the functional group at their apex. This is a remarkable result
since most of the previously synthesized self-assembling
dendrons™'”'"'>?7 required either a higher generation and/
or a combination of an H-bonding or other molecular receptor
at their apex and a higher generation to undergo self-assembly.

Table 4 summarizes the structural and retrostructural
analysis of all self-assembling dendrons obtained from the
constitutional isomeric, sequence-defined, symmetric supra-
molecular dendrimers based on AB,, AB;, AB,, AB,, and AB,
dendrons. This was performed by the methodology elaborated
in our laboratory involving a minimum combination of
methods including DSC, X-ray diffraction experiments
performed on powders and aligned fibers, helical diffraction
theory®* combined with experimental density experiments,
molecular modeling, and reconstruction of the molecular
models until the experimental XRD pattern agrees \ with the one
of the model reconstructed by Cerius 2 software.” Their DSC
traces are shown in Figures S1, S2, and S3 while representative
small and wide-angle X-ray scattering (SAXS and WAXS)
experiments on oriented fibers®* will be discussed later. A
remarkable conclusion comes from a brief inspection of Table
4. Both AB, (I and I4) and AB, (III) constitutional isomers
and one of the four constitutional isomeric AB, (VIII;) exhibit
lamellar phases. This represents 33% out of the 12 molecules
from Table 4 and is considered to be an unusually large
fraction. Surprisingly the AB, (I;) and the AB; (Il ) exhibit
lamellar assemblies while in the corresponding benzyl ethers
they form only helical columnar self-organizations.”’* The
second unexpected result is that two constitutional isomeric
AB, (V4 with X = —CO,CH,, —CH,0H, —COOH, and VII,
with X = —CO,CH,;), four constitutional isomeric ABq (VI4
with X = —CO,CH;, —CH,0H, COOH, IX; with X =
—CO,CH;, X4 with X = —CO,CH;, —CH,OH, and XI; with X
= —CO,CH;, —CH,0H, —COOH), and the AB, (XII; with X
= CO,CH;, —CH,OH) exhibit columnar assemblies while in
all other previous systems they formed spherical Frank—Kasper
self-organizations.”'”'"'>?7%> They represent 58% of all
molecules in Table 4. However, the most surprising
observation comes from comparing the spherical assemblies
formed by AB, (IV, with X = —CO,CH;, —CH,OH,

—COOH), AB, (X with X = —COOH), and AB, (XII,
with X = —COOH). The last, AB,, exhibits only the rarely
encountered body centered cubic phase (BCC) while the first
two (AB, and ABy) self-organize into the most often
encountered Frank—Kasper A1S (Pm3n) and o (P4,/mnm)
phases. In this series of experiments BCC represents 33% of all
spherical assemblies reported in Table 4. This result would not
have been predicted when considering the trend observed in all
previous libraries™'%'"'>?”%5 and the theoretical work
reported from several laboratories®® although the title of ref
36b “Maximizing entropy by minimizing area: towards a new
principle of self-organization” may indicate that a certain ratio
between the sp’—sp® and sp’—sp® bonds may not allow the
entropy increase required by self-organization in Frank—
Kasper phases.

Therefore, this library raises the fundamental question: why
are these self-assembling dendrons so different from the
previously reported libraries? Is it due to the lack of sp*—sp®
bonds from benzyl ethers and other ethers? Are they more
stable than those from previous libraries and cannot generate
two different kinds of spheres as required by the A1S Frank—
Kasper phase?'’ However, the definitive answer to this
question, which is very fundamental to the field of self-
organization and will be answered with the building blocks
reported here, is outside the scope of this study. Another
remarkable result was provided by the self-assembling dendron
Vy; with X = —CO,CHj;, the less ordered Vg with X =
—CH,OH, and the disordered V4 with X = —COOH from
Table 4. V4 with X = —CO,CHj self-organizes into a highly
ordered helical column by principles resembling those of
tobacco mosaic virus (TMV).''™'®'7 This self- assembly
process will be discussed in a different subchapter together
with the mechanisms of lamellar and BCC self-organizations.

One-Step Synthesis and Structural and Retrostruc-
tural Analysis of Constitutional Isomeric, Sequence-
Defined, Nonsymmetric Supramolecular Dendrimers
Based on AB;, AB,, AB;, AB¢ AB,, and ABg; Dendrons.
Nonsymmetric self-assembling dendrons were not investigated
and reported in the previous libraries,”” as their synthesis
would have required multiple iterative protective-deprotection
steps and a substantial increase of the number of synthetic
steps.

https://doi.org/10.1021/jacs.1c08502
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Table 4. Structural and Retrostructural Analysis of Supramolecular Dendrimers Self-Assembled from the Library of Symmetric
Constitutional Isomeric AB, to AB, Self-Assembling Dendrons®

LiAlH,, THF

Lo

145-CH,OH to Xlig-CH,0H

¢l KaCO3 DMF SR et 0t023°C,05h
+ «f o
iy c.m,@-@—/ 80°C. 16 h a-WU2Es 10 et O2ST B xom, THRI ErOH
: »  1,-COOH to Xil;-COOH
80°C, 4 h
RO,
AB, Q L AB, "o IV, Q Vil, ABg “Q?? X,
RO. RO
R=CizHzs o t) 9 Q 9 RO. Q e
Q s lpag "5 Ay
RO ]
wes 4

x=coocH, Lant 50°0):a=258A [l x=cooch, pr3no-c) @

2a=107.9A,D=66.9 A, u=65
X =CH,OH, Lam* (25°C): a=39.4 A m X = CH, o: szn(s'i .5°C):
a=1001A, D=623 A, py=55

X = COOH, unknown X = COOH, Pm3n (150 °C):

a=920A D=571A,p=42

HO
RO,

Qo
P
D

&

RO
X = COOCH;, Lam* (50 °C): a=60.7 Aﬂ

no
X = COOCH;, ®,* (25°C
459 A D=459A, t=3,
X = CH,OH, @, (25 °C):
441A, D=441A t=41
X = COOH, @, (25 °C):
a=b=456A,D=456A

):
6
a

, a=38.2

X= coocn,.m-(sscmw X= coocu,.m..(zs-o::) 2=b= 455&@

a=259A,b=169A, D=455A,t=52A,p

y=94.5° X = CH,OH, d).,(25°c)a b 445A,
D=44.5,t=5.0A, y=3; Pm3n (75°C):
a=857A,D=532A py=24

X =COOH, P4,/mnm (150°C):a=b= 3'.,
1596 A, c=827 A D=512A p=22 1}
RO, RO, -~
Qv QQ Xlq
o 0 m_@_}' &7
=G e § o
RO . 0 no—@—\o O

0 O

J £d

RO
x COOCH;, Lam* (25 °C): ﬂ X = COOCH;, ®,*(25°C):a=34.4 A,
2A b=660A,y=945t=51A,p=2
X = CH,OH, @, (90 °C): a= b=41.7
AD=M.7A t=45A,py=2
X =COOH, @, (96°C): a=b=453 A,
D=453At=41Ap=2

p=5 @, (25°C):a=b=428A,D=428A

RO,
AB, & m, AB; & vl IX, ABg Xily
o R°~©_\ 0
& Y :
b= o
0
O
O RO'©’- O RO’
& 5
: ; 683
X = COOCH;,, Lam* (25 °C): H X=COOCH,, d, (25°C):a=b= @x:coocrl :@ X= coocnnm,.(zs'(:) a= b 40.6
a=51.0A,b=119A 473A,D=473A,t=36A, p=2 a=h=403 A, D=406A, t= 7.0A, p
X=CH,OH, Lam+(25°C): a=394 A ] X =CH.OH, @, (100°C): a=b= @ t=41A p=2 X=CH,0H,%(25°C):a=b=41A3A,
453A,D=453A,t= 42A, p=2 D=413A,t=61A u=2
X =COOH, ®._, (110°C): a = 41.4 A — X=COOH, ®_, (110 °C): . X = COOH, BCC (100 °C): a=46.5 A,
b=631A,t=46A,p=6 b a-407A b=706A =274 S D=403 A, y=10; @

“Phase notations: Lam* — crystalline lamellar; Pm3n — Frank-Kasper A15 phase; @, — monoclinic columnar crystal; ®;, — 2D columnar
hexagonal array; ®__, — 2D columnar centered orthorhombic array; ®,% — 3D columnar hexagonal crystal. For sphere-containing phases, D
denotes sphere diameter and y denotes number of molecules with a supramolecular sphere. For columnar phases, D denotes column diameter and

4 denotes number of molecules with a single column stratum. D and y were calculated according to formulas detailed in the SI.

The building blocks from Tables 2, 3, S2, and S3 allowed the
synthesis of nonsymmetric dendrons and supramolecular
dendrimers in a single step by etherification of the
corresponding phenolic esters with 4-(n-dodecyloxy)benzyl
chloride under the same reaction conditions as discussed in the
previous subchapter. Table 5 outlines the synthesis and the
structural and retrostructural analysis of constitutional isomeric
compounds with multiple substitution patterns: two AB,
(XIIIy, XIVy), three ABg (XV4 XVIII;, XXI,), two ABg
(XVIL,, XX,), three AB, (XVI4 XIX,, XXII,), and two ABg
(XXIII4, XXIV,), while Table 6 summarizes two AB; (XXVy,,
XXVI,), two additional AB, (XXVII; XXVIIL,), and two
additional ABg (XXIXy, XXX,). The results from Table 4 are
supported by the data summarized in Tables 5 and 6.
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Unexpectedly, the two constitutionally isomeric AB; (XXVy,,
XXVI1;) (Table 6) and the two AB, (XIII; XIV,4) (Table S)
self-assembling dendrons form lamellar assemblies representing
22% of all molecules from Tables 5 and 6. The two
constitutional isomeric AB; (XXV4 XXVI) (Table 6), the
three AB; from Tables 5 and 6 (XV4 with X = —CO,CH,,
—CH,OH, XVIII, with X = —CO,CH,, —CH,OH, —COOH,
and XXIX; with X = —CO,CH,;, —CH,0H), one AB, (XX,
with X = —=CH,OH) (Table 5), the three AB, (XVI, with X =
—CO,CH,, CH,0H, XIX, with X = ~COOH, and XXII, with
—CO,CH;, —CH,0H) (Table S), and the two ABg
(XXIII, with X = —CO,CH,, —CH,OH and XXIV, with X =
—COOH) (Table S) form columnar assemblies, although,
based on previous libraries”'>""'>*7 they were expected to

https://doi.org/10.1021/jacs.1c08502
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Table S. Structural and Retrostructural Analysis of Supramolecular Dendrimers Self-Assembled from a Library of
Nonsymmetric Constitutional Isomeric AB, to AB; Self-Assembling Dendrons

LiAlH4, THF
o KiCOs DMF 01023°C 05 n > XVa-CH,0H to XXIV4-CH,OH
Xill, o XXIV, + CaHys0~{ N~ Xlllg-CO,CHs to XXIV4-COCH3 | om rHr EtoH
80°C,16 h : P  XV4-COOH to XXIV4-COOH
80°C,4h
RO By R RO
AB,4 Q X, AB; = Q XV, zji XIX4 XXlly
R=CuzHzs 0 Q

RO’
X = COOCH;, Lam* (25 °C):

a=46.1A
mb_ XIV4
@,
ro-{3, L)~

RO
X = COOCH,, Lam* (25 °C):
a=34.0A

RO

XV,

“@“°*

m@fg

X =COOCH,, ®,,° (25°C): a= &
388A,b=315A,t=48A p=2

X = CH,0H, ®,* (25 °C): a = 45.2 % X = CH,OH, @, (100°C): a=

A b=461A y=865t=42A
p=3
X = COOH, unknown

A D=418A,t=45Ap

X =CH,0H, 0..(30‘(:) a=b=439A. -n._“’vll-
=

D=439,t=44A

X =COOH, BOC(‘IOO'C),N 453 A,
D=39.I!A,p=12;lb,,(25’c:a=b-
439A,D=439.0A,t=47A p=2

ABg o “’&2
o) o

@”

XVl

RO

X =COOCH;, unknown RO

X =CH,OH, ®, (25°C): a=b =448 A,
D=448,t=41A,py=2
X = COOH, unknown

3
Y
RO, )

.

X = COOCH,, @, (25°C):a=b=
479 A D=479A,t=45A, u=3
b=

XV,

459A, D=459,t=45A,p=3

RO
ﬂ X=COO0CH,, ®," (25 °C):a =bh=418 @ X = COOCH;, oil

X = CH,OH, oil

X=COOH, &," (25°C): ..
a=b=415A,D=415A,
t=47A,u=2 )

RO
X = COOCH;, oil
X = CH,0H, unknown

X = COOH, unknown

RO mzi%

-5l

I~
=G &

o

gt

X=COOCH;, oil

XXI,

% X = CH,0H, ofl

X = COOCHs, ®..,, (50 °C):

a=363A,b=649A, t=45A, p=3
X = GH,0H, o, (25 °C): 1@
a=bh=438A D=438,t=45A p=

.. X =COOH, BCC (85 °C):
 a=455A,D=394A p=12

(25? a=b=446A D=448A, @
t=

XXIll,

X =COOCH;,, ©, (25°C): a=b=43.3 @
A D=433A,¢t=46A p=2

X =CH,0H, @, (25°C): a=b=43.8 A enfers
D=438A,t=45A,p=2 i
X =COOH, BCC (60°C): a=47.2 A
D=409A u=12
®,(25°C):a=b=43.6 A, D=436A L)
t=47A u=2

XXIV,

X=COOCH;, oil

X = CH,OH, oil

X =COOH, @, (40°C): a=b=458 A,
D=458A,t=45A,p=2

X = COOH, @, (25°C): a= b=46.3 @ X = COOH, oil
A D=463A t=45A, p=3

“Phase notations: Lam* — crystalline lamellar; Pm3n — Frank-Kasper A15 phase; BCC — body-centered cubic phase; ®@,.X — monoclinic columnar
crystal; @, — 2D columnar hexagonal array; ®,_; — 2D columnar simple rectangular array; @, — 2D columnar hexagonal array with intracolumnar
order. For sphere-containing phases, D denotes sphere diameter and y denotes number of molecules with a supramolecular sphere. For columnar
phases, D denotes column diameter and y denotes number of molecules with a single column stratum. D and p were calculated according to

formulas detailed in the SI

generate spherical assemblies. They represent 61% of all
molecules from Tables 5 and 6. This fraction could be even
higher since XXy, XXI4 and XXX, are oils at room
temperature and may exhibit ordered phases that were not
yet analyzed below room temperature, or even exhibit new
unknown lattices whose structures were not yet elucidated. It is
also interesting to observe that the AB, XVI; with X =
—COOH and XXII; with X = —COOH, the ABg XXIII; with
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X = —COOH (all from Table 5), and the AB; XXIX, with X =
—COOH (Table 6) form spherical assemblies that are all BCC.
They represent 22% of all assemblies from Tables S and 6. No
Frank—Kasper spherical phases were observed for any of the
spherical nonsymmetric supramolecular dendrimers from
Tables S and 6. A supramolecular columnar hexagonal lattice
self-organized from supramolecular spheres was discovered for
XIX, with X = =COOH (Table S). The discovery of columns
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Table 6. Structural and Retrostructural Analysis of Supramolecular Dendrimers Self-Assembled from a Library of
Nonsymmetric Constitutional Isomeric AB; to AB; Self-Assembling Dendrons

e T XXVIll,-CH,0H to XXIX,-CH,OH
¢l K;CO; DMF e P 0t023°C,0.5h il gee
XXV, to XXX, +cno—©—/ XXV - o "
p t0 XXX, + Cy5Has 20°C, 16h oSk 1O XAN-COLCH, KOH, THF/ EtOH
3= XXVIII;-COOH to XXIX4-COOH
80°C,4h
R RO RO
AB; R‘b- XxXvy XXV, AB422 XXVIly XXVl AB5 XXXy QXXXd
RO
R=CyzHzs o)
O

w0,
&

;
x x

RO RO RO
X =COOCH,, X = COOCH;, X = COOCH &
Lam* (25 °C): m Lam* (25 °C): m ok 25 "C)a;' =
a=47.0A a=49.7A az274A b=416A,
t=43A p=2

R
o "°@—\
£

b=852A, t= 43Ay 9
X = COOH, mixture of BCC @, X= COOH,

O
X
X & )%
o O
o o [}
d no RO
RO R° RO
X = COOCH;, X = COOCH;, @ X = COOCH;, ol
©5(90°C): a=b=912A @4 (60 °C):
D=912A,t=44A,p=16 2a=414A b=227A t=52A p=2
X = CH,0H, X = CH,0H,
@, (45 °C): ®n (70 °C):
a=58.0A, a=b=416A

D=416A,t=41A, u=2
BCC (115°C):
a=461A,

()
D=399A, p=18; ’ﬂl

Dy (25°C):a=b=448A
D=448A,t=45A pu=3

“Phase notations: Lam"® — crystalline lamellar; BCC — body-centered cubic phase; @, — 2D columnar hexagonal array; ®,_, — 2D columnar simple

orthorhombic array; @S_Ok -

columnar simple orthorhombic crystal. For sphere-containing phases, D denotes sphere diameter and y denotes

number of molecules with a supramolecular sphere. For columnar phases, D denotes column diameter and y denotes number of molecules with a
single column stratum. D and p were calculated according to formulas detailed in the SI.

assembled from spheres was only recently reported by our
laboratory’” although undulated columns, which are expected
to be precursors to spheres, were known before.”

Structural and Retrostructural Analysis of Selected
Examples of TMV-like Helical Columns, Disorganized
Nonhelical Columns, Frank—Kasper Phases, and Bilayer
Arrays. Table 4 presents a collection of diverse but
representative examples of self-organizations that are missing
the sp’—sp® bonds from their basic repeat unit. As noted
above, there is a reduction in the number of supramolecular
spheres forming Frank—Kasper phases from the previous
libraries based on self-assembling benzyl ether and other ether
dendrons.'”"®*"" To rationalize this dramatic change in
assembly behavior, it is instructive to first compare the helical
columnar hexagonal crystal generated by V4 with X =
—CO,CH; (Figure 2a) with that of the corresponding benzyl
ether (4-3,4-3,5)12G2-CO,CHj, (Figure 2f). This self-assem-
bling benzyl ether dendron has been used in the synthesis of
dendritic dipeptides®*”***” that mimic the water channel
Aquaporin.”’ The SAXS and WAXS of the oriented fibers
obtained from both compounds are shown in Figure 2b, g. The
SAXS patterns are similar but provide different diameters D =
56 A for the benzyl ether and D = 46 A for the helical column
of V4. In contrast, the WAXS data are quite different, showing
a highly ordered helical hexagonal crystal for V4 (Figure 2b)
and a less ordered hexagonal crystal for the benzyl ether
(Figure Zg).

The number of dendrons forming the cross section of the
column is y = 3 for V4 and 4 for the benzyl ether analogue.
The spatial extent of a dendron in a columnar cross-section can
be described by its solid angle,”’ whose projection is calculated
for a planar disc as 360°/u; therefore, the solid angle for Vy is
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120° whereas for the benzyl ether counterpart (4-3,4-
3,5)12G2-CO,CH; it is 90°. The most remarkable difference
between these two dendrons is that the solid angle of Vy is
unchanged when the alkyl group on the periphery changes
from n-dodecyl to n-hexyl (to be published) and, therefore, the
number of dendrons in the cross section of the column
remains constant. This is in stark contrast to the benzyl ether
dendron, for which the solid angle and the number of
dendrons forming the cross section of the column change
continuously when the alkyl group of its periphery changes
from n-hexyl to n-hexadecyl’®“ This demonstrates that
between n-dodecyl and n-hexyl V4 has a rigid solid angle of
120° while the benzyl ether dendron has an adaptable solid
angle.‘}’ga"]I As a consequence, Vy self-organizes into a triple 8,
helix (or a 24, helix) consisting of 3 molecules that rotate by
15° in each column stratum (Figure 2c—e). The simulated X-
ray diffractogram (Figure 2b, WAXS, right) for the model of V4
shown in Figure 2c—e shows good agreement with the
experimental fiber XRD data (Figure 2b, WAXS, left). The
weaker intensity of features on the L = 1 layer line in the
experimental data compared to the simulated data suggests
that column strata are not spaced with an exact 3.6 A spacing,
but instead that there is some minor degree of disorder with
respect to stacking along the column axis. Molecular models
were constructed, by the methodology elaborated in our
laboratory and reported in previous publications,””** by
matching the experimental density with the density of the
molecular model generated with the dimensions provided by
X-ray analysis with Material Studio (version 5.0) software. The
simulated X-ray from Figure 2b WAXS, right, was generated
with Cerius 2 software.””*® These preliminary data provide the
first example of a rigid solid angle that generates a mechanism
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Figure 2. Helical supramolecular assembly of the 24; helix of V. (a—e) Structural and retrostructural analysis of self-assembled Vy. (f, g) Structural
and retrostructural analysis of corresponding self-assembling dendron with benzyl ether connections, (4-3,4-3,5)12G2-CO,CHj. Colored arrows in
(a) and (f) compare the number of rotational degrees of freedom in the sp>—sp* (a) and benzyl ether (f) dendrons.

of helical self-organization and crystallization resembling
TMV.* Both the helical self-organization of V4 and of the
benzyl ether dendrons are sensitive to the functional group
attached to their apex (Figure S15). A more detailed structural
and mechanistic discussion of this self-organization process will
be published elsewhere. Self-organization of all other columnar
hexagonal arrays can be inspected by the fiber X-ray data from
Figure S8. AB¢ XIy with X = —CO,CH; and XVI4 with X =
—CO,CH,; show helical columnar structures with much lower
degrees of crystallinity while all other columnar assemblies are
highly disordered and nonhelical. The X-ray patterns of the
AlS Frank—Kasper phase exhibited by IVy with X =
—CO,CH;, —CH,0H, and —COOH (Figure 3a—c) are
shown in Figure 3f—h, and Figure 3k—m, and that of XIX,
with X = —COOH (Figure 3d) is shown in Figure 3i,n, while
that of the o-phase of X; with X = —COOH (Figure 3e) is
shown in Figure 3j,0. They agree with XRD patterns reported
in the previous publications.'’>“*®

A very interesting feature is available in both the symmetric
and nonsymmetric AB, 1, IT;, AB; III, AB, VII,, XIII;, XIVy,
XXVII, and XXVIII, (Tables 4—6) compounds, which forms
bilayer structures that are of interest as mimics of biological
membranes and of their glycan, as models for endocytosis, as
hybrid cells,”* and for the delivery of mRNA.*® Due to the
nonsymmetric arrangement of their n-alkyl groups they are
expected to provide highly soluble vesicles without needing to
incorporate double bonds in their alkyl tails. An example of the

bilayer structure of VIII, to illustrate this concept is shown in
Figure 4. The bilayer structures of all other compounds are
shown in Figures S9—S14.

Columns from Spheres, Rarely Encountered BCC
Phases, and Tetrahedral Bundles of Hexagonal Col-
umns. Self-organization of supramolecular columns from
supramolecular spheres is expected as a process during the
transition from a columnar hexagonal array to a cubic lattice,
and indeed these structures were observed recently for the first
time during this process.””® Subsequently columns from
spheres were discovered in the absence of this transition.””*
XIXy with X = —COOH provides the second example of
supramolecular columns assembled from supramolecular
spheres (Table S and Figure 3d). The oriented fiber
diffractogram of the columnar hexagonal array from Figure 3i
is identical to the previous examples of columnar hexagonal
arrays self-organized from spheres.”” Before the discovery of
the Frank—Kasper AlS phase in supramolecular dendri-
mers''”79'7*" followed by the o-phase’’” and LC quasicrys-
tal,'"® it was expected that soft spheres self-organize
predominantly in face-centered cubic (FCC) and body-
centered cubic (BCC) lattices.** In the meantime Frank—
Kasper phases were discovered also in block copolymers,'’
surfactants,”’ giant molecules,”’ and DNA nanoparticles.22

The self-assembling dendrons reported in this publication
provide a transition back to BCC phases since they self-
organize predominantly in BCC rather than in Frank—Kasper

https://doi.org/10.1021/jacs.1c08502
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Figure 3. Structural analysis of supramolecular assemblies with selected phases. (a—e) Chemical structures of the self-assembling dendrons. XRD
experiments data for A1S or Pm3n (f=h), column-from-sphere phases (i), and ¢ or P4,/mnm (j); (k—m, o) XRD diffractogram at given
temperatures with assigned peaks. (n) Azimuthal plot of the columnar hexagonal with intracolumnar order (®,°) phase with corresponding
features assigned.
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Figure 4. XRD patterns and molecular models of the crystalline lamellar (Lam®) phase of VIII,. (a) Chemical structure of VIII. (c) Experimental
XRD pattern collected with a sample-to-detector distance of 0.07 m (WAXS). (b, d) Molecular models of the crystalline lamellar (Lam*) phase.
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Figure S. Small-angle (SAXS) oriented fiber XRD patterns recorded from highly ordered BCC assemblies self-organized from the AB; to AB,
constitutional isomeric self-assembling dendrons. Chemical structures are shown on top of their XRD patterns.

phases. We expect that hybrid self-assembling dendrons based
on benzyl ether and the currently reported building blocks will
provide access to the prediction of all cubic and Frank—Kasper
phases. Research toward this goal is in progress. Figure 5
summarizes the structures and the oriented fiber XRDs of five
dendrons with COOH at their apex: ABg (XXIXy), AB, (XVI4
and XXII,), AB; (XXIIl;), and AB, (XII4). These dendrons
assemble columnar hexagonal arrays at 25 °C (Figure Sa—e)
and transition to the BCC phase upon heating (Figure 5f—j).
Upon cooling, these structures return to columnar hexagonal
arrays (Figure Sk—o). However, in all cases, additional off-
equatorial features corresponding to (100) are observed. The
azimuthal distribution of these (100) features (Figure Sp—t) is
consistent with previous reports”™ in which an epitaxial
nucleation at the transition from BCC to the columnar
hexagonal phase occurs along the four [111] directions of the
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BCC phase. This epitaxial phenomenon, which was termed
supramolecular orientational memory (SOM) and is shown in
detail for AB, XII, in Figure 6, occurs because the spheres of
the BCC lattice are in closest contact along their (111)
directions (Figure 6e) that nucleate the formation of columns.
This generates a tetrahedral arrangement of hexagonal columns
upon cooling to the columnar hexagonal phase (Figure 6f).
This series of dendrons represents the largest group of
structurally related molecules that exhibits an SOM effect. It is
notable that, in all cases, the number of molecules in the
supramolecular sphere of the BCC phase (u in Tables 4—6) is
an exact multiple of the number of molecules in the column
stratum (u in Tables 4—6): for AB; (XXIXy), ¢ = 18 (in
sphere) and p = 3 (in column stratum); for AB, (XII,), 4 = 10
(in sphere) and y = 2 (in columns stratum); and for the three
AB, and ABg dendrons (XVI;, XXII,, and XXIII,), x4 = 12 (in
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sphere) and p = 2 (in column stratum). This observation
suggests that the transition between column and sphere can
occur without disrupting the interaction between molecules
within a single column stratum, which may arise due to
hydrogen bonding between COOH apical groups. Harnessing
intermolecular interactions within column strata may provide a
route to generalize the SOM to additional structures.
Supramolecular spheres self-assemble from conical or crown
conformations of self-assembling dendrons.*”***

Figure 7 demonstrates how the SOM effect provides the
only methodology to discriminate between the two mecha-
nisms of self-assembly of supramolecular spheres from XII4
with X = —COOH. Ten dendrons with either crown (Figure
7¢) or conical (Figure 7d) conformations self-assemble into a
supramolecular sphere with an identical diameter of 39.3 A,
and therefore these two possibilities cannot be discriminated
by structural analysis alone. However, we recently demon-
strated that only the crown conformation of the dendrons
produces supramolecular spheres that undergo the SOM.**
Therefore, since the BCC lattice in which this sphere self-
organizes undergoes a SOM process, the self-assembling
dendron forming the sphere must adopt a crown conformation.
More detailed analysis of all these BCC phases will be reported
elsewhere. Although the chemical structure of the self-
assembling ABy dendron XII; seems to look like that of a
dendrimer (Table 5, Figure 5),"'%%° its self-organization
principles follow the mechanism of dendrons (Figure 7) rather
than that of dendrons that reached the size and reactivity of the
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functional group at the focal point of dendrimers and therefore
can be named either dendrons or dendrimers.'>**¢

Cubic phases including BCC are the self-organizations of
icosahedral viruses,"***° dendronized metal salts, and salts
solubilized by dendronized crown ethers display both Frank—
Kasper and BCC phases.%d’C Therefore, the self-organizing
principles of synthetic and biological matter seem to be similar
if not identical*** Polyphenylene dendrimers and hyper-
branched polymers were previously prepared both by Pd-
catalyzed cross-coupling in a convergent method®***~ and by
the Diels—Alder reaction.***™" Nevertheless, they were not
designed as self-assembling dendrons and were not employed
in systematic studies to elucidate the mechanism of self-
assembly.

B CONCLUSIONS

Three libraries containing 30 symmetric and nonsymmetric
constitutional isomeric, sequence-defined AB, to AB, phenolic
esters were synthesized from natural phenols and phenolic
acids by an accelerated modular-orthogonal Ni-catalyzed
methodology with Ni-catalysts, all elaborated in our laboratory.
A single etherification step with 4-(n-dodecyloxy)benzyl
chloride rather than with minidendrons® transformed all
phenolic esters into self-assembling dendrons, which represents
unprecedented self-organizing principle for the field of self-
organizing dendrons, dendrimers, and dendronized polymers.
Additional unprecedented self-organizing principles refer to
the diversity of self-assembling dendron architectures obtained
after such a simple one-step etherification process of the
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Figure 7. XRD patterns and molecular models of the body-centered cubic (BCC) phase of XII;—COOH. (a) Experimental XRD pattern collected
with a sample-to-detector distance of 0.54 m (SAXS). (b) Top view of the single layer (top) of the column forming the crystalline columnar
hexagonal phases and the side view of the supramolecular column (bottom). (c) Upper half (top) and the whole structure (bottom) of the
supramolecular sphere assembled from five crown dimeric conformers consisting of ten XII;-COOH, side view. (d) Conical conformation of XII,-
COOH (top) and the corresponding supramolecular sphere (bottom) assembled from ten conical conformers of XII;-COOH. Two mechanisms of
self-organization, including crown conformation (c) and conical conformation (d), are presented.

starting phenolic acids building blocks. The first group of
dendron architectures exhibiting these principles consists of
lamellar structures of interest for amphiphilic Janus den-
drimers, Janus glycodendrimers, and ionizable amine Janus
dendrimers that function as biological membrane mimics and
single component delivery systems for mRNA.”> The second
group of architectures provided the first helical columnar
assemblies from rigid solid angle dendrons forming helical
TMV-like assemblies. The third group provides disordered
micellar-like nonhelical supramolecular columns via self-
assembling dendrons with adaptable solid angles. Columns
from spheres observed only infrequently before were also
obtained. Five rarely encountered BCC phases displaying a
supramolecular orientational memory (SOM) effect provided
the fifth group of self-assembling dendrons. The sixth group
self-organizes only two Frank—Kasper phases, AlS and o.
Cubic phases encountered in viruses, in dendronized metal
salts, and in metal salts solubilized by dendronized crown
ethers are complementary to those of the supramolecular
dendrimers forming BCC assemblies reported here. Frank—
Kasper phases were discovered in self-organizable dendrons,
dendrimers, and dendronized polymers and subsequently in
block copolymers, lipids, surfactants, giant molecules, and
DNA nanoparticles. Finally, the ratio between sp’—sp® and
sp’—sp”> bonds in the self -assembling dendrons seems to
determine the extent of entropy increase during the
minimization of the supramolecular assemblies area,*® a self-
organizing principle that we expect to be generalized for the
engineering of soft and hard supramolecular spheres and of
other objects in future experiments to be performed with the

building blocks elaborated here. It could be that we were
fortunate to start our investigations on self-organizable
dendrons, dendrimers, and dendronized polymers with soft
benzyl ether based assemblies and this facilitated the discove
of Frank—Kasper phases, and of quasicrystals,''™!7>>1821°F
Therefore, principles encountered in these new libraries of
symmetric and nonsymmetric constitutional isomeric, se-
quence-defined dendrons, together with those of previous
libraries, are expected to provide access to extended rational
design principles for all cubic and Frank—Kasper phases as well
as for helical and nonhelical columns and their bundles in
synthetic and biological soft matter.””"*’
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