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Metal-chelating ligands such as nitrilotriacetic acid (NTA) bind to polyhistidine-tagged (His-tagged)
proteins. Lipids conjugated to NTA are widely used to decorate the surface of liposomes with proteins
in cell biology applications. Multivalent NTA ligands such as tris-nitrilotriacetic acid (TrisNTA) display
higher affinities than the monovalent NTA when co-assembled with phospholipids and cholesterol in
liposomes. However, there is a limited number of available lipids conjugated to NTA and only few are
commercially available. Additionally, their activity diminishes during storage or upon exposure to air.
Here we report a library of five amphiphilic Janus dendrimers conjugated to NTA (JD-NTA) and three
to TrisNTA (JD-TrisNTA). Both JD-NTA and JD-TrisNTA are indefinitely stable at room temperature in
air and preliminary results demonstrate that they co-assemble with phospholipids and cholesterol into
liposomes, with Janus dendrimers into dendrimersomes, and with block copolymers into polymersomes.
The resulting hybrid liposomes co-assembled with JD-NTA display up to thirty-fold higher activity
towards His-tagged fluorescent proteins when compared to lipid-NTAs. Hybrid liposomes co-assembled
with JD-TrisNTA exhibit even higher binding affinity to His-tagged proteins and can function at much
lower ligand concentration in hybrid liposomes than those containing JD-NTA. These preliminary results
demonstrate the power of modular synthesis of JD-NTA or JD-TrisNTA to provide highly efficient new
tools for biological reconstitution and synthetic cell biology as well as for nanomedicine.
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Fig. 1

(3,5)12G1-NBD

The structures of components required to assemble liposome by co-assembly of HSPC (60%, w/w) with cholesterol (40%, w/w), dendrimersomes by self-assembly
of Janus dendrimer (JD), and polymersomes by self-assembly of block copolymer poly(butadiene-b-ethylene oxide) known commercially as OB1017, are shown
in the yellow marked box. The structure of the commercial NTA lipid Ni complex DGS-NTA(Ni) is shown in the green box. The new library of Janus dendrimers
containing the NTA ligand is shown in the cyan box while the new library of the Janus dendrimers containing the TrisNTA ligand is shown in the blue box. The
structures of red and green fluorescent trackers are shown in the orange box. Liposomes, dendrimersomes, and polymersomes were prepared by hydration of a
film containing the proper components on a Telfon sheet in PBS (pH 7.4, 1X) with NiSO4 (200 £M).

Introduction

The polyhistidine-tag (His-tag) is a sequence of at least six
histidine (His) residues that is used to decorate the terminals
of proteins. His-tag decorated proteins bind to specific metal
chelating groups. For example, nitrilotriacetic acid (NTA), a
tetradentate ligand chelating with various metal ions such as
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Ni(Il), Co(II), Co(Ill), Cu(ll), Zn(II) [1-13] were widely used in
affinity chromatography for protein purification [6],biosensor
detection [3,5], fluorescence labeling [7], as well as in molecular
and cell biology to bind protein [2,10-13].

The NTA conjugated lipid Ni-precomplex, 1,2-dioleoyl-
sn-glycero-3-[(N-(S-amino-1-carboxypentyl)iminodiacetic
acid)succinyl] (nickel salt) / 18:1 DGS-NTA(Ni) (Fig. 1, green
box), is commercially available (Avanti Polar Lipids, Inc.
$261/25 mg, accessed on Nov. 29, 2021) and is widely used
in cell biology and synthetic cell biology to co-assemble with
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Synthesis of the Library of Amphiphilic Janus Dendrimers Conjugated to NTA Ligand. Reagents and Conditions: (i) CuSO4e5H,0, NaOH, water, 23 °C; (ii) CbzCl,
NaHCO3, 0-23 °C; (i) EDTA, water, 100 °C, then 2 M NaOH; (iv) BrCH,COOH, 2 M NaOH, 60 °C, then 2 M HCl; (v) MeOH, TsOHeH;0, 70 °C; (vi) H,, Pd/C, DCM, MeOH;
(vii) SOCI;, then DCM, NEts; (viii) CDMT, NMM, THF; (ix) KOH, EtOH, THF, 90 °C, then 2 M HCI.

phospholipids and cholesterol and decorate their surface with
binding sites for His-tagged proteins. This methodology allows
to decorate the periphery of vesicles with proteins and other
components. This immobilization method is “oriented” and very
mild thus preserving the activity of the protein. However, in
our experience a solution of commercial DGS-NTA(Ni) has
limited stability over time, showing sensitivity to air and
moderate-term cold storage. This is not unexpected since the
double bonds of its alkyl tails will most probably oxidize in
air. When monovalent NTA is transformed into TrisNTA [14-
19], the affinity to His-tagged protein increases 1000-fold [17].
However, the synthesis of lipids conjugated to TrisNTA and of free
TrisNTA is complex and the commercially available free TrisNTA
containing a primary amine group is very expensive (Fig. 1, green
box) ($361/100 ng, Sigma-Aldrich, accessed on Nov. 29, 2021)
[14].

Amphiphilic Janus dendrimers (JDs) [20-33], their analogues
conjugated with sugars, Janus glycodendrimers (JGDs) [22,34-
42], and related structures with ionizable amines known as
ionizable amphiphilic Janus dendrimers (IAJDs) [43,44] have
been developed as biological membrane mimics [22-44] and as
a new class of delivery systems for mRNA. JDs are constructed
from hydrophobic and hydrophilic dendrons [20,22]. JDs and
JGDs provide synthetic alternatives to natural lipids, glycolipids
and amphiphilic block copolymers [20,22]. JDs and JGDs self-
assemble into monodisperse and stable dendrimersomes and
glycodendrimersomes by simple injection from ethanol or other
water miscible solvents into water, buffer, or serum [20,22,28]. The
resulting assemblies generate synthetic cell membranes with the
similar thickness, membrane flexibility, and mechanical resistance
as natural phospholipid cells [20,22,27,31-33]. Dendrimersomes
and glycodendrimersomes encapsulate high concentrations of
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hydrophobic organic compounds and their surface exhibit rafts-
like domains with high activity to lectins [39,40,42]. Due to their
high stability and similar thickness as that of liposomes assembled
from natural phospholipids, cell-like hybrids with either bacteria
or human cells membrane components and JDs and JGDs can
be constructed [26,29]. An NTA conjugated JD was previously
synthesized to functionalize the surface of dendrimersomes via
bioaffinity interactions [28]. The NTA coated dendrimersomes
showed excellent ability to bind His-tagged protein cargo [28].
Furthermore, a DNA aptamer was noncovalently attached to His-
tagged SNAP proteins on the surface of dendrimersomes via NTA
conjugated JD [28]. These positive preliminary results prompted
the synthesis of a broader library of JD containing NTA, JD-
NTA, and JD containing Tris-NTA, JD-TrisNTA reported here, to
address the scope and limitations of JD-NTA and JD-TrisNTA for
applications in cell biology and nanomedicine.

Methods

Materials

Hydrogenated soybean phosphatidylcholine (HSPC), 18:1 DGS-
NTA(Ni), and 18:1 Liss Rhod PE were purchased from Avanti
and stored at -20 °C. Block copolymer poly(butadiene-b-ethylene
oxide) OB1017 was purchased from Polymer Source, Inc. (Dorval,
Quebec, Canada, sample# P40463A-BdEO, PBd(1700)-PEO(1000),
Mw/Mn = 1.04). Janus dendrimer (3,5)12G1-PE-(3,4,5)3EOG1-
(OCH3s) [20] and green tracker (3,5)12G1-NBD [45] were reported
and synthesized by Percec Laboratory previously. The detailed
synthesis of JD-NTA and JD-trisNTA will be discussed later.

Protein expression and purification

pET plasmids containing Hise-GFP or Hiss-RFP were transformed
into E. coli Rosetta 2 cells (Novagen) for protein expression.
Cultures were grown in LB at 37 °C to an ODgg of 0.4, then
temperature shifted to 16 °C for 20 min and induced using 0.5 mM
IPTG at an ODggp between 0.5-0.7. Cultures were grown overnight
at 16 °C. Cells were harvested by centrifugation and resuspended
in PBS. Cells were lysed with three cycles of sonication and
freeze-thaw and clarified by centrifugation. The supernatants were
incubated with Ni-NTA agarose superflow resin (Qiagen) for 1 hr
at 4 °C. After extensive washing, proteins were eluted in a buffer
containing 150 mM NacCl, 25 mM Tris, 250 mM imidazole pH 8,
10% glycerol, 1 mM DTT), and then dialyzed overnight to remove
imidazole. Stocks were aliquoted and snap frozen; stored at -80 °C.

Preparation of hybrid liposomes by film hydration

Stock solutions of HSPC and cholesterol were prepared in
chloroform with 20 mg/mL concentration. Stock solutions of
DGS-NTA(Ni) (2.5 mg/mL) and 18:1 Liss Rhod PE (1.0 mg/mL)
were received in chloroform solution from Avanti. Stock solutions
of JD-NTA and green tracker (3,5)12G1-NBD [45] were prepared in
chloroform with 1 mg/mL concentration. Stock solutions of JD-
TrisNTA were prepared in methanol with 1 mg/mL concentration.
HSPC (0.567 mg, 28.3 ul), cholesterol (0.388 mg, 19.4 nL)
with red (Rhod) or green (NBD) tracker (0.005 mg, 5 uL) and
corresponding DGS-NTA(Ni), JD-NTA or JD-TrisNTA solution with
required mol% were mixed together and placed on a roughened
Teflon sheet (0.5 x 0.5 cm?) in a 4 mL flat-bottomed vial. After

all the solvent was evaporated and a film with HSPC, cholesterol,
fluorescent tracker, and NTA molecules was dry, the vial was placed
into a vacuum chamber for 12 h. The films were rehydrated in 250
nL of phosphate buffered saline (PBS, pH 7.4, 1X) with 200 uM of
NiSOy at 50 °C for 24 h.

Preparation of hybrid dendrimersomes and hybrid polymersomes
by film hydration

Stock solutions of Janus dendrimers or polymers were prepared
in chloroform with 20 mg/mL concentration. Janus dendrimers
(1.0 mg, 50 pl) with red tracker (Rhod) (0.005 mg, 5 ulL)
and corresponding JD-NTA solution with required weight% were
mixed together and placed on a roughened Teflon sheet (0.5 x 0.5
cm?) in a 4 mL flat-bottomed vial. Polymer (1.0 mg, 50 uL)
and corresponding JD-NTA solution with required weight% were
mixed together and placed on a roughened Teflon sheet (0.5 x 0.5
cm?) in a 4 mL flat-bottomed vial. After all the solvent was
evaporated and a film with Janus dendrimer or polymer and JD-
NTA molecules was dry, the vials were placed into a vacuum
chamber for 12 h. The films were rehydrated in 250 uL of
phosphate buffered saline (PBS, pH 7.4, 1X) with 200 uM of NiSO4
at 50 °C for 24 h.

Confocal fluorescence microscopy

Pre-assembled NTA-coated liposomes, dendrimersomes or
polymersomes (10 pL) were mixed with His-GFP (1 L, 53
uM) or His-RFP (1 L, 76 uM) and incubated at 23 °C for 30 min.
The incubated samples (3 uL) were diluted with 1:30 with PBS (87
unL), and a diluted liposome solution (15 pL) was pipetted into
the custom gasket imaging chambers for microscopy.

Images were acquired using 488 nm (for GFP or NBD) and
561 nm (for Rhod or RFP) laser illumination on an Olympus IX81
inverted confocal microscope containing a Yokogawa X1 spinning
disk head. Images were acquired using a 100 x 1.4 NA oil objective,
an Andor iXon3 EM-CCD camera and MetaMorph acquisition
software. Images containing a specific dye or tracer were collected
at identical laser intensities and camera gain and exposed for the
same period.

Image analysis

To quantify protein recruitment, confocal image stacks were
analyzed using ImageJ. Midplane of vesicle were identified in Z-
and objects were masked, and background subtracted to calculate
integrated pixel intensities of fluorescent proteins. Measurements
of recruitment were performed on a minimum of 20 vesicles. Error
bars were calculated by standard error of the mean (SEM).

Results and discussion

Design and modular synthesis of JD-NTA

In order to expand and estimate the efficiency and the
potential utility of different structures of JD conjugated to
NTA, a library of JD-NTAs was designed and synthesized
(Fig. 1). Their binding activities to His-tagged proteins after
JD-NTA or DGS-NTA(Ni) were co-assembled into non-stealth
liposomes [46-49] containing 60% (w/w) hydrogenated soybean
phosphatidylcholine (HSPC) and 40% (w/w) cholesterol (Fig. 1,
yellow box) was compared. The previously reported JD-NTA has a
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hydrophobic 3,5-substitued dodecyl benzoic acid first generation
AB, dendron (3,5)12G1 (Fig. 1, cyan box) [28]. Three additional
hydrophobic minidendrons with 4-, 3,4- and 3,4,5- substituted
dodecyl benzoic acid, and one hydrophobic minidendron 3,4,5-
substitued 3,7-dimethyloctyl benzoic acid were conjugated to the
NTA ligand (Fig. 1, cyan box).

To specify the nomenclature for molecular structures of JD-
NTA, we employed the general classification developed by our
laboratory for Janus dendrimers [22,50]. For example, (3,4)12G1-
NTA specifies a 3,4-didodecyloxy benzoic minidendron, and
in the (3,4)12G1, G1 denoted first generation dendron in the
hydrophobic portion. (3,4,5)dmG1-NTA denotes a racemic 3,4,5-
tri(3,7-dimethyloctyl) benzoic minidendron (3,4,5)dm8G1, while
(4)12GO-NTA refers to the molecule that has 4-dodecyloxy benzoic
minidendron (4)12GO; GO denoted zero generation dendron
because there is no branching point in its structure.

The modular synthesis of five JD-NTA molecules is shown in
Fig. 2. This synthesis follows similar principles as the synthesis
of (3,5)12G1-NTA [28] 1-Lysine hydrochloride (1) was complexed
with CuSOy, followed by the protection of the Ny terminal amino
group with benzyl chloroformate (CbzCl) in 59% yield for three
steps [51]. After an Sn2 reaction between Ng Cbz-lysine (4) and
2-bromo acetic acid with NaOH as base in water, the tribasic
acid (5) was obtained in 81% yield. A Fischer esterification was
used to protect the three acid groups with methanol in the
presence of p-toluenesulfonic acid (TsOH) with 57% yield. After
Cbz deprotection via hydrogenolysis with palladium on carbon,
the triester (7) with a free amino group was obtained [52]. The
intermediate triester with a free amino group (7) was conjugated
to the corresponding benzoic acids (8-12) to obtain the dendron-
conjugated triesters (13-17) (39-88% yield) via either thionyl
chloride, followed by amidation catalyzed by triethylamine, or
by a direct amidation with 2-chloro-4,6-dimethoxy-1,3,5-triazine
(CDMT) and N-methylmorpholine (NMM). Finally, hydrolysis of
dendron-conjugated triesters (13-17) with KOH in a mixture of
tetrahydrofuran and ethanol followed by acidification with 2 M
HCI aqueous solution, led to the target five JD-NTA molecules
in 72-95% vyield as white or light-yellow solids. Unlike the
commercially available but unstable DGS-NTA(Ni), these five JD-
NTA molecules are stable at room temperature in air for at least
three years.

His-Tagged protein affinity of nta containing liposomes and
hybrid liposomes

Non-stealth liposomes containing NTA were prepared by film
hydration. HSPC (60%, w/w) and cholesterol (40%, w/w) (Fig. 1,
yellow box) with additional 2% mol of DGS-NTA(Ni) or JD-NTA
was deposited on a Teflon sheet. A rhodamine red-fluorescent
labeled lipid, 1,2-dioleoyl-sn—glycero-3-phosphoethanolamine-N-
(lissamine rhodamine B sulfonyl) (ammonium salt) 18:1 Liss
Rhod PE (Fig. 1, orange box) (0.5%, w/w) was added as a
red fluorescent tracker to visualize the liposomes by confocal
microscopy. Hydration of the dried film on Teflon was performed
in a phosphate-buffered saline at 50 °C for 24 h (PBS, pH 7.4, 1X)
with additional NiSO4 (200 um), required for high affinity NTA-
His-interactions. These Ni-NTA-containing hybrid liposomes were
incubated with recombinant His-tagged green fluorescent protein

Liposome (Red)
5

b

Liposomes Bind to His-GFP with 2% NTA Units
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Fig.3

(a) Recruitment of His-GFP on the membrane surface of the hybrid liposomes.
Liposome (red color) was indicated by 0.5% (w/w) of 18:1 Liss Rhod PE as a
red fluorescent tracker. GFP (green color) was located in the same position,
confirmed by their merged images. (b) Comparisons of the recruitment of GFP
on the surface of liposomes by 2% mol of DGS-NTA or JD-NTA. Error bars: +
standard error of the mean (SEM).

(His-GFP) [28] for 30 min before being diluted to remove unbound
protein for imaging with confocal microscopy.

Typical confocal fluorescent images (Fig. 3a) show giant
unilamellar hybrid liposomes in red channel containing 18:1
Liss Rhod PE (0.5%, w/w), a red fluorescent tracker. The
green fluorescence of His-GFP overlaps spatially with the red
fluorescence, indicating that the His-GFP binds on the liposome
membrane via interaction with the NTA-Ni complex from DGS-
NTA or JD-NTA.

Quantitative analysis of the green fluorescent intensity from
liposomes or the hybrid liposome membranes was carried out
to compare the recruitment of His-GFP (Fig. 3b). Liposomes
co-assembled with 2% mol of DGS-NTA to His-GFP weakly.
In contrast, liposomes co-assembled with JD-NTA molecules
(3,4,5)12G1-NTA or (3,4,5)dm8G1-NTA showed approximately 6-
fold higher recruitment of His-GFP cargo, and molecules (4)12G0-
NTA, (3,4)12G1-NTA and (3,5)12G1-NTA displayed 27 to 30-fold
higher recruitment of His-GFP cargo compared to DGS-NTA. The
more modest activities of the two molecules with AB3 3,4,5-
substitied dendrons, (3,4,5)12G1-NTA or (3,4,5)dm8G1-NTA, can
potentially be explained by the unfavorable conical shape of
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Synthesis of the Library of Amphiphilic Janus Dendrimers Conjugated to TrisNTA Ligand. Reagents and Conditions: (i) 7, COMT, NMM, THF, 48 h; (ix) KOH, EtOH, THF,

90 °C, 4 h, then 2 M HCI.

their minidendrons for incorporation into liposome bilayers. This
finding suggested the need to synthesize TrisNTA containing JDs
with the three hydrophobic minidendrons (4)12GO0, (3,4)12G1,
and (3,5)12G1.

Design and modular synthesis of JD-TrisNTA

(4)12GO-NTA, (3,4)12G1-NTA and (3,5)12G1-NTA were reacted
with intermediate (7) via CDMT-NMM amidation in THF for
48 h to obtain the corresponding methyl nonaesters (23-25, 32—
55% vyield) (Fig. 4). Three target JD-TrisNTA molecules, (4)12GO-
TrisNTA, (3,4)12G1-TrisNTA and (3,5)12G1-TrisNTA were obtained
by hydrolysis of methyl nonaesters (23-25) and acidification in
90-96% yield. The synthetic route is simpler and more efficient
when compared to the previous route for the synthesis of TrisNTA
compounds via t-butyl protected nonaesters [14-19].

Increased JD-TrisNTA valency enhances his-tagged protein
binding to hybrid liposomes

To investigate the relative affinities of His-tagged protein
for JD-TrisNTA vs. JD-NTA in hybrid liposomes, we tested a
recombinant His-tagged red fluorescent protein (His-RFP) and

a green-fluorescent labeled Janus dendrimer (3,4)12G1-NBD
[45] (Fig. 1, orange box). Co-assembly of JD-TrisNTA with HSPC
and cholesterol in liposomes indicated clear recruitment of His-
RFP (red color) on the membrane of hybrid liposome (green color).
(Fig. Sa).

To determine the binding strength, we titrated the molar
concentration of (3,4)12G1-NTA or (3,4)12G1-TrisNTA in hybrid
liposomes from 1% to 0.5% and to 0.2% (mol% of NTA
units, representing 0.33%, 0.17% and 0.067% of for TrisNTA).
Binding of His-RFP was quantified from confocal fluorescent
images (Fig. 5b). At 1% mol of NTA units, hybrid liposomes
with either (3,4)12G1-NTA or (3,4)12G1-TrisNTA bind to His-
RFP very strongly. In contrast, at 0.5% of NTA units in hybrid
liposomes, (3,4)12G1-TrisNTA coated hybrid liposomes bound
50% higher His-RFP than (3,4)12G1-NTA coated hybrid liposomes.
At even lower NTA concentrations, such as 0.2%, (3,4)12G1-
TrisNTA coated hybrid liposomes showed 6-fold higher His-RFP
recruitment than (3,4)12G1-NTA coated hybrid liposomes. These
observations indicate JD-TrisNTA binds His-protein at much lower
NTA ligand threshold concentration compared to JD-NTA in
hybrid liposomes, likely as a result of increased valency.
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(a) Recruitment of His-RFP to the membrane of JD-TrisNTA containing hybrid liposomes. Liposomes contain 0.5% (w/w) of (3,4)12G1-NBD as a green fluorescent
tracker. Merge confirms colocalization. (b) Comparisons of recruitment of His-RFP on the surface of liposome by 0.2-1% mol of NTA units from (3,4)12G1-NTA or

(3,4)12G1-TrisNTA. Error bars: & SEM.
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Comparisons of recruitment of His-RFP on the surface of liposome by 0.5% mol of NTA units from JD-NTA or JD-TrisNTA. Error bars: & SEM.

Finally, we tested the entire library at 0.5% mol of NTA
within liposomes (Fig. 6). Hybrid liposomes containing (3,4)12G1-
NTA and (3,5)12G1-NTA presented the highest relative affinities
compared to the DGS-NTA molecule. These results mirrored the
result with His-GFP (Fig. 3b)

The concentration of NTA unit used in the experiment
described here (0.5%) is lower than in Fig. 3b (2%), since
we demonstrated that at a lower concentration, the relative

activities of JD-NTA and JD-TrisNTA can be discriminated (Fig. 5).
The activity of (4)12G1-NTA is significantly lower than those
of (3,4)12G1-NTA and (3,5)12G1-NTA, while the activities of
(3,4,5)12G1-NTA and (3,4,5dm8G1-NTA remained the lowest
among the five JD-NTAs. These results indicated that 3,4- and
3,5- substituted hydrophobic dendrons (3,4)12G1 and (3,5)12G1
may have the best compatibility to co-assemble with liposomes
due to interdigitation of their alkyl chains [21]. Importantly,
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(a) Recruitment of His-GFP to the membrane of JD-NTA (4%, w/w) containing hybrid dendrimersomes. Dendrimersomes contain 0.5% (w/w) of 18:1 Liss Rhod PE
as a red fluorescent tracker. (b) Recruitment of His-RFP to the membrane of JD-NTA (5%, w/w) containing hybrid polymersomes. Bright field was used to visualize

the polymersomes.

hybrid liposomes containing JD-TrisSNTA showed higher values
than their single NTA analogues with the identical hydrophobic
minidendrons. Among all the molecules, (3,5)12G1-TrisNTA
exhibited the highest affinity for His-RFP among the three JD-
TrisNTAs.

Co-Assembly of dendrimersomes and polymersomes with
JD-NTA and protein recruitment

In addition of the hybrid liposomes, we prepared the hybrid
dendrimersomes [28] or hybrid polymersomes with selected JD-
NTA. Janus dendrimer (JD) (3,5)12G1-PE-(3,4,5)3EOG1-(OCH3)e
(Fig. 1, yellow box) [20] was selected to prepare very stable giant
vesicles, and block copolymer OB1017 (Fig. 1, yellow box) was
selected to generate polymersomes [53]. Preliminary results on the
recruitment of His-tagged proteins with hybrid dendrimersomes
and polymersomes are presented in Fig. 7. The green or red
fluorescent signal from the His-tagged protein were clearly showed
on the surface of these dendrimersomes or polymersome vesicles.
These preliminary results demonstrated that JD-NTA reported here
can be utilized as a universal ligand for synthetic vesicles to bind
to His-tagged proteins for various applications in cell biology and
nanomedicine [54-62].

Conclusions

In summary, we report the synthesis of two libraries of
amphiphilic JDs conjugated to NTA and TrisNTA that co-assemble
with phospholipids and cholesterol, to generate hybrid liposomes
extremely active towards binding His-tag proteins. JD-TrisNTA was
synthesized starting from JD-NTA in just two steps and presents
higher activities toward His-tagged fluorescent proteins at much
lower ligand concentration than the liposomes containing the
same concentration of JD-NTA incorporated in hybrid liposomes.
All JD-NTA and JD-TrisNTA are stable at room temperature and
insensitive to air exposure. In contrast, commercial unsaturated
lipid NTA derivatives are sensitive to oxygen and cannot be stored
for long periods of time, even frozen. Even more important,
the activity of hybrid liposomes containing JD-NTA towards
His-tagged fluorescent proteins can be twenty-fold to thirty-
fold higher than that of liposomes containing the same NTA
concentration derived from the commercially available lipid NTA
DGS-NTA. The mechanism of the much higher activity of hybrid

liposome assemblies constructed with JD-NTA is not known at
this time. Most likely this is due to the different dynamics
of the JD-NTA on the surface of liposomes and/or formation
of supramolecular NTA assemblies because the reactivity of the
individual NTA ligand must be identical both in JDs and in
lipids. Regardless, these JD-NTA and JD-TrisNTA, most probably,
will provide complementary tools to those of the commercially
available lipid-NTA for applications in molecular biology, cell
biology and nanomedicine [54-62]. JDs [20-33], JGDs [22,34-
42] and IAJDs [43,44] are water complex self-organizable systems
that are complimentary to related complex systems including
liquid crystals that self-organize in bulk, including Frank-Kasper
and chiral Frank-Kasper and other helical chiral phases [24,50,63-
171]. Since JDs, JGDs and IAJDs self-assemble and co-assemble
into monodisperse assemblies in water, they represent and
interesting class of supramolecular polymers whose mechanism
of supramolecular polymerization and self-organization is less
investigated and understood since diffraction methods for their
structural analysis were not yet elaborated except for very few
particular cases [39,40,42]. However, due to their applications
as models of biological membranes [20,26-29,31,33] and for
the delivery of mRNA [43,44] we expect that the lyotropoic
research field will develop and join in the near future the already
very active field of surfactants [140-142], lipids [159-166] and
other amphiphiles, in spite of the structural analysis difficulties
mentioned above [39,42]. These research developments will
facilitate a merger between Frank-Kasper phases and liquid crystals
in the bulk of soft matter state, known also as thermotropic, with
the corresponding lyotropic state that is widely available also in
self-organized living matter, but it is less elucidated. Ultimately,
merging principles of self-organized soft matter with those of
living matter, that we believe are similar [64], is one of the
greatest challenges that will produce an important step forward in
self-organized molecular and supramolecular sciences [63,64,167-
171].
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