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Abstract. We introduce DeepCert, a tool-supported method for verify-
ing the robustness of deep neural network (DNN) image classifiers to con-
textually relevant perturbations such as blur, haze, and changes in image
contrast. While the robustness of DNN classifiers has been the subject of
intense research in recent years, the solutions delivered by this research
focus on verifying DNN robustness to small perturbations in the images
being classified, with perturbation magnitude measured using established
L, norms. This is useful for identifying potential adversarial attacks on
DNN image classifiers, but cannot verify DNN robustness to contextu-
ally relevant image perturbations, which are typically not small when
expressed with L, norms. DeepCert addresses this underexplored verifi-
cation problem by supporting: (1) the encoding of real-world image per-
turbations; (2) the systematic evaluation of contextually relevant DNN
robustness, using both testing and formal verification; (3) the genera-
tion of contextually relevant counterexamples; and, through these, (4)
the selection of DNN image classifiers suitable for the operational con-
text (i) envisaged when a potentially safety-critical system is designed, or
(ii) observed by a deployed system. We demonstrate the effectiveness of
DeepCert by showing how it can be used to verify the robustness of DNN
image classifiers build for two benchmark datasets (‘German Traffic Sign’
and ‘CIFAR-10’) to multiple contextually relevant perturbations.

Keywords: Deep neural network robustness + Deep neural network
verification -+ Contextually relevant image perturbations

1 Introduction

Deep neural network (DNN) image classifiers are increasingly being proposed for
use in safety critical applications [6,15,19,24], where their accuracy is quoted as
close to, or exceeding, that of human operators [3]. It has been shown, however,
that when the inputs to the classifier are subjected to small perturbations, even
© Springer Nature Switzerland AG 2021

I. Habli et al. (Eds.): SAFECOMP 2021, LNCS 12852, pp. 3-17, 2021.
https://doi.org/10.1007/978-3-030-83903-1_5


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83903-1_1&domain=pdf
https://doi.org/10.1007/978-3-030-83903-1_1

4 C. Paterson et al.

highly accurate DNNs can produce erroneous results [8,9,30]. This has lead to
intense research into verification techniques that check whether a DNN is robust
to perturbations within a small distance from a given input, where this distance
is measured using an L, norm (e.g., the Euclidean norm for p = 2) [4,12,13,
20]. These techniques are particularly useful for identifying potential adversarial
attacks on DNNs [8,14,17,18]. They are also useful when small changes in the
DNN inputs correspond to meaningful changes in the real world, e.g., to changes
in the speed and course of an aircraft for the ACAS Xu DNN verified in [12].

For DNN image classifiers, small L,-norm image changes are not always
meaningful. Changes that may be more meaningful for such DNNs (e.g., image
blurring, hazing, variations in lighting conditions, and other natural phenomena)
can also cause misclassifications, but are difficult to map to small pixel variations
[10,16], and thus cannot be examined using traditional DNN verification tech-
niques. What is needed for the comparison and selection of DNN image classifiers
used in safety-critical systems is a contextually relevant robustness verification
method capable of assessing the robustness of DNNs to these real-world phe-
nomena [1,2,25,31]. Moreover, this verification needs to be performed at DNN
level (i.e., across large datasets with image samples from all relevant classes)
rather than for a single sample image.

The tool-supported DeepCert! method introduced in our paper addresses
these needs by enabling:

1. The formal encoding of contextually relevant image perturbations at quanti-
fied perturbation levels € € [0, 1].

2. The verification of contextually relevant DNN robustness, to establish how the
accuracy of a DNN degrades as the perturbation level € increases. DeepCert
can perform this verification using either test-based (fast but approximate)
or formal verification (slow but providing formal guarantees).

3. The generation of contextually relevant counterexamples. These counterex-
amples provide engineers with visually meaningful information about the level
of blur, haze, etc. at which DNN classifiers stop working correctly.

4. The selection of DNNs appropriate for the operational context (i) envisaged
when a safety-critical system is designed, or (ii) observed by the deployed
system during operation.

We organised the rest of the paper as follows. Section 2 describes our Deep-
Cert verification method, explaining its encoding of contextual perturbations,
and detailing how it can be instantiated to use test-based and formal verifica-
tion. Section 3 presents the DeepCert implementation, and Sect. 4 describes the
experiments we performed to evaluate it. Finally, Sect. 5 discusses related work,
and Sect. 6 provides a summary and outlines future research directions.

! Deep neural network Contextual robustness.
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Fig. 1. DeepCert process for verifying contextually meaningful DNN robustness.

2 DeepCert Verification Method

2.1 Overview

Figure 1 shows our DeepCert method for the systematic verification of contex-
tually relevant DNN robustness. DeepCert accepts as input a set of m > 1 DNN
models, M, and a dataset of n > 1 labelled image samples, 2. Each element
u € £2 is a tuple u = (X,y) where X € X is the input sample, X is the DNN
input space, and y is a label indicating the class into which the models should
place the sample. During model evaluation, each model M; € M is evaluated
against each labelled data sample (X;,y;) € (2, to find a robustness measure
for that sample. The results are then presented to the engineer as visualisations
that enable model-level contextual robustness evaluation and comparison.

The sample evaluation (top of Fig. 1) is a three-stage iterative process. The
first stage (A) encodes the contextual perturbation using a function g : X x
[0,1] — 2% that maps the data sample X; € X and a perturbation level € € [0, 1]
to a set of DNN inputs Z = g(Xj,¢) € 2% corresponding to images obtained
by applying the contextual perturbation being verified (e.g., haze or blur) to
the original image sample X;. As we explain later in this section, g applies the
perturbation at level ¢ when DeepCert employs test-based verification, and at
all levels in the range [0, €] when DeepCert employs formal verification.

The second stage (B) verifies whether the model M; is robust to the contex-
tual perturbation (Z,y;), i.e., whether it classifies all images from Z as belonging
to class y;. The output of this stage is a Boolean value, true (T) or false (F).

The final state (C) is a search heuristic that supplies the e value used for
the contextul perturbation encoding from stage A, and employs binary search
to identify perturbation level bounds ¢, € € [0, 1] such that:
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— either € < €, the correct class y; is predicted for € = ¢, and a misclassification
occurs for € = ¢
— or € = € =0, and the DNN misclassifies X; (with no perturbation applied).

After checking whether X is classified correctly by model M;, the search
heuristic starts with ¢ = 0 and € = 1, halves the width of the interval [e, € in
each iteration, and terminates when the width € — € of this interval drops below
a predefined value w. The final interval ; ; = [e, € is then returned.

Applying sample evaluation to each model M; € M and every sample X; € 2
provides a result set R = {r11,71,2, - "m,n}, Where r; ; is the interval for the
i-th model and j-th image sample. For each result, a counterexample X ]’ can
be generated, if one exists (i.e., if € < 1), by perturbing the sample X; at level
€ = €. Evaluating X ]’ using model M, produces a misclassification label g;.

Visualisations of model and class robustness are then produced in which the
accuracy of the models is presented as a function of the perturbation parameter €.
By examining the accuracy of models across the range of expected perturbations,
we can identify the conditions under which model switch should occur, e.g. one
model may perform well at low levels of haze whilst a second may be superior
as the level of haze present increases. Where the visualisations indicate that a
particular class accuracy is highly sensitive to changes in € this may indicate the
need to choose a less sensitive model, or to gather additional training data.

2.2 DeepCert Instantiation for Test-Based Verification

For test-based verification, the contextual perturbation encoding function g maps
an image X to a set Z comprising a single modified image X’ obtained by
applying a perturbation function:

x; ; = perturbation(X; j, ), 1)

7

where x;J is the pixel at position (4,7) in the modified image X’ and X; ; is a
subset of pixels from the original image X. For colour images, a sample X is
encoded as an array of pixels each of which is a 3-tuple of values representing the
red, green and blue components of the colour in that pixel. DeepCert may utilize
any perturbation which can be coded using (1) and three typical contextual
perturbations are shown in (Fig. 2).

Haze Encoding. Haze represents a phenomenon where particles in the
atmosphere scatter the light reaching the observer. The effect is to drain colour
from the image and create a veil of white, or coloured, mist over the image.
While realistic approaches to the modelling of haze require complex models [32],
simplifying assumptions can be made. Assuming the haze is uniform, a haze
colour may be defined as Cf = (r, g,b) and applied to the image as:

ay=(1-emij+eCt (2)
where € € [0,1] is a proxy for the density of the haze. When e = 0 the image is
unaltered and when € = 1 the image is a single solid colour C/. Multiplication
and addition are applied to the pixel in an element-wise manner.
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Fig. 2. Context perturbations applied to image sample

Contrast Variation Encoding. When fixed aperture lenses are employed, or
when the dynamic range of the scene is extreme, the contrast in the image may
become compressed. This effect may be modelled as:

2., = Max (0, Min (1, 9”_1(_()65”‘6))) (3)

The effect of applying this function is to make bright parts of the image lighter
and dark parts of the image darker.

Blur Encoding. Blurring in an image occurs when parts of the image are out
of focus due to the limited capabilities of the optics employed in the system or
when grease or water droplets are present on the lens. Blur can be synthesised
using a convolutional kernel of size 2k; + 1 where the value of a pixel in the
output image is calculated as a weighted sum of neighbouring pixels:

ka kq

T= DD Gkl Tigk (4)

k=—kql=—kq

The weights a; € (0,1) are calculated by discretising a two-dimensional
Gaussian curve, where the sum of weights is equal to one, Zﬁdz_kd Zfi_kd ag = 1.
In our work, we define € to be proportional to the standard deviation of the
Gaussian distribution across the kernel and calculate the weights accordingly.

2.3 DeepCert Instantiation for Formal Verification

While test-based verification is computationally efficient, this efficiency is
obtained by sacrificing completeness, i.e. if the perturbed image correspond-
ing to an € value of p is not an adversarial example, we cannot guarantee that
the network is robust against all perturbations with ¢ smaller than p. Formal
verification tools, by contrast, can provide such guarantees, but typically impose
constraints on the types of models and perturbations which can be analysed.
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To demonstrate the use of formal verification within DeepCert, we inte-

grated it with Marabou [13], a complete verification toolbox for analyzing
DNNs. Marabou handles common piecewise linear activation functions (e.g.,
ReLU, Max-Pool, Sign), integrates multiple state-of-the-art bound tightening
techniques [21,26,28], and supports parallel processing [29]. Given a neural net-
work and a verification query, Marabou constructs a set of linear and piecewise
linear constraints. The satisfiability of the conjunction of those constraints is
evaluated using either an MILP-solver or the Reluplex procedure [12]. Given
sufficient time, Marabou will either conclude that the query is unsatisfiable or
return a satisfying assignment to the query. For this work we extended Marbou
to allow for the encoding of contextual perturbations using an input perturbation
function, as detailed below for haze.
Haze Encoding. Given a DNN model M, an image X, a fog colour C7, and a
maximum perturbation bound p, we introduce variables X,Y and €, denoting
the DNN inputs, the DNN outputs and the perturbation bound, respectively. X
has the same shape as X. We then construct the following set of constraints:

Y = M(X) (5)

0<e<p (5b)

/\ (z; = (1 - €)z; + € CF) (5¢)
i<|X|

\/ Yi > Yreal (5d)
i<=|Y|
Yi FYreal

Checking the satisfiability of the constraints allows us to state if the network is
robust against the haze perturbation for e < p. Constraint (5a) denotes the rela-
tionship between X and Y. It is a piecewise linear constraint if M only contains
piecewise linear activation functions. Constraint (5b) represents the perturba-
tion bounds. Constraint (5c) defines the input variables as results of the hazing
perturbation. Finally, let y,eq; be the correct label, constraint (5d) denotes that
the output variable corresponding to the correct label is not greater than that
of some other label. The network is locally adversarially robust against haze
perturbation with € < p if, and only if, the conjunction of the constraints above
is unsatisfiable. If the constraints above is satisfiable, there exists a perturbation
within € such that some output other than ¥y,eq; is maximal.

3 Implementation

We implemented our method using a Python framework which we have made
available on our tool website https://deepcert.github.io. The repository includes
all models used in the paper, the code for the DeepCert tool with the encoded
perturbations presented in the paper, the supporting scripts required to generate
the performance visualisations and instructions on how to use the framework.
In addition, a version of Marabou is provided with a Python interface in which
the haze perturbation from the previous section is encoded.
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Table 1. German Speed Sign Classification: Data and Models

(a) Data Sets (b) Models
Class | Description | # Train | # Test Model | Description Accuracy
0 30 km/h 1980 720 1A Small ReLu only model | 0.816
1 50 km/h 2010 750 1B 0.847
2 60 km/h 1260 450

2A Large ReLu only model | 0.868
3 70 km/h 1770 660

2B 0.866
4 80 km/h 1650 630
5 100 km/h 1290 450 3A CNN Model 0.988
6 | 120km/h | 1260 450 3B 0.984

4 Experimental Results

4.1 Case Study 1: Road Traffic Speed Sign Classification

Our first case study uses a subset of the German Traffic Sign benchmark [22]
where each sample is a 32 x 32 RGB image. From this set we selected the seven
classes which represented speed signs, the number of samples in each class are
shown in Table 1a. We then built classification models at three levels of com-
plexity with two models per level. The accuracy for all six models is reported in
Table 1b which shows accuracy increasing with model complexity.

DeepCert with Test-Based Verification. For each model we applied our
method using test-based verification, an initial value of ¢ = 0.5 and a binary
search heuristic with a maximum permissible interval of 0.002. Figure 3 shows
the impact of haze on model accuracy as € is increased. While Table 1b shows
model 3A to be the most accurate (0.988) without perturbation, we note that
for € £ 0.7, model 3B achieves superior accuracy. This behaviour is more clearly
seen if we consider the ReLu-only models. Here model 2A has the best initial
performance, but this rapidly deteriorates as € increases such that other models
are superior for even small amounts of haze.

These results demonstrate the dangers of selecting a model on the basis of
the accuracy reported for unperturbed samples, and show how DeepCert enables
a more meaningful model selection for the operational context. Indeed, were the
system to be equipped with additional sensing, to assess the level of haze present,
the engineer may choose to switch between models as the level of haze increased.

Our method also allows for the identification of those classes particularly
susceptible to contextual perturbations. Figure4 shows the performance of the
convolutional neural network (CNN) models at different levels of perturbation.
We note that class 1 is largely insensitive to haze, this is because an image
perturbed with € = 1 results in a solid colour image which is classified as class
1 by both models. For all other classes the accuracy reduces as haze increases.
The amount of degradation is seen to be dependent on the sample class and the
model used. For example, class 0 is more robust to haze in model 3B than in 3A
with class 3 more robust in model 3A.
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Figures 4c and 4d show the distribution of € values required to cause misclas-
sification where circles indicates samples identified as outliers. For class 3 we see
that a number of samples are misclassified for small perturbations using model
3B but not 3A. An engineer wishing to deploy model 3B may examine these
outliers to determine any correlation in image features. This may then allows for
mitigation strategies at run-time or retraining with additional data samples.
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Fig. 5. Counterexamples for model 3A. Upper row is the original image, lower row has
perturbation applied at the average level required for misclassification.
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Fig. 6. Model accuracy with respect to increased contrast and blur effects.

Our method also allows for the generation of meaningful counter examples for
image based classifiers. Figure 5 shows counterexamples for model 3A and illus-
trates the average level of haze which each class can withstand before misclassi-
fication occurs. This visual representation of perturbation levels allows domain
experts to consider the robustness of the model with respect to normal operating
conditions.

Having demonstrated our approach using the haze perturbation we now show
results for the contrast and blur effects. Model accuracy in the presence of these
perturbations is shown in Fig.6. We see that whilst the accuracy of models
degrades as the amount of perturbation increases, the shape of the curves and
the effect on individual models is different.

Model 3A was the most accurate model for much of the perturbation range
under the effects of haze, while model 3B is superior with respect to contrast
effects. We also see that while model 2B was relatively robust to haze, its robust-
ness to contrast is poor. This shows that selecting a single model for all envi-
ronmental conditions is unlikely to provide optimal performance. Our method
allows for a greater understanding of models weaknesses when in the presence
of natural phenomena and may allow for more intelligent choices to be made.
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Table 2. Minimum e values for [, and hazing perturbation on test images.

Sample | Model 1A Model 1B
Verification | Test | Verification | Test
loo Haze | Haze | oo Haze | Haze

4 0.002 | 0.623 | 0.623 | 0.006 | 0.525 | 0.525
114 0.002 | 0.451 | 0.451 | 0.002 | 0.225 | 0.225
47 0.006 | 0.592 | 0.592 | 0.006 | 0.752 | 0.752
52 0.006 | 0.830 | 0.830 | 0.010 | 0.654 | 0.654

3 0.010|0.764 | 0.764 | 0.010 | 0.713 | 0.713
15 0.010|0.760 | 0.760 | 0.010 | 0.810 | 0.810

DeepCert with Formal Verification. For model 1A and 1B, we ran our
method on the first 30 images correctly classified as class 3 in the test sets to
compute the minimum e values for hazing using contextual perturbations and
for traditional [, norm perturbations. For all 30 samples the value of € found
through formal verification was the same as that for the test based verification,
although we can not guarantee this to be true for all samples in the testing set.

Table 2 shows selected results from the formal verification compared with the
test-based verification Sample #4 has an [ norm for model 1A that is lower than
that of model 1B. This would indicate that model 1B is more robust. Examining
contextual robustness, however, we see that model 1A is able to withstand more
haze before misclassification occurs. A similar result is shown for sample #52.
This time however model 1A would be judged more robust by the l,, measure
whilst model 1B is more robust according to the contextual measure. Other
samples report identical [, measures between models (samples 114, 47, 3 and
15) yet their response to haze is different e.g. sample #114 using model 1A is
able to withstand almost twice as much haze as model 1B.

These results demonstrate that our methods are able to use formal verifica-
tion techniques, where the model form allows for such analysis. We also note
that non-contextual point robustness is insufficient to assess the robustness of
models in the presence of contextual perturbations.

4.2 Case Study 2: CIFAR-10

In order to demonstrate that our approach is applicable to a range of problems
we applied our method to a second well known classification problem, CIFAR-
10. The data set consists of 60,000 32x32 colour images in 10 classes with 5000
training images and 1000 test images per class. Table 3 shows the names of the
classes in this benchmark. The complexity and diversity of the images in this set
is a more challenging classification task than the traffic sign problem. We again
constructed models of increasing complexity with two models at each level. The
accuracy of these models for the unperturbed test set is given in Table 4.
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Table 3. CIFAR-10 class descriptions

class |0 1 2 3 |4 5 6 7 8 9

name | airplane | automobile | bird | cat | deer | dog | frog | horse | ship | truck

Table 4. CIFAR-10 model accuracy

Model Accuracy | Model Accuracy | Model Accuracy
4A | Small Relu | 49.11 5A | Large Relu | 53.20 6A | CNN | 84.07
4B 47.45 5B 53.04 6B 85.17
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Fig. 7. CIFAR-10 model robustness

DeepCert with Test-Based Verification. Model accuracy in the presence of
the three forms of contextual perturbation are shown in Fig.7. We once more
note the accuracy degrades as € is increased for all perturbation types. For haze
we observe a point at which the best model changes. This indicates that a sys-
tem which is able to switch between models as the level of haze increases may
demonstrate improved robustness. We also note that the CNN models outper-
form the simpler models by a significant margin under most conditions. For blur,
however, when € > 0.7 the CNN models under perform the simpler models.
Figure 8 shows the class accuracy for the CNN models subjected to the blur
perturbation. We observe that the performance of classes between the models
varies as shown in the traffic sign sign study. The accuracy of class 3 in model 6A,
for example, is lower than that seen in Model 6B until € > 0.7.
DeepCert with Formal Verification. Formal verification was applied to mod-
els 4A and 4B by again choosing 30 samples which we perturbed with haze. The
results were in line with those found for the traffic sign model, but in addition
we found a sample (#14) for model 4A which returned a lower robustness bound
than when using test-based verification. Table 5 shows the predicted class ¢ for this
sample as € is increased. We note that the sample is misclassified at e = 0.0723
which was found using Marabou, it then returns to classifying the sample cor-
rectly before misclassifying again at e = 0.365, the value found through testing.
This confirms that, whilst testing may correctly identify the robustness bound for
the majority of cases, formal verification is required for guarantees of robustness.
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Table 5. Formal versus test-based verification, correct label y =9

€ y e Y
0.002 19/0.15 |1
0.035 |9/0.18 |9
0.050 |9/0.2 |9
0.07231/0.03 |9
0.1 1/0.365 |2

5 Related Work

It is well known [23] that neural networks, including highly trained and smooth
networks, are vulnerable to adversarial perturbations; these are small changes
to an input (which are imperceptible to the human eye) that lead to mis-
classifications. The vast majority of the work in this area focuses on formulating
adversarial examples with respect to perturbations defined with L, norms. The
problem is typically formulated as follows: for a given network F' and an input
z, find an input 2’ for which F(z') # F(z) while minimising ||z — 2/|.

The metric used to compute the distance between points is typically the
Euclidean distance (Lo norm), the Manhattan distance (L; norm), or the
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Chebyshev distance (L, norm). Methods for finding adversarial examples and
for checking robustness of neural networks to adversarial perturbations range
from heuristic and optimisation-based techniques [2,8,14,17,18] to formal analy-
sis techniques which are based on constraint solving, interval analysis or abstract
interpretation [4,5,7,11,12,27,28]. In contrast to these works, which focus on
local robustness, we take a more global view, as we aim to evaluate models on
many input points and use the results to assess and compare models and inform
developers’ choices. Furthermore, we aim to study more natural (contextual)
perturbations, as we do not limit ourselves to L, norms.

Other researchers have started to look into robustness verification beyond the
L,-norm threat model. For instance, Semantify-NN [16] addresses robustness
verification against semantic adversarial attacks, such as colour shifting and
lighting adjustment. It works by inserting semantic perturbation layers to the
input layer of a given model, and leverages existing L,-norm based verification
tools to verify the model robustness against semantic perturbations. In our work,
we also leverage an off-the-shelf verification tool (namely Marabou) to enable
verification with respect to semantically meaningful perturbations. We do not
modify the models, but instead encode the checks as Marabou queries.

6 Conclusions and Future Work

In this paper we have introduced DeepCert, a tool-supported method for the
systematic verification of contextually relevant robustness for neural network
classifiers. We have shown that the accuracy of a DNN image classifier is a
function of the perturbation type to which sample images are exposed, and
that through a systematic verification of the robustness with respect to these
perturbations a more informed decision may be made to select a DNN model.
In future work we plan to investigate the use of alternative formal verifica-
tion techniques with DeepCert, and the use of more complex models of natu-
ral phenomena, parameterised for use within the framework. We also intend to
investigate methods to allow for the systematic assessment of robustness within
regions of the input space e.g. rain drops on a lens affecting part of an image.
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