®

Check for
updates

DeepCert: Verification of Contextually
Relevant Robustness for Neural Network
Image Classifiers

Colin Paterson!®™) Haoze Wu?, John Grese®, Radu Calinescu',
Corina S. Pasareanu®, and Clark Barrett?

! University of York, York, UK
colin.paterson@york.ac.uk
2 Stanford University, Stanford, USA
3 Carnegie Mellon University, Silicon Valley, Pittsburgh, USA

Abstract. We introduce DeepCert, a tool-supported method for verify-
ing the robustness of deep neural network (DNN) image classifiers to con-
textually relevant perturbations such as blur, haze, and changes in image
contrast. While the robustness of DNN classifiers has been the subject of
intense research in recent years, the solutions delivered by this research
focus on verifying DNN robustness to small perturbations in the images
being classified, with perturbation magnitude measured using established
L, norms. This is useful for identifying potential adversarial attacks on
DNN image classifiers, but cannot verify DNN robustness to contextu-
ally relevant image perturbations, which are typically not small when
expressed with L, norms. DeepCert addresses this underexplored verifi-
cation problem by supporting: (1) the encoding of real-world image per-
turbations; (2) the systematic evaluation of contextually relevant DNN
robustness, using both testing and formal verification; (3) the genera-
tion of contextually relevant counterexamples; and, through these, (4)
the selection of DNN image classifiers suitable for the operational con-
text (i) envisaged when a potentially safety-critical system is designed, or
(ii) observed by a deployed system. We demonstrate the effectiveness of
DeepCert by showing how it can be used to verify the robustness of DNN
image classifiers build for two benchmark datasets (‘German Traffic Sign’
and ‘CIFAR-10’) to multiple contextually relevant perturbations.

Keywords: Deep neural network robustness + Deep neural network
verification -+ Contextually relevant image perturbations

1 Introduction

Deep neural network (DNN) image classifiers are increasingly being proposed for
use in safety critical applications [6,15,19,24], where their accuracy is quoted as
close to, or exceeding, that of human operators [3]. It has been shown, however,
that when the inputs to the classifier are subjected to small perturbations, even
© Springer Nature Switzerland AG 2021

I. Habli et al. (Eds.): SAFECOMP 2021, LNCS 12852, pp. 3-17, 2021.
https://doi.org/10.1007/978-3-030-83903-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83903-1_1&domain=pdf
https://doi.org/10.1007/978-3-030-83903-1_1

4 C. Paterson et al.

highly accurate DNNs can produce erroneous results [8,9,30]. This has lead to
intense research into verification techniques that check whether a DNN is robust
to perturbations within a small distance from a given input, where this distance
is measured using an L, norm (e.g., the Euclidean norm for p = 2) [4,12,13,
20]. These techniques are particularly useful for identifying potential adversarial
attacks on DNNs [8,14,17,18]. They are also useful when small changes in the
DNN inputs correspond to meaningful changes in the real world, e.g., to changes
in the speed and course of an aircraft for the ACAS Xu DNN verified in [12].

For DNN image classifiers, small L,-norm image changes are not always
meaningful. Changes that may be more meaningful for such DNNs (e.g., image
blurring, hazing, variations in lighting conditions, and other natural phenomena)
can also cause misclassifications, but are difficult to map to small pixel variations
[10,16], and thus cannot be examined using traditional DNN verification tech-
niques. What is needed for the comparison and selection of DNN image classifiers
used in safety-critical systems is a contextually relevant robustness verification
method capable of assessing the robustness of DNNs to these real-world phe-
nomena [1,2,25,31]. Moreover, this verification needs to be performed at DNN
level (i.e., across large datasets with image samples from all relevant classes)
rather than for a single sample image.

The tool-supported DeepCert! method introduced in our paper addresses
these needs by enabling:

1. The formal encoding of contextually relevant image perturbations at quanti-
fied perturbation levels € € [0, 1].

2. The verification of contextually relevant DNN robustness, to establish how the
accuracy of a DNN degrades as the perturbation level € increases. DeepCert
can perform this verification using either test-based (fast but approximate)
or formal verification (slow but providing formal guarantees).

3. The generation of contextually relevant counterexamples. These counterex-
amples provide engineers with visually meaningful information about the level
of blur, haze, etc. at which DNN classifiers stop working correctly.

4. The selection of DNNs appropriate for the operational context (i) envisaged
when a safety-critical system is designed, or (ii) observed by the deployed
system during operation.

We organised the rest of the paper as follows. Section 2 describes our Deep-
Cert verification method, explaining its encoding of contextual perturbations,
and detailing how it can be instantiated to use test-based and formal verifica-
tion. Section 3 presents the DeepCert implementation, and Sect. 4 describes the
experiments we performed to evaluate it. Finally, Sect. 5 discusses related work,
and Sect. 6 provides a summary and outlines future research directions.

! Deep neural network Contextual robustness.

Contextually Relevant Robustness 5

Model M; { Sample Evaluation

B: Test-based/ C: e-Search
Formal —» T/F —» Heuristic i = ([e, &)
[5) A: Contextual Verification
Perturbation

Encoding *

Labelled Contextual ¢
da(ti(sagzn?le perturbation (Z, ;) |

FARSN)

Model set M T
YMeM D
Sample R={r1,1,m1,2, " Tmn} Model
Evaluation Robustness
o Y(X5,v5) EQ= Visualization

Labelled Model Evaluation

dataset 2

Fig. 1. DeepCert process for verifying contextually meaningful DNN robustness.

2 DeepCert Verification Method

2.1 Overview

Figure 1 shows our DeepCert method for the systematic verification of contex-
tually relevant DNN robustness. DeepCert accepts as input a set of m > 1 DNN
models, M, and a dataset of n > 1 labelled image samples, 2. Each element
u € £2 is a tuple u = (X,y) where X € X is the input sample, X is the DNN
input space, and y is a label indicating the class into which the models should
place the sample. During model evaluation, each model M; € M is evaluated
against each labelled data sample (X;,y;) € (2, to find a robustness measure
for that sample. The results are then presented to the engineer as visualisations
that enable model-level contextual robustness evaluation and comparison.

The sample evaluation (top of Fig. 1) is a three-stage iterative process. The
first stage (A) encodes the contextual perturbation using a function g : X x
[0,1] — 2% that maps the data sample X; € X and a perturbation level € € [0, 1]
to a set of DNN inputs Z = g(Xj,¢) € 2% corresponding to images obtained
by applying the contextual perturbation being verified (e.g., haze or blur) to
the original image sample X;. As we explain later in this section, g applies the
perturbation at level ¢ when DeepCert employs test-based verification, and at
all levels in the range [0, €] when DeepCert employs formal verification.

The second stage (B) verifies whether the model M; is robust to the contex-
tual perturbation (Z,y;), i.e., whether it classifies all images from Z as belonging
to class y;. The output of this stage is a Boolean value, true (T) or false (F).

The final state (C) is a search heuristic that supplies the e value used for
the contextul perturbation encoding from stage A, and employs binary search
to identify perturbation level bounds ¢, € € [0, 1] such that:

6 C. Paterson et al.

— either € < €, the correct class y; is predicted for € = ¢, and a misclassification
occurs for € = ¢
— or € = € =0, and the DNN misclassifies X; (with no perturbation applied).

After checking whether X is classified correctly by model M;, the search
heuristic starts with ¢ = 0 and € = 1, halves the width of the interval [e, € in
each iteration, and terminates when the width € — € of this interval drops below
a predefined value w. The final interval ; ; = [e, € is then returned.

Applying sample evaluation to each model M; € M and every sample X; € 2
provides a result set R = {r11,71,2, - "m,n}, Where r; ; is the interval for the
i-th model and j-th image sample. For each result, a counterexample X]’ can
be generated, if one exists (i.e., if € < 1), by perturbing the sample X; at level
€ = €. Evaluating X]’ using model M, produces a misclassification label g;.

Visualisations of model and class robustness are then produced in which the
accuracy of the models is presented as a function of the perturbation parameter €.
By examining the accuracy of models across the range of expected perturbations,
we can identify the conditions under which model switch should occur, e.g. one
model may perform well at low levels of haze whilst a second may be superior
as the level of haze present increases. Where the visualisations indicate that a
particular class accuracy is highly sensitive to changes in € this may indicate the
need to choose a less sensitive model, or to gather additional training data.

2.2 DeepCert Instantiation for Test-Based Verification

For test-based verification, the contextual perturbation encoding function g maps
an image X to a set Z comprising a single modified image X’ obtained by
applying a perturbation function:

x; ; = perturbation(X; j,), 1)

7

where x;J is the pixel at position (4,7) in the modified image X’ and X; ; is a
subset of pixels from the original image X. For colour images, a sample X is
encoded as an array of pixels each of which is a 3-tuple of values representing the
red, green and blue components of the colour in that pixel. DeepCert may utilize
any perturbation which can be coded using (1) and three typical contextual
perturbations are shown in (Fig. 2).

Haze Encoding. Haze represents a phenomenon where particles in the
atmosphere scatter the light reaching the observer. The effect is to drain colour
from the image and create a veil of white, or coloured, mist over the image.
While realistic approaches to the modelling of haze require complex models [32],
simplifying assumptions can be made. Assuming the haze is uniform, a haze
colour may be defined as Cf = (r, g,b) and applied to the image as:

ay=(1-emij+eCt (2)
where € € [0,1] is a proxy for the density of the haze. When e = 0 the image is
unaltered and when € = 1 the image is a single solid colour C/. Multiplication
and addition are applied to the pixel in an element-wise manner.

Contextually Relevant Robustness 7

0.0 0.2 0.4 0.6 0.8 1.0
Epsilon

Fig. 2. Context perturbations applied to image sample

Contrast Variation Encoding. When fixed aperture lenses are employed, or
when the dynamic range of the scene is extreme, the contrast in the image may
become compressed. This effect may be modelled as:

2., = Max (0, Min (1, 9”_1(_()65”‘6))) (3)

The effect of applying this function is to make bright parts of the image lighter
and dark parts of the image darker.

Blur Encoding. Blurring in an image occurs when parts of the image are out
of focus due to the limited capabilities of the optics employed in the system or
when grease or water droplets are present on the lens. Blur can be synthesised
using a convolutional kernel of size 2k; + 1 where the value of a pixel in the
output image is calculated as a weighted sum of neighbouring pixels:

ka kq

T= DD Gkl Tigk (4)

k=—kql=—kq

The weights a; € (0,1) are calculated by discretising a two-dimensional
Gaussian curve, where the sum of weights is equal to one, Zﬁdz_kd Zfi_kd ag = 1.
In our work, we define € to be proportional to the standard deviation of the
Gaussian distribution across the kernel and calculate the weights accordingly.

2.3 DeepCert Instantiation for Formal Verification

While test-based verification is computationally efficient, this efficiency is
obtained by sacrificing completeness, i.e. if the perturbed image correspond-
ing to an € value of p is not an adversarial example, we cannot guarantee that
the network is robust against all perturbations with ¢ smaller than p. Formal
verification tools, by contrast, can provide such guarantees, but typically impose
constraints on the types of models and perturbations which can be analysed.

8 C. Paterson et al.

To demonstrate the use of formal verification within DeepCert, we inte-

grated it with Marabou [13], a complete verification toolbox for analyzing
DNNs. Marabou handles common piecewise linear activation functions (e.g.,
ReLU, Max-Pool, Sign), integrates multiple state-of-the-art bound tightening
techniques [21,26,28], and supports parallel processing [29]. Given a neural net-
work and a verification query, Marabou constructs a set of linear and piecewise
linear constraints. The satisfiability of the conjunction of those constraints is
evaluated using either an MILP-solver or the Reluplex procedure [12]. Given
sufficient time, Marabou will either conclude that the query is unsatisfiable or
return a satisfying assignment to the query. For this work we extended Marbou
to allow for the encoding of contextual perturbations using an input perturbation
function, as detailed below for haze.
Haze Encoding. Given a DNN model M, an image X, a fog colour C7, and a
maximum perturbation bound p, we introduce variables X,Y and €, denoting
the DNN inputs, the DNN outputs and the perturbation bound, respectively. X
has the same shape as X. We then construct the following set of constraints:

Y = M(X) (5)

0<e<p (5b)

/\ (z; = (1 - €)z; + € CF) (5¢)
i<|X|

\/ Yi > Yreal (5d)
i<=|Y|
Yi FYreal

Checking the satisfiability of the constraints allows us to state if the network is
robust against the haze perturbation for e < p. Constraint (5a) denotes the rela-
tionship between X and Y. It is a piecewise linear constraint if M only contains
piecewise linear activation functions. Constraint (5b) represents the perturba-
tion bounds. Constraint (5c) defines the input variables as results of the hazing
perturbation. Finally, let y,eq; be the correct label, constraint (5d) denotes that
the output variable corresponding to the correct label is not greater than that
of some other label. The network is locally adversarially robust against haze
perturbation with € < p if, and only if, the conjunction of the constraints above
is unsatisfiable. If the constraints above is satisfiable, there exists a perturbation
within € such that some output other than ¥y,eq; is maximal.

3 Implementation

We implemented our method using a Python framework which we have made
available on our tool website https://deepcert.github.io. The repository includes
all models used in the paper, the code for the DeepCert tool with the encoded
perturbations presented in the paper, the supporting scripts required to generate
the performance visualisations and instructions on how to use the framework.
In addition, a version of Marabou is provided with a Python interface in which
the haze perturbation from the previous section is encoded.

Contextually Relevant Robustness 9

Table 1. German Speed Sign Classification: Data and Models

(a) Data Sets (b) Models
Class | Description | # Train | # Test Model | Description Accuracy
0 30 km/h 1980 720 1A Small ReLu only model | 0.816
1 50 km/h 2010 750 1B 0.847
2 60 km/h 1260 450

2A Large ReLu only model | 0.868
3 70 km/h 1770 660

2B 0.866
4 80 km/h 1650 630
5 100 km/h 1290 450 3A CNN Model 0.988
6 | 120km/h | 1260 450 3B 0.984

4 Experimental Results

4.1 Case Study 1: Road Traffic Speed Sign Classification

Our first case study uses a subset of the German Traffic Sign benchmark [22]
where each sample is a 32 x 32 RGB image. From this set we selected the seven
classes which represented speed signs, the number of samples in each class are
shown in Table 1a. We then built classification models at three levels of com-
plexity with two models per level. The accuracy for all six models is reported in
Table 1b which shows accuracy increasing with model complexity.

DeepCert with Test-Based Verification. For each model we applied our
method using test-based verification, an initial value of ¢ = 0.5 and a binary
search heuristic with a maximum permissible interval of 0.002. Figure 3 shows
the impact of haze on model accuracy as € is increased. While Table 1b shows
model 3A to be the most accurate (0.988) without perturbation, we note that
for € £ 0.7, model 3B achieves superior accuracy. This behaviour is more clearly
seen if we consider the ReLu-only models. Here model 2A has the best initial
performance, but this rapidly deteriorates as € increases such that other models
are superior for even small amounts of haze.

These results demonstrate the dangers of selecting a model on the basis of
the accuracy reported for unperturbed samples, and show how DeepCert enables
a more meaningful model selection for the operational context. Indeed, were the
system to be equipped with additional sensing, to assess the level of haze present,
the engineer may choose to switch between models as the level of haze increased.

Our method also allows for the identification of those classes particularly
susceptible to contextual perturbations. Figure4 shows the performance of the
convolutional neural network (CNN) models at different levels of perturbation.
We note that class 1 is largely insensitive to haze, this is because an image
perturbed with € = 1 results in a solid colour image which is classified as class
1 by both models. For all other classes the accuracy reduces as haze increases.
The amount of degradation is seen to be dependent on the sample class and the
model used. For example, class 0 is more robust to haze in model 3B than in 3A
with class 3 more robust in model 3A.

10 C. Paterson et al.
1.0
0.8
g 0.6 Model 1a
3 -=== Model 1b
< 041 —— Model 2a
—— Model 2b
"""" Model 3a
0.29 . Model 3b
0.00 0.25 0.50 0.75 1.00
Epsilon
Fig. 3. Model robustness to haze.
1.0 1.0
0.8 0.8
5}0.6 — class 0 bU.G class 0
g — class 1 g — class 1
[} [}
S 041 T class 2 S 041 T class 2
< — class 3 < — class 3
02l class 4 024 class 4
— class b — class 5
0.0 — class 6 0.0 — class 6
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Epsilon Epsilon
(a) Model 3A (b) Model 3B
1.00 — 1.00 —
0.75 0.75
o
Z 0.50 s Z 0.501 8
= e 3) 3
0251 § 0.25 :
? 3
[} [}
? g 9 ° ° °
0.00 0.00
0 1 2 3 4 5 6 0 1 2 3 4 5 6

(c) Model 3A

(d) Model 3B

Fig. 4. Model Robustness with respect to haze

Figures 4c and 4d show the distribution of € values required to cause misclas-
sification where circles indicates samples identified as outliers. For class 3 we see
that a number of samples are misclassified for small perturbations using model
3B but not 3A. An engineer wishing to deploy model 3B may examine these
outliers to determine any correlation in image features. This may then allows for
mitigation strategies at run-time or retraining with additional data samples.

Contextually Relevant Robustness 11

Fig. 5. Counterexamples for model 3A. Upper row is the original image, lower row has
perturbation applied at the average level required for misclassification.

1.0 1.07 v 1
0.8 ‘=

0.8 T R e T T
Z B
E Model la = 0.6 Model la
€06 - Model 1b /5 --== Model 1b
= —— Model 2a © 041 — Model 2a

0.4 —— Model 2b —— Model 2b

’ Model 3a 0.2 Model 3a
-------- Model 3b <+ Model 3b -
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Epsilon Epsilon
(a) Contrast (b) Blur

Fig. 6. Model accuracy with respect to increased contrast and blur effects.

Our method also allows for the generation of meaningful counter examples for
image based classifiers. Figure 5 shows counterexamples for model 3A and illus-
trates the average level of haze which each class can withstand before misclassi-
fication occurs. This visual representation of perturbation levels allows domain
experts to consider the robustness of the model with respect to normal operating
conditions.

Having demonstrated our approach using the haze perturbation we now show
results for the contrast and blur effects. Model accuracy in the presence of these
perturbations is shown in Fig.6. We see that whilst the accuracy of models
degrades as the amount of perturbation increases, the shape of the curves and
the effect on individual models is different.

Model 3A was the most accurate model for much of the perturbation range
under the effects of haze, while model 3B is superior with respect to contrast
effects. We also see that while model 2B was relatively robust to haze, its robust-
ness to contrast is poor. This shows that selecting a single model for all envi-
ronmental conditions is unlikely to provide optimal performance. Our method
allows for a greater understanding of models weaknesses when in the presence
of natural phenomena and may allow for more intelligent choices to be made.

12 C. Paterson et al.

Table 2. Minimum e values for [, and hazing perturbation on test images.

Sample | Model 1A Model 1B
Verification | Test | Verification | Test
loo Haze | Haze | oo Haze | Haze

4 0.002 | 0.623 | 0.623 | 0.006 | 0.525 | 0.525
114 0.002 | 0.451 | 0.451 | 0.002 | 0.225 | 0.225
47 0.006 | 0.592 | 0.592 | 0.006 | 0.752 | 0.752
52 0.006 | 0.830 | 0.830 | 0.010 | 0.654 | 0.654

3 0.010|0.764 | 0.764 | 0.010 | 0.713 | 0.713
15 0.010|0.760 | 0.760 | 0.010 | 0.810 | 0.810

DeepCert with Formal Verification. For model 1A and 1B, we ran our
method on the first 30 images correctly classified as class 3 in the test sets to
compute the minimum e values for hazing using contextual perturbations and
for traditional [, norm perturbations. For all 30 samples the value of € found
through formal verification was the same as that for the test based verification,
although we can not guarantee this to be true for all samples in the testing set.

Table 2 shows selected results from the formal verification compared with the
test-based verification Sample #4 has an [norm for model 1A that is lower than
that of model 1B. This would indicate that model 1B is more robust. Examining
contextual robustness, however, we see that model 1A is able to withstand more
haze before misclassification occurs. A similar result is shown for sample #52.
This time however model 1A would be judged more robust by the l,, measure
whilst model 1B is more robust according to the contextual measure. Other
samples report identical [, measures between models (samples 114, 47, 3 and
15) yet their response to haze is different e.g. sample #114 using model 1A is
able to withstand almost twice as much haze as model 1B.

These results demonstrate that our methods are able to use formal verifica-
tion techniques, where the model form allows for such analysis. We also note
that non-contextual point robustness is insufficient to assess the robustness of
models in the presence of contextual perturbations.

4.2 Case Study 2: CIFAR-10

In order to demonstrate that our approach is applicable to a range of problems
we applied our method to a second well known classification problem, CIFAR-
10. The data set consists of 60,000 32x32 colour images in 10 classes with 5000
training images and 1000 test images per class. Table 3 shows the names of the
classes in this benchmark. The complexity and diversity of the images in this set
is a more challenging classification task than the traffic sign problem. We again
constructed models of increasing complexity with two models at each level. The
accuracy of these models for the unperturbed test set is given in Table 4.

Contextually Relevant Robustness 13

Table 3. CIFAR-10 class descriptions

class |0 1 2 3 |4 5 6 7 8 9

name | airplane | automobile | bird | cat | deer | dog | frog | horse | ship | truck

Table 4. CIFAR-10 model accuracy

Model Accuracy | Model Accuracy | Model Accuracy
4A | Small Relu | 49.11 5A | Large Relu | 53.20 6A | CNN | 84.07
4B 47.45 5B 53.04 6B 85.17

08 == Model 4a
Model 4b
—_— el 5a

0.81

Model 5
206 —— Model 5b

Model 6a

Model 6b + Model 6b

Accuracy
Accurac

A

0.2

o

0.0

000 02 050 075 100 000 025 050 075 100 000 02 050 075 100
Epsilon Epsilon Epsilon

(a) Haze (b) Contrast (c) Blur

Fig. 7. CIFAR-10 model robustness

DeepCert with Test-Based Verification. Model accuracy in the presence of
the three forms of contextual perturbation are shown in Fig.7. We once more
note the accuracy degrades as € is increased for all perturbation types. For haze
we observe a point at which the best model changes. This indicates that a sys-
tem which is able to switch between models as the level of haze increases may
demonstrate improved robustness. We also note that the CNN models outper-
form the simpler models by a significant margin under most conditions. For blur,
however, when € > 0.7 the CNN models under perform the simpler models.
Figure 8 shows the class accuracy for the CNN models subjected to the blur
perturbation. We observe that the performance of classes between the models
varies as shown in the traffic sign sign study. The accuracy of class 3 in model 6A,
for example, is lower than that seen in Model 6B until € > 0.7.
DeepCert with Formal Verification. Formal verification was applied to mod-
els 4A and 4B by again choosing 30 samples which we perturbed with haze. The
results were in line with those found for the traffic sign model, but in addition
we found a sample (#14) for model 4A which returned a lower robustness bound
than when using test-based verification. Table 5 shows the predicted class ¢ for this
sample as € is increased. We note that the sample is misclassified at e = 0.0723
which was found using Marabou, it then returns to classifying the sample cor-
rectly before misclassifying again at e = 0.365, the value found through testing.
This confirms that, whilst testing may correctly identify the robustness bound for
the majority of cases, formal verification is required for guarantees of robustness.

14 C. Paterson et al.
_
— class 0 —— class 0
081 class 1 081 — class 1
— class 2 — class 2
%0-6 — class 3 5:0.6‘ — class 3
§ — class 4 g — class 4
8 0.41 — class b g 0.4{ — class 5
< —— class 6 < —— class 6
021 — class 7 021 class 7
class 8 class 8
0.0 — class 9 0.0 — class 9
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Epsilon Epsilon
(a) Model 6A) Model 6B
1.00 T 1.00
0.75 w % 0.75
= o
3 3
Z 0.50 Z 0.50
2, a,
o M ()
0.25 5 § T § 0.25 : s
o 8 5 E o o
0.00 B s s 8 . 0.00 8 § s 3
U 1 2 3 4 5 6 7 8 9 0 2 3 4 5 6 7 8 9

(c) Model 6A

(d) Model 6B

Fig. 8. CIFAR-10 class robustness with respect to blur

Table 5. Formal versus test-based verification, correct label y =9

€ y e Y
0.002 19/0.15 |1
0.035 |9/0.18 |9
0.050 |9/0.2 |9
0.07231/0.03 |9
0.1 1/0.365 |2

5 Related Work

It is well known [23] that neural networks, including highly trained and smooth
networks, are vulnerable to adversarial perturbations; these are small changes
to an input (which are imperceptible to the human eye) that lead to mis-
classifications. The vast majority of the work in this area focuses on formulating
adversarial examples with respect to perturbations defined with L, norms. The
problem is typically formulated as follows: for a given network F' and an input
z, find an input 2’ for which F(z') # F(z) while minimising ||z — 2/|.

The metric used to compute the distance between points is typically the
Euclidean distance (Lo norm), the Manhattan distance (L; norm), or the

Contextually Relevant Robustness 15

Chebyshev distance (L, norm). Methods for finding adversarial examples and
for checking robustness of neural networks to adversarial perturbations range
from heuristic and optimisation-based techniques [2,8,14,17,18] to formal analy-
sis techniques which are based on constraint solving, interval analysis or abstract
interpretation [4,5,7,11,12,27,28]. In contrast to these works, which focus on
local robustness, we take a more global view, as we aim to evaluate models on
many input points and use the results to assess and compare models and inform
developers’ choices. Furthermore, we aim to study more natural (contextual)
perturbations, as we do not limit ourselves to L, norms.

Other researchers have started to look into robustness verification beyond the
L,-norm threat model. For instance, Semantify-NN [16] addresses robustness
verification against semantic adversarial attacks, such as colour shifting and
lighting adjustment. It works by inserting semantic perturbation layers to the
input layer of a given model, and leverages existing L,-norm based verification
tools to verify the model robustness against semantic perturbations. In our work,
we also leverage an off-the-shelf verification tool (namely Marabou) to enable
verification with respect to semantically meaningful perturbations. We do not
modify the models, but instead encode the checks as Marabou queries.

6 Conclusions and Future Work

In this paper we have introduced DeepCert, a tool-supported method for the
systematic verification of contextually relevant robustness for neural network
classifiers. We have shown that the accuracy of a DNN image classifier is a
function of the perturbation type to which sample images are exposed, and
that through a systematic verification of the robustness with respect to these
perturbations a more informed decision may be made to select a DNN model.
In future work we plan to investigate the use of alternative formal verifica-
tion techniques with DeepCert, and the use of more complex models of natu-
ral phenomena, parameterised for use within the framework. We also intend to
investigate methods to allow for the systematic assessment of robustness within
regions of the input space e.g. rain drops on a lens affecting part of an image.

Acknowledgements. This research has received funding from the Assuring Auton-
omy International Programme project ‘Assurance of Deep-Learning AI Techniques’
and the UKRI project EP/V026747/1 ‘Trustworthy Autonomous Systems Node in
Resilience’.

References

1. Ashmore, R., Calinescu, R., Paterson, C.: Assuring the machine learning lifecycle:
desiderata, methods, and challenges (2019). arXiv preprint arXiv:1905.04223

2. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In:
2017 IEEE Symposium on Security and Privacy, pp. 39-57. IEEE (2017)

3. De Fauw, J., et al.: Clinically applicable deep learning for diagnosis and referral in
retinal disease. Nat. Med. 24(9), 1342-1350 (2018)

https://doi.org/10.1007/978-3-642-40349-1_4
https://doi.org/10.1007/978-3-642-40349-1_4
https://digitalcommons.usu.edu/etd/3964
https://digitalcommons.usu.edu/etd/3964

16

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

C. Paterson et al.

. Dutta, S., Jha, S., Sankaranarayanan, S., Tiwari, A.: Output range analysis for
deep feedforward neural networks. In: NASA Formal Methods Symposium, pp.
121-138. Springer (2018)

Fischetti, M., Jo, J.: Deep Neural Networks as 0—1 mixed integer linear programs:
a feasibility study (2017). arXiv preprint arXiv:1712.06174

. Gauerhof, L., Hawkins, R., Picardi, C., Paterson, C., Hagiwara, Y., Habli, I.:
Assuring the safety of machine learning for pedestrian detection at crossings. In:
Casimiro, A., Ortmeier, F., Bitsch, F., Ferreira, P. (eds.) SAFECOMP 2020. LNCS,
vol. 12234, pp. 197-212. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-54549-9_13

Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,
M.T.: AI2: safety and robustness certification of neural networks with abstract
interpretation. In: 2018 IEEE Symposium on Security and Privacy, pp. 3-18 (2018)
Goodfellow, 1.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples (2014). arXiv preprint arXiv:1412.6572

Grosse, K., Manoharan, P., Papernot, N., Backes, M., McDaniel, P.: On the (sta-
tistical) detection of adversarial examples (2017). arXiv preprint arXiv:1503.02531
Hamdi, A., Ghanem, B.: Towards analyzing semantic robustness of deep neural
networks. In: European Conference on Computer Vision, pp. 22-38. Springer (2020)
Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural
networks. In: Majumdar, R., Kuncak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp.
3-29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_1

Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: An effi-
cient SMT solver for verifying deep neural networks. In: International Conference
on Computer Aided Verification, pp. 97-117. Springer (2017)

Katz, G., et al.: The marabou framework for verification and analysis of deep
neural networks. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp.
443-452. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4_26
Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial machine learning at scale
(2016). arXiv preprint arXiv:1611.01236

Mitani, A., et al.: Detection of anaemia from retinal fundus images via deep learn-
ing. Nat. Biomed. Eng. 4(1), 18-27 (2020)

Mohapatra, J., Weng, T.W., Chen, P.Y., Liu, S., Daniel, L.: Towards verifying
robustness of neural networks against a family of semantic perturbations. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp. 244-252 (2020)

Moosavi-Dezfooli, S.M., Fawzi, A., Frossard, P.: Deepfool: a simple and accurate
method to fool deep neural networks. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2574-2582 (2016)

Papernot, N.; McDaniel, P., Jha, S., Fredrikson, M., Celik, Z.B., Swami, A.: The
limitations of deep learning in adversarial settings. In: 2016 IEEE European Sym-
posium on Security and Privacy, pp. 372-387. IEEE (2016)

Picardi, C., Paterson, C., Hawkins, R.D., Calinescu, R., Habli, I.: Assurance argu-
ment patterns and processes for machine learning in safety-related systems. In:
Workshop on Artificial Intelligence Safety, pp. 23-30 (2020)

Pulina, L., Tacchella, A.: An abstraction-refinement approach to verification of
artificial neural networks. In: CAV, pp. 243-257 (2010)

Singh, G., Gehr, T., Piischel, M., Vechev, M.: An abstract domain for certifying
neural networks. Proc. ACM Program. Lang. 3, 1-30 (2019)

https://doi.org/10.1007/978-3-319-66787-4_22
https://doi.org/10.1007/978-3-319-66787-4_22
https://www.blackhat.com/docs/eu-15/materials/eu-15-Petit-Self-Driving-And-Connected-Cars-Fooling-Sensors-And-Tracking-Drivers-wp1.pdf
https://www.blackhat.com/docs/eu-15/materials/eu-15-Petit-Self-Driving-And-Connected-Cars-Fooling-Sensors-And-Tracking-Drivers-wp1.pdf
https://doi.org/10.5446/36252
https://doi.org/10.5446/36252
http://psas.scripts.mit.edu/home/get_file.php?name=STPA_handbook.pdf
http://psas.scripts.mit.edu/home/get_file.php?name=STPA_handbook.pdf
https://calhoun.nps.edu/handle/10945/37597
https://calhoun.nps.edu/handle/10945/37597
https://www.computer.org/csdl/proceedings/cvprw/2019/1iTvczdcyc0
https://jp.mathworks.com/products/matlab.html
https://jp.mathworks.com/products/simulink.html
https://www.unrealengine.com/
https://jp.mathworks.com/help/mpc/ug/highway-lane-following.html
https://jp.mathworks.com/help/mpc/ug/highway-lane-following.html
https://jp.mathworks.com/help/driving/ug/autonomous-emergency-braking-with-sensor-fusion.html
https://jp.mathworks.com/help/driving/ug/autonomous-emergency-braking-with-sensor-fusion.html
https://jp.mathworks.com/help/driving/ug/autonomous-emergency-braking-with-sensor-fusion.html
https://jp.mathworks.com/help/vision/ug/track-vehicles-using-lidar.html
https://jp.mathworks.com/help/vision/ug/track-vehicles-using-lidar.html

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Contextually Relevant Robustness 17

Stallkamp, J., Schlipsing, M., Salmen, J., Igel, C.: The german traffic sign recogni-
tion benchmark: a multi-class classification competition. In: The 2011 International
Joint Conference on Neural Networks, pp. 1453-1460. IEEE (2011)

Szegedy, C., et al.: Intriguing properties of neural networks (2013). arXiv:1312.6199
Tabernik, D., Skocaj, D.: Deep learning for large-scale traffic-sign detection and
recognition. IEEE Trans. Intell. Transp. Syst. 21(4), 1427-1440 (2019)

Tian, Y., Pei, K., Jana, S., Ray, B.: Deeptest: automated testing of deep-neural-
network-driven autonomous cars. In: Proceedings of the 40th International Con-
ference on Software Engineering, pp. 303-314 (2018)

Tjeng, V., Xiao, K., Tedrake, R.: Evaluating robustness of neural networks with
mixed integer programming (2017). arXiv preprint arXiv:1711.07356

Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Efficient formal safety analysis
of neural networks. In: Advances in Neural Information Processing Systems 31:
Annual Conference on Neural Information Processing Systems (2018)

Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Formal security analysis of
neural networks using symbolic intervals. In: 27th USENIX Security Symposium
(2018)

Wu, H., et al.: Parallelization techniques for verifying neural networks. In: 2020
Formal Methods in Computer Aided Design, pp. 128-137 (2020)

Yuan, X., He, P., Zhu, Q., Li, X.: Adversarial examples: attacks and defenses for
deep learning. IEEE Trans. Neural Netw. Learn. Syst. 30(9), 2805-2824 (2019)
Zhang, M., Zhang, Y., Zhang, L., Liu, C., Khurshid, S.: DeepRoad: GAN-based
metamorphic testing and input validation framework for autonomous driving sys-
tems. In: 2018 33rd IEEE/ACM International Conference on Automated Software
Engineering, pp. 132-142. IEEE (2018)

Zhang, N., Zhang, L., Cheng, Z.: Towards simulating foggy and hazy images and
evaluating their authenticity. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, E.S.,
et al. (eds.) Neural Information Processing, pp. 405—415. Springer, Cham, USA
(2017). https://doi.org/10.1007/978-3-319-70090-8_42

https://jp.mathworks.com/help/gpucoder/gpucoder-deep-learning.html
https://jp.mathworks.com/help/gpucoder/gpucoder-deep-learning.html
https://jp.mathworks.com/help/driving/ug/radar-signal-simulation-and-processing-for-automated-driving.html
https://jp.mathworks.com/help/driving/ug/radar-signal-simulation-and-processing-for-automated-driving.html
https://jp.mathworks.com/products/simulink-test.html
https://jp.mathworks.com/products/simulink-test.html
https://www.nasva.go.jp/mamoru/en/
https://www.euroncap.com/en
http://arxiv.org/abs/1912.03618

	Preface
	Organization
	Contents
	Machine Learning Safety Assurance
	Evaluation Framework for Performance Limitation of Autonomous Systems Under Sensor Attack
	1 Introduction
	2 Evaluation Framework Based on SOTIF Process
	2.1 Relevant Standards and SOTIF
	2.2 Evaluation Framework

	3 Identifying Attack Scenarios Using STAMP/STPA
	3.1 STAMP/STPA Safety Analysis
	3.2 Analysis Steps and Results

	4 Evaluating Performance Limitations Under Sensor Attacks
	4.1 Test Model for Verification of Safety Constraints
	4.2 Sensor Attack Simulator
	4.3 Evaluation Examples Using the Prototype

	5 Related Work
	6 Conclusion
	References

	Could We Relieve AI/ML Models of the Responsibility of Providing Dependable Uncertainty Estimates? A Study on Outside-Model Uncertainty Estimates
	1 Introduction
	2 Related Work on Uncertainty Predictions
	3 Study Planning and Execution
	3.1 Research Questions
	3.2 Study Design and Variation Points
	3.3 Study Execution

	4 Study Results and Discussion
	4.1 RQ1: Comparing UW Performance with In-Model Approaches
	4.2 RQ2: Synergies Between In-Model and Outside-model Approaches
	4.3 RQ3: Performance Under Common, Less Than Optimal Conditions

	5 Conclusion
	References

	Towards Certification of a Reduced Footprint ACAS-Xu System: A Hybrid ML-Based Solution
	1 Introduction
	1.1 ACAS Xu Overview
	1.2 Purpose of the Work

	2 ACAS Xu Hybrid Architecture
	2.1 Learning Process
	2.2 Design of the Hybrid Architecture
	2.3 Why a New Hybrid Architecture

	3 Certification Methodology
	3.1 Notations
	3.2 Assurance Case for the Hybrid Controller

	4 Related Work
	5 Conclusion
	References

	Security Engineering
	IT Design for Resiliency Using Extreme Value Analysis
	1 Introduction
	2 Extreme Value Analysis
	2.1 Detecting Extremity

	3 Modeling Risk
	3.1 Probabilistic Modeling for a Mission Duration
	3.2 Mission Risk: The Cumulative Cost of Failures
	3.3 Workflow

	4 Case Study
	4.1 Measurement-Based Extreme Value Analysis
	4.2 Risk Model and Availability Evaluation

	5 Extension to Cold-Backup
	6 Conclusion
	References

	DeepCert: Verification of Contextually Relevant Robustness for Neural Network Image Classifiers
	1 Introduction
	2 DeepCert Verification Method
	2.1 Overview
	2.2 DeepCert Instantiation for Test-Based Verification
	2.3 DeepCert Instantiation for Formal Verification

	3 Implementation
	4 Experimental Results
	4.1 Case Study 1: Road Traffic Speed Sign Classification
	4.2 Case Study 2: CIFAR-10

	5 Related Work
	6 Conclusions and Future Work
	References

	ISO/SAE 21434-Based Risk Assessment of Security Incidents in Automated Road Vehicles
	1 Introduction
	2 Related Work
	3 Introduction to ISO/SAE 21434
	4 Context-Aware Risk Assessments of Security Incidents
	4.1 Offline Phase
	4.2 Online Phase

	5 Case Study and Discussion
	5.1 Reference Vehicle
	5.2 Application of the Offline Phase
	5.3 Discussion of the Online Phase

	6 Conclusion
	References

	Safety and Assurance Cases
	Automating the Assembly of Security Assurance Case Fragments
	1 Introduction
	2 Contribution
	2.1 Augmented Goal Structuring Notation (GSN)
	2.2 Security Assurance Case Patterns
	2.3 Model-Based Architecture Analysis in VERDICT
	2.4 Security Assurance Case Construction

	3 Case Study: A Delivery Drone
	4 Discussion
	5 Related Work
	6 Conclusion and Future Work
	References

	Safety Case Maintenance: A Systematic Literature Review
	1 Introduction
	2 Background and Related Work
	3 Review Protocol
	3.1 Establishing the Quasi-Gold Standards by Manual Search
	3.2 Automated Search and Snowballing
	3.3 Exclusion and Inclusion Criteria
	3.4 Evaluation Criteria

	4 Review Results
	5 Discussion
	6 Summary and Future Lines of Work
	References

	Towards Certified Analysis of Software Product Line Safety Cases
	1 Introduction
	2 Background
	2.1 Safety Cases, GSN, and Change Impact Assessment
	2.2 Software Product Lines

	3 Methodology and Infrastructure
	4 Change Impact Assessment
	4.1 Single-Product Algorithm
	4.2 Lifted Algorithm
	4.3 Examples

	5 Towards Implementation
	6 Related Work
	7 Conclusion and Future Work
	References

	Machine Learning Applications
	Safety Assurance of Machine Learning for Chassis Control Functions
	1 Introduction
	2 Related Work
	3 Case Study
	4 Assurance Approach
	4.1 Domain Analysis
	4.2 System Design
	4.3 Verification and Validation
	4.4 Assurance Case

	5 Detailed Analysis of the Machine Learning Function
	6 Lessons Learned
	7 Conclusion
	References

	Safe Interaction of Automated Forklifts and Humans at Blind Corners in a Warehouse with Infrastructure Sensors
	1 Introduction
	2 Blind Corners in Warehouses
	2.1 Definition of Blind Corners
	2.2 Safety Standards for Driverless Industrial Trucks
	2.3 Intersection Cooperation and Coordination

	3 Infrastructure-Cooperative Autonomous Control
	3.1 Infrastructure-Cooperative Autonomous Control Architecture
	3.2 Infrastructure-Cooperative Autonomous Control Hazards
	3.3 Safety Concepts for Safe Interaction of Automated Forklifts and Human Workers at Blind Corners

	4 Evaluation
	5 Conclusion and Outlook
	References

	Machine Learning-Based Fault Injection for Hazard Analysis and Risk Assessment
	1 Introduction
	2 Adaptive Cruise Control
	3 ML-Based FI Within the SAHARA Methodology
	3.1 Required Information
	3.2 Scenario Selection
	3.3 Fault Injection and Reinforcement Learning Algorithm
	3.4 Simulation and Visualisation
	3.5 Hazard Classification

	4 Results
	5 Discussion
	6 Related Work
	7 Conclusion and Future Work
	References

	Safety Validation and Simulation
	SASSI: Safety Analysis Using Simulation-Based Situation Coverage for Cobot Systems
	1 Introduction
	2 Case Study: Industrial Manufacturing Cobot
	3 Overview of the SASSI Method
	4 Analysing the System Safety
	5 Monitoring Safety Artefacts
	6 Generating and Evaluating Configurations
	7 Evaluation
	7.1 Problem Space
	7.2 Simulation Setup
	7.3 Search Heuristics
	7.4 Results

	8 Related Work
	9 Conclusion
	References

	Attack and Fault Injection in Self-driving Agents on the Carla Simulator – Experience Report
	1 Introduction
	2 Background
	2.1 Adversarial Attacks Using the ART Toolbox
	2.2 Fault Injection in Trained Agents with PytorchFI
	2.3 Carla Simulator and Learning by Cheating (LbC)

	3 Injection of Attacks in a Self-driving Agent
	3.1 Selection of Suitable Attacks
	3.2 Integration of ART in Learning by Cheating

	4 Injection of Faults in a Self-driving Agent
	4.1 Perturbation Models
	4.2 Application of PyTorchFi in LbC

	5 Experiments and Results
	5.1 Description of the Experimental Campaign
	5.2 Adversarial Attacks Injection: Results
	5.3 Faults Injection: Results

	6 Limitations and Considerations for Real-World Scenarios
	7 Conclusions
	References

	A Framework for Automated Quality Assurance and Documentation for Pharma 4.0
	1 Introduction
	2 State-of-the-Art of Quality Assurance and Documentation in the Pharmaceutical Industry
	2.1 Lifecycle of Pharmaceutical Products and Good-X-Practice
	2.2 The Patient Batch Record
	2.3 Pre-Market Authorization, Research and Development
	2.4 Production of Products with Market Authorization

	3 Tools for Model-Based Quality Assurance and Dependability
	3.1 Assurance Cases and the Digital Dependability Identity
	3.2 Asset Administration Shells and Submodels

	4 Framework for End-to-End Automated Quality Assurance and Documentation
	4.1 A Car-T Production Process
	4.2 A Car-T Cell Assurance Case
	4.3 An Auto-Generated Batch Record Submodel
	4.4 Submodels for Collaborating Assets

	5 Conclusion
	References

	Fault Tolerance
	A Modular Approach to Non-deterministic Dynamic Fault Trees
	1 Introduction
	2 Related Work
	3 Background
	3.1 Fault Trees
	3.2 Non-deterministic Dynamic Fault Trees
	3.3 Synthesizing Recovery Strategies

	4 Modular Synthesis of Recovery Automata
	4.1 Modular Workflow
	4.2 Modularization

	5 Case Studies
	6 Conclusions and Future Work
	References

	Composition of Fault Forests
	1 Introduction
	2 Running Example
	3 Formalization
	4 Implementation
	4.1 Formal Background
	4.2 Algorithm Implementation

	5 Related Work
	6 Conclusion and Future Work
	References

	Author Index

