®

Check for
updates

An SMT-Based Approach for Verifying
Binarized Neural Networks

Guy Amir!, Haoze Wu?, Clark Barrett?, and Guy Katz![=]

! The Hebrew University of Jerusalem, Jerusalem, Israel
{guy.amir2, g.katz}@mail.huji.ac.il
2 Stanford University, Stanford, USA
{haozewu, barrett}@cs.stanford.edu

Abstract. Deep learning has emerged as an effective approach for cre-
ating modern software systems, with neural networks often surpassing
hand-crafted systems. Unfortunately, neural networks are known to suffer
from various safety and security issues. Formal verification is a promising
avenue for tackling this difficulty, by formally certifying that networks
are correct. We propose an SMT-based technique for verifying binarized
neural networks — a popular kind of neural network, where some weights
have been binarized in order to render the neural network more memory
and energy efficient, and quicker to evaluate. One novelty of our tech-
nique is that it allows the verification of neural networks that include
both binarized and non-binarized components. Neural network verifica-
tion is computationally very difficult, and so we propose here various
optimizations, integrated into our SMT procedure as deduction steps, as
well as an approach for parallelizing verification queries. We implement
our technique as an extension to the Marabou framework, and use it to
evaluate the approach on popular binarized neural network architectures.

1 Introduction

In recent years, deep neural networks (DNNs) [21] have revolutionized the state
of the art in a variety of tasks, such as image recognition [12,37], text classifica-
tion [39], and many others. These DNNs, which are artifacts that are generated
automatically from a set of training data, generalize very well — i.e., are very
successful at handling inputs they had not encountered previously. The suc-
cess of DNNS is so significant that they are increasingly being incorporated into
highly-critical systems, such as autonomous vehicles and aircraft [7,30].

In order to tackle increasingly complex tasks, the size of modern DNNs has
also been increasing, sometimes reaching many millions of neurons [46]. Con-
sequently, in some domains, DNN size has become a restricting factor: huge
networks have a large memory footprint, and evaluating them consumes both
time and energy. Thus, resource-efficient networks are required in order to allow
DNNs to be deployed on resource-limited, embedded devices [23,42].

One promising approach for mitigating this problem is via DNN quantiza-
tion [4,27]. Ordinarily, each edge in a DNN has an associated weight, typically

© The Author(s) 2021
J. F. Groote and K. G. Larsen (Eds.): TACAS 2021, LNCS 12652, pp. 203-222, 2021.
https://doi.org/10.1007/978-3-030-72013-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72013-1_11&domain=pdf
https://doi.org/10.1007/978-3-030-72013-1_11

204 G. Amir et al.

stored as a 32-bit floating point number. In a quantized network, these weights
are stored using fewer bits. Additionally, the activation functions used by the
network are also quantized, so that their outputs consist of fewer bits. The net-
work’s memory footprint thus becomes significantly smaller, and its evaluation
much quicker and cheaper. When the weights and activation function outputs
are represented using just a single bit, the resulting network is called a binarized
neural network (BNN') [26]. BNNs are a highly popular variant of a quantized
DNN [10,40, 56, 57], as their computing time can be up to 58 times faster, and
their memory footprint 32 times smaller, than that of traditional DNNs [45].
There are also network architectures in which some parts of the network are
quantized, and others are not [45]. While quantization leads to some loss of
network precision, quantized networks are sufficiently precise in many cases [45].

In recent years, various security and safety issues have been observed in
DNN s [33,48]. This has led to the development of a large variety of verification
tools and approaches (e.g., [16,25,33,52], and many others). However, most of
these approaches have not focused on binarized neural networks, although they
are just as vulnerable to safety and security concerns as other DNNs. Recent work
has shown that verifying quantized neural networks is PSPACE-hard [24], and
that it requires different methods than the ones used for verifying non-quantized
DNNs [18]. The few existing approaches that do handle binarized networks focus
on the strictly binarized case, i.e., on networks where all components are binary,
and verify them using a SAT solver encoding [29,43]. Neural networks that are
only partially binarized [45] cannot be readily encoded as SAT formulas, and
thus verifying these networks remains an open problem.

Here, we propose an SMT-based [5] approach and tool for the formal ver-
ification of binarized neural networks. We build on top of the Reluplex algo-
rithm [33],% and extend it so that it can support the sign function,

. <0 -1
sign(x) = 50 1

We show how this extension, when integrated into Reluplex, is sufficient for ver-
ifying BNNs. To the best of our knowledge, the approach presented here is the
first capable of verifying BNNs that are not strictly binarized. Our technique
is implemented as an extension to the open-source Marabou framework [2,34].
We discuss the principles of our approach and the key components of our imple-
mentation. We evaluate it both on the XNOR-Net BNN architecture [45], which
combines binarized and non-binarized parts, and on a strictly binarized network.

The rest of this paper is organized as follows. In Section 2, we provide the
necessary background on DNNs, BNNs, and the SMT-based formal verification
of DNNs. Next, we present our SMT-based approach for supporting the sign
activation function in Section 3, followed by details on enhancements and opti-
mizations for the approach in Section 4. We discuss the implementation of our
tool in Section 5, and its evaluation in Section 6. Related work is discussed in
Section 7, and we conclude in Section 8.

3 [33] is a recent extended version of the original Reluplex paper [31].

An SMT-Based Approach for Verifying Binarized Neural Networks 205

2 Background

Deep Neural Networks. A deep neural network (DNN) is a directed graph,
where the nodes (also called neurons) are organized in layers. The first layer is
the input layer, the last layer is the output layer, and the intermediate layers
are the hidden layers. When the network is evaluated, the input neurons are
assigned initial values (e.g., the pixels of an image), and these values are then
propagated through the network, layer by layer, all the way to the output layer.
The values of the output neurons determine the result returned to the user:
often, the neuron with the greatest value corresponds to the output class that
is returned. A network is called feed-forward if outgoing edges from neurons in
layer ¢ can only lead to neurons in layer j if j > 4. For simplicity, we will assume
here that outgoing edges from layer ¢ only lead to the consecutive layer, i + 1.

Each layer in the neural network has a layer type, which determines how the
values of its neurons are computed (using the values of the preceding layer’s
neurons). One common type is the weighted sum layer: neurons in this layer are
computed as a linear combination of the values of neurons from the preceding
layer, according to predetermined edge weights and biases. Another common
type of layer is the rectified linear unit (ReLU) layer, where each node y is
connected to precisely one node x from the preceding layer, and its value is
computed by y = ReLU(z) = max(0, z). The maz-pooling layer is also common:
each neuron y in this layer is connected to multiple neurons 1, ...,z from the
preceding layer, and its value is given by y = max(z1,...,xx).

More formally, a DNN N with & inputs and m outputs is a mapping R¥ —
R™. It is given as a sequence of layers Lq,...,L,, where L; and L, are the
input and output layers, respectively. We denote the size of layer L; as s;, and
its individual neurons as vil7 ...,v;". We use V; to denote the column vector
[vl,...,v"]T. During evaluation, the input values V; are given, and Va,...,V,
are computed iteratively. The network also includes a mapping Tn : N — T,
such that T'(:) indicates the type of hidden layer ¢. For our purposes, we focus
on layer types T = {weighted sum, ReLU, max}, but of course other types could
be included. If T},(i) = weighted sum, then layer L; has a weight matrix W; of
dimensions s; X s;_1 and a bias vector B; of size s;, and its values are computed
as Vi = W; - Vi_1 + B;. For T),(i) = ReLU, the ReLU function is applied to
each neuron, i.e. v] = ReLU(v]_,) (we required that s; = s;_1 in this case). If
T, (i) = max, then each neuron UZ in layer L; has a list src of source indices,
and its value is computed as vf = MaXkecsre Uf_l.

A simple illustration appears in Input Weighted sum ReLU Output
Fig. 1. This network has a weighted . ReLU .
sum layer and a ReLU layer as its “
hidden layers, and a weighted sum >< / v
1 its output layer. For th 2_,
ayer as its output layer. For the w2 . — .

weighted sum layers, the weights
and biases are listed in the figure.
On input Vi = [1,2]7, the first Fig. 1: A toy DNN.

)

+2

206 G. Amir et al.

layer’s neurons evaluate to Vo = [6, —1]7. After ReLUs are applied, we get
V3 = [6,0]7, and finally the output is V; = [6].

Binarized Neural Net-
works. In a binarized neural
network (BNN), the layers
are typically organized into
binary blocks, regarded as

units with binary inputs and Fig.2: A toy BNN with a single binary block com-
outputs. Following the defi- posed of three layers: a weighted sum layer, a batch
nitions of Hubara et al. [26] normalization layer, and a sign layer.

and Narodytska et al. [43], a

binary block is comprised of three layers: (i) a weighted sum layer, where each
entry of the weight matrix W is either 1 or —1; (ii) a batch normalization layer,
which normalizes the values from its preceding layer (this layer can be regarded
as a weighted sum layer, where the weight matrix W has real-valued entries in
its diagonal, and 0 for all other entries); and (iii) a sign layer, which applies the
sign function to each neuron in the preceding layer. Because each block ends
with a sign layer, its output is always a binary vector, i.e. a vector whose entries
are +1. Thus, when several binary blocks are concatenated, the inputs and out-
puts of each block are always binary. Here, we call a network strictly binarized
if it is composed solely of binary blocks (except for the output layer). If the
network contains binary blocks but also additional layers (e.g., ReLU layers), we
say that it is a partially binarized neural network. BNNs can be made to fit into
our definitions by extending the set 7 to include the sign function. An example
appears in Fig. 2; for input V; = [—1, 3], the network’s output is Vs = [-2].

SMT-Based Verification of Deep Neural Networks. Given a DNN NV that
transforms an input vector = into an output vector y = N(z), a pre-condition
P on z, and a post-condition @ on y, the DNN wverification problem [33] is to
determine whether there exists a concrete input z(such that P(zo) A Q(N(xo)).
Typically, @ represents an undesirable output of the DNN, and so the existence
of such an x(constitutes a counterexample. A sound and complete verification
engine should return a suitable xg if the problem is satisfiable (SAT), or reply
that it is unsatisfiable (UNSAT). As in most DNN verification literature, we will
restrict ourselves to the case where P and @ are conjunctions of linear constraints
over the input and output neurons, respectively [16,33,52].

Here, we focus on an SMT-based approach for DNN verification, which was
introduced in the Reluplex algorithm [33] and extended in the Marabou frame-
work [2,34]. It entails regarding the DNN’s node values as variables, and the
verification query as a set of constraints on these variables. The solver’s goal
is to find an assignment of the DNN’s nodes that satisfies P and Q. The con-
straints are partitioned into two sets: linear constraints, i.e. equations and vari-
able lower and upper bounds, which include the input constraints in P, the
output constraints in), and the weighted sum layers within the network; and

An SMT-Based Approach for Verifying Binarized Neural Networks 207

piecewise-linear constraints, which include the activation function constraints,
such as ReLLU or max constraints. The linear constraints are easier to solve
(specifically, they can be phrased as a linear program [6], solvable in polynomial
time); whereas the piecewise-linear constraints are more difficult, and render the
problem NP-complete [33]. We observe that sign constraints are also piecewise-
linear.

In Reluplex, the linear constraints are solved iteratively, using a variant of the
Simplex algorithm [13]. Specifically, Reluplex maintains a variable assignment,
and iteratively corrects the assignments of variables that violate a linear con-
straint. Once the linear constraints are satisfied, Reluplex attempts to correct any
violated piecewise-linear constraints — again by making iterative adjustments
to the assignment. If these steps re-introduce violations in the linear constraints,
these constraints are addressed again. Often, this process converges; but if it
does not, Reluplex performs a case split, which transforms one piecewise-linear
constraint into a disjunction of linear constraints. Then, one of the disjuncts
is applied and the others are stored, and the solving process continues; and if
UNSAT is reached, Reluplex backtracks, removes the disjunct it has applied and
applies a different disjunct instead. The process terminates either when one of
the search paths returns SAT (the entire query is SAT), or when they all return
UNSAT (the entire query is UNSAT). It is desirable to perform as few case splits as
possible, as they significantly enlarge the search space to be explored.

The Reluplex algorithm is formally defined as a sound and complete calculus
of derivation rules [33]. We omit here the derivation rules aimed at solving the
linear constraints, and bring only the rules aimed at addressing the piecewise-
linear constraints; specifically, ReLU constraints [33]. These derivation rules are
given in Fig. 3, where: (i) X is the set of all variables in the query; (ii) R is the set
of all ReLU pairs; i.e., (b, f) € R implies that it should hold that f = ReLU(b);
(iii) « is the current assignment, mapping variables to real values; (iv) | and u
map variables to their current lower and upper bounds, respectively; and (v) the
update(cr, x,v) procedure changes the current assignment « by setting the value
of x to v. The ReluCorrect, and ReluCorrecty rules are used for correcting an
assignment in which a ReLU constraint is currently violated, by adjusting either
the value of b or f, respectively. The ReluSplit rule transforms a ReLLU constraint
into a disjunction, by forcing either b’s lower bound to be non-negative, or its
upper bound to be non-positive. This forces the constraint into either its active
phase (the identity function) or its inactive phase (the zero function). In the
case when we guess that a ReLU is active, we also apply the addEq operation
to add the equation f = b, in order to make sure the ReLU is satisfied in the
active phase. The Success rule terminates the search procedure when all variable
assignments are within their bounds (i.e., all linear constraints hold), and all
ReLU constraints are satisfied. The rule for reaching an UNSAT conclusion is
part of the linear constraint derivation rules which are not depicted; see [33] for
additional details.

The aforementioned derivation rules describe a search procedure: the solver
incrementally constructs a satisfying assignment, and performs case splitting

208 G. Amir et al.

(b, f) € R, a(f) # ReLU(a(b))
a := update(a, b, a(f))

(b, f) € R, a(f) # ReLU(a(b))

ReluC t
cutorrecty a := update(a, f, ReLU(«(b)))

ReluCorrect ¢

(b, f) € R
u(b) := min(u(b), 0),
1(f) == max(l(f),0),
u(f) := min(u(f),0)

Ve € X. l(z) < a(z) <u(z), V(b,f) e R. a(f) = ReLU(«x(d))
SAT

ReluSplit 1(b) := max(L(b), 0),

addEq(f = b)

Success

Fig. 3: Derivation rules for the Reluplex algorithm (simplified; see [33] for more
details).

when needed. Another key ingredient in modern SMT solvers is deduction steps,
aimed at narrowing down the search space by ruling out possible case splits.
In this context, deductions are aimed at obtaining tighter bounds for variables:
i.e., finding greater values for I(z) and smaller values for u(x) for each variable
x € X. These bounds can indeed remove case splits by fixing activation functions
into one of their phases; for example, if f = ReLU(b) and we deduce that b > 3,
we know that the ReLU is in its active phase, and no case split is required. We
provide additional details on some of these deduction steps in Section 4.

3 Extending Reluplex to Support Sign Constraints

In order to extend Reluplex to support sign constraints, we follow a similar
approach to how ReLUs are handled. We encode every sign constraint f = sign(b)
as two separate variables, f and b. Variable b represents the input to the sign
function, whereas f represents the sign’s output. In the toy example from Fig. 2,
b will represent the assignment for neuron vi, and f will represent v}.

Initially, a sign constraint poses no bound constraints over b, i.e. l(b) =
—o0 and u(b) = oo. Because the values of f are always +1, we set I(f) = —1
and u(f) = 1. If, during the search and deduction process, tighter bounds are
discovered that imply that b > 0 or f > —1, we say that the sign constraint
has been fixed to the positive phase; in this case, it can be regarded as a linear
constraint, namely b > OA f = 1. Likewise, if it is discovered that b < 0 or f < 1,
the constraint is fixed to the negative phase, and is regarded as b < O A f = —1.
If neither case applies, we say that the constraint’s phase has not yet been fixed.

In each iteration of the search procedure, a violated constraint is selected
and corrected, by altering the variable assignment. A violated sign constraint is
corrected by assigning f the appropriate value: —1 if the current assignment of b
is negative, and 1 otherwise. Case splits (which are needed to ensure completeness
and termination) are handled similarly to the ReLU case: we allow the solver to
assert that a sign constraint is in either the positive or negative phase, and then
backtrack and flip that assertion if the search hits a dead-end.

More formally, we define this extension to Reluplex by modifying the deriva-
tion rules described in Fig. 3 as follows. The rules for handling linear con-

SignCorrect _

An SMT-Based Approach for Verifying Binarized Neural Networks

(b, fy €S, abd) <0, a(f)#-1
o := update(a, f, —1)

SignCorrect

209

(b, f) €S, a) >0, a(f)#1
«a := update(a, f,1)

(b, f) €S

u(b) := min(u(b), —¢),
U(f) = max(l(f), —1),
u(f) := min(u(f), —1)

SignSplit

1(b) := max(l(b), 0),
1(f) = max(I(f), 1),
u(f) :=min(u(f), 1)

Ve € X. l(z) < a(z) < u(x),
(b, f) € S. a(f) = sign(a(b)), V(b, f) € R. a(f) = ReLU(«(b))
SAT

Success

Fig. 4: The extended Reluplex derivation rules, with support for sign constraints.

straints and ReLLU constraints are unchanged — the approach is modular and
extensible in that sense, as each type of constraint is addressed separately. In
Fig. 4, we depict new derivation rules, capable of addressing sign constraints.
The SignCorrect _ and SignCorrect, rules allow us to adjust the assignment of f
to account for the current assignment of b — i.e., set f to —1 if b is negative,
and to 1 otherwise. The SignSplit is used for performing a case split on a sign
constraint, introducing a disjunction for enforcing that either b is non-negative
(i(b) > 0) and f =1, or b is negative (u(b) < —¢; epsilon is a small positive con-
stant, chosen to reflect the desired precision) and f = —1. Finally, the Success
rule replaces the one from Fig. 3: it requires that all linear, ReLU and sign
constraints be satisfied simultaneously.

We demonstrate this process with a simple example. Observe again the toy

example for Fig. 2, the pre-condition P = (1 < v} <2)A(—1 < vf < 1), and the
post-condition @ = (vi < 5). Our goal is to find an assignment to the variables
{vi, v}, vd, vl vl vi} that satisfies P, @, and also the constraints imposed by
the BNN itself, namely the weighted sums vi = v{ — v} + 1, v = 0.503, and
v = 2v}, and the sign constraint v} = sign(vi).
Initially, we invoke derivation rules that
address the linear constraints (see [33]),
and come up with an assignment that
satisfies them, depicted as assignment 1
in Fig. 5. However, this assignment vi-
olates the sign constraint: v} = —1 #
sign(vi) = sign(1) = 1. We can thus in-
voke the SignCorrect | rule, which adjusts
the assignment, leading to assignment 2
in the figure. The sign constraint is now satisfied, but the linear constraint
vl = 2v} is violated. We thus let the solver correct the linear constraints again,
this time obtaining assignment 3 in the figure, which satisfies all constraints.
The Success rule now applies, and we return SAT and the satisfying variable
assignment.

The above-described calculus is sound and complete (assuming the e used
in the SignSplit rule is sufficiently small): when it answers SAT or UNSAT, that

; 1,2 .1 .1 .1 .1
variable vl Vi Uy V3 Uy Us

assignment 1/ 1 0 2 1 —1 -2
assignment 2/ 1 0 2 1 1 -2
assignment 3| 1 0 2 1 1 2

Fig.5: An iterative solution for a
BNN verification query.

210 G. Amir et al.

statement is correct, and for any input query there is a sequence of derivation
steps that will lead to either SAT or UNSAT. The proof is quite similar to that of the
original Reluplex procedure [33], and is omitted. A naive strategy that will always
lead to termination is to apply the SignSplit rule to saturation; this effectively
transforms the problem into an (exponentially long) sequence of linear programs.
Then, each of these linear programs can be solved quickly (linear programming
is known to be in P). However, this strategy is typically quite slow. In the next
section we discuss how many of these case splits can be avoided by applying
multiple optimizations.

4 Optimizations

Weighted Sum Layer Elimination. The SMT-based approach introduces
a new variable for each node in a weighted sum layer, and an equation to ex-
press that node’s value as a weighted sum of nodes from the preceding layer. In
BNNSs, we often encounter consecutive weighted sum layers — specifically be-
cause of the binary block structure, in which a weighted sum layer is followed by
a batch normalization layer, which is also encoded as weighted sum layer. Thus,
a straightforward way to reduce the number of variables and equations, and
hence to expedite the solution process, is to combine two consecutive weighted
sum layers into a single layer. Specifically, the original layers can be regarded as
transforming input x into y = Wa(Wj -« + By) + Bs, and the simplification as
computing y = W3 - x + Bs, where W3 = Wy - Wy and By = Wy - By + Bs. An
illustration appears in Fig. 6 (for simplicity, all bias values are assumed to be 0).

Weighted Weighted Merged weighted
sum layer #1 sum layer #2 sum layer

—1
e 5. @—
-0 > Yt
e

T e -

Fig. 6: On the left, a (partial) DNN with two consecutive weighted sum layers.
On the right, an equivalent DNN with these two layers merged into one.

LP Relaxation. Given a constraint f = sign(b), it is beneficial to deduce
tighter bounds on the b and f variables — especially if these tighter bounds fix
the constraints into one of its linear phases. We thus introduce a preprocessing
phase, prior to the invocation of our enhanced Reluplex procedure, in which
tighter bounds are computed by invoking a linear programming (LP) solver.
The idea, inspired by similar relaxations for ReLU nodes [14,49], is to over-
approximate each constraint in the network, including sign constraints, as a set
of linear constraints. Then, for every variable v in the encoding, an LP solver

An SMT-Based Approach for Verifying Binarized Neural Networks 211

is used to compute an upper bound w (by maximizing) and a lower bound [
(by minimizing) for v. Because the LP encoding is an over-approximation, v is
indeed within the range [l, u] for any input to the network.

Let f = sign(b), and suppose we initially know that [< b < w. The linear
over-approximation that we introduce for f is a trapezoid (see Fig. 7), with the
following edges: (i) f < 1; (i) f > —1; (i) f < 2 -b+1;and (iv) f > 2.b—1.
It is straightforward to show that these four equations form the smallest convex
polytope containing the values of f.

We demonstrate this process on the simple BNN depicted on the left-hand
side of Fig. 7. Suppose we know that the input variable, x, is bounded in the
range —1 < z < 1, and we wish to compute a lower bound for y. Simple, interval-
arithmetic based bound propagation [33] shows that by = 3z+1 is bounded in the
range —2 < b; < 4, and similarly that by = —4x + 2 is in the range —2 < by < 6.
Because neither b; nor by are strictly negative or positive, we only know that
—1 < f1, fo <1, and so the best bound obtainable for y is y > —2. However, by
formulating the LP relaxation of the problem (right-hand side of Fig. 7), we get
the optimal solution = = f%,bl =0,by = 13—0,]"’1 =—1,fs = %,y = f%, implying
the tighter bound y > —%.

f minimize y s.t.:
sign op<t (41) —1<z<1
3 - ’ 1 - by =3z+1
/ +1 \ > by = —dx +2
@ . SRR

"QN
W A - A
-4 1 N 7" -1<fi<1
si_’n’ A 1< fh<1
b E Y1 fi <bi+l
(-2-1) fiz-1 b2 1< fy <bytl
5 1< f2 < bat

Fig. 7: A simple BNN (left), the trapezoid relaxation of f; = sign(b;) (center),
and its LP encoding (right). The trapezoid relaxation of f5 is not depicted.

The aforementioned linear relaxation technique is effective but expensive
— because it entails invoking the LP solver twice for each neuron in the BNN
encoding. Consequently, in our tool, the technique is applied only once per query,
as a preprocessing step. Later, during the search procedure, we apply a related
but more lightweight technique, called symbolic bound tightening [52], which we
enhanced to support sign constraints.

Symbolic Bound Tightening. In symbolic bound tightening, we compute
for each neuron v a symbolic lower bound sl(x) and a symbolic upper bound
su(x), which are linear combinations of the input neurons. Upper and lower
bounds can then be derived from their symbolic counterparts using simple in-
terval arithmetic. For example, suppose the network’s input nodes are x; and

212 G. Amir et al.

9, and that for some neuron v we have:
sl(v) = 5wy — 222+ 3, su(v) =3z +4xe — 1

and that the currently known bounds are x; € [-1,2],22 € [-1,1] and v €

[—2,11]. Using the symbolic bounds and the input bounds, we can derive that

the upper bound of v is at most 6 +4 — 1 = 9, and that its lower bound is at

least —5 — 2+ 3 = —4. In this case, the upper bound we have discovered for v is

tighter than the previous one, and so we can update v’s range to be [—2,9].
The symbolic bound expressions are propa-

gated layer by layer [52]. Propagation through

weighted sum layers is straightforward: the sym- N

bolic bounds are simply multiplied by the re- 9

spective edge weights and summed up. Efficient \L/

approaches for propagations through ReL.U lay- l '

ers have also been proposed [51]. Our contribu- i g Wb

tion here is an extension of these techniques for &S z

propagating symbolic bounds also through sign |

layers. The approach again uses a trapezoid, al-

though a more coarse one — so that we can ap- . .

proximate each neuron from above and below us- Flg'_ 8: Symbolic bounds for

ing a single linear expression. More specifically, f=sign(b).

for f = sign(b) with b € [I,u] and previously-computed symbolic bounds su(b)

and sl(b), the symbolic bounds for f are given by:

sl(f) = % ~sl(b) — 1, su(f) = -7 su(b) +1
An illustration appears in Fig. 8. The blue trapezoid is the relaxation we use for
the symbolic bound computation, whereas the gray trapezoid is the one used for
the LP relaxation discussed previously. The blue trapezoid is larger, and hence
leads to looser bounds than the gray trapezoid; but it is computationally cheaper
to compute and use, and our evaluation demonstrates its usefulness.

Polarity-based Splitting. The Marabou framework supports a parallelized
solving mode, using the Split-and-Conquer (S&C) algorithm [54]. At a high level,
S&C partitions a verification query ¢ into a set of sub-queries @ := {¢1,...¢,},
such that ¢ and \/ sed ¢’ are equi-satisfiable, and handles each sub-query in-
dependently. Each sub-query is solved with a timeout value; and if that value
is reached, the sub-query is again split into additional sub-queries, and each is
solved with a greater timeout value. The process repeats until one of the sub-
queries is determined to be SAT, or until all sub-queries are proven UNSAT.

One Marabou strategy for creating sub-queries is by splitting the ranges of
input neurons. For example, if in query ¢ an input neuron z is bounded in the
range = € [0,4] and ¢ times out, it might be split into ¢ and ¢o such that
x € [0,2] in ¢; and x € [2,4] in ¢o. This strategy is effective when the neural
network being verified has only a few input neurons.

An SMT-Based Approach for Verifying Binarized Neural Networks 213

Another way to create sub-queries is to perform case-splits on piecewise-linear
constraints — sign constraints, in our case. For instance, given a verification
query ¢ := ¢’ A f = sign(b), we can partition it into ¢~ =@ Ab<OA f=—1
and ¢T := ¢’ Ab>0A f = 1. Note that ¢ and ¢ V ¢~ are equi-satisfiable.

The heuristics for picking which sign constraint to split on have a significant
impact on the difficulty of the resulting sub-problems [54]. Specifically, it is
desirable that the sub-queries be easier than the original query, and also that
they be balanced in terms of runtime — i.e., we wish to avoid the case where ¢,
is very easy and ¢ is very hard, as that makes poor use of parallel computing
resources. To create easier sub-problems, we propose to split on sign constraints
that occur in the earlier layers of the BNN, as that leads to efficient bound
propagation when combined with our symbolic bound tightening mechanism.
To create balanced sub-problems, we use a metric called polarity, which was
proposed in [54] for ReLUs and is extended here to support sign constraints.

Definition 1. Given a sign constraint f = sign(b), and the bounds | < b < u,

where 1 < 0, and u > 0, the polarity of the sign constraint is defined as p = 4t

u—l"

Intuitively, the closer the polarity is to 0, the more balanced the resulting
queries will be if we perform a case-split on this constraint. For example, if
¢ = ¢ AN—10 < b < 10 and we create ¢1 = ¢’ A—10 < b < 0, o = ¢’ A0 < b < 10,
then queries ¢1 and ¢ are roughly balanced. However, if initially —10 < b < 1,
we obtain ¢; = ¢’ A—10 < b < 0 and ¢ = ¢’ A0 < b < 1. In this case, ¢ might
prove significantly easier than ¢; because the smaller range of b in ¢ could lead
to very effective bound tightening. Consequently, we use a heuristic that picks
the sign constraint with the smallest polarity among the first & candidates (in
topological order), where k is a configurable parameter. In our experiments, we
empirically selected k = 5.

5 Implementation

We implemented our approach as an extension to Marabou [34], which is an open-
source, freely available SMT-based DNN verification framework [2]. Marabou
implements the Reluplex algorithm, but with multiple extensions and optimiza-
tions — e.g., support for additional activation functions, deduction methods, and
parallelization [54]. It has been used for a variety of verification tasks, such as
network simplification [19] and optimization [47], verification of video streaming
protocols [35], DNN modification [20], adversarial robustness evaluation [9,22,32]
verification of recurrent networks [28], and others. However, to date Marabou
could not support sign constraints, and thus, could not be used to verify BNNs.
Below we describe our main contributions to the code base. Our complete code
is available as an artifact accompanying this paper [1], and has also been merged
into the main Marabou repository [2].

Basic Support for Sign Constraints (SignConstraint.cpp). During ex-
ecution, Marabou maintains a set of piecewise-linear constraints that are part

214 G. Amir et al.

of the query being solved. To support various activation functions, these con-
straints are represented using classes that inherit from the abstract Piecewise-
LinearConstraint class. Here, we added a new sub-class, SignConstraint, that in-
herits from PiecewiseLinearConstraint. The methods of this class check whether
the piecewise-linear sign constraint is satisfied, and in case it is not — which
possible changes to the current assignment could fix the violation. This class’
methods also extend Marabou’s deduction mechanism for bound tightening.

Input Interfaces for Sign Constraints (MarabouNetworkTF.py).
Marabou supports various input interfaces, most notable of which is the Ten-
sorFlow interface, which automatically translates a DNN stored in TensorFlow
protobuf or savedModel formats into a Marabou query. As part of our exten-
sions, we enhanced this interface so that it can properly handle BNNs and sign
constraints. Additionally, users can create queries using Marabou’s native C++
interface, by instantiating the SignConstraint class discussed previously.

Network-Level Reasoner (NetworkLevelReasoner.cpp, Layer.cpp, LP-
Formulator.cpp). The Network-Level Reasoner (NLR) is the part of Marabou
that is aware of the topology of the neural network being verified, as opposed to
just the individual constraints that comprise it. We extended Marabou’s NLR,
to support sign constraints and implement the optimizations discussed in Sec-
tion 4. Specifically, one extension that we added allows this class to identify
consecutive weighted sum layers and merge them. Another extension creates a
linear over-approximation of the network, including the trapezoid-shaped over-
approximation of each sign constraint. As part of the symbolic bound propaga-
tion process, the NLR traverses the network, layer by layer, each time computing
the symbolic bound expressions for each neuron in the current layer.

Polarity-Based Splitting (DnCManager.cpp). We extended the methods
of this class, which is part of Marabou’s S&C mechanism, to compute the polarity
value of each sign constraint (see Definition 1), based on the current bounds.

6 Evaluation

All the benchmarks described in this section are included in our artifact, and
are publicly available online [1].

Strictly Binarized Networks. We began by training a strictly binarized net-
work over the MNIST digit recognition dataset.* This dataset includes 70,000
images of handwritten digits, each given as a 28 x 28 pixeled image, with nor-
malized brightness values ranging from 0 to 1. The network that we trained has
an input layer of size 784, followed by six binary blocks (four blocks of size 50,

4 http://yann.lecun.com/exdb/mnist/

http://yann.lecun.com/exdb/mnist/

An SMT-Based Approach for Verifying Binarized Neural Networks 215

two blocks of size 10), and a final output layer with 10 neurons. Note that in the
first block we omitted the sign layer in order to improve the network’s accuracy.’
The model was trained for 300 epochs using the Larq library [17] and the Adam
optimizer [36], achieving 90% accuracy.

After training, we used Larq’s ex- . . .
port mechanism to save the trained ’)
network in a TensorFlow format, and .
then used our newly added Marabou in- “

terface to load it. For our verification
queries, we first chose 500 samples from
the test set which were classified cor-
rectly by the network. Then, we used
these samples to formulate adversarial
robustness queries [33,48]: queries that ask Marabou to find a slightly perturbed
input which is misclassified by the network, i.e. is assigned a different label than
the original. We formulated 500 queries, constructed from 50 queries for each of
ten possible perturbation values 6 € {0.1,0.15,0.2,0.3,0.5,1,3,5,10,15} in L
norm, one query per input sample. An UNSAT answer from Marabou indicates
that no adversarial perturbation exists (for the specified ¢), whereas a SAT answer
includes, as the counterexample, an actual perturbation that leads to misclassifi-
cation. Such adversarial robustness queries are the most widespread verification
benchmarks in the literature (e.g., [16,25,33,52]). An example appears in Fig. 9:
the image on the left is the original, correctly classified as 1, and the image on
the right is the perturbed image discovered by Marabou, misclassified as 3.

Fig.9: An adversarial example for the
MNIST network.

Through our experiments we set out to evaluate our tool’s performance,
and also measured the contribution of each of the features that we introduced:
(i) weighted sum (ws) layer elimination; (ii) LP relaxation; (iii) symbolic bound
tightening (sbt); and (iv) polarity-based splitting. We thus defined five configu-
rations of the tool: the all category, in which all four features are enabled, and
four all-X configurations for X € {ws, Ip, sbt, polarity}, indicating that feature
X is turned off and the other features are enabled. All five configurations uti-
lized Marabou’s parallelization features, except for all-polarity — where instead
of polarity-based splitting we used Marabou’s default splitting strategy, which
splits the input domain in half in each step.

Fig. 10 depicts Marabou’s results using each of the five configurations. Each
experiment was run on an Intel Xeon E5-2637 v4 CPUs machine, running Ubuntu
16.04 and using eight cores, with a wall-clock timeout of 5,000 seconds. Most no-
tably, the results show the usefulness of polarity-based splitting when compared
to Marabou’s default splitting strategy: whereas the all-polarity configuration
only solved 218 instances, the all configuration solved 458. It also shows that
the weighted sum layer elimination feature significantly improves performance,
from 436 solved instances in all-ws to 458 solved instances in all, and with
significantly faster solving speed. With the remaining two features, namely LP

5 This is standard practice; see https://docs.larq.dev/larq/guides/
bnn-architecture/

https://docs.larq.dev/larq/guides/bnn-architecture/
https://docs.larq.dev/larq/guides/bnn-architecture/

216 G. Amir et al.

relaxations and symbolic bound tightening, the results are less clear: although
the all-Ip and all-sbt configurations both slightly outperform the all configura-
tion, indicating that these two features slowed down the solver, we observe that
for many instances they do lead to an improvement; see Fig. 11. Specifically, on
UNSAT instances, the all configuration was able to solve one more benchmark
than either all-Ip or all-sbt; and it strictly outperformed all-lp on 13% of the
instances, and all-sbt on 21% of the instances. Gaining better insights into the
causes for these differences is a work in progress.

IS
o
=]

300
all-sbt

all-Ip

n
o
S

all

¢4+ 4

all-ws

o
S

all-polarity

Number of Instances Solved

0 50,000 100,000
Accumulated Time (s)

Fig. 10: Running the five configurations of Marabou on the MNIST BNN.

all v. all-Ip all v. all-sbt
10000 10000
0 [,
B X 2X ,%
O/,’ [0}
1000 1000 e
< < result
3 3
g 100 g 100 O sat
; ; O unsat
© ©
10 ig % 10
4o o 7
110"~ 1,0
1 10 100 1000 1000(1 10 100 1000 10000
all-lp times (s) all-sbt times (s)

Fig. 11: Evaluating the LP relaxation and symbolic bound tightening features.

An SMT-Based Approach for Verifying Binarized Neural Networks 217

XNOR-Net. XNOR-Net [45] is
a BNN architecture for image
recognition networks. XNOR-
Nets consist of a series of binary

convolution blocks, each contain-
ing a sign layer, a convolution Fig-12: The XNOR-Net architecture of our

Max-Pool
Max-Pool

Weighted Sum

o = g
5 5 =
=) =)]
= = z,
o o

3 3 =
o O m

layer, and a max-pooling layer network.
(here, we regard convolution layers as a specific case of weighted sum layers).
We constructed such a network with two binary convolution blocks: the first
block has three layers, including a convolution layer with three filters, and the
second block has four layers, including a convolution layer with two filters. The
two binary convolution blocks are followed by a batch normalization layer and
a fully-connected weighted sum layer (10 neurons) for the network’s output, as
depicted in Fig. 12. Our network was trained on the Fashion-MNIST dataset,
which includes 70,000 images from ten different clothing categories [55], each
given as a 28 x 28 pixeled image. The model was trained for 30 epochs, and
achieved a modest accuracy of 70.97%.
For our verification queries, we chose
300 correctly classified samples from
the test set, and used them to for-
mulate adversarial robustness queries.
Each query was formulated using
one sample and a perturbation value
9 € {0.05,0.1,0.15,0.2,0.25,0.3} in Lo
norm. Fig. 13 depicts the adversarial
image that Marabou produced for one
of these queries. The image on the left is a correctly classified image of a shirt,
and the image on the right is the perturbed image, now misclassified as a coat.
Based on the results from the previous set of experiments, we used Marabou
with weighted sum layer elimination and polarity-based splitting turned on, but
with symbolic bound tightening and LP relaxation turned off. Each experiment
ran on an Intel Xeon E5-2637 v4 machine, using eight cores and a wall-clock
timeout of 7,200 seconds. The results are depicted in Table 1. The results demon-
strate that UNSAT queries tended to be solved significantly faster than SAT ones,
indicating that Marabou’s search procedure for these cases needs further opti-
mization. Overall, Marabou was able to solve 203 out of 300 queries. To the best
of our knowledge, this is the first effort to formally verify an XNOR-Net. We
note that these results demonstrate the usefulness of an SMT-based approach
for BNN verification, as it allows the verification of DNNs with multiple types
of activation functions, such as a combination of sign and max-pooling.

Fig. 13: An original image (left) and its
perturbed, misclassified image (right).

7 Related Work

DNNs have become pervasive in recent years, and the discovery of various faults
and errors has given rise to multiple approaches for verifying them. These in-

218 G. Amir et al.

Table 1: Marabou’s performance on the XNOR-Net queries.

SAT UNSAT

s # Solved Avg. Time (s) # Solved Avg. Time (s) # Timeouts
0.05 15 909.13 23 4.96 12
0.1 15 1,627.67 20 12.15 15
0.15 9 1,113.33 29 5 12
0.2 10 1,387.7 24 4.96 16
0.25 9 1,426 22 4.91 19
0.3 7 1,550.86 20 26.75 23
Total | 65 1,317.52 138 9.16 97

clude various SMT-based approaches (e.g., [25, 33, 34, 38]), approaches based
on LP and MILP solvers (e.g., [8,14,41,49]), approaches based on symbolic
interval propagation or abstract interpretation (e.g., [16,50,52,53]), abstraction-
refinement (e.g., [3,15]), and many others. Most of these lines of work have
focused on non-quantized DNNs. Verification of quantized DNNs is PSPACE-
hard [24], and requires different tools than the ones used for their non-quantized
counterparts [18]. Our technique extends an existing line of SMT-based verifiers
to support also the sign activation functions needed for verifying BNNs; and
these new activations can be combined with various other layers.

Work to date on the verification of BNNs has relied exclusively on reducing
the problem to Boolean satisfiability, and has thus been limited to the strictly bi-
narized case [11,29,43,44]. Our approach, in contrast, can be applied to binarized
neural networks that include activation functions beyond the sign function, as
we have demonstrated by verifying an XNOR-Net. Comparing the performance
of Marabou and the SAT-based approaches is left for future work.

8 Conclusion

BNNSs are a promising avenue for leveraging deep learning in devices with limited
resources. However, it is highly desirable to verify their correctness prior to
deployment. Here, we propose an SMT-based verification approach that enables
the verification of BNNs. This approach, which we have implemented as part
of the Marabou framework [2], seamlessly integrates with the other components
of the SMT solver in a modular way. Using Marabou, we have verified, for the
first time, a network that uses both binarized and non-binarized layers. In the
future, we plan to improve the scalability of our approach, by enhancing it with
stronger bound deduction capabilities, based on abstract interpretation [16].

Acknowledgements. We thank Nina Narodytska, Kyle Julian, Kai Jia, Leon
Overweel and the Plumerai research team for their contributions to this project.
The project was partially supported by the Israel Science Foundation (grant
number 683/18), the Binational Science Foundation (grant number 2017662),
the National Science Foundation (grant number 1814369), and the Center for
Interdisciplinary Data Science Research at The Hebrew University of Jerusalem.

An SMT-Based Approach for Verifying Binarized Neural Networks 219

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Artifact repository. https://github.com/guyam2/BNN_Verification_Artifact.
. Marabou repository. https://github.com/NeuralNetworkVerification/

Marabou.

. P. Ashok, V. Hashemi, J. Kretinsky, and S. Miihlberger. DeepAbstract: Neural

Network Abstraction for Accelerating Verification. In Proc. 18th Int. Symposium
on Automated Technology for Verification and Analysis (ATVA), 2020.

. P. Bacchus, R. Stewart, and E. Komendantskaya. Accuracy, Training Time and

Hardware Efficiency Trade-Offs for Quantized Neural Networks on FPGAs. In
Proc. 16th Int. Symposium on Applied Reconfigurable Computing (ARC), pages
121-135, 2020.

. C. Barrett and C. Tinelli. Satisfiability modulo theories. Springer, 2018.
. O. Bastani, Y. Ioannou, L. Lampropoulos, D. Vytiniotis, A. Nori, and A. Criminisi.

Measuring Neural Net Robustness with Constraints. In Proc. 30th Conf. on Neural
Information Processing Systems (NIPS), 2016.

. M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal,

L. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao, and K. Zieba.
End to End Learning for Self-Driving Cars, 2016. Technical Report. http:
//arxiv.org/abs/1604.07316.

. R. Bunel, I. Turkaslan, P. Torr, P. Kohli, and P. Mudigonda. A Unified View

of Piecewise Linear Neural Network Verification. In Proc. 32nd Conf. on Neural
Information Processing Systems (NeurIPS), pages 4795-4804, 2018.

. N. Carlini, G. Katz, C. Barrett, and D. Dill. Provably Minimally-Distorted Adver-

sarial Examples, 2017. Technical Report. https://arxiv.org/abs/1709.10207.
H. Chen, L. Zhuo, B. Zhang, X. Zheng, J. Liu, R. Ji, D. D., and G. Guo. Bina-
rized Neural Architecture Search for Efficient Object Recognition, 2020. Technical
Report. http://arxiv.org/abs/2009.04247.

C.-H. Cheng, G. Niihrenberg, C.-H. Huang, and H. Ruess. Verification of Binarized
Neural Networks via Inter-Neuron Factoring, 2017. Technical Report. http://
arxiv.org/abs/1710.03107.

D. Ciregan, U. Meier, and J. Schmidhuber. Multi-Column Deep Neural Networks
for Image Classification. In Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), pages 3642-3649, 2012.

G. Dantzig. Linear Programming and Ezxtensions. Princeton University Press,
1963.

R. Ehlers. Formal Verification of Piece-Wise Linear Feed-Forward Neural Net-
works. In Proc. 15th Int. Symp. on Automated Technology for Verification and
Analysis (ATVA), pages 269286, 2017.

Y. Elboher, J. Gottschlich, and G. Katz. An Abstraction-Based Framework for
Neural Network Verification. In Proc. 32nd Int. Conf. on Computer Aided Verifi-
cation (CAV), pages 43-65, 2020.

T. Gehr, M. Mirman, D. Drachsler-Cohen, E. Tsankov, S. Chaudhuri, and
M. Vechev. AI2: Safety and Robustness Certification of Neural Networks with
Abstract Interpretation. In Proc. 39th IEEE Symposium on Security and Privacy
(SEP), 2018.

L. Geiger and P. Team. Larq: An Open-Source Library for Training Binarized
Neural Networks. Journal of Open Source Software, 5(45):1746, 2020.

M. Giacobbe, T. Henzinger, and M. Lechner. How Many Bits Does it Take to
Quantize Your Neural Network? In Proc. 26th Int. Conf. on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS), pages 79-97, 2020.

https://github.com/guyam2/BNN_Verification_Artifact
https://github.com/NeuralNetworkVerification/Marabou
https://github.com/NeuralNetworkVerification/Marabou
http://arxiv.org/abs/1604.07316
http://arxiv.org/abs/1604.07316
https://arxiv.org/abs/1709.10207
http://arxiv.org/abs/2009.04247
http://arxiv.org/abs/1710.03107
http://arxiv.org/abs/1710.03107

220

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

G. Amir et al.

S. Gokulanathan, A. Feldsher, A. Malca, C. Barrett, and G. Katz. Simplifying
Neural Networks using Formal Verification. In Proc. 12th NASA Formal Methods
Symposium (NFM), pages 85-93, 2020.

B. Goldberger, Y. Adi, J. Keshet, and G. Katz. Minimal Modifications of Deep
Neural Networks using Verification. In Proc. 23rd Int. Conf. on Logic for Program-
ming, Artificial Intelligence and Reasoning (LPAR), pages 260-278, 2020.

I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio. Deep learning, volume 1.
MIT press Cambridge, 2016.

D. Gopinath, G. Katz, C. Pasareanu, and C. Barrett. DeepSafe: A Data-driven
Approach for Assessing Robustness of Neural Networks. In Proc. 16th. Int. Sym-
posium on on Automated Technology for Verification and Analysis (ATVA), pages
3-19, 2018.

S. Han, H. Mao, and W. Dally. Deep Compression: Compressing Deep Neural
Networks with Pruning, Trained Quantization and Huffman Coding. In Proc. 4th
Int. Conf. on Learning Representations (ICLR), 2016.

T. Henzinger, M. Lechner, and D. Zikelic. Scalable Verification of Quantized Neural
Networks (Technical Report), 2020. Technical Report. https://arxiv.org/abs/
2012.08185.

X. Huang, M. Kwiatkowska, S. Wang, and M. Wu. Safety Verification of Deep
Neural Networks. In Proc. 29th Int. Conf. on Computer Aided Verification (CAV),
pages 3-29, 2017.

I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio. Binarized
Neural Networks. In Proc. 30th Conf. on Neural Information Processing Systems
(NIPS), pages 4107-4115, 2016.

I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio. Quantized
Neural Networks: Training Neural Networks with Low Precision Weights and Ac-
tivations. The Journal of Machine Learning Research, 18(1):6869-6898, 2017.

Y. Jacoby, C. Barrett, and G. Katz. Verifying Recurrent Neural Networks using
Invariant Inference. In Proc. 18th Int. Symposium on Automated Technology for
Verification and Analysis (ATVA), 2020.

K. Jia and M. Rinard. Efficient Exact Verification of Binarized Neural Networks,
2020. Technical Report. http://arxiv.org/abs/2005.03597.

K. Julian, J. Lopez, J. Brush, M. Owen, and M. Kochenderfer. Policy Compression
for Aircraft Collision Avoidance Systems. In Proc. 35th Digital Avionics Systems
Conf. (DASC), pages 1-10, 2016.

G. Katz, C. Barrett, D. Dill, K. Julian, and M. Kochenderfer. Reluplex: An Efficient
SMT Solver for Verifying Deep Neural Networks. In Proc. 29th Int. Conf. on
Computer Aided Verification (CAV), pages 97117, 2017.

G. Katz, C. Barrett, D. Dill, K. Julian, and M. Kochenderfer. Towards Proving
the Adversarial Robustness of Deep Neural Networks. In Proc. 1st Workshop on
Formal Verification of Autonomous Vehicles (FVAV), pages 19-26, 2017.

G. Katz, C. Barrett, D. Dill, K. Julian, and M. Kochenderfer. Reluplex: a Calculus
for Reasoning about Deep Neural Networks, 2021. Submitted, preprint avaialble
upon request.

G. Katz, D. Huang, D. Ibeling, K. Julian, C. Lazarus, R. Lim, P. Shah, S. Thakoor,
H. Wu, A. Zelji¢, D. Dill, M. Kochenderfer, and C. Barrett. The Marabou Frame-
work for Verification and Analysis of Deep Neural Networks. In Proc. 31st Int.
Conf. on Computer Aided Verification (CAV), pages 443-452, 2019.

Y. Kazak, C. Barrett, G. Katz, and M. Schapira. Verifying Deep-RL-Driven Sys-
tems. In Proc. 1st ACM SIGCOMM Workshop on Network Meets AI & ML (Ne-
tAI), pages 83-89, 2019.

https://arxiv.org/abs/2012.08185
https://arxiv.org/abs/2012.08185
http://arxiv.org/abs/2005.03597

36

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

An SMT-Based Approach for Verifying Binarized Neural Networks 221

. D. Kingma and J. Ba. Adam: a Method for Stochastic Optimization, 2014. Tech-
nical Report. http://arxiv.org/abs/1412.6980.

A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet Classification with Deep
Convolutional Neural Networks. In Proc. 26th Conf. on Neural Information Pro-
cessing Systems (NIPS), pages 1097-1105, 2012.

L. Kuper, G. Katz, J. Gottschlich, K. Julian, C. Barrett, and M. Kochenderfer.
Toward Scalable Verification for Safety-Critical Deep Networks, 2018. Technical
Report. https://arxiv.org/abs/1801.05950.

S. Lai, L. Xu, K. Liu, and J. Zhao. Recurrent Convolutional Neural Networks for
Text Classification. In Proc. 29th AAAI Conf. on Artificial Intelligence, 2015.

D. Lin, S. Talathi, and S. Annapureddy. Fixed Point Quantization of Deep Convo-
lutional Networks. In Proc. 83rd Int. Conf. on Machine Learning (ICML), pages
2849-2858, 2016.

A. Lomuscio and L. Maganti. An Approach to Reachability Analysis for Feed-
Forward ReLU Neural Networks, 2017. Technical Report. http://arxiv.org/
abs/1706.07351.

P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz. Pruning Convolutional
Neural Networks for Resource Efficient Inference, 2016. Technical Report. http:
//arxiv.org/abs/1611.06440.

N. Narodytska, S. Kasiviswanathan, L. Ryzhyk, M. Sagiv, and T. Walsh. Verifying
Properties of Binarized Deep Neural Networks, 2017. Technical Report. http:
//arxiv.org/abs/1709.06662.

N. Narodytska, H. Zhang, A. Gupta, and T. Walsh. In Search for a SAT-friendly
Binarized Neural Network Architecture. In Proc. 7th Int. Conf. on Learning Rep-
resentations (ICLR), 2019.

M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. XNOR-Net: Imagenet
Classification using Binary Convolutional Neural Networks. In Proc. 14th European
Conf. on Computer Vision (ECCV), pages 525-542, 2016.

K. Simonyan and A. Zisserman. Very Deep Convolutional Networks for Large-Scale
Image Recognition. In Proc. 3rd Int. Conf. on Learning Representations (ICLR),
2015.

C. Strong, H. Wu, A. Zelji¢, K. Julian, G. Katz, C. Barrett, and M. Kochenderfer.
Global Optimization of Objective Functions Represented by ReLLU networks, 2020.
Technical Report. http://arxiv.org/abs/2010.03258.

C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and
R. Fergus. Intriguing Properties of Neural Networks, 2013. Technical Report.
http://arxiv.org/abs/1312.6199.

V. Tjeng, K. Xiao, and R. Tedrake. Evaluating Robustness of Neural Networks with
Mixed Integer Programming. In Proc. 7th Int. Conf. on Learning Representations
(ICLR), 2019.

H. Tran, S. Bak, and T. Johnson. Verification of Deep Convolutional Neural Net-
works Using ImageStars. In Proc. 32nd Int. Conf. on Computer Aided Verification
(CAV), pages 18-42, 2020.

S. Wang, K. Pei, J. Whitehouse, J. Yang, and S. Jana. Efficient Formal Safety
Analysis of Neural Networks, 2018. Technical Report. https://arxiv.org/abs/
1809.08098.

S. Wang, K. Pei, J. Whitehouse, J. Yang, and S. Jana. Formal Security Analysis
of Neural Networks using Symbolic Intervals. In Proc. 27th USENIX Security
Symposium, pages 1599-1614, 2018.

http://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1801.05950
http://arxiv.org/abs/1706.07351
http://arxiv.org/abs/1706.07351
http://arxiv.org/abs/1611.06440
http://arxiv.org/abs/1611.06440
http://arxiv.org/abs/1709.06662
http://arxiv.org/abs/1709.06662
http://arxiv.org/abs/2010.03258
http://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1809.08098
https://arxiv.org/abs/1809.08098

222 G. Amir et al.

53. T.-W. Weng, H. Zhang, H. Chen, Z. Song, C.-J. Hsieh, D. Boning, I. Dhillon, and
L. Daniel. Towards Fast Computation of Certified Robustness for ReLU Networks,
2018. Technical Report. http://arxiv.org/abs/1804.09699.

54. H. Wu, A. Ozdemir, A. Zelji¢, A. Irfan, K. Julian, D. Gopinath, S. Fouladi, G. Katz,
C. Pasareanu, and C. Barrett. Parallelization Techniques for Verifying Neural
Networks. In Proc. 20th Int. Conf. on Formal Methods in Computer-Aided Design
(FMCAD), pages 128-137, 2020.

55. H. Xiao, K. Rasul, and R. Vollgraf. Fashion-Mnist: a Novel Image Dataset for
Benchmarking Machine Learning Algorithms, 2017. Technical Report. http://
arxiv.org/abs/1708.07747.

56. J. Yang, X. Shen, J. Xing, X. Tian, H. Li, B. Deng, J. Huang, and X.-S. Hua.
Quantization Networks. In Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), pages 7308-7316, 2019.

57. Y. Zhou, S.-M. Moosavi-Dezfooli, N.-M. Cheung, and P. Frossard. Adaptive Quan-
tization for Deep Neural Network, 2017. Technical Report. http://arxiv.org/
abs/1712.01048.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (https://creativecommons.org/licenses/by/
4.0/), which permits use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes
were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

http://arxiv.org/abs/1804.09699
http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1712.01048
http://arxiv.org/abs/1712.01048
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

	ETAPS Foreword
	Preface
	Organization
	Contents – Part II
	Contents – Part I
	Verification Techniques (not SMT)
	Directed Reachability for Infinite-State Systems
	1 Introduction
	2 Preliminaries
	3 Directed Search Algorithms
	4 Directed Reachability
	4.1 Distance Under-approximations
	4.2 From Petri Net Relaxations to Distance Under-approximations
	4.3 Directed Reachability Based on Distance Under-approximations

	5 Experimental Results
	References

	Bridging Arrays and ADTs in Recursive Proofs
	1 Introduction
	2 Preliminaries
	3 Synthesis of Recursive Relational Invariants
	3.1 Overview
	3.2 Classifying Operations

	4 Recipe 1: Linear Scan
	4.1 Motivating Example
	4.2 Algorithm Description

	5 Recipe 2: Noop-based synthesis
	5.1 Motivating Example
	5.2 Algorithm details

	6 Evaluation
	7 Related Work
	8 Conclusion and Outlook
	References

	A Two-Phase Approach forConditional Floating-Point Verification
	1 Introduction
	2 A Two-Phase Approach
	2.1 First Phase: Whole Program Analysis
	2.2 Second Phase: Numerical Kernel Analysis
	2.3 Soundness Guarantees

	3 First Phase: Whole Program Analysis
	4 Second Phase: Static Analysis with Daisy and CBMC
	5 State of the Art on Real-World Programs
	6 Evaluation of our Two-Phase Approach
	7 Related Work
	8 Conclusion
	Acknowledgements
	References

	Symbolic Coloured SCC Decomposition
	1 Introduction
	1.1 Related Work

	2 Problem Definition
	2.1 Graphs and Strongly Connected Components
	2.2 Coloured SCC Decomposition Problem

	3 Algorithm
	3.1 Symbolic Computation Model
	3.2 Forward-backward Algorithm
	3.3 Lock-step Algorithm
	3.4 Coloured Lock-step Algorithm
	3.5 Correctness and Complexity of the Coloured Lock-step Algorithm

	4 Experimental Evaluation
	4.1 Implementation
	4.2 Experiments

	5 Conclusions
	References

	Case Studies
	Local Search with a SAT Oracle for Combinatorial Optimization
	1 Introduction
	2 Background
	2.1 Constraint Optimization Program (COP)
	2.2 The Cell Placement Problem
	2.2.1 Constraint Optimization Program for Cell Placement

	2.3 Solving COP with SAT
	2.3.1 Bit-vector Solving and SAT.
	2.3.2 Extending Bit-vector Solving to Optimization.

	2.4 Local Search Algorithms
	2.4.1 Basic Local Search Strategy.
	2.4.2 Neighbourhood Functions.
	2.4.3 Advanced Versions of Local Search

	3 Local Search with SAT Oracle (LSSO)
	4 LSSO Algorithms for the Cell Placement Problem
	4.1 Neighbourhood Generators
	4.1.1 Neighbourhood Generator
	4.1.2 N₂: a Family of Neighbourhood Generators
	4.1.3 Hill-climbing Neighbourhood Generator N₃.

	4.2 LSSO-based Algorithms for Placement

	5 Experimental Results
	6 Conclusion
	References

	Analyzing Infrastructure as Code to Prevent Intra-update Sniping Vulnerabilities
	1 Introduction
	1.1 Proof of Concept
	1.2 Detecting Intra-update Sniping Vulnerabilities

	2 A Model for Infrastructure as Code
	2.1 CloudFormation Infrastructures
	2.2 Model of a CloudFormation Infrastructure
	2.3 Execution Semantics
	2.4 Upgrade Semantics and Security Policy

	3 Architectural Design of the Hayha Tool
	3.1 Upgrade States
	3.2 Splitting Dependencies
	3.3 Finding Vulnerabilities

	4 Experiments
	5 Related Work
	6 Conclusion
	Acknowledgement
	References

	Proof Generation/Validation
	Certifying Proofs in the First-Order Theory of Rewriting
	1 Introduction
	2 Preliminaries
	3 Formulas
	4 Certificates
	5 FORTify
	6 FORT-h
	7 Experiments
	8 Conclusion
	References

	Syntax-Guided Quantifier Instantiation
	1 Introduction
	2 Background
	3 SyGuS Quantifier Instantiation (SyQI)
	3.1 Grammar Construction
	3.2 Implementation Details

	4 Experiments
	5 Conclusion
	References

	Making Theory Reasoning Simpler
	1 Introduction
	2 Preliminaries and Related Work
	3 Gaussian variable elimination
	4 Arithmetic subterm generalization
	5 Evaluation
	6 Cancellation
	7 Experimental evaluation
	8 Conclusion
	References

	Deductive Stability Proofs for Ordinary Differential Equations
	1 Introduction
	2 Background: Di erential Dynamic Logic
	3 Asymptotic Stability of an Equilibrium Point
	3.1 Mathematical Preliminaries
	3.2 Formal Specification
	3.3 Lyapunov Functions
	3.4 Asymptotic Stability Variations

	4 General Stability
	4.1 General Stability and General Attractivity
	4.2 Specialization

	5 Stability in KeYmaera X
	6 Related Work
	7 Conclusion
	References

	Tool Papers
	An SMT-Based Approach for Verifying Binarized Neural Networks
	1 Introduction
	2 Background
	3 Extending Reluplex to Support Sign Constraints
	4 Optimizations
	5 Implementation
	6 Evaluation
	7 Related Work
	8 Conclusion
	Acknowledgements.
	References

	cake_lpr: Verified Propagation Redundancy Checking in CakeML
	1 Introduction
	2 Background
	2.1 HOL4 and CakeML
	2.2 SAT Problems and Clausal Proofs

	3 Linear Propagation Redundancy
	4 CakeML Proof Checking
	4.1 Verification Strategy
	4.2 Verified Optimizations

	5 Benchmarks
	5.1 SaDiCaL PR Benchmarks
	5.2 SAT Race 2019 Benchmarks
	5.3 Mutilated Chessboard RAT Microbenchmarks

	6 Related Work
	7 Conclusion
	Acknowledgments.
	A Correctness Theorem for cake_lpr
	References

	Deductive Verification of Floating-Point Java Programs in KeY
	1 Introduction
	2 Background
	2.1 Introduction to KeY
	2.2 Floating-Point Arithmetic in Java

	3 Floating-Point Support in KeY
	3.1 Arithmetics
	3.2 Transcendental Functions

	4 Evaluation
	4.1 Benchmark Programs
	4.2 Proof Obligation Generation
	4.3 Evaluation of SMT Floating-Point Support
	4.4 Evaluation of Support for Transcendental Functions in KeY
	4.5 Discussion and insights

	5 Related Work
	6 Conclusion
	Acknowledgements
	References

	Helmholtz: A Verifier for Tezos Smart Contracts Based on Refinement Types
	1 Introduction
	2 Overview of Helmholtz and Michelson
	2.1 Helmholtz
	2.2 An Example Contract in Michelson
	2.3 Specification

	3 Refinement Type System for Mini-Michelson
	3.1 Operational Semantics
	3.2 Refinement Type System

	4 Tool Implementation
	4.1 Annotations
	4.2 Case Study: Contract with Signature Verification
	4.3 Experiments

	5 Related Work
	6 Conclusion
	References

	SyReNN: A Tool for Analyzing Deep Neural Networks
	1 Introduction
	2 Preliminaries
	3 A Symbolic Representation of DNNs
	4 Computing the Symbolic Representation
	4.1 Algorithm for Extend
	4.2 Representing Polytopes

	5 SyReNN tool
	6 Applications of SyReNN
	6.1 Integrated Gradients
	6.2 Visualization of DNN Decision Boundaries
	6.3 Patching of DNNs

	7 Related Work
	8 Conclusion and Future Work
	References

	MachSMT: A Machine Learning-based Algorithm Selector for SMT Solvers
	1 Introduction
	2 Background
	2.1 A Brief Overview of Algorithm Selection
	2.2 Supervised Learning, Adaptive Boosting, Curse of Dimensionality, and K-Fold Cross-Validation
	2.3 Unsupervised Learning and Principal Component Analysis

	3 An overview of MachSMT
	3.1 Features, Preprocessing, and Learning
	3.2 Variants of MachSMT
	3.3 Using MachSMT
	3.4 User-defined Features

	4 Experimental Evaluation of MachSMT on SMT-COMP 2019 and 2020 Data
	4.1 Experimental Setup and Methodology
	4.2 Experimental Results

	5 Analysis and Discussion of Results
	6 Related Work
	6.1 Key di erences between SATZilla and MachSMT
	6.2 Algorithm Selection for Logic Solvers and Their Applications

	7 Conclusions and Future Work
	References

	dtControl 2.0: Explainable Strategy Representation via Decision Tree Learning Steered by Experts
	1 Introduction
	2 Decision tree learning for controller representation
	3 Tool
	4 Predicate domain
	4.1 Categorical predicates
	4.2 Algebraic predicates

	5 Predicate selection
	6 New insights about determinization
	7 Experiments
	8 Conclusion
	References

	Tool Demo Papers
	HLola: a Very Functional Tool for Extensible Stream Runtime Verification
	1 Introduction
	2 The HLola Tool
	3 Example Specifications
	References

	AMulet 2.0 for Verifying Multiplier Circuits
	1 Introduction
	2 Circuit Verification using Computer Algebra
	3 Usage
	4 AMulet 2.0
	5 Evaluation
	6 Conclusion
	References

	RTLola on Board: Testing Real Driving Emissions on your Phone
	1 Introduction
	2 RDE Monitoring on Android
	3 User Experience
	4 Conclusion
	References

	Replicating Restart with ProlongedRetrials: An Experimental Report
	1 Introduction
	2 Restart with Prolonged Retrials
	3 Experiments
	4 Conclusion
	References

	A Web Interface for Petri Nets with Transits and Petri Games
	1 Introduction
	2 Web Interface for Petri Nets with Transits
	3 Web Interface for Petri Games
	4 Implementation Details
	5 Conclusion
	References

	Momba: JANI Meets Python
	1 Introduction
	2 Scenario-Based Model Construction
	3 Validation by Simulation
	4 Harvesting the Benefits
	5 Conclusion
	References

	SV-Comp Tool Competition Papers
	Software Verification: 10th Comparative Evaluation (SV-COMP 2021)
	1 Introduction
	2 Organization, Definitions, Formats, and Rules
	3 Reproducibility
	4 Results and Discussion
	5 Conclusion
	References

	CPALockator: Thread-Modular Analysis with Projections
	1 Verification Approach
	2 Software Architecture
	3 Strengths and Weaknesses
	4 Tool Setup and Configuration
	5 Project and Contributors
	References

	Dartagnan: Leveraging Compiler Optimizations and the Price of Precision (Competition Contribution)
	1 Overview
	2 Leveraging Compiler Optimizations
	3 The Price of Precision
	4 Evaluation
	Acknowledgement:
	References

	Gazer-Theta: LLVM-based Verifier Portfolio with BMC/CEGAR (Competition Contribution)
	1 Verification Approach and Software Architecture
	2 Strengths and Weaknesses
	3 Tool Setup and Configuration
	4 Software Project
	References

	Goblint: Thread-Modular Abstract Interpretation Using Side-Effecting Constraints
	1 Verification Approach
	2 Software Architecture
	3 Strengths and Weaknesses
	4 Tool Setup and Configuration
	5 Software Project and Contributors
	References

	Towards String Support in JayHorn (Competition Contribution)
	1 The JayHorn Approach and Architecture
	2 Encoding of String Operations
	2.1 The CompareTo Operation
	2.2 Integer to String conversion
	2.3 StartsWith and EndsWith
	2.4 CharAt

	3 Performance of the String Encoding
	4 Tool Setup
	5 Software Project and Contributors
	References

	JDart: Portfolio Solving, Breadth-First Search and SMT-Lib Strings (Competition Contribution)
	1 Overview
	2 Tool Improvements for SV-COMP 2021
	3 Strengths and Weaknesses
	4 Tool Setup
	5 Software Project
	References

	Symbiotic 8: Beyond Symbolic Execution
	1 Verification Approach
	2 Software Architecture
	3 Strengths and Weaknesses
	4 Tool Setup and Project Contributors
	5 Software Project and Contributors
	References

	VeriAbs: A Tool for Scalable Verification by Abstraction (Competition Contribution)
	1 Verification Approach
	1.1 Tool Enhancements

	2 Software Architecture
	3 Strengths and Weaknesses
	4 Tool Setup and Configuration
	5 Software Project and Contributors
	References

	Author Index

