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Abstract—Consider the following communication scenario. An
encoder observes a stochastic process and causally decides when
and what to transmit about it, under a constraint on the expected
number of bits transmitted per second. A decoder uses the
received codewords to causally estimate the process in real time.
The encoder and the decoder are synchronized in time. For a class
of continuous Markov processes satisfying regularity conditions,
we find the optimal encoding and decoding policies that minimize
the end-to-end estimation mean-square error under the rate
constraint. We show that the optimal encoding policy transmits
a 1-bit codeword once the process innovation passes one of two
thresholds. The optimal decoder noiselessly recovers the last
sample from the 1-bit codewords and codeword-generating time
stamps, and uses it to decide the running estimate of the current
process, until the next codeword arrives. In particular, we show
the optimal causal code for the Ornstein-Uhlenbeck process and
calculate its distortion-rate function. Furthermore, we show that
the optimal causal code also minimizes the mean-square cost of a
continuous-time control system driven by a continuous Markov
process and controlled by an additive control signal.

Index Terms—Causal lossy source coding, sequential estima-
tion, event-triggered sampling, zero-delay coding, rate-distortion
theory, control.

I. INTRODUCTION
A. System model and problem setup

Consider the system in Fig. 1. A source outputs a real-
valued continuous-time stochastic process {X;}7_, with state
space (R, Br), where Bg is the Borel o-algebra on R.
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Fig. 1. System Model. Sampling time 7; and codeword U; are chosen by the
encoder’s sampling and compressing policies, respectively.

An encoder tracks the input process {X;}/_, and causally
decides to transmit codewords about it at a sequence of
stopping times

0<n < <n<T (D

that are decided by a causal sampling policy. Thus, the total
number of time stamps N can be random. The time horizon
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T can either be finite or infinite. At time 7;, the encoder
generates a codeword U; according to a causal compressing
policy, based on the process stopped at 7;, {X; };-,. Then, the
codeword U; is passed to the decoder without delay through
a noiseless channel. At time t, t € [r;,7;y1), the decoder
estimates the input process X, yielding X, based on all the
received codewords and the codeword-generating time stamps,
ie, (Uj,7;), j = 1,2,...,i. Note that the encoder and the
decoder can leverage the timing information for free due to
the clock synchronization and the zero-delay channel.

The communication between the encoder and the decoder
is subject to a constraint on the long-term average rate,
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where ¢: Z, — Z, denotes the length of its argument in bits,
l(x) = |logy(z)] + 1 for = > 0, £(0) = 1. The distortion is
measured by the long-term average mean-square error (MSE),
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We aim to find the encoding and decoding policies that achieve
the optimal tradeoff between the communication rate (2) and
the MSE (3).

B. The class of processes

Let {F;}L, be the filtration generated by {X;}7 .
Throughout, we impose the following assumptions on the
source process.

(i) (Strong Markov property) {X;}_, satisfies the strong
Markov property: For all almost surely finite stopping
times 7 € [0,7] and all ¢t € [0,T — 7], X¢yr is
conditionally independent of F, given X.

(ii) (Continuous paths) {X;}I_, has continuous paths: X, is
almost surely continuous in t.
(iii) (Mean-square residual error properties) For all almost

surely finite stopping times 7 € [0,7] and all ¢ € [r,T],

the mean-square residual error X; = X; — E[X| X, 7]
satisfies:



(iii-a) X, is independent of F, and )~(~t has the Markov
property, i.e., for all r € [7,#], X; is conditionally

igdependent of F,. given X,.
(iii-b) X can be expressed as

Xi = q1(8) X5 + Re(s,7), 4)

where s € [7,t], ¢:(s) is a deterministic function of
(t,s), and R:(s,7) is a random process with continuous
paths, i.e., R:(s,7) is almost surely continuous in t.
Furthermore, the random variable R;(s,7) has an even
and quasi-concave pdf, and ¢;(t) = 1, R:(t,7) = 0.

We assume that the initial state Xy = 0 at time 75 = 0
is known both at the encoder and the decoder. For example,
any stochastic process of the form X; = g1 (t)Wy, ) + g3(t)
satisfies (i)-(iii), where {W,};>0 denotes the Wiener process,
g1, 92, g3 are continuous deterministic functions of the time
t, and g9 is positive and non-decreasing in ¢. The param-
eters in (4) for this example process are q;(s) = 211—8
and Ri(s,7) = g1(t)Wy,(t)—g.(s)- The Wiener process, the
Ornstein-Uhlenbeck (OU) process, and the continuous Lévy
processes are special cases of this form. These processes
are widely used in financial mathematics and physics. There
are also other stochastic processes satisfying (i)—(iii), e.g.,
Xy = Wige, + coWy, where c¢1,co € R, which is expressed
by (4) with ¢;(s) = 1, R(s,7) = (1 + ¢1)W;—s.

C. Context

In wireless sensor networks and network control systems of
the Internet of Things, nodes are spatially dispersed, commu-
nication between nodes is a limited resource, and delays are
undesirable. We study the fundamental limits of the commu-
nication scenario in which the transmitting node (the encoder)
observes a stochastic process, and wants to communicate it in
real-time to the receiving node (the decoder).

Related work includes [1]-[11], where it is assumed that
the encoder transmits real-valued samples of the input process
and that the communication is subject to a sampling frequency
constraint or a transmission cost. The causal sampling and
estimation policies that achieve the optimal tradeoff between
the sampling frequency and the distortion have been studied
for the following discrete-time processes: the i.i.d process [1];
the Gauss-Markov process [2]; the partially observed Gauss-
Markov process [3]; and, the first-order autoregressive Markov
process X;11 = aX; 4+ V; driven by an ii.d. process {V;}
with unimodal and even distribution [4][5]. The first-order au-
toregressive Markov process considered in [4][5] represents a
discrete-time counterpart of the continuous-time process in (4)
with q;(s) = a’~*, Ry(s,7) = X; — a’~* X,. Chakravorty and
Mahajan [4] showed that a threshold sampling policy with
two constant thresholds and an innovation-based filter jointly
minimize a discounted cost function consisting of the MSE
and a transmission cost in the infinite time horizon. Molin and
Hirche [5] proposed an iterative algorithm to find the sampling
policy that achieves the minimum of a cost function consisting
of a linear combination of the MSE and the transmission
cost in the finite time horizon, and showed that the algorithm
converges to a two-threshold policy.

The optimal sampling policies for some continuous-time
processes have also been studied: first-order stochastic sys-
tems with a Wiener process disturbance [7]; the finite time-
horizon Wiener and OU processes [8]; the infinite time-horizon
multidimensional Wiener process [9]; the infinite-time horizon
Wiener process [10]; and the OU processes [11] with channel
delay. Astrdm and Bernhardsson [7] compared uniform and
symmetric threshold sampling policies in first-order stochastic
systems with a Wiener process disturbance. They showed
that the symmetric threshold sampling policy gives a lower
distortion than the uniform sampling under the same average
sampling frequency. The optimal causal sampling policies
for the Wiener and the OU processes determined in [8]-
[11] are threshold sampling policies, whose thresholds are
obtained by solving optimal stopping time problems via Snell’s
envelope. The proofs in [8]-[11] rely on a conjecture about
the form of the MMSE decoding policy, implying that the
causal sampling policies in [8]-[11] are optimal with respect
to the conjectured decoding policy, rather than the optimal
decoding policy. Namely, Rabi et al. [8] conjectured that the
MMSE decoding policy under the optimal sampling policy
is equal to the MMSE decoding policy under deterministic
(process-independent) sampling policies without a proof. Nar
and Basar [9] arrived at the MMSE decoding policy for the
Wiener process by referring to the results in [6], where the
stochastic processes considered in [6] are in discrete-time and
the increments of the discrete-time process are assumed to
have finite support. Yet, the Wiener process is a continuous-
time process with Gaussian increments having infinite support.
Sun et al. [10] and Ornee and Sun [11] assumed that the
decoding policy ignores the implied knowledge when no
samples are received at the decoder, neglecting the possible
influence of the sampling policy on the decoding policy.
Nonparametric estimation of Lévy processes from uniform
non-causal samples has been studied in [12]-[14].

Although the works [1]-[14] did not consider quantization
effects, in digital communication systems, real-valued numbers
are quantized into bits before a transmission. Quantized event-
triggered control schemes have been studied for the following
systems: discrete-time linear systems with noise [15] and
without noise [16]; continuous-time linear time-invariant (LTT)
systems without noise [17][18] and with bounded noise [19]-
[21]; partially-observed continuous-time LTT systems without
noise [22][23] and with bounded noise [24]. The quantized
event-triggered control schemes in [15]-[24] are designed
to stabilize the systems. The optimality of the proposed
schemes was not considered in [15]-[24]. In our previous
work [25], we introduced an information-theoretic framework
for studying jointly optimal sampling and quantization policies
by considering a long-term average bitrate constraint. We
showed that the optimal event-triggered sampling policy for
the Wiener process remains a two-threshold policy even under
a bitrate constraint, while the optimal deterministic (process-
independent) sampling policy is uniform.

D. Contribution

In this paper, we leverage the information-theoretic frame-
work of our prior work [25], introduced in the context of the



Wiener process, to study the jointly optimal sampling and
quantization policies for the wider class of continuous-time
processes introduced in Section I-B. Unlike [25], where we
rely on previous results [9] on the optimal sampling policy
for the Wiener process to obtain the optimal causal code, in
this paper, we derive the form of the optimal sampling policy
from scratch. We prove that the optimal sampling policy is a
two-threshold policy whether or not quantization is taken into
account. We show that the optimal causal compressor is a
sign-of-innovation compressor that generates 1-bit codewords
representing the sign of the process innovation since the last
sample. This surprisingly simple structure is a consequence
of both the real-time distortion constraint (3), which penalizes
coding delays, and the symmetry of the innovation distribu-
tion (iii), which ensures the optimality of the two-threshold
sampling policy. Compared to the previous work on sampling
of continuous-time processes [8]-[11], our results apply to
a wider class of processes, namely, the processes satisfying
(1)—(ii) in Section I-B. Furthermore, we confirm the validity
of the conjecture on the MMSE decoding policy in [8]-
[9]. To do so, we use a set of tools that differs from that
in [8]-[9]: where [8]-[9] use Snell’s envelope to find the
optimal sampling policy under the conjecture on the form
of the MMSE decoding policy, we apply majorization theory
and real induction to find the jointly optimal sampling and
decoding policies. We show that the optimal causal code for
the Ornstein-Uhlenbeck process generates a 1-bit codeword
once the process innovation crosses one of the two thresholds,
and calculate its distortion-rate function. Next, we show that
the SOI code remains optimal in a rate-constrained control
scenario with a stochastic plant driven by a process satisfying
assumptions (i)—(iii) in Section I-B. The SOI code minimizes
mean-square cost between the desirable state 0 and the state
of the stochastic plant. In contrast to the event-triggered
control schemes in [7] and [15]-[24], we introduce a bitrate
constraint to the control problems; we consider a wider class
of disturbance signals beyond the Wiener process; we show
the optimality of the SOI code in minimizing the state MSE.

A part of this work was presented at the 2020 IEEE
International Symposium on Information Theory [30]; the
conference version does not contain Section IV or any proofs.

E. Paper organization

In Section II, we formulate a causal frequency-constrained
sampling problem and show the form of the optimal causal
sampling policy. In Section III, we formally introduce the
causal rate-constrained sampling problem and show the opti-
mal causal code. In Section IV, we prove that the causal code
introduced in Section III remains optimal in a rate-constrained
control system.

F. Notation

We denote by {X;}7__ the portion of the stochastic process
within the time interval [s,r], and denote by {X;};., the
portion of the stochastic process within the time interval (s, r].
For a possibly infinite sequence = = {1, zs,...}, we write
2 = {x1,22,...,7;} to denote the vector of its first i

elements. For a continuous random variable X, we denote
its pdf by fx. We denote by Supp(fx) = {x: fx(z) > 0}
the support of fx. We use o () to denote the o-algebra of its
argument. We use X < Y to represent a substitution of X by
Y.

II. CAUSAL FREQUENCY-CONSTRAINED SAMPLING

Before we show the optimal causal code in Section III, we
formulate the causal frequency-constrained sampling problem
and find the optimal tradeoff between the sampling frequency
and the MSE. In Theorem 1 in Section II-B below, we
find the form of the optimal sampling policy. We will show
in Theorem 3 in Section III-B that when coupled with an
appropriate compressing policy, the optimal causal sampling
policy in Theorem 1 attains the optimal tradeoff between the
communication rate and the MSE.

A. Causal frequency-constrained code

Allowing the encoder to transmit real-valued samples U; =
X, instead of the Z.-valued codewords U;, and replacing
the bitrate constraint (2) by the average sampling frequency
constraint

(samples per sec), (T' < o),  (5a)

(samples per sec), (T'=o00), (5b)
where N is the total number of stopping times in (1), we obtain
the problem of causal frequency-constrained sampling. Next,
we formally define causal sampling and decoding policies.

Definition 1 ((F,d,T) causal frequency-constrained code).
A time horizon-T' causal frequency-constrained code for the
stochastic process {Xt}z;o is a pair of causal sampling and
decoding policies, characterized next.

1. The causal sampling policy is a collection of stopping
times 71,72, ... (1) adapted to the filtration {F;}]_, at
which samples are generated.

2. Given a causal sampling policy, the real-valued samples
{X5, }3:1 and sampling time stamps 7', the MMSE
decoding policy is

Xi = BX{ X7, Yy, 7't < i, t € [13,Tig1). (6)

In an (F,d,T) code, the average sampling frequency must
satisfy (5), while the MSE must satisfy

T
1g / (X; — Xt)Q] <d, (T<o), (Ta)
T 0
. 1 r o
limsup —E / (X:— X3)?| <d, (T =o0). (7b)
T—o0 0

Allowing more freedom in designing the decoding policy
will not lead to a lower MSE, since (6) is the MMSE estimator.
Note that we cannot immediately simplify the expectation
in (6) using the strong Markov property of {X;}L , ((i)
in Section I-B) at this point, since the expectation is also
conditioned on ¢ < 7;41. We will show in Corollary 1.1 below



that under the optimal causal sampling policy, (6) can indeed
be simplified to (12).

In this work, we focus on causal sampling policies satisfying
the following assumptions.

(iv) The sampling interval between any two consecutive
stopping times, 7,41 — T;, satisfies

E[rit1 — 7] <00, i=0,1,..., 3)
and the MSE within each interval satisfies
Tit+1 B
E[/ (Xt—Xt)th <oo, 1=0,1,... (9

(v) The Markov chain 7,41 — 73 — {X;}{, holds for all

1=0,1,...

(vi) Foralli=0,1,..., the conditional pdfs f,_ - exist.
Note that (8) holds trivially if 7' < co. Sun et al. [10] and
Ornee and Sun [11] also assumed (8) in their analyses of the
infinite time horizon problems for the Wiener [10] and the OU
[11] processes. We use (9) to obtain a simplified form of the
distortion-frequency tradeoff for time-homogeneous processes
(see (15) below). Furthermore, (9) allows us to prove that the
optimal sampling intervals 7;.17 — 7; form an i.i.d. process
(see (14) below). We use (v), (vi) to show that the optimal
sampling policy is a symmetric threshold sampling policy
in the frequency-constrained setting. See Appendix A for a
sufficient condition on the stochastic process for the optimal
sampling policy to satisfy (v). For example, in the infinite
time horizon, stochastic processes of the form X; = cW,, + bt
satisfy the sufficient condition. Assumption (v) implies that the
stopping times form a Markov chain. In contrast, the sampling
intervals of causal sampling policies are assumed to form a
regenerative process in [10][11].

To quantify the tradeoffs between the sampling fre-
quency (5) and the MSE (7), we introduce the distortion-
frequency function.

Definition 2 (Distortion-frequency function (DFF)). The DFF
for causal frequency-constrained sampling of the process
{X YL, is the minimum MSE achievable by causal frequency-
constrained codes,

D(F) =inf{d: 3 (F,d,T) causal

frequency-constrained code satisfying (iv), (v), (vi)}.
10

In the causal frequency-constrained sampling scenario, we
say that a causal sampling policy is optimal if, when succeeded
by the MMSE decoding policy (6), it forms an (F,d,T') code
with d = D(F).

B. Optimal causal sampling policy

In Theorem 1 below, we show that the optimal sampling
policy is a two-threshold policy that is symmetric with respect
to the expected value of the process given the last sample and
the last sampling time, henceforth referred to as a symmetric
threshold policy. In Theorem 2, we show a simplified form of
the policy for time-homogeneous processes.

Theorem 1. The optimal causal sampling policy in either
finite or infinite time horizon for a class of continuous Markov
processes satisfying assumptions (i)—(iii) in Section I-B is a
symmetric threshold sampling policy of the form
Ti+1 = mf{t Z Ti ZXt — E[Xt|X.,-i,Ti]
¢ (—ai(t, m), ai(t, 7))},

where the threshold a; is a non-negative deterministic function
()f (ta Ti)'

Proof. Appendix B. O

(In

Theorem 1 shows that the optimal sampling policy is found
within a much smaller set of sampling policies than that
allowed in Definition 2: the input stochastic process {X;}7
is sampled only if the process innovation passes one of two
symmetric thresholds. The thresholds depend on { X} only
through the current time ¢, the last sampling time, and the
number of samples taken until ¢. Using the form of the
sampling policy (11), we show that the MMSE decoding
policy (6) simplifies as follows.

Corollary 1.1. In the setting of Theorem 1, under the optimal
sampling policy (11), the MMSE decoding policy reduces to

Xt = E[Xt|X7-“T¢L t S [Tia7—1'+1)~ (12)

Proof. Appendix C. O

In the frequency-constrained setting, the expectation in (12)
can be calculated at the decoder even without the knowledge
of the sampling policy, whereas the expectation in (6) depends
on the sampling policy at the encoder through the conditioning
on the event that the next sample has not been taken yet, i.e.,
t < Ti41. Corollary 1.1 confirms the conjecture in [8, Eq.(3)]
and [9, Eq.(5)] on the form of the MMSE decoding policy.

Corollary 1.2. In the setting of Theorem 1, the optimal causal
sampling policy satisfies (5) with equality.

Proof. Appendix D. O

Corollary 1.2 indicates that the inequality in the sampling
frequency constraint (5) can be simplified to an equality.

Corollary 1.3. In the setting of Theorem 1, the threshold in
(11) satisfies

lim a;(t+6,75) > a;(t,7;), Vt € [75,Ti+1),0 =0,1,...
§—0t
(13)
Proof. Appendix E. O

Corollary 1.3 implies that the threshold a; (¢, 7;), at time ¢ €
[Ti, Ti+1), is either right-continuous or has a jump to a larger
value. Thus, the continuous-path process X; — E[X;|X,, 7;]
in (11) must hit one of the symmetric thresholds +a;(7;41,7;)
att = Tit+1-

Definition 3 (time-homogeneous process). The process
{X YL, is called time-homogeneous, if for a stopping time
7 €[0,T] and a constant s € [0,T — 7], Xoir —E[Xs1r| X/]
follows a distribution that only depends on s.



Theorem 2. In the infinite time horizon, the optimal causal
sampling policy for time-homogeneous continuous Markov
processes satisfying assumptions (i)—(iii) in Section I-B is a
symmetric threshold sampling policy of the form

Tiv1 = inf{t > 7, : X; — E[X4| X, 7]
¢ (—a(t —7i),a(t — 7))},
where the threshold a is a non-negative deterministic function

of t — 1;. The optimal threshold of (14) is the solution to the
following optimization problem,

E[f;" (X; — E[X,]?)dt] '

(14)

D(F)= min (15)
() {a(t)}ezo: E[r]

]ETl]:%
Proof. Appendix F. O

Remark 1. In the setting of Theorem 2, the sampling intervals
Tiv1 — Ti © = 0,1,... under a symmetric threshold sampling
policy of the form (14) are i.i.d.

Theorem 2 shows that the optimal sampling policy in
Theorem 1 can be further simplified for time-homogeneous
processes in the infinite time horizon. As a consequence of
time homogeneity, thresholds in (14) only depend on the time
elapsed since the last sampling time. In contrast, the thresholds
in (11) depend on the last sampling time as well.

For example, applying (15) to the time-homogeneous pro-
cess X; = cWy +bt, a,b,c € R, a > 0, we conclude that the
sampling threshold that achieves (15) is equal to a(t) = ¢\/%&

and that D(F) = %—C;.

III. CAUSAL RATE-CONSTRAINED SAMPLING

In this section, we formally introduce the causal rate-
constrained sampling problem, and we leverage Theorem 1 in
Section II-B to find the causal code that achieves the optimal
tradeoff between the communication rate and the MSE.

A. Causal rate-constrained code

We formally define encoding and decoding policies, and
define a distortion-rate function (DRF) to describe the tradeoffs
between (2) and (3).

Definition 4 ((R, d,T') causal rate-constrained codes). A time
horizon-T' causal rate-constrained code for the stochastic
process { XYL, is a pair of encoding and decoding policies.
The encoding policy consists of a causal sampling policy and
a causal compressing policy.

1. The causal sampling policy, defined in Definition 1-1,
decides the stopping times (1) at which codewords are
generated.

2. The causal compressing policy, characterized by the 7 -
valued process {fi}I_, adapted to {F;}L_, decides the
codeword to transmit at time T;,

Ui = fTi'

Given an encoding policy, the MMSE decoding policy uses
the received codewords and codeword-generating time stamps
to estimate the process,

Xt = E[X”Ui,’ri,t < 7‘1‘+1], t e [Ti,Ti_._l).

(16)

a7

Inan (R,d,T) code, the lengths of the codewords must satisfy
the average communication rate constraint R bits per sec
in (2), while the MSE must satisfy (3).

Allowing more freedom in designing the decoding policy
will not lead to a lower MSE, because (17) is the MMSE
estimator.

Definition 5 (Distortion-rate function (DRF)). The DRF for
causal rate-constrained sampling of the process { X}, is
the minimum MSE achievable by causal rate-R codes:

D(R) £ inf{d: 3 (R,d,T) causal rate-constrained
code satisfying (iv), (v), (vi)}.
We say that a causal (R, d,T) code is optimal if d = D(R).

(18)

B. Optimal causal codes

We proceed to show that the sampling policies in Theorem 1
remain optimal in the scenario of rate-constrained sampling.
Towards that end, we introduce a class of causal codes, namely,
the sign-of-innovation (SOI) codes. We prove that an SOI
code is the optimal code as long as the process satisfies the
assumptions (i)—(iii) in Section I-B.

Definition 6 (A Sign-of-innovation (SOI) code). The SOI code
for a continuous-path process { X, }I_, consists of an encoding
and a decoding policy. Given a symmetric threshold sampling
policy in (11) that satisfies (iv)—(vi), at each stopping time
T, ¢ = 1,2,..., the SOI encoding policy generates a 1-bit

codeword
- E[XT7,|XT1'717T1'—1] = *ai—l(ﬂ',ﬂ'—l).

Ui:{l
0
19)

At time T;, the MMSE decoding policy noiselessly recovers
X,,, i =1,2,... via the received codewords U",

Xr = Q2U; — 1)ai—1 (13, 7i-1) + E[ X | X7, 7io1], (20)

i X,
if X,

—EX, | X, Tic1] = aim1 (73, Tim1)

and uses (12) as the estimate of Xy until U; 11 arrives.

Theorem 3. In cither finite or infinite time horizon, for a
process {Xt}tho satisfying assumptions (i)—(iii) in Section I-B,
the SOI code, whose stopping times are decided by the opti-
mal symmetric threshold sampling policy (11) with average
sampling frequency (5) F = R, is the optimal causal code.

Proof. In Appendix G, we show the converse

D(R) > D(R). 1)

We proceed to show that the equality in (21) is achievable by
the SOI code. Corollary 1.3 implies that the 1-bit codeword
in (19) together with the recovered samples { X, 3;11 suffices
to recover X.,,% = 1,2,... noiselessly at the decoder.
Moreover, since £(U;) = 1 under a 1-bit SOI compressor, the
rate constraint (2) is equal the frequency constraint (5), i.e.,
E [ZZN: ) E(Ui)} — E[N]. Thus, (21) is achieved with equality
under the SOI code. O

Theorem 3 illuminates the working principle of the optimal

causal code for the stochastic processes considered in Sec-
tion I-B: The encoder transmits a 1-bit codeword representing



the sign of the process innovation as soon as the innovation
crosses one of the two symmetric thresholds. To achieve
the DRF (18), the optimal causal code uses the minimum
compression rate (1 bit per codeword) in exchange for the
maximum average sampling frequency R.

Theorem 3 shows that the optimal codeword-generating
times are the sampling times of the optimal causal sampling
policy. Furthermore, the optimal decoding policy only depends
on the thresholds of the sampling policy and the sampling time
stamps. Thus, finding the optimal causal code is simplified to
finding the optimal causal sampling policy.

C. Rate-constrained sampling of the OU process

Using Theorem 3 and (15), we can easily find the optimal
causal code and its corresponding DRF for the OU process by
finding the thresholds of the optimal causal sampling policy.
The OU process is the solution to the following SDE:

dX, = 0(p — X;)dt + cdW,, 22)

where p, 0, o are positive constants, and W; is the Wiener pro-
cess. The OU process satisfies the conditions in Section I-B.
Under the assumption (iv) in Section II-A and the assumption
that the sampling intervals form a regenerative process, Ornee
and Sun [11] found the optimal sampling policy for the OU
process in the infinite horizon by forming an optimal stopping
problem. They solved the optimal stopping problem via the
Snell’s envelope which requires solving an SDE. We provide
an easier method to find the optimal sampling policy for the
OU process in Appendix H. We also show via Theorem 3
that the policy remains optimal when bitrate constraints are
present.
Denote

v 3 0
Rl(v) £ pQFQ <17 17 5327 0_21}) ’ (23)

2
v ag
Ry(v) £ 59 + %Rl(v)v

where o F5 is a generalized hypergeometric function.

(24)

Proposition 1. For causal coding of the Ornstein-Uhlenbeck
process, the optimal causal sampling policy is the symmetric
threshold sampling policy given by

1
Ti+1 = lnf {t Z Ti - |Xt — E[thXTi7TiH Z R;l (R> ,

(25)
The DRF under the corresponding SOI code is given by

D(R) =R- R, (Rll (;)) .

Proof. Appendix H. O

(26)

IV. RATE-CONSTRAINED CONTROL

The SOI coding scheme introduced in Definition 6 also
applies to the following rate-constrained control scenario.
The stochastic plant evolves according to

Yi = Xi + Zy, 27)

Xi
« Y
—> stochastic plant > encoder —
Zy (Ui, )
controller <

Fig. 2. Control system.

where X is a stochastic disturbance satisfying the assumptions
(1)—(ii) in Section I-B, and Z; is the additive control signal
output from the controller. The encoder observes Y;, causally
decides the stopping times 7, T2, ... adapted to the filtration
generated by {Y;}7_, and generates a codeword U; at each
stopping time 7; based on its past observations {Y;}{’,. The
controller collects the received codewords to causally form the
control signal Z;, with the goal to minimize the mean-square
cost on Y; deviating from the target state 0,

T
/ Y2dt
0

We aim to find the encoding policy satisfying (iv)—(vi) and the
control policy that jointly minimize the mean-square cost (28)
under the communication rate constraint (2) between the
encoder and the controller.

1
7E . (28)

Proposition 2. In the rate-constrained control system, the
optimal encoding policy that minimizes the mean-square cost
in (28) is the SOI coding scheme in Theorem 3, and the optimal
control signal is

Zy = —X,. (29)
Proof. Given the received codewords U? and the fact that the
next codeword has not been transmitted at ¢ < 7,41, the
optimal control signal Z; that minimizes (28) is indeed the
optimal MMSE decoding policy X, in (17). Substituting (27)
and (29) into (28), we obtain the following MSE,

1 4 5\
[

—E

T
which is the same as (3). Thus, the problem of finding the
optimal encoding policy in this rate-constrained control system
reduces to the problem that we solved in Section III-B, whose
result is given by Theorem 3. O

(30)

Under the optimal control policy in Proposition 2, the
optimal encoder does not rely on the control signal to decide
the codeword generating times.

In the traditional stochastic differential equation (SDE) for-
mulation [7], [32]-[38], the evolution of the plant is described
as

aY; = dX; + Ldt, 31)



where L, is the control signal. The state evolutions (27)
and (31) are the same if and only if the control signals in (27)
and (31) are related as
t
/ Lyds = Z;, YVt € [0,T]. (32)
0

Any state evolution described by (31) can be written in the
form of (27) by setting Z; as in (32). Conversely, a state evolu-
tion described by (27) can be written as (31) if and only if Z;,
when viewed as a function of ¢, is almost surely generalized
absolutely continuous in the restricted sense (ACG,) between
any consecutive discontinuous points of {Z;}7_, [39][40].
This is because control signal L¢ in (32) is well-defined if
and only if Z; satisfies the ACG, property. The function
f:la,b] = Ris said to be ACG. [39][40] over set £ C [a, b]
if f is continuous, and £ is a countable union of sets &£, on
each of which f satisfies the following: for each € > 0, there
exists § > 0 such that Zle SUP, yefws,yi [F(2) — F(y)| <€
for all finite sets of disjoint open intervals {(x;,y;)}*_, with
endpoints in &, and Zle |z; — yi| < 4. For example, for
stochastic processes of the form X; = g1 (t)W, ) + g3(t),
the optimal control signal {Z;}1_, (29) almost surely satisfies
the ACG, property. Here, gi(-),¢3(-) are continuous and
differentiable except perhaps on a countable set, go(-) is
continuous, positive, and non-decreasing, and {W;}7_ is the
Wiener process. In Appendix I, we show how to recover
{L}E, from {Z,}], using (32), provided that {Z;}],
satisfies the ACG,. property.

Astrom and Bernhardsson [7] considered the controlled
system in (31) with X; = W, and proposed a control policy
that injects an impulse control to drive Y; to zero once |Y;|
exceeds a threshold. The control signal L; corresponding to
the optimal Z, in (29) for X, = W, recovers Astrom and
Bernhardsson’s impulse control policy [7] for the Wiener
disturbance (Appendix I).

V. CONCLUSION AND DISCUSSION

We have studied the optimal rate-constrained causal code for
a class of continuous processes satisfying regularity conditions
(1)—(ii). Prior art on remote estimation and optimal scheduling
mostly considered a sampling frequency constraint, whereas
in this work, we introduce a rate constraint. We leverage the
information-theoretic framework of our prior work [30] to
establish the jointly optimal causal sampling and quantization
policies. We show that the optimal frequency-constrained
causal sampling policy is a symmetric threshold sampling
policy (Theorems 1-2). Prior work [8]-[9] on finding the
optimal frequency-constrained sampling policy for the Wiener
and the OU processes conjectured that the optimal decoding
policy is the MMSE decoding policy in (6). We confirm
that conjecture in Corollary 1.1. We show that the optimal
causal code is the SOI code that transmits 1-bit codewords
as frequently as possible at the stopping times decided by the
optimal frequency-constrained sampling policy (Theorem 3).
Theorems 1 and 3 demonstrate that the optimal causal code
can be easily obtained once we know the optimal sampling
policy, revealing the close connection between the frequency-
constrained and rate-constrained causal sampling problems.

We show that the SOI code minimizes the mean-square cost
between the desirable state 0 and the state of the stochastic
plant driven by a process satisfying conditions (i)—(iii).

Causal rate-constrained sampling for communication over
a digital-input noisy channel remains an interesting direction
for future research. It is a joint source-channel coding problem
that is extremely sensitive to coding delay. Channel codes that
can quickly incorporate newly arrived bits into a continuing
transmission like the one we developed in [31] will be instru-
mental for making progress in this direction.

APPENDIX A
SUFFICIENT CONDITION FOR (V)

Before we show the sufficient condition in Proposition 3
below, we first characterize the causal sampling policy in
Definition 1.

Any causal sampling policy in Definition 1 can be character-
ized by a set-valued process we term sampling-decision pro-
cess. It is a Br-valued process {P;}7_, adapted to {F;} .
which decides the stopping times

Ti+1 = iIIf{t Z T - Xt ¢ Pt}, (33)

where the mean-square residual error process {f( E  in (33)
is defined as

X, 2 X, —E[X,|X,,, 7], Vt € [i, Tiz1)- (34)

Given any sampling policy 71,72, ... and a realization of the

process up to time t, we can set

Pt:{AZ’ tAT, i=1,2...,
t

t=m, i=1,2,...,
where A; is any Borel set the realization of X, belongs to.
Without assumption (v), P; for t € [r;,7;+1) can depend on
the input process { X }._, up to time ¢. Under assumption (v),
P, for t € [1;,7;41) can only depend on the stopping time 7;
and {X,}t__ (34).

We proceed to present the sufficient condition on the
stochastic process under which the optimal sampling pol-
icy satisfies (v). We define notations that will be used in
Proposition 3 below. Consider a sampling-decision process
{P:}{_,, with stopping times 7y, k41, ..., the mean-square
residual error X; (34), and the MMSE decoding policy X; (6).
The value of {P;}{_,, at time ¢ € [, 7] only depends on
{Xs — E[Xs| X7, 7]}, and 7, ie.,

S=Tk

(35)

Pt = Pt({Xs - E[XS|XTk7Tk]}i:Tk7Tk)7 te [TkaT]' (36)

Denote by II;, 7} the set of all sampling-decision processes of
the form (36). As a result, the stopping times associated with
{P}L €I, 1) only satisfy (v) at i = k. Let N ({P:}{—,,)
represent the number of samples taken between [, 7] under
{P:}_,.. We denote

T — 7"] .

(37

1 T >
D,(6) 2 min 7E| [ o Xt
{Pe}i_, el my: T Tk

FE[N({P:}i_, ) |lre=r]<¢




Consider an  arbitrary = sampling-decision  process
{P/YL, (33) with stopping times 7{,75,..., the mean-
square residual error X!, and the MMSE decoding policy X.
The value of the sampling-decision process {P;}7_, at time
t can depend on {X,}_, i.e., for all t € [r,,T],

=7 (e {x Bl X

S Th
=T
(38)
Denote by H’[T, 7] the set of all sampling-decision processes
of the form (3§).

Proposition 3. For a stochastic process {X}1_, satisfying
(i)—(iii), if D,(¢) in (37) is a convex function in ¢ for all
k=0,1,... and r € [0,T), then the optimal sampling policy
satisfies (v).

Proof Fix an  arbitrary  sampling-decision  process
{PI}E t=r € HET;,T] at 7, = r. To show that the optimal
sampling policy of {X;}]  satisfies (v), it suffices to show
that for all k = 0,1,..., D, (sE[N({P{},)|7, = r]) is no
larger than the MSE achieved by {P/}L_,, i..,

1/T

— (Xt— T]/c:T
T "

> D

D, (FENCPYL I =11).

We fix an arbitrary realization of {X,},_, = z that leads
to 74, = r, and we construct {P;}1_ as

X/))2dt

(39)

Py = ( (X, — E[X,|X,,r]}'_, ,r) . (40)
The sampling-decision process {P; }_,. (40) satisfies the min-
imization constraint in (37) with

6 = FEINPHL X Yoo = 274 = 1]

due to the reasons that follow. The process {P;}7_,. (40)
belongs to Il 7 since it samples the input process after
time 7 as if it has observed {X;}"_, = z regardless of the
actual realization of {X,}7_. Since {X;}i>r,, at 7, = 7, is
independent of F,. by (iii-a), and 741, ¢ > k, is conditionally
independent of {X }7_, given 7, = r due to {P}L, €
I, 77, we conclude that under {P;}/_,, the random process
{X;— X;}L_ conditioned on 7, = 7 has the same probability
distribution as {Xt XYL under {P;}1 0 conditioned on
{Xs}i—o = z, 7 = r. This implies that {’Pt ~ (40) achieves
average sampling frequency ¢ (41), and that

(41)

T
. / (Xe — XAt X Yoy = 2,77, = r]

’
k

/T(Xt — X,)%dt

Tk

{Xstomor e = T] (42a)

[ ,T
= E / (XtXt)zdtTkT]

Tk

(42b)

Y

QT (;W]E[N({Pé}?—r)HXs}g—o = !L‘77']/C = r]> , (420)

where (42¢) holds because {’Pt}tT:T,c € I, 1. Since (42c)
holds for an arbitrary realization of {X,},_, compatible with
7j. = r, it holds almost surely that

/ (X

> D, (FENUPIYEHX Yo = 11)

Taking an expectation of (43), we conclude

E — X)%dt

{Xs}oo, 17 = r] (43)

e .
E T/ (X — X))2dt|r, = r] (44)
1 /
> B| D, (FEIVUPYLONX 7t =11 ) ok = ).
(45)
and (39) follows via Jensen’s inequality. O

APPENDIX B
PROOF OF THEOREM 1

A. Tools

We first introduce Lemmas 1-4 that supply majorization and
real induction tools for proving Theorem 1.

Function f majorizes g, f > g, if and only if for any Borel
measurable set 5 € Br with finite Lebesgue measure, there
exits a Borel measurable set A € Br with the same Lebesgue
measure, such that [2]

/‘ M</f

Function f : R — Ris even if f(z) = f(—x) forall z € R.
Function f : R — R is quasi-concave if for all z,y € R,
0<A<1,

Sz + (1= AN)y) = min{f(z), f(y)}.

We denote by 1(, ;) () an indicator function that is equal to
1 if and only if = € (a,b).

Lemmas 1-3, stated next, show several majorization prop-
erties of pdfs.

(46)

(47)

Lemma 1. (/2, Lemma 2]) Fix two pdfs fx and gx, such that
fx is even and quasi-concave and fx > gx. Fix a scalar
¢ > 0, and a function h: R — [0,1], such that

/ fxla (2)dz = /R gx(@)h(z)dz, (@48

Then,
fX|XE(—c,c) -~ g;{a (49)
where the pdfs fx|xe(—a,a) and g’ are given by,
Feix () = [x(@)L(—ce)(2)
e T L Fx (@)1 e (@)da
(50
Jola) — X))
X Jg 9x (z)h(z)dx

Lemma 2. ([27, Lemma 6.7]) Fix two pdfs fx and gx, such
that fx is even and quasi-concave and that fx majorizes gx,
fx > gx. Fix an even and quasi-concave pdf ry. Then, the



convolution of fx and Ty majorizes the convolution of gx
and ry,

fx *ry = gx *Ty, (51)

Furthermore, fx %1y is even and quasi-concave.

Lemma 3. ([2, Lemma 4]) Fix two pdfs fx and gx such
that fx is even and quasi-concave and that fx majorizes gx,
fx > gx. Then,

[ ix@ids < [ @ vioxtors, wer 6
R R

Lemma 4, stated next, provides a mathematical proof tech-
nique called real induction. We will use it to prove that the
assertions in Lemma 5, stated below, hold on a continuous
interval.

Lemma 4. (Real induction [28, Thm. 2]) A subset S C |a,b),
a < b is called inductive if
1) a€sS;
2) If a <x <b x €S, then there exists y > x such that
[z, y] € S;
3) Ifa<z<b [a,x) €S, then x € S.
If a subset S C [a,b] is inductive, then S = [a, b].

B. A technical lemma

We define the following notations for two sampling-decision
processes {P;}7_, and {P;"™}]_, (see Appendix A). Fix an
arbitrary sampling-decision process {P;}7_, (33) satisfying
(iv)—(v). It gives rise to a sampling policy with stopping times
T1, T2, ... via (33). We recall the definition of the mean-square
residual error (MSRE) process {X' +}X_, in (iii) and denote the
MSRE process under {P;}7_ as

Xi = X({P o)
£ Xt — E[Xt|X.,-i,7'i],t S [Ti77—1'+1)~

(53a)
(53b)

We define the residual error estimate (REE) process {)Z}tT:O
under {P;}71_, as

Xo = X:({Ps} 1) (54a)
2 X, — E[X:|X,,, 7] (54b)
= BIX{ X+, Yiey, 70t < Tig] (54c)
= E[Xt|7i,t < Tit1)s t € [Tiy Tit1), (54d)

where X; = X;({Ps}L_,) is the MMSE decoding policy
defined in (6); the equality in (54c) holds since E[X;| X, ;] €
o({X7,}ozq, 7't < Tiy1); (54d) holds because X, is indepen-
dent of { X7, };_1, 7" due to (iii-a), and the event {t < 7,41} is
independent of {X,,}’_,,7'~" given 7; due to (v). We recall
that N({P;}1_,) defined above Proposition 3 in Appendix A
represents the number of stopping times in [0,7], and we

simplify this notation as

N £ N({P:}/ o) (55)
We denote the left-closed continuous interval
Qr,(5) £ {t € [s,T]: Plriga >t = s] > 0}, (56)

for all s € Supp(fr,), and the left-open continuous interval

QTﬁ+1(S) é QTqi+1(S) \ {S} (57)
Given {P;}}_,, we construct a sampling-decision process
{P;¥™}L, (33) of the form (11), which via (33) is associated
with a sampling policy with stopping times 74, 74,... , such
that the symmetric thresholds {a;(r,s)}I_, of {P;¥™}L,

satisfy for all s € Supp(fr,), t € [s,T],
PLE; € (~a(rs) (o). € [sntllr =5 (o

= P[Ti+1 > t|7’i = 8]
This is possible since by adjusting the thresholds, the left
side of (58) can be equal to any non-increasing function
in ¢ bounded between [0, 1]. Under {P;*™}I_, (58), for all
s € Supp(fr,), ¢ =1,2,..., it holds that

Qr,(s) = Q‘rl’ (s), (59)
Q,,(s) = Qflg (s). (60)

We denote the MSRE and the REE processes and the number

of stopping times on [0, 7] under {P;*™}I_ respectively by

X; = X (PP} ), (61)
X, =X, ({P¥,) =0, (62)
N' = N{P™}Ly), (63)

where (62) holds since we can write f({ as (54d) with 7;
replaced by 7/ using the argument that justifies (54d); X/
has an even and quasi-concave pdf due to the assumption
(ili-b), and the pdf of X, conditioned on 7.t < 7/,
under a symmetric threshold sampling-decision process of the
form (11) is still even and quasi-concave.

We denote the following probabilities

Qi(a,b,c,d) £ Plriy1 > alrip1 > b7 = ¢, X = d] (64a)

Qi(a,b,c,d) £ Plr/,; > al|rl, >b,7] =c, X, = d]. (64b)

We proceed to introduce Lemma 5 using the notations
defined in (53)—(64b). We will use the assertions in Lemma 5
to compare the MSEs achieved by {P;}_, and {P;*™}L,.
Lemma 5. The pdfs thlTi:S,Ti+1>t and th,‘Ti,:S!T7;,+1>t exist
for all s € Supp(fr,), t € Qr, (). Furthermore, for all
s € Supp(fr,), t € Q. (s), it holds that

(65)
(66)

f)?;\rg=s,rg+1>t = F % rims i >t

fX{\T{:SJ{HN is even and quasi-concave.

Proof of Lemma 5. We prove that f %,
proof that f)?,{|r7{:s,r7{+1>t exists is similar. Since X; at ¢ >

—— exists. The
7; = s, is independent of F; by (iii-a) and is equal to R;(s, s)
by (iii-b), we compute th using (4),

|Ti=$,Tit1>s

(67)

Thus, fg,|ri—s.r1>s CXists since fr, (s is a valid pdf by
(iii-b). To establish that fg¢ . _ . -,(y) exists, we compute

th‘Ti:S7Ti+1>S = th(S,S)'

f)?,,|7—,i:s,7—i+1>t(y) - th‘Ti:377'1‘+1>8,7'7;+1>t(y) (68a)
B Qi(t, s, s, y)ff(,m:sJHQs(y) (68b)
- P[Tprl >t‘Ti:S,Ti+1 >S] ’




where (68a) holds since 7,11 > t implies 7,41 > s. In (68b),

we observe that for all t € Q. (s), the pdf fg . o _

exists by (67); the denominator of (68b) is nonzero. We con-

clude that the pdf th ris,m >t eXists for all s € Supp(fr,)s

te QT7+1( )

The assertion (65) holds if and only if

(a) for all s € Supp(f-,), t € Qr,.,,(s) and for any Borel
measurable set 5 € By with finite Lebesgue measure,
there exists a Borel measurable set A € Br with the
same Lebesgue measure, such that

PX, € Alr} = 5,7/, > ]

N (69)
> P[Xt S B|’7’1 =S, Ti+1 > t],

holds. This is because (69) is a rewrite of (65) using the
definition of majorization (46).
The assertion (66) holds if and only if for all s € Supp(f,),
t € Qr,,,(s), all of the following hold:
(b) the conditional cdf P[X| < y|r/ = s, 7/ 41 > t] is convex
for y < 0 and is concave for y > 0.
(c) for any y > 0,

P[X] € (0,y]7] = 5,711 > 1]

- 70
—PIX; € [ o

y,0)|7] = 5,7, > 1].
This is because fg, lrt=s,7ly 1>t is quasi-concave if and only if
(b) holds, and f, (=5l >t is even if and only if (c) holds.

Items (a)—(c) facﬂltate provmg that the assertions (65)—(66)
hold on the left-open interval (2., ,, (s). Real induction, which
must be used on a left-closed interval, does not apply to
show (65)—(66) directly, since the densities in (65)—(66) do not
exist at t = s. Instead, we apply real induction to show (a)—(c).
Using real induction in Lemma 4, we verify that conditions
1), 3), 2) in Lemma 4 hold for (a)~(c) in on ¢t € ., (s) one
by one.

To verify that the condition 1) in Lemma 4 holds, we need
to show that (a)—(c) hold for ¢ = s. This is trivial since

P(X] = 0|7} = s,7/,1 > 5]
= ]P’[f(s = 0|1 = 8, Tit1 > §]
= 1.

(71)

Next, we show that condition 3) in Lemma 4 holds, that
is, assuming that (a)—(c) hold for all ¢ € [s,r), r € Q. (s),
we prove that (a)—(c) hold for ¢t = r. Equivalently, we show
that (65)—(66) hold for t = r. Let § € (0,7 —s]. At time t = r,
we calculate the left side of (65) as

f)z"|7-/:s T’+1>r(y)

= lim fX’ |7/ :s,T,£+1>r7§,'r{+1>r(y) (728.)

§—0+
Q/'(T r—20,s y)f}”mw:s T >T— 5(9)
7" r— 5 S y)fX’|‘r =s T1+1>7 5(y)dy
i ]l(—llqi(T'vs),aq:(T'S ( )fX’|‘r =s T+1>r—5(y)
= lim ,
-0 Jo L—ar(r).ai(re) W) F X frr = 7, 5r s (W)Y
(72c¢)

51361 JzQ;

(72b)

where (72a) holds since the event T,
Ti 1 > 1 —0; the pdf fg,

T‘Ti:S’Ti+1

;.1 > r implies the event
>r_g in (72b) exists since

(68) holds with Xy, 7; = s, Ti41 > s, 7341 > t replaced by
X, 1 =s,7/, >s, 7/, >r—J, respectively; (72c) holds
since

(73)

i A ) :llfa'rs a;(r,s .
Jim Qi(rr = 6,5,y) = La,(r.0).0:r.9) (V)

Similarly, replacing Q; in (72b) by Q;, we calculate the right
side of (65) as

fXT‘Ti:S,Ti+1>’r‘(y)
hm Qi(?” r—= 67s7y)f)2r|‘ri:s,7'i+1>7‘75(y)
d—07F f]R QZ T r—= 57 S, y)fXT|T7¢:s,Ti+1 >r—6(y)dy

, (74)

where the pdf fg . _ . o, J(y) exists since (68) holds

with Xt, Ti+1 > t replaced by XT, T;+1 > r — 0 respectively.
To check that (65) holds at ¢ = r, we first prove

that fX;\T{:s,TL(+1>T75 majorizest)grlTi:S_’TiH>T75. Note that
R,.(r—94,s) is independent of {Xt T

is independent of the event {7] , > r J,

X! using (4),

‘S due to (iii-a), and thus
7/ = s}. We obtain

fqr(r—s)f(;_s|T;=s,rg+1>r—5 * fR,(r—5.)-

(75)
By (75) and the inductive hypothesis that (a)-(c) holds
for ¢ € [s,r), the assumptions in Lemma 2 are sat-
isfied with fX — fqr(r—fs))z;_{;|T,{:8,T{+1>T—5’ gx
fqr(r—5))27~75|7'7::5,7'i+1>T—5’ ry 4 er(rfé,s)- We conclude
that

fj(;,l7‘,:=s,7'{+l>?“—§ =

f)?;|7;:s,n!+1>r—6 = f)zr|77,:s,ri+1>7’—57 (76)

s 1s even and quasi-concave. ()

fX’;'IT’Z:S7T’iI+1>T_
Due to (77) and the fact that the indicator function in (72c)
is over an interval symmetric about zero, we conclude (66)
holds for ¢ = r. By (58), (76) and (77), the assumptions

in Lemma 1 are satisfied with fx < f)?/\r Ims il S

9x fX |Ti=8,Tit1>r—0° fX|X€( ce) T fX"T =5,7{ ,>T
and ¢ <+ fx. Irims,misa > € ai(r,s), h < Q;(r,r —
J,,y). Thus, we conclude that (65) holds for ¢t = r. Therefore,
(65)—(66) hold for t = r, i.e., (a)—(c) hold for ¢t = r.

To prove that the condition 2) in Lemma 4 holds, we assume
(a)—(c) hold for t = r, and prove that the following holds:

515& fX'+5|T =8,T{ 1 >7+6 ~ 51£(I)1+ va-JrélTi:S»TiJrl >r467
(78a)

lim s is even and quasi-concave. (78b)

5—0+ er+5|"' =8,Ti g >TF

The right and the left sides of (78a) are equal to (72¢) and (74)
respectively with r replaced by r+-4. It is easy to see that (75)—
(77) and the assumptions in Lemma 1 hold with r replaced
by r 4+ §. Thus, we conclude that (78) holds.

Using the real induction in Lemma 4, we have shown that
(a)—(c) hold for all s € Supp(f-,), t € Q. (s). Thus, (65)-
(66) hold for all s € Supp(fr,). t € Qr,,,(s). O



C. Proof of Theorem 1

The sampling-decision process {P;>™ }1_ leads to the same

average sampling frequency as {P;}7_,. This is because (58)
implies that for all s € Supp(f-,), t € [s, T},

Plri41 >t = s| = Plrj,, > t|7] = s]. (79)
Together with the Markov property of the stopping times
(assumption (v)), (79) implies that the joint distribution of
T1,T2,... is equal to the joint distribution of 77,74,... We
conclude that {P;} , and {P;"™}I, lead to the same
average sampling frequency

(80)

Next, we show {P;"™}I_ achieves an MSE no larger than
that achieved by {P;}]_,. Due to (54d), (62), and (65)—(66) in
Lemma 5, we can apply Lemma 3 with fx < fX;ITf:s,Tf+1>t
and gX A th‘Ti:S,Ti+1>t’ yieldlng

E [(X, — ):(t)2|7i =85, Tit1 > t] >E {Xﬂr{ =s8,Ti . >t].

(81)
Combining (79) and (81), we conclude by law of total expec-
tation that {P;*™}L_, achieves an MSE no larger than that
achieved by {P;}7,.

APPENDIX C
PROOF OF COROLLARY 1.1

Under a symmetric threshold sampling policy (11), the

MMSE decoding policy in (6) can be expanded as, for
Ti <1< Tita,

X =E[X{ X, Yoy, 7't < Tiga] (82a)

=X, + E[X{| X,,, 7] (82b)

:E[Xt|X7'1 ) Ti]7 (820)

where ):(t in (82b) is equal to ):(t’ in (62), thus is equal to zero.

APPENDIX D
PROOF OF COROLLARY 1.2

Given any causal sampling policy such that (5) is satisfied
with a strict inequality, we construct a causal sampling policy
that satisfies (5) with equality and leads to an MSE no worse
than that achieved by the given causal sampling policy.

Given an arbitrary symmetric threshold sampling policy (11)
with stopping times 7y, 7a,..., we denote by NV; the number
of samples taken in [0, ]. Let t',t € (0,T) be a dummy

deterministic time. We decompose the MSE under the given
sampling policy as

t’ 1 Tit1
E Z / E[X,|X,.,7:])2dt (83a)
+E / (X; — [Xt|XTNt,,7—Nt,])2dt] (83b)
B TNt,+1
+E / (X: — E[X[ Xy, TNt,])th:| (83¢c)
Tz+1
+E Z / E[X;|X,,,7:])%dt| .,  (83d)

ZN/

where TNT+1

Under the given samphng policy 71,72, ..., we construct a
sampling policy by inserting an extra deterministic sampling
time t'. The resultant MSE is the same as (83) with (83c)
replaced by

TNt/+1
E [/ (X, — E[X,| Xy])?dt (84)
tl
since a sample is taken at time t under the constructed
sampling policy. Since

O-(XTNt, ) TN,/) - 0-<]:t’) (858.)
E[X|Fv] = E[X;| X ], (85b)

where (85b) is due to the strong Markov process (i) in
Section I-B, we conclude that (83c) > (84).

Thus, by introducing extra sampling times, we can achieve
the same or a lower MSE. We can express the difference
between the frequency constraint F' and the average sampling
frequency under the given sampling policy as

FT —E[Ny] =1+ D, (86)

where I € N represents the non-negative integer part, and
D € (0,1) represents the decimal part. By introducing [
different deterministic sampling times, we can compensate the
integer part /. By introducing a random sampling time stamp
t with probability D to sample and probability 1 — D not
to sample, we can compensate the decimal part. Therefore,
for any sampling policy whose average sampling frequency is
strictly less than F', we can always construct a sampling policy
that achieves the maximum sampling frequency F' and leads
to an MSE no worse than that achieved by the arbitrarily fixed
sampling policy.
APPENDIX E
PROOF OF COROLLARY 1.3

We show that symmetric thresholds {a;(r,s)}Z.
must satisfy (13) for all s € Supp(fr,).

Due to (vi), the probability on the right side of (58) is
continuous in ¢ € [s,T] for all s € Supp(fy,). Thus, for
all s € Supp(f-,), t € [s,T),

lim P [X,’, € (—a;(r,s),a;(r,s)),Vr € [s,t + 0]|7] =
6—0t
(87a)

- s} . (87b)

in (58)

=S

= P [X;, € (—a;(r,s),a;(r,s)),Vr € [s,t]‘ﬁ'

d



By the continuity of X’; in (iii-b), (87) implies (13).

APPENDIX F
PROOF OF THEOREM 2

First, we introduce Lemma 6, stated next, that will be
helpful in proving (15). Second, we prove that symmetric
threshold sampling policies (11) in Theorem 1 can be reduced
to (14) in the setting of Theorem 2, i.e., under the assumption
that {X;},>0 has time-homogeneous property in Definition 3
and T' = oo. Then, we show that Remark 1 holds and prove
that (15) holds using Lemma 6.

Lemma 6. (e.g. [29, Proposition 1(ii)]) Suppose that
Zo,Zy,... are iid. Let Q; £ 377 1y (ZZ:O Zk>. Let
Ro,R1,... be iid rewards, and let S; = Z?:to R; be the
renewal reward process. If 0 < E[Z;] < oo, E[|R;|] < oo,

then
i B9l _ E[Ro]
T—oo T ]E[Zo] '
Since the stochastic process considered in Theorem 2 is

infinitely long, we use the DFF in the infinite time horizon:

(88)

T _
D>(F) = inf lim sup %E l/ (X, — Xt)ﬂ , (89)
0

{Pt}tZU€H5 T—o0
(5b)
where II is the set of all sampling-decision processes (33) of
the form (11) satisfying (iv) and (v) in Section I-B over the
infinite time horizon. Note that for any stopping time 7, and
for any ¢ > 7, we have

{Xt}tZT and {Xt—T}t—TZO have the same distribution, (90)
{Xt}tzr is independent of {)N(t}t;o, 9D

where (90) is due to the time-homogeneity of {X;};>¢ in
Definition 3, and (91) is due to (iii-a) in Section I-B.

Using (90)-(91) and assumption (iv), we will prove that
the sampling-decision process that achieves the D°°(F) for
time-homogeneous continuous Markov processes satisfying
assumptions (i)—(iii) is of the form (14).

Given an arbitrary sampling-decision process {P;};>o of
the form (11), we define its MSRE (53) and REE (54)
processes as ~ ~

X £ Xt({PS}SZO)v

Xt = Xt({Ps}sZO)-

Denote by 71, 72, ... the stopping times of the causal sampling
policy characterized by {P;};>0. Assume that the sampling-

92)

decision process that achieves D°°(F) (89) is {Pt(a)} " We
t
have, B
D> (F) (93a)
inf  limsup E /T(X X,)2%dt|  (93b)
= m 1m sup — —
{Pt}t>0€: T%oop T T ! ’
Pe=P, t<r,
(5b)
. . 1 T=ri > \2
= inf limsup —E (Xy — Xp)*dt|  (93¢)
{Pi}i>0€ll: T oo 0
(5b)
= D> (F), (93d)

where (93b) is due to assumption (iv); (93c) is due to (90);
the equality in (93d) is achieved since (93c) is upper-bounded
by (93d) and is equal to (93a) simultaneously. Suppose that
the sampling-decision processes that achieve (93b)—(93c) are
{Pt(b)}tzo and {Pt(c)}tzo, respectively. From (93a) and (93b),
we observe that

G S ()

We prove that under sampling-decision processes satisfying
assumption (iv), it holds that

i=01,... (94)

T _
E / (X, — Xt)ﬂ < o0, (95)
T—r;
so that using (93c), (93d), and (95), we conclude
(c) _ (a)
{Pt }tzo - {Pt }tZO. 6)

By assumption (iv) we know that there exist sampling-decision
processes that lead to
E [/ (X, — f(t)2dt] < 0. 97)
0
Thus, there exist sampling-decision processes such that (95)
holds. Since the goal is to minimize the MSE, it suffices to
consider sampling-decision processes that lead to (95).

Due to (90), the probability distributions of Xy, ¢ € [0,T —
7;] in (93b) and X;,t € [1;,T] (93c) are the same. Thus,
the sampling-decision process {P;}i>r, = {Pt(i)r.}

- ¢ t—Tizo

achieves the infimum in (93b). We conclude

{Pt(b)}@ﬂ- - {,Pt(i)ﬂ}tfnzo’ i=0,1,... (98)
Using (94) and (98), we conclude that {Pt(i)ﬂ.}t_rpo =
{pt(a)} Li=0,1,..., ie, :
>
aop(s,0) = a;(s + 7, 7). 99)

Thus, (14) follows.

Next, we show Remark 1 using (14). We conclude that
the sampling intervals T; £ 7,41 — 73, @ = 0,1,..., are
independent due to (91) and the fact that the sampling-
decision process (14) is independent of the process prior to
the last stopping time; the sampling intervals 75, 1 = 0,1, ...,
are identically distributed due to (90) and the fact that the
sampling-decision process (14) only takes into account the
time elapsed from the last sampling time ¢ — 7;, t € [7;, Ti41),
1=0,1,...

We proceed to show that the optimization problem asso-
ciated with D*°(F') can be reduced to (15) by Lemma 6.
The assumptions in Lemma 6 are satisfied with Z; <+ T;,
R; + [I(Xy — E[Xy|X,,,73])dt. The sampling intervals
TO,Tl,..L. are i.i.d. due to Remark 1. The expectation of
T; is finite by assumption (iv). The reward random variables
R, are 1.i.d. due to (90)—(91) and Remark 1. Furthermore,
the expectation of the reward is finite by assumption (iv).
Therefore, using (88), we simplify the DFF in (10) to (15).



APPENDIX G
PROOF OF THEOREM 3

Achievability is shown right after the statement of Theo-
rem 3. We here show the converse (21). Denote by I the set
of all sampling-decision processes (33) that satisfy (iv)—(vi)
on [0,7]. Denote by Cr the set of all causal compressing
policies on [0,7]. We lower bound the DRF in (18) as
(100) (see (100) on the next page), where (100b) holds since
E[N] < E {Zf\;l E(Ui)}, and U’ belongs to the o-algebra
generated by the stochastic process {X;}i.,. The equality
in (100c) is obtained by subtracting and adding E[X;|X,, 7;]
to X; in (100b), where

E[Xt|7'i,t < 7'1'_;,_1]
= E[Xi{ X}, 7"t < Tig1] — E[X¢| X, , 7] (101)
holds due to the argument that justifies (54d) with {X. }}_,
replaced by {X};",.

While (100) shows that the converse (21) holds for the finite
horizon (T' < o0), the converse also holds for the infinite
horizon (1" = o). This is because (100) continues to hold with
the minimization constraints {P;}7_, € Iy, {fi}, € Cr,
(2a), and % < R replaced by {Pi}i>0 € oo, {fi}i>0 €
Coo, (2b), and lim supp_, @ < R, respectively, and with
limsupy_, .. inserted right before the objective functions in
(100a)—(100c).

APPENDIX H

PROOF OF PROPOSITION 1

Using (12), we calculate that for ¢ € [7;,7;41),

g

X - X =0y 2T L (102
t t t—7; \/% e20(t—7¢) 1 ( )
Let
T, 27 — 7,0 =0,1,2,... (103)
We write the objective function of (15) as
T;
B[ Opdt] .
T ET] (1o
E [Ry(0O2
- L;Fﬂ (104b)
E[R:1(0%,)]
Ry (E[O2?
. B(E0R) 1040
RI(E[OTJ)

where (104a) is obtained by plugging (102)—(103) into (15);
(104b) holds by solving Dynkin’s formula [11, Eq.(44)] for
R1(07,) and R5(07,) in (23)~(24) to obtain

E (1052)

/Ti Ofdt} =E [R:(07,)],
0

E[T;] = E[R(0%,)], (105b)

and plugging (105) into (104a); (104c) is obtained by letting
2

A2 ZE[R(OF,)], (106a)
2

B £ 7 Ri(E[O})), (106b)
N

S %E[O%], (106¢)

E[R,(0})] =A-C, (106d)

Ry(E[0F,)]) = B - C, (106e)

applying Jensen’s inequality to R;(v), which is convex in v >
0, to obtain A > B, and using the fact that % > BTEC for
A>B>C2>0.

By (105b) ([11, Eq.(43)]) and Jensen’s inequality, we write
the minimization constraint in (15) as,

Ri(E[0},]) < B[R (0%,)] = EIT)] = .

For any R (]ET[O%]) in the range (107), (104c) is a lower
bound to (104a). Choosing R;(E[O7]) that satisfies (107)
with equality leads to (104c) being equal to D(R) in (26).

Plugging (25) into (104b), we verify that the lower bound
in (104b) is achieved by the symmetric threshold sampling
policy in (25).

(107)

APPENDIX I
RECOVERING L; FROM Z;

Denote by §(-) the Dirac-delta function. Let v; be the i-th
discontinuous point of {Z;}7_,. For {Z,}I_, in (29), v; is
simply equal to the sampling times 7;, ¢« = 1,2,... Without
loss of generality, we assume that {Z;}7_, is right-continuous
at the discontinuous point v;, since the mean-square cost
in (28) is not affected by the assumption. Denote by v, the
time just before time v;, where ZU: #* Z,,.

Proposition 4. Assume that {Z;}L_, is almost surely ACG,
on [v;, viy1) and is right-continuous at the discontinuous point
vi. Then, control signal {L;}L o in (31) for t € [v;,vis1),
i=1,2,..., is given by

(ZW - Z,) 5(t—v), t=u,

Ly =4\ 7227, (108)
lims o+ =5, t € (Vi, Vig1).
Proof. For t € [v;,v;11), we rewrite (32) as
t v;—0
/ Lyds = Z; — lim L,ds (109a)
Vi §—0+ 0

=Zi—Z,- (109b)
=(Zt = Zv,) + (Zv; — Z,-), (109¢)
which is equivalent to (108). O]

Note that L,, is an impulse control at t = v; [7], [34]-[37],
and Ly, t € (v, v41) is equal to the left-derivative of Z;.
This is because Z; may not be differentiable at ¢, but its left-
derivative exists since the ACG.,. property of Z, implies that
it is differentiable almost everywhere on (v;,v;41) [39]. For
example, if X; = W;, the optimal control signal (29) is Z; =
—W,,, t € [1;,Ti+1), and the corresponding control signal
in (31) is Lt = 7(W7-11 - Wﬁ,-i_l)(;(t — Ti) for t € [Tia7i+l)~



N B
1 Ti41 . .
D(R)=  inf =E / (Xy — B[X,|U, 7t < 7i41))2dt (100a)
{P}i o€, T i—=0 7 Ti
{feYio€Cr:
(2a)
1 N Ti+1
> inf —E / X; — E[X { X}, Tt < Tiga])?dt (100b)
o, TR [ N BN 1)
Hrisr
1 N Ti+1 -
= inf =E Z/ (X: — B[X¢|7i,t < 7iq1])%dt (100c)
{Pt}Z:OGHT: T =0 Y Ti
“Hi<r
= D(R). (100d)
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