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Optimal Causal Rate-Constrained Sampling for a
Class of Continuous Markov Processes

Nian Guo, Victoria Kostina

Abstract—Consider the following communication scenario. An
encoder observes a stochastic process and causally decides when
and what to transmit about it, under a constraint on the expected
number of bits transmitted per second. A decoder uses the
received codewords to causally estimate the process in real time.
The encoder and the decoder are synchronized in time. For a class
of continuous Markov processes satisfying regularity conditions,
we find the optimal encoding and decoding policies that minimize
the end-to-end estimation mean-square error under the rate
constraint. We show that the optimal encoding policy transmits
a 1-bit codeword once the process innovation passes one of two
thresholds. The optimal decoder noiselessly recovers the last
sample from the 1-bit codewords and codeword-generating time
stamps, and uses it to decide the running estimate of the current
process, until the next codeword arrives. In particular, we show
the optimal causal code for the Ornstein-Uhlenbeck process and
calculate its distortion-rate function. Furthermore, we show that
the optimal causal code also minimizes the mean-square cost of a
continuous-time control system driven by a continuous Markov
process and controlled by an additive control signal.

Index Terms—Causal lossy source coding, sequential estima-
tion, event-triggered sampling, zero-delay coding, rate-distortion
theory, control.

I. INTRODUCTION

A. System model and problem setup

Consider the system in Fig. 1. A source outputs a real-
valued continuous-time stochastic process {Xt}Tt=0 with state
space (R,BR), where BR is the Borel σ-algebra on R.

encoder channel decoder

Fig. 1. System Model. Sampling time τi and codeword Ui are chosen by the
encoder’s sampling and compressing policies, respectively.

An encoder tracks the input process {Xt}Tt=0 and causally
decides to transmit codewords about it at a sequence of
stopping times

0 ≤ τ1 ≤ τ2 ≤ · · · ≤ τN ≤ T (1)

that are decided by a causal sampling policy. Thus, the total
number of time stamps N can be random. The time horizon
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T can either be finite or infinite. At time τi, the encoder
generates a codeword Ui according to a causal compressing
policy, based on the process stopped at τi, {Xt}τit=0. Then, the
codeword Ui is passed to the decoder without delay through
a noiseless channel. At time t, t ∈ [τi, τi+1), the decoder
estimates the input process Xt, yielding X̂t, based on all the
received codewords and the codeword-generating time stamps,
i.e., (Uj , τj), j = 1, 2, . . . , i. Note that the encoder and the
decoder can leverage the timing information for free due to
the clock synchronization and the zero-delay channel.

The communication between the encoder and the decoder
is subject to a constraint on the long-term average rate,

1

T
E

[
N∑
i=1

ℓ(Ui)

]
≤ R (bits per sec), (T <∞),

(2a)

lim sup
T→∞

1

T
E

[
N∑
i=1

ℓ(Ui)

]
≤ R (bits per sec), (T =∞),

(2b)

where ℓ : Z+ → Z+ denotes the length of its argument in bits,
ℓ(x) = ⌊log2(x)⌋ + 1 for x > 0, ℓ(0) = 1. The distortion is
measured by the long-term average mean-square error (MSE),

1

T
E

[∫ T

0

(Xt − X̂t)
2dt

]
≤ d, (T <∞), (3a)

lim sup
T→∞

1

T
E

[∫ T

0

(Xt − X̂t)
2dt

]
≤ d, (T =∞). (3b)

We aim to find the encoding and decoding policies that achieve
the optimal tradeoff between the communication rate (2) and
the MSE (3).

B. The class of processes

Let {Ft}Tt=0 be the filtration generated by {Xt}Tt=0.
Throughout, we impose the following assumptions on the

source process.
(i) (Strong Markov property) {Xt}Tt=0 satisfies the strong

Markov property: For all almost surely finite stopping
times τ ∈ [0, T ] and all t ∈ [0, T − τ ], Xt+τ is
conditionally independent of Fτ given Xτ .

(ii) (Continuous paths) {Xt}Tt=0 has continuous paths: Xt is
almost surely continuous in t.

(iii) (Mean-square residual error properties) For all almost
surely finite stopping times τ ∈ [0, T ] and all t ∈ [τ, T ],
the mean-square residual error X̃t = Xt − E[Xt|Xτ , τ ]
satisfies:
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(iii-a) X̃t is independent of Fτ and X̃t has the Markov
property, i.e., for all r ∈ [τ, t], X̃t is conditionally
independent of Fr given X̃r.

(iii-b) X̃t can be expressed as

X̃t = qt(s)X̃s +Rt(s, τ), (4)

where s ∈ [τ, t], qt(s) is a deterministic function of
(t, s), and Rt(s, τ) is a random process with continuous
paths, i.e., Rt(s, τ) is almost surely continuous in t.
Furthermore, the random variable Rt(s, τ) has an even
and quasi-concave pdf, and qt(t) = 1, Rt(t, τ) = 0.

We assume that the initial state X0 = 0 at time τ0 = 0
is known both at the encoder and the decoder. For example,
any stochastic process of the form Xt = g1(t)Wg2(t) + g3(t)
satisfies (i)–(iii), where {Wt}t≥0 denotes the Wiener process,
g1, g2, g3 are continuous deterministic functions of the time
t, and g2 is positive and non-decreasing in t. The param-
eters in (4) for this example process are qt(s) = g1(t)

g1(s)

and Rt(s, τ) = g1(t)Wg2(t)−g2(s). The Wiener process, the
Ornstein-Uhlenbeck (OU) process, and the continuous Lévy
processes are special cases of this form. These processes
are widely used in financial mathematics and physics. There
are also other stochastic processes satisfying (i)–(iii), e.g.,
Xt = Wt+c1 + c2Wt, where c1, c2 ∈ R, which is expressed
by (4) with qt(s) = 1, Rt(s, τ) = (1 + c1)Wt−s.

C. Context

In wireless sensor networks and network control systems of
the Internet of Things, nodes are spatially dispersed, commu-
nication between nodes is a limited resource, and delays are
undesirable. We study the fundamental limits of the commu-
nication scenario in which the transmitting node (the encoder)
observes a stochastic process, and wants to communicate it in
real-time to the receiving node (the decoder).

Related work includes [1]–[11], where it is assumed that
the encoder transmits real-valued samples of the input process
and that the communication is subject to a sampling frequency
constraint or a transmission cost. The causal sampling and
estimation policies that achieve the optimal tradeoff between
the sampling frequency and the distortion have been studied
for the following discrete-time processes: the i.i.d process [1];
the Gauss-Markov process [2]; the partially observed Gauss-
Markov process [3]; and, the first-order autoregressive Markov
process Xt+1 = aXt + Vt driven by an i.i.d. process {Vt}
with unimodal and even distribution [4][5]. The first-order au-
toregressive Markov process considered in [4][5] represents a
discrete-time counterpart of the continuous-time process in (4)
with qt(s) = at−s, Rt(s, τ) = Xt− at−sXs. Chakravorty and
Mahajan [4] showed that a threshold sampling policy with
two constant thresholds and an innovation-based filter jointly
minimize a discounted cost function consisting of the MSE
and a transmission cost in the infinite time horizon. Molin and
Hirche [5] proposed an iterative algorithm to find the sampling
policy that achieves the minimum of a cost function consisting
of a linear combination of the MSE and the transmission
cost in the finite time horizon, and showed that the algorithm
converges to a two-threshold policy.

The optimal sampling policies for some continuous-time
processes have also been studied: first-order stochastic sys-
tems with a Wiener process disturbance [7]; the finite time-
horizon Wiener and OU processes [8]; the infinite time-horizon
multidimensional Wiener process [9]; the infinite-time horizon
Wiener process [10]; and the OU processes [11] with channel
delay. Åström and Bernhardsson [7] compared uniform and
symmetric threshold sampling policies in first-order stochastic
systems with a Wiener process disturbance. They showed
that the symmetric threshold sampling policy gives a lower
distortion than the uniform sampling under the same average
sampling frequency. The optimal causal sampling policies
for the Wiener and the OU processes determined in [8]–
[11] are threshold sampling policies, whose thresholds are
obtained by solving optimal stopping time problems via Snell’s
envelope. The proofs in [8]–[11] rely on a conjecture about
the form of the MMSE decoding policy, implying that the
causal sampling policies in [8]–[11] are optimal with respect
to the conjectured decoding policy, rather than the optimal
decoding policy. Namely, Rabi et al. [8] conjectured that the
MMSE decoding policy under the optimal sampling policy
is equal to the MMSE decoding policy under deterministic
(process-independent) sampling policies without a proof. Nar
and Başar [9] arrived at the MMSE decoding policy for the
Wiener process by referring to the results in [6], where the
stochastic processes considered in [6] are in discrete-time and
the increments of the discrete-time process are assumed to
have finite support. Yet, the Wiener process is a continuous-
time process with Gaussian increments having infinite support.
Sun et al. [10] and Ornee and Sun [11] assumed that the
decoding policy ignores the implied knowledge when no
samples are received at the decoder, neglecting the possible
influence of the sampling policy on the decoding policy.
Nonparametric estimation of Lévy processes from uniform
non-causal samples has been studied in [12]–[14].

Although the works [1]–[14] did not consider quantization
effects, in digital communication systems, real-valued numbers
are quantized into bits before a transmission. Quantized event-
triggered control schemes have been studied for the following
systems: discrete-time linear systems with noise [15] and
without noise [16]; continuous-time linear time-invariant (LTI)
systems without noise [17][18] and with bounded noise [19]–
[21]; partially-observed continuous-time LTI systems without
noise [22][23] and with bounded noise [24]. The quantized
event-triggered control schemes in [15]–[24] are designed
to stabilize the systems. The optimality of the proposed
schemes was not considered in [15]–[24]. In our previous
work [25], we introduced an information-theoretic framework
for studying jointly optimal sampling and quantization policies
by considering a long-term average bitrate constraint. We
showed that the optimal event-triggered sampling policy for
the Wiener process remains a two-threshold policy even under
a bitrate constraint, while the optimal deterministic (process-
independent) sampling policy is uniform.

D. Contribution
In this paper, we leverage the information-theoretic frame-

work of our prior work [25], introduced in the context of the
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Wiener process, to study the jointly optimal sampling and
quantization policies for the wider class of continuous-time
processes introduced in Section I-B. Unlike [25], where we
rely on previous results [9] on the optimal sampling policy
for the Wiener process to obtain the optimal causal code, in
this paper, we derive the form of the optimal sampling policy
from scratch. We prove that the optimal sampling policy is a
two-threshold policy whether or not quantization is taken into
account. We show that the optimal causal compressor is a
sign-of-innovation compressor that generates 1-bit codewords
representing the sign of the process innovation since the last
sample. This surprisingly simple structure is a consequence
of both the real-time distortion constraint (3), which penalizes
coding delays, and the symmetry of the innovation distribu-
tion (iii), which ensures the optimality of the two-threshold
sampling policy. Compared to the previous work on sampling
of continuous-time processes [8]–[11], our results apply to
a wider class of processes, namely, the processes satisfying
(i)–(iii) in Section I-B. Furthermore, we confirm the validity
of the conjecture on the MMSE decoding policy in [8]–
[9]. To do so, we use a set of tools that differs from that
in [8]–[9]: where [8]–[9] use Snell’s envelope to find the
optimal sampling policy under the conjecture on the form
of the MMSE decoding policy, we apply majorization theory
and real induction to find the jointly optimal sampling and
decoding policies. We show that the optimal causal code for
the Ornstein-Uhlenbeck process generates a 1-bit codeword
once the process innovation crosses one of the two thresholds,
and calculate its distortion-rate function. Next, we show that
the SOI code remains optimal in a rate-constrained control
scenario with a stochastic plant driven by a process satisfying
assumptions (i)–(iii) in Section I-B. The SOI code minimizes
mean-square cost between the desirable state 0 and the state
of the stochastic plant. In contrast to the event-triggered
control schemes in [7] and [15]–[24], we introduce a bitrate
constraint to the control problems; we consider a wider class
of disturbance signals beyond the Wiener process; we show
the optimality of the SOI code in minimizing the state MSE.

A part of this work was presented at the 2020 IEEE
International Symposium on Information Theory [30]; the
conference version does not contain Section IV or any proofs.

E. Paper organization

In Section II, we formulate a causal frequency-constrained
sampling problem and show the form of the optimal causal
sampling policy. In Section III, we formally introduce the
causal rate-constrained sampling problem and show the opti-
mal causal code. In Section IV, we prove that the causal code
introduced in Section III remains optimal in a rate-constrained
control system.

F. Notation

We denote by {Xt}rt=s the portion of the stochastic process
within the time interval [s, r], and denote by {Xt}rt>s the
portion of the stochastic process within the time interval (s, r].
For a possibly infinite sequence x = {x1, x2, . . . }, we write
xi = {x1, x2, . . . , xi} to denote the vector of its first i

elements. For a continuous random variable X , we denote
its pdf by fX . We denote by Supp(fX) ≜ {x : fX(x) > 0}
the support of fX . We use σ(·) to denote the σ-algebra of its
argument. We use X ← Y to represent a substitution of X by
Y .

II. CAUSAL FREQUENCY-CONSTRAINED SAMPLING

Before we show the optimal causal code in Section III, we
formulate the causal frequency-constrained sampling problem
and find the optimal tradeoff between the sampling frequency
and the MSE. In Theorem 1 in Section II-B below, we
find the form of the optimal sampling policy. We will show
in Theorem 3 in Section III-B that when coupled with an
appropriate compressing policy, the optimal causal sampling
policy in Theorem 1 attains the optimal tradeoff between the
communication rate and the MSE.

A. Causal frequency-constrained code

Allowing the encoder to transmit real-valued samples Ui =
Xτi instead of the Z+-valued codewords Ui, and replacing
the bitrate constraint (2) by the average sampling frequency
constraint

E[N ]

T
≤ F (samples per sec), (T <∞), (5a)

lim sup
T→∞

E[N ]

T
≤ F (samples per sec), (T =∞), (5b)

where N is the total number of stopping times in (1), we obtain
the problem of causal frequency-constrained sampling. Next,
we formally define causal sampling and decoding policies.

Definition 1 ((F, d, T ) causal frequency-constrained code).
A time horizon-T causal frequency-constrained code for the
stochastic process {Xt}Tt=0 is a pair of causal sampling and
decoding policies, characterized next.

1. The causal sampling policy is a collection of stopping
times τ1, τ2, . . . (1) adapted to the filtration {Ft}Tt=0 at
which samples are generated.

2. Given a causal sampling policy, the real-valued samples
{Xτj}ij=1 and sampling time stamps τ i, the MMSE
decoding policy is

X̄t = E[Xt|{Xτj}ij=1, τ
i, t < τi+1], t ∈ [τi, τi+1). (6)

In an (F, d, T ) code, the average sampling frequency must
satisfy (5), while the MSE must satisfy

1

T
E

[∫ T

0

(Xt − X̄t)
2

]
≤ d, (T <∞), (7a)

lim sup
T→∞

1

T
E

[∫ T

0

(Xt − X̄t)
2

]
≤ d, (T =∞). (7b)

Allowing more freedom in designing the decoding policy
will not lead to a lower MSE, since (6) is the MMSE estimator.
Note that we cannot immediately simplify the expectation
in (6) using the strong Markov property of {Xt}Tt=0 ((i)
in Section I-B) at this point, since the expectation is also
conditioned on t < τi+1. We will show in Corollary 1.1 below
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that under the optimal causal sampling policy, (6) can indeed
be simplified to (12).

In this work, we focus on causal sampling policies satisfying
the following assumptions.
(iv) The sampling interval between any two consecutive

stopping times, τi+1 − τi, satisfies

E[τi+1 − τi] <∞, i = 0, 1, . . . , (8)

and the MSE within each interval satisfies

E
[∫ τi+1

τi

(Xt − X̄t)
2dt

]
<∞, i = 0, 1, . . . (9)

(v) The Markov chain τi+1 − τi − {Xt}τit=0 holds for all
i = 0, 1, . . .

(vi) For all i = 0, 1, . . . , the conditional pdfs fτi+1|τi exist.
Note that (8) holds trivially if T < ∞. Sun et al. [10] and
Ornee and Sun [11] also assumed (8) in their analyses of the
infinite time horizon problems for the Wiener [10] and the OU
[11] processes. We use (9) to obtain a simplified form of the
distortion-frequency tradeoff for time-homogeneous processes
(see (15) below). Furthermore, (9) allows us to prove that the
optimal sampling intervals τi+1 − τi form an i.i.d. process
(see (14) below). We use (v), (vi) to show that the optimal
sampling policy is a symmetric threshold sampling policy
in the frequency-constrained setting. See Appendix A for a
sufficient condition on the stochastic process for the optimal
sampling policy to satisfy (v). For example, in the infinite
time horizon, stochastic processes of the form Xt = cWat+bt
satisfy the sufficient condition. Assumption (v) implies that the
stopping times form a Markov chain. In contrast, the sampling
intervals of causal sampling policies are assumed to form a
regenerative process in [10][11].

To quantify the tradeoffs between the sampling fre-
quency (5) and the MSE (7), we introduce the distortion-
frequency function.

Definition 2 (Distortion-frequency function (DFF)). The DFF
for causal frequency-constrained sampling of the process
{Xt}Tt=0 is the minimum MSE achievable by causal frequency-
constrained codes,

D(F ) ≜ inf{d : ∃ (F, d, T ) causal

frequency-constrained code satisfying (iv), (v), (vi)}.
(10)

In the causal frequency-constrained sampling scenario, we
say that a causal sampling policy is optimal if, when succeeded
by the MMSE decoding policy (6), it forms an (F, d, T ) code
with d = D(F ).

B. Optimal causal sampling policy

In Theorem 1 below, we show that the optimal sampling
policy is a two-threshold policy that is symmetric with respect
to the expected value of the process given the last sample and
the last sampling time, henceforth referred to as a symmetric
threshold policy. In Theorem 2, we show a simplified form of
the policy for time-homogeneous processes.

Theorem 1. The optimal causal sampling policy in either
finite or infinite time horizon for a class of continuous Markov
processes satisfying assumptions (i)–(iii) in Section I-B is a
symmetric threshold sampling policy of the form

τi+1 = inf{t ≥ τi :Xt − E[Xt|Xτi , τi]

/∈ (−ai(t, τi), ai(t, τi))},
(11)

where the threshold ai is a non-negative deterministic function
of (t, τi).

Proof. Appendix B.

Theorem 1 shows that the optimal sampling policy is found
within a much smaller set of sampling policies than that
allowed in Definition 2: the input stochastic process {Xt}Tt=0

is sampled only if the process innovation passes one of two
symmetric thresholds. The thresholds depend on {Xt}Tt=0 only
through the current time t, the last sampling time, and the
number of samples taken until t. Using the form of the
sampling policy (11), we show that the MMSE decoding
policy (6) simplifies as follows.

Corollary 1.1. In the setting of Theorem 1, under the optimal
sampling policy (11), the MMSE decoding policy reduces to

X̄t = E[Xt|Xτi , τi], t ∈ [τi, τi+1). (12)

Proof. Appendix C.

In the frequency-constrained setting, the expectation in (12)
can be calculated at the decoder even without the knowledge
of the sampling policy, whereas the expectation in (6) depends
on the sampling policy at the encoder through the conditioning
on the event that the next sample has not been taken yet, i.e.,
t < τi+1. Corollary 1.1 confirms the conjecture in [8, Eq.(3)]
and [9, Eq.(5)] on the form of the MMSE decoding policy.

Corollary 1.2. In the setting of Theorem 1, the optimal causal
sampling policy satisfies (5) with equality.

Proof. Appendix D.

Corollary 1.2 indicates that the inequality in the sampling
frequency constraint (5) can be simplified to an equality.

Corollary 1.3. In the setting of Theorem 1, the threshold in
(11) satisfies

lim
δ→0+

ai(t+ δ, τi) ≥ ai(t, τi), ∀t ∈ [τi, τi+1), i = 0, 1, . . .

(13)

Proof. Appendix E.

Corollary 1.3 implies that the threshold ai(t, τi), at time t ∈
[τi, τi+1), is either right-continuous or has a jump to a larger
value. Thus, the continuous-path process Xt − E[Xt|Xτi , τi]
in (11) must hit one of the symmetric thresholds ±ai(τi+1, τi)
at t = τi+1.

Definition 3 (time-homogeneous process). The process
{Xt}Tt=0 is called time-homogeneous, if for a stopping time
τ ∈ [0, T ] and a constant s ∈ [0, T − τ ], Xs+τ −E[Xs+τ |Xτ ]
follows a distribution that only depends on s.
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Theorem 2. In the infinite time horizon, the optimal causal
sampling policy for time-homogeneous continuous Markov
processes satisfying assumptions (i)–(iii) in Section I-B is a
symmetric threshold sampling policy of the form

τi+1 = inf{t ≥ τi :Xt − E[Xt|Xτi , τi]

/∈ (−a(t− τi), a(t− τi))},
(14)

where the threshold a is a non-negative deterministic function
of t− τi. The optimal threshold of (14) is the solution to the
following optimization problem,

D(F ) = min
{a(t)}t≥0 :

E[τ1]= 1
F

E
[∫ τ1

0
(Xt − E[Xt]

2)dt
]

E[τ1]
. (15)

Proof. Appendix F.

Remark 1. In the setting of Theorem 2, the sampling intervals
τi+1 − τi, i = 0, 1, . . . under a symmetric threshold sampling
policy of the form (14) are i.i.d.

Theorem 2 shows that the optimal sampling policy in
Theorem 1 can be further simplified for time-homogeneous
processes in the infinite time horizon. As a consequence of
time homogeneity, thresholds in (14) only depend on the time
elapsed since the last sampling time. In contrast, the thresholds
in (11) depend on the last sampling time as well.

For example, applying (15) to the time-homogeneous pro-
cess Xt = cWat+ bt, a, b, c ∈ R, a > 0, we conclude that the
sampling threshold that achieves (15) is equal to a(t) = c

√
a
F

and that D(F ) = ac2

6F .

III. CAUSAL RATE-CONSTRAINED SAMPLING

In this section, we formally introduce the causal rate-
constrained sampling problem, and we leverage Theorem 1 in
Section II-B to find the causal code that achieves the optimal
tradeoff between the communication rate and the MSE.

A. Causal rate-constrained code
We formally define encoding and decoding policies, and

define a distortion-rate function (DRF) to describe the tradeoffs
between (2) and (3).

Definition 4 ((R, d, T ) causal rate-constrained codes). A time
horizon-T causal rate-constrained code for the stochastic
process {Xt}Tt=0 is a pair of encoding and decoding policies.
The encoding policy consists of a causal sampling policy and
a causal compressing policy.

1. The causal sampling policy, defined in Definition 1-1,
decides the stopping times (1) at which codewords are
generated.

2. The causal compressing policy, characterized by the Z+-
valued process {ft}Tt=0 adapted to {Ft}Tt=0, decides the
codeword to transmit at time τi,

Ui = fτi . (16)

Given an encoding policy, the MMSE decoding policy uses
the received codewords and codeword-generating time stamps
to estimate the process,

X̂t = E[Xt|U i, τ i, t < τi+1], t ∈ [τi, τi+1). (17)

In an (R, d, T ) code, the lengths of the codewords must satisfy
the average communication rate constraint R bits per sec
in (2), while the MSE must satisfy (3).

Allowing more freedom in designing the decoding policy
will not lead to a lower MSE, because (17) is the MMSE
estimator.

Definition 5 (Distortion-rate function (DRF)). The DRF for
causal rate-constrained sampling of the process {Xt}Tt=0 is
the minimum MSE achievable by causal rate-R codes:

D(R) ≜ inf{d : ∃ (R, d, T ) causal rate-constrained

code satisfying (iv), (v), (vi)}.
(18)

We say that a causal (R, d, T ) code is optimal if d = D(R).

B. Optimal causal codes

We proceed to show that the sampling policies in Theorem 1
remain optimal in the scenario of rate-constrained sampling.
Towards that end, we introduce a class of causal codes, namely,
the sign-of-innovation (SOI) codes. We prove that an SOI
code is the optimal code as long as the process satisfies the
assumptions (i)–(iii) in Section I-B.

Definition 6 (A Sign-of-innovation (SOI) code). The SOI code
for a continuous-path process {Xt}Tt=0 consists of an encoding
and a decoding policy. Given a symmetric threshold sampling
policy in (11) that satisfies (iv)–(vi), at each stopping time
τi, i = 1, 2, . . . , the SOI encoding policy generates a 1-bit
codeword

Ui =

{
1 if Xτi − E[Xτi |Xτi−1

, τi−1] = ai−1(τi, τi−1)

0 if Xτi − E[Xτi |Xτi−1
, τi−1] = −ai−1(τi, τi−1).

(19)
At time τi, the MMSE decoding policy noiselessly recovers
Xτi , i = 1, 2, . . . via the received codewords U i,

Xτi = (2Ui − 1)ai−1(τi, τi−1) + E[Xτi |Xτi−1 , τi−1], (20)

and uses (12) as the estimate of Xt until Ui+1 arrives.

Theorem 3. In either finite or infinite time horizon, for a
process {Xt}Tt=0 satisfying assumptions (i)–(iii) in Section I-B,
the SOI code, whose stopping times are decided by the opti-
mal symmetric threshold sampling policy (11) with average
sampling frequency (5) F = R, is the optimal causal code.

Proof. In Appendix G, we show the converse

D(R) ≥ D(R). (21)

We proceed to show that the equality in (21) is achievable by
the SOI code. Corollary 1.3 implies that the 1-bit codeword
in (19) together with the recovered samples {Xτj}i−1

j=1 suffices
to recover Xτi , i = 1, 2, . . . noiselessly at the decoder.
Moreover, since ℓ(Ui) = 1 under a 1-bit SOI compressor, the
rate constraint (2) is equal the frequency constraint (5), i.e.,
E
[∑N

i=1 ℓ(Ui)
]
= E[N ]. Thus, (21) is achieved with equality

under the SOI code.

Theorem 3 illuminates the working principle of the optimal
causal code for the stochastic processes considered in Sec-
tion I-B: The encoder transmits a 1-bit codeword representing



6

the sign of the process innovation as soon as the innovation
crosses one of the two symmetric thresholds. To achieve
the DRF (18), the optimal causal code uses the minimum
compression rate (1 bit per codeword) in exchange for the
maximum average sampling frequency R.

Theorem 3 shows that the optimal codeword-generating
times are the sampling times of the optimal causal sampling
policy. Furthermore, the optimal decoding policy only depends
on the thresholds of the sampling policy and the sampling time
stamps. Thus, finding the optimal causal code is simplified to
finding the optimal causal sampling policy.

C. Rate-constrained sampling of the OU process

Using Theorem 3 and (15), we can easily find the optimal
causal code and its corresponding DRF for the OU process by
finding the thresholds of the optimal causal sampling policy.
The OU process is the solution to the following SDE:

dXt = θ(µ−Xt)dt+ σdWt, (22)

where µ, θ, σ are positive constants, and Wt is the Wiener pro-
cess. The OU process satisfies the conditions in Section I-B.
Under the assumption (iv) in Section II-A and the assumption
that the sampling intervals form a regenerative process, Ornee
and Sun [11] found the optimal sampling policy for the OU
process in the infinite horizon by forming an optimal stopping
problem. They solved the optimal stopping problem via the
Snell’s envelope which requires solving an SDE. We provide
an easier method to find the optimal sampling policy for the
OU process in Appendix H. We also show via Theorem 3
that the policy remains optimal when bitrate constraints are
present.

Denote

R1(v) ≜
v

σ2 2F2

(
1, 1;

3

2
, 2;

θ

σ2
v

)
, (23)

R2(v) ≜ −
v

2θ
+

σ2

2θ
R1(v), (24)

where 2F2 is a generalized hypergeometric function.

Proposition 1. For causal coding of the Ornstein-Uhlenbeck
process, the optimal causal sampling policy is the symmetric
threshold sampling policy given by

τi+1 = inf

{
t ≥ τi : |Xt − E[Xt|Xτi , τi]| ≥

√
R−1

1

(
1

R

)}
,

(25)
The DRF under the corresponding SOI code is given by

D(R) = R ·R2

(
R−1

1

(
1

R

))
. (26)

Proof. Appendix H.

IV. RATE-CONSTRAINED CONTROL

The SOI coding scheme introduced in Definition 6 also
applies to the following rate-constrained control scenario.

The stochastic plant evolves according to

Yt = Xt + Zt, (27)

stochastic plant encoder

controller

Fig. 2. Control system.

where Xt is a stochastic disturbance satisfying the assumptions
(i)–(iii) in Section I-B, and Zt is the additive control signal
output from the controller. The encoder observes Yt, causally
decides the stopping times τ1, τ2, . . . adapted to the filtration
generated by {Yt}Tt=0, and generates a codeword Ui at each
stopping time τi based on its past observations {Yt}τit=0. The
controller collects the received codewords to causally form the
control signal Zt, with the goal to minimize the mean-square
cost on Yt deviating from the target state 0,

1

T
E

[∫ T

0

Y 2
t dt

]
. (28)

We aim to find the encoding policy satisfying (iv)–(vi) and the
control policy that jointly minimize the mean-square cost (28)
under the communication rate constraint (2) between the
encoder and the controller.

Proposition 2. In the rate-constrained control system, the
optimal encoding policy that minimizes the mean-square cost
in (28) is the SOI coding scheme in Theorem 3, and the optimal
control signal is

Zt = −X̂t. (29)

Proof. Given the received codewords U i and the fact that the
next codeword has not been transmitted at t < τi+1, the
optimal control signal Zt that minimizes (28) is indeed the
optimal MMSE decoding policy X̂t in (17). Substituting (27)
and (29) into (28), we obtain the following MSE,

1

T
E

[∫ T

0

(Xt − X̂t)
2dt

]
, (30)

which is the same as (3). Thus, the problem of finding the
optimal encoding policy in this rate-constrained control system
reduces to the problem that we solved in Section III-B, whose
result is given by Theorem 3.

Under the optimal control policy in Proposition 2, the
optimal encoder does not rely on the control signal to decide
the codeword generating times.

In the traditional stochastic differential equation (SDE) for-
mulation [7], [32]–[38], the evolution of the plant is described
as

dYt = dXt + Ltdt, (31)
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where Lt is the control signal. The state evolutions (27)
and (31) are the same if and only if the control signals in (27)
and (31) are related as∫ t

0

Lsds = Zt, ∀t ∈ [0, T ]. (32)

Any state evolution described by (31) can be written in the
form of (27) by setting Zt as in (32). Conversely, a state evolu-
tion described by (27) can be written as (31) if and only if Zt,
when viewed as a function of t, is almost surely generalized
absolutely continuous in the restricted sense (ACG∗) between
any consecutive discontinuous points of {Zt}Tt=0 [39][40].
This is because control signal Ls in (32) is well-defined if
and only if Z∗

t satisfies the ACG∗ property. The function
f : [a, b]→ R is said to be ACG∗ [39][40] over set E ⊂ [a, b]
if f is continuous, and E is a countable union of sets En on
each of which f satisfies the following: for each ϵ > 0, there
exists δ > 0 such that

∑k
i=1 supx,y∈[xi,yi] |F (x)− F (y)| < ϵ

for all finite sets of disjoint open intervals {(xi, yi)}ki=1 with
endpoints in En and

∑k
i=1 |xi − yi| < δ. For example, for

stochastic processes of the form Xt = g1(t)Wg2(t) + g3(t),
the optimal control signal {Zt}Tt=0 (29) almost surely satisfies
the ACG∗ property. Here, g1(·), g3(·) are continuous and
differentiable except perhaps on a countable set, g2(·) is
continuous, positive, and non-decreasing, and {Wt}Tt=0 is the
Wiener process. In Appendix I, we show how to recover
{Lt}Tt=0 from {Zt}Tt=0 using (32), provided that {Zt}Tt=0

satisfies the ACG∗ property.
Åström and Bernhardsson [7] considered the controlled

system in (31) with Xt = Wt and proposed a control policy
that injects an impulse control to drive Yt to zero once |Yt|
exceeds a threshold. The control signal Lt corresponding to
the optimal Zt in (29) for Xt = Wt recovers Åström and
Bernhardsson’s impulse control policy [7] for the Wiener
disturbance (Appendix I).

V. CONCLUSION AND DISCUSSION

We have studied the optimal rate-constrained causal code for
a class of continuous processes satisfying regularity conditions
(i)–(iii). Prior art on remote estimation and optimal scheduling
mostly considered a sampling frequency constraint, whereas
in this work, we introduce a rate constraint. We leverage the
information-theoretic framework of our prior work [30] to
establish the jointly optimal causal sampling and quantization
policies. We show that the optimal frequency-constrained
causal sampling policy is a symmetric threshold sampling
policy (Theorems 1–2). Prior work [8]–[9] on finding the
optimal frequency-constrained sampling policy for the Wiener
and the OU processes conjectured that the optimal decoding
policy is the MMSE decoding policy in (6). We confirm
that conjecture in Corollary 1.1. We show that the optimal
causal code is the SOI code that transmits 1-bit codewords
as frequently as possible at the stopping times decided by the
optimal frequency-constrained sampling policy (Theorem 3).
Theorems 1 and 3 demonstrate that the optimal causal code
can be easily obtained once we know the optimal sampling
policy, revealing the close connection between the frequency-
constrained and rate-constrained causal sampling problems.

We show that the SOI code minimizes the mean-square cost
between the desirable state 0 and the state of the stochastic
plant driven by a process satisfying conditions (i)–(iii).

Causal rate-constrained sampling for communication over
a digital-input noisy channel remains an interesting direction
for future research. It is a joint source-channel coding problem
that is extremely sensitive to coding delay. Channel codes that
can quickly incorporate newly arrived bits into a continuing
transmission like the one we developed in [31] will be instru-
mental for making progress in this direction.

APPENDIX A
SUFFICIENT CONDITION FOR (V)

Before we show the sufficient condition in Proposition 3
below, we first characterize the causal sampling policy in
Definition 1.

Any causal sampling policy in Definition 1 can be character-
ized by a set-valued process we term sampling-decision pro-
cess. It is a BR-valued process {Pt}Tt=0 adapted to {Ft}Tt=0,
which decides the stopping times

τi+1 = inf{t ≥ τi : X̃t /∈ Pt}, (33)

where the mean-square residual error process {X̃t}Tt=0 in (33)
is defined as

X̃t ≜ Xt − E[Xt|Xτi , τi], ∀t ∈ [τi, τi+1). (34)

Given any sampling policy τ1, τ2, . . . and a realization of the
process up to time t, we can set

Pt =

{
At, t ̸= τi, i = 1, 2, . . . ,

Ac
t , t = τi, i = 1, 2, . . . ,

(35)

where At is any Borel set the realization of X̃t belongs to.
Without assumption (v), Pt for t ∈ [τi, τi+1) can depend on
the input process {Xs}ts=0 up to time t. Under assumption (v),
Pt for t ∈ [τi, τi+1) can only depend on the stopping time τi
and {X̃s}ts=τi (34).

We proceed to present the sufficient condition on the
stochastic process under which the optimal sampling pol-
icy satisfies (v). We define notations that will be used in
Proposition 3 below. Consider a sampling-decision process
{Pt}Tt=τk

with stopping times τk, τk+1, . . . , the mean-square
residual error X̃t (34), and the MMSE decoding policy X̄t (6).
The value of {Pt}Tt=τk

at time t ∈ [τk, T ] only depends on
{Xs − E[Xs|Xτk , τk]}ts=τk

and τk, i.e.,

Pt = Pt({Xs − E[Xs|Xτk , τk]}ts=τk
, τk), t ∈ [τk, T ]. (36)

Denote by Π[τk,T ] the set of all sampling-decision processes of
the form (36). As a result, the stopping times associated with
{Pt}Tτk ∈ Π[τk,T ] only satisfy (v) at i = k. Let N

(
{Pt}Tt=τk

)
represent the number of samples taken between [τk, T ] under
{Pt}Tt=τk

. We denote

Dr(ϕ) ≜ min
{Pt}T

t=r∈Π[r,T ] :
1
T E[N({Pt}T

t=r)|τk=r]≤ϕ

1

T
E

[∫ T

τk

(Xt − X̄t)
2dt

∣∣∣∣∣τk = r

]
.

(37)
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Consider an arbitrary sampling-decision process
{P ′

t}Tt=0 (33) with stopping times τ ′1, τ
′
2, . . . , the mean-

square residual error X̃ ′
t, and the MMSE decoding policy X̄ ′

t.
The value of the sampling-decision process {P ′

t}Tt=0 at time
t can depend on {Xs}ts=0, i.e., for all t ∈ [τ ′k, T ],

P ′
t = P ′

t

(
{Xs}

τ ′
k

s=0,
{
Xs − E[Xs|Xτ ′

k
, τ ′k]

}t

s=τ ′
k

, τ ′k

)
.

(38)

Denote by Π′
[τ ′

k,T ] the set of all sampling-decision processes
of the form (38).

Proposition 3. For a stochastic process {Xt}Tt=0 satisfying
(i)–(iii), if Dr(ϕ) in (37) is a convex function in ϕ for all
k = 0, 1, . . . and r ∈ [0, T ], then the optimal sampling policy
satisfies (v).

Proof. Fix an arbitrary sampling-decision process
{P ′

t}Tt=τ ′
k
∈ Π′

[τ ′
k,T ] at τ ′k = r. To show that the optimal

sampling policy of {Xt}Tt=0 satisfies (v), it suffices to show
that for all k = 0, 1, . . . , Dr

(
1
T E[N({P ′

t}Tt=r)|τ ′k = r]
)

is no
larger than the MSE achieved by {P ′

t}Tt=r, i.e.,

E

[
1

T

∫ T

τ ′
k

(Xt − X̄ ′
t)

2dt

∣∣∣∣∣τ ′k = r

]

≥ Dr

(
1

T
E[N({P ′

t}Tt=r)|τ ′k = r]

)
. (39)

We fix an arbitrary realization of {Xs}rs=0 = x that leads
to τ ′k = r, and we construct {Pt}Tt=r as

Pt = P ′
t

(
x, {Xs − E[Xs|Xr, r]}ts=r , r

)
. (40)

The sampling-decision process {Pt}Tt=r (40) satisfies the min-
imization constraint in (37) with

ϕ =
1

T
E[N({P ′

t}Tt=r)|{Xs}rs=0 = x, τ ′k = r] (41)

due to the reasons that follow. The process {Pt}Tt=r (40)
belongs to Π[r,T ] since it samples the input process after
time r as if it has observed {Xs}rs=0 = x regardless of the
actual realization of {Xs}rs=0. Since {X̃t}t≥τk , at τk = r, is
independent of Fr by (iii-a), and τi+1, i ≥ k, is conditionally
independent of {Xs}rs=0 given τk = r due to {Pt}Tt=r ∈
Π[r,T ], we conclude that under {Pt}Tt=r, the random process
{Xt−X̄t}Tt=r conditioned on τk = r has the same probability
distribution as {Xt − X̄ ′

t}Tt=r under {P ′
t}Tr=0 conditioned on

{Xs}rs=0 = x, τ ′k = r. This implies that {Pt}Tt=r (40) achieves
average sampling frequency ϕ (41), and that

E

[∫ T

τ ′
k

(Xt − X̄ ′
t)

2dt

∣∣∣∣∣{Xs}rs=0 = x, τ ′k = r

]

= E

[∫ T

τk

(Xt − X̄t)
2dt

∣∣∣∣∣{Xs}rs=0, τk = r

]
(42a)

= E

[∫ T

τk

(Xt − X̄t)
2dt

∣∣∣∣∣τk = r

]
(42b)

≥ Dr

(
1

T
E[N({P ′

t}Tt=r)|{Xs}rs=0 = x, τ ′k = r]

)
, (42c)

where (42c) holds because {Pt}Tt=τk
∈ Π[τk,T ]. Since (42c)

holds for an arbitrary realization of {Xs}rs=0 compatible with
τ ′k = r, it holds almost surely that

E

[∫ T

τ ′
k

(Xt − X̄ ′
t)

2dt

∣∣∣∣∣{Xs}rs=0, τ
′
k = r

]
(43)

≥ Dr

(
1

T
E[N({P ′

t}Tt=r)|{Xs}rs=0, τ
′
k = r]

)
.

Taking an expectation of (43), we conclude

E

[
1

T

∫ T

τ ′
k

(Xt − X̄ ′
t)

2dt

∣∣∣∣∣τ ′k = r

]
(44)

≥ E
[
Dr

(
1

T
E[N({P ′

t}Tt=r)|{Xs}rs=0, τ
′
k = r]

)∣∣∣∣τ ′k = r

]
,

(45)

and (39) follows via Jensen’s inequality.

APPENDIX B
PROOF OF THEOREM 1

A. Tools

We first introduce Lemmas 1–4 that supply majorization and
real induction tools for proving Theorem 1.

Function f majorizes g, f ≻ g, if and only if for any Borel
measurable set B ∈ BR with finite Lebesgue measure, there
exits a Borel measurable set A ∈ BR with the same Lebesgue
measure, such that [2]∫

B
g(x)dx ≤

∫
A
f(x)dx. (46)

Function f : R→ R is even if f(x) = f(−x) for all x ∈ R.
Function f : R → R is quasi-concave if for all x, y ∈ R,

0 ≤ λ ≤ 1,

f(λx+ (1− λ)y) ≥ min{f(x), f(y)}. (47)

We denote by 1(a,b)(x) an indicator function that is equal to
1 if and only if x ∈ (a, b).

Lemmas 1–3, stated next, show several majorization prop-
erties of pdfs.

Lemma 1. ([2, Lemma 2]) Fix two pdfs fX and gX , such that
fX is even and quasi-concave and fX ≻ gX . Fix a scalar
c > 0, and a function h : R→ [0, 1], such that∫

R
fX(x)1(−c,c)(x)dx =

∫
R
gX(x)h(x)dx, (48)

Then,
fX|X∈(−c,c) ≻ g′X , (49)

where the pdfs fX|X∈(−a,a) and g′X are given by,

fX|X∈(−c,c)(x) =
fX(x)1(−c,c)(x)∫

R fX(x)1(−c,c)(x)dx

g′X(x) =
gX(x)h(x)∫

R gX(x)h(x)dx
.

(50)

Lemma 2. ([27, Lemma 6.7]) Fix two pdfs fX and gX , such
that fX is even and quasi-concave and that fX majorizes gX ,
fX ≻ gX . Fix an even and quasi-concave pdf rY . Then, the
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convolution of fX and rY majorizes the convolution of gX
and rY ,

fX ∗ rY ≻ gX ∗ rY , (51)

Furthermore, fX ∗ rY is even and quasi-concave.

Lemma 3. ([2, Lemma 4]) Fix two pdfs fX and gX such
that fX is even and quasi-concave and that fX majorizes gX ,
fX ≻ gX . Then,∫

R
x2fX(x)dx ≤

∫
R
(x− y)2gX(x)dx, ∀y ∈ R. (52)

Lemma 4, stated next, provides a mathematical proof tech-
nique called real induction. We will use it to prove that the
assertions in Lemma 5, stated below, hold on a continuous
interval.

Lemma 4. (Real induction [28, Thm. 2]) A subset S ⊂ [a, b],
a < b is called inductive if

1) a ∈ S;
2) If a ≤ x < b, x ∈ S, then there exists y > x such that

[x, y] ∈ S;
3) If a ≤ x < b, [a, x) ∈ S, then x ∈ S.

If a subset S ⊂ [a, b] is inductive, then S = [a, b].

B. A technical lemma

We define the following notations for two sampling-decision
processes {Pt}Tt=0 and {Psym

t }Tt=0 (see Appendix A). Fix an
arbitrary sampling-decision process {Pt}Tt=0 (33) satisfying
(iv)–(v). It gives rise to a sampling policy with stopping times
τ1, τ2, . . . via (33). We recall the definition of the mean-square
residual error (MSRE) process {X̃t}Tt=0 in (iii) and denote the
MSRE process under {Pt}Tt=0 as

X̃t = X̃t({Ps}Ts=0) (53a)

≜ Xt − E[Xt|Xτi , τi], t ∈ [τi, τi+1). (53b)

We define the residual error estimate (REE) process { ¯̃Xt}Tt=0

under {Pt}Tt=0 as

¯̃Xt = ¯̃Xt({Ps}Ts=0) (54a)

≜ X̄t − E[Xt|Xτi , τi] (54b)

= E[X̃t|{Xτj}ij=1, τ
i, t < τi+1] (54c)

= E[X̃t|τi, t < τi+1], t ∈ [τi, τi+1), (54d)

where X̄t = X̄t({Ps}Ts=0) is the MMSE decoding policy
defined in (6); the equality in (54c) holds since E[Xt|Xτi , τi] ∈
σ({Xτj}ij=1, τ

i, t < τi+1); (54d) holds because X̃t is indepen-
dent of {Xτj}ij=1, τ

i due to (iii-a), and the event {t < τi+1} is
independent of {Xτj}ij=1, τ

i−1 given τi due to (v). We recall
that N({Pt}Tt=0) defined above Proposition 3 in Appendix A
represents the number of stopping times in [0, T ], and we
simplify this notation as

N ≜ N({Pt}Tt=0). (55)

We denote the left-closed continuous interval

Ωτi+1(s) ≜ {t ∈ [s, T ] : P[τi+1 > t|τi = s] > 0}, (56)

for all s ∈ Supp(fτi), and the left-open continuous interval

Ω̄τi+1(s) ≜ Ωτi+1(s) \ {s}. (57)

Given {Pt}Tt=0, we construct a sampling-decision process
{Psym

t }Tt=0 (33) of the form (11), which via (33) is associated
with a sampling policy with stopping times τ ′1, τ

′
2, . . . , such

that the symmetric thresholds {ai(r, s)}Tr=s of {Psym
t }Tt=0

satisfy for all s ∈ Supp(fτi), t ∈ [s, T ],

P[X̃ ′
r ∈ (−ai(r, s), ai(r, s)), ∀r ∈ [s, t]|τ ′i = s]

= P[τi+1 > t|τi = s].
(58)

This is possible since by adjusting the thresholds, the left
side of (58) can be equal to any non-increasing function
in t bounded between [0, 1]. Under {Psym

t }Tt=0 (58), for all
s ∈ Supp(fτi), i = 1, 2, . . . , it holds that

Ωτi(s) = Ωτ ′
i
(s), (59)

Ω̄τi(s) = Ω̄τ ′
i
(s). (60)

We denote the MSRE and the REE processes and the number
of stopping times on [0, T ] under {Psym

t }Tt=0 respectively by

X̃ ′
t = X̃t({Psym

s }Ts=0), (61)
¯̃X ′
t =

˜̄Xt({Psym
s }Ts=0) = 0, (62)

N ′ = N({Psym
s }Ts=0), (63)

where (62) holds since we can write ¯̃X ′
t as (54d) with τi

replaced by τ ′i using the argument that justifies (54d); X̃ ′
t

has an even and quasi-concave pdf due to the assumption
(iii-b), and the pdf of X̃t conditioned on τ ′i , t < τ ′i+1

under a symmetric threshold sampling-decision process of the
form (11) is still even and quasi-concave.

We denote the following probabilities

Qi(a, b, c, d) ≜ P[τi+1 > a|τi+1 > b, τi = c, X̃a = d] (64a)

Q′
i(a, b, c, d) ≜ P[τ ′i+1 > a|τ ′i+1 > b, τ ′i = c, X̃ ′

a = d]. (64b)

We proceed to introduce Lemma 5 using the notations
defined in (53)–(64b). We will use the assertions in Lemma 5
to compare the MSEs achieved by {Pt}Tt=0 and {Psym

t }Tt=0.

Lemma 5. The pdfs fX̃t|τi=s,τi+1>t and fX̃′
t|τ ′

i=s,τ ′
i+1>t exist

for all s ∈ Supp(fτi), t ∈ Ω̄τi+1(s). Furthermore, for all
s ∈ Supp(fτi), t ∈ Ω̄τi+1

(s), it holds that

fX̃′
t|τ ′

i=s,τ ′
i+1>t ≻ fX̃t|τi=s,τi+1>t, (65)

fX̃′
t|τ ′

i=s,τ ′
i+1>t is even and quasi-concave. (66)

Proof of Lemma 5. We prove that fX̃t|τi=s,τi+1>t exists. The
proof that fX̃′

t|τ ′
i=s,τ ′

i+1>t exists is similar. Since X̃t at t ≥
τi = s, is independent of Fs by (iii-a) and is equal to Rt(s, s)
by (iii-b), we compute fX̃t|τi=s,τi+1>s using (4),

fX̃t|τi=s,τi+1>s = fRt(s,s). (67)

Thus, fX̃t|τi=s,τi+1>s exists since fRt(s,s) is a valid pdf by
(iii-b). To establish that fX̃t|τi=s,τi+1>t(y) exists, we compute

fX̃t|τi=s,τi+1>t(y) = fX̃t|τi=s,τi+1>s,τi+1>t(y) (68a)

=
Qi(t, s, s, y)fX̃t|τi=s,τi+1>s(y)

P[τi+1 > t|τi = s, τi+1 > s]
, (68b)
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where (68a) holds since τi+1 > t implies τi+1 > s. In (68b),
we observe that for all t ∈ Ω̄τi+1(s), the pdf fX̃t|τi+1>s,τi=s

exists by (67); the denominator of (68b) is nonzero. We con-
clude that the pdf fX̃t|τi=s,τi>t exists for all s ∈ Supp(fτi),
t ∈ Ω̄τi+1

(s).
The assertion (65) holds if and only if

(a) for all s ∈ Supp(fτi), t ∈ Ω̄τi+1(s) and for any Borel
measurable set B ∈ BR with finite Lebesgue measure,
there exists a Borel measurable set A ∈ BR with the
same Lebesgue measure, such that

P[X̃ ′
t ∈ A|τ ′i = s, τ ′i+1 > t]

≥ P[X̃t ∈ B|τi = s, τi+1 > t],
(69)

holds. This is because (69) is a rewrite of (65) using the
definition of majorization (46).

The assertion (66) holds if and only if for all s ∈ Supp(fτi),
t ∈ Ω̄τi+1

(s), all of the following hold:
(b) the conditional cdf P[X̃ ′

t ≤ y|τ ′i = s, τ ′i+1 > t] is convex
for y < 0 and is concave for y > 0.

(c) for any y > 0,

P[X̃ ′
t ∈ (0, y]|τ ′i = s, τ ′i+1 > t]

=P[X̃ ′
t ∈ [−y, 0)|τ ′i = s, τ ′i+1 > t].

(70)

This is because fX̃′
t|τ ′

i=s,τ ′
i+1>t is quasi-concave if and only if

(b) holds, and fX̃′
t|τ ′

i=s,τ ′
i+1>t is even if and only if (c) holds.

Items (a)–(c) facilitate proving that the assertions (65)–(66)
hold on the left-open interval Ω̄τi+1(s). Real induction, which
must be used on a left-closed interval, does not apply to
show (65)–(66) directly, since the densities in (65)–(66) do not
exist at t = s. Instead, we apply real induction to show (a)–(c).
Using real induction in Lemma 4, we verify that conditions
1), 3), 2) in Lemma 4 hold for (a)–(c) in on t ∈ Ωτi+1(s) one
by one.

To verify that the condition 1) in Lemma 4 holds, we need
to show that (a)–(c) hold for t = s. This is trivial since

P[X̃ ′
s = 0|τ ′i = s, τ ′i+1 > s]

= P[X̃s = 0|τi = s, τi+1 > s]

= 1.

(71)

Next, we show that condition 3) in Lemma 4 holds, that
is, assuming that (a)–(c) hold for all t ∈ [s, r), r ∈ Ω̄τi+1(s),
we prove that (a)–(c) hold for t = r. Equivalently, we show
that (65)–(66) hold for t = r. Let δ ∈ (0, r−s]. At time t = r,
we calculate the left side of (65) as

fX̃′
r|τ ′

i=s,τ ′
i+1>r(y)

= lim
δ→0+

fX̃′
r|τ ′

i=s,τ ′
i+1>r−δ,τ ′

i+1>r(y) (72a)

= lim
δ→0+

Q′
i(r, r − δ, s, y)fX̃′

r|τ ′
i=s,τ ′

i+1>r−δ(y)∫
R Q′

i(r, r − δ, s, y)fX̃′
r|τ ′

i=s,τ ′
i+1>r−δ(y)dy

(72b)

= lim
δ→0+

1(−ai(r,s),ai(r,s))(y)fX̃′
r|τ ′

i=s,τ ′
i+1>r−δ(y)∫

R 1(−ai(r,s),ai(r,s))(y)fX̃′
r|τ ′

i=s,τ ′
i+1>r−δ(y)dy

,

(72c)

where (72a) holds since the event τ ′i+1 > r implies the event
τ ′i+1 > r − δ; the pdf fX̃′

r|τ ′
i=s,τ ′

i+1>r−δ in (72b) exists since

(68) holds with X̃t, τi = s, τi+1 > s, τi+1 > t replaced by
X̃ ′

r, τ ′i = s, τ ′i+1 > s, τ ′i+1 > r − δ, respectively; (72c) holds
since

lim
δ→0+

Q′
i(r, r − δ, s, y) = 1(−ai(r,s),ai(r,s))(y). (73)

Similarly, replacing Q′
i in (72b) by Qi, we calculate the right

side of (65) as

fX̃r|τi=s,τi+1>r(y)

= lim
δ→0+

Qi(r, r − δ, s, y)fX̃r|τi=s,τi+1>r−δ(y)∫
R Qi(r, r − δ, s, y)fX̃r|τi=s,τi+1>r−δ(y)dy

, (74)

where the pdf fX̃r|τi=s,τi+1>r−δ(y) exists since (68) holds
with X̃t, τi+1 > t replaced by X̃r, τi+1 > r− δ respectively.

To check that (65) holds at t = r, we first prove
that fX̃′

r|τ ′
i=s,τ ′

i+1>r−δ majorizes fX̃r|τi=s,τi+1>r−δ . Note that

Rr(r−δ, s) is independent of {X̃t}r−δ
t=0 due to (iii-a), and thus

is independent of the event {τ ′i+1 > r− δ, τ ′i = s}. We obtain
X̃ ′

r using (4),

fX̃′
r|τ ′

i=s,τ ′
i+1>r−δ = fqr(r−δ)X̃′

r−δ|τ
′
i=s,τ ′

i+1>r−δ ∗ fRr(r−δ,s).

(75)
By (75) and the inductive hypothesis that (a)–(c) holds
for t ∈ [s, r), the assumptions in Lemma 2 are sat-
isfied with fX ← fqr(r−δ)X̃′

r−δ|τ
′
i=s,τ ′

i+1>r−δ , gX ←
fqr(r−δ)X̃r−δ|τi=s,τi+1>r−δ , rY ← fRr(r−δ,s). We conclude
that

fX̃′
r|τ ′

i=s,τ ′
i+1>r−δ ≻ fX̃r|τi=s,τi+1>r−δ, (76)

fX̃′
r|τ ′

i=s,τ ′
i+1>r−δ is even and quasi-concave. (77)

Due to (77) and the fact that the indicator function in (72c)
is over an interval symmetric about zero, we conclude (66)
holds for t = r. By (58), (76) and (77), the assumptions
in Lemma 1 are satisfied with fX ← fX̃′

r|τ ′
i=s,τ ′

i+1>r−δ ,
gX ← fX̃r|τi=s,τi+1>r−δ , fX|X∈(−c,c) ← fX̃′

r|τ ′
i=s,τ ′

i+1>r,
and g′X ← fX̃r|τi=s,τi+1>r, c ← ai(r, s), h ← Qi(r, r −
δ, s, y). Thus, we conclude that (65) holds for t = r. Therefore,
(65)–(66) hold for t = r, i.e., (a)–(c) hold for t = r.

To prove that the condition 2) in Lemma 4 holds, we assume
(a)–(c) hold for t = r, and prove that the following holds:

lim
δ→0+

fX̃′
r+δ|τ

′
i=s,τ ′

i+1>r+δ ≻ lim
δ→0+

fX̃r+δ|τi=s,τi+1>r+δ,

(78a)
lim

δ→0+
fX̃′

r+δ|τ
′
i=s,τ ′

i+1>r+δ is even and quasi-concave. (78b)

The right and the left sides of (78a) are equal to (72c) and (74)
respectively with r replaced by r+δ. It is easy to see that (75)–
(77) and the assumptions in Lemma 1 hold with r replaced
by r + δ. Thus, we conclude that (78) holds.

Using the real induction in Lemma 4, we have shown that
(a)–(c) hold for all s ∈ Supp(fτi), t ∈ Ωτi+1

(s). Thus, (65)–
(66) hold for all s ∈ Supp(fτi), t ∈ Ω̄τi+1

(s).
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C. Proof of Theorem 1

The sampling-decision process {Psym
t }Tt=0 leads to the same

average sampling frequency as {Pt}Tt=0. This is because (58)
implies that for all s ∈ Supp(fτi), t ∈ [s, T ],

P[τi+1 > t|τi = s] = P[τ ′i+1 > t|τ ′i = s]. (79)

Together with the Markov property of the stopping times
(assumption (v)), (79) implies that the joint distribution of
τ1, τ2, . . . is equal to the joint distribution of τ ′1, τ

′
2, . . . We

conclude that {Pt}Tt=0 and {Psym
t }Tt=0 lead to the same

average sampling frequency

E[N ] = E[N ′]. (80)

Next, we show {Psym
t }Tt=0 achieves an MSE no larger than

that achieved by {Pt}Tt=0. Due to (54d), (62), and (65)–(66) in
Lemma 5, we can apply Lemma 3 with fX ← fX̃′

t|τ ′
i=s,τ ′

i+1>t

and gX ← fX̃t|τi=s,τi+1>t, yielding

E
[
(X̃t − ¯̃Xt)

2|τi = s, τi+1 > t
]
≥ E

[
X̃ ′2

t |τ ′i = s, τ ′i+1 > t
]
.

(81)
Combining (79) and (81), we conclude by law of total expec-
tation that {Psym

t }Tt=0 achieves an MSE no larger than that
achieved by {Pt}Tt=0.

APPENDIX C
PROOF OF COROLLARY 1.1

Under a symmetric threshold sampling policy (11), the
MMSE decoding policy in (6) can be expanded as, for
τi ≤ t < τi+1,

X̄t =E[Xt|{Xτj}ij=1, τ
i, t < τi+1] (82a)

= ¯̃Xt + E[Xt|Xτi , τi] (82b)
=E[Xt|Xτi , τi], (82c)

where ¯̃Xt in (82b) is equal to ¯̃X ′
t in (62), thus is equal to zero.

APPENDIX D
PROOF OF COROLLARY 1.2

Given any causal sampling policy such that (5) is satisfied
with a strict inequality, we construct a causal sampling policy
that satisfies (5) with equality and leads to an MSE no worse
than that achieved by the given causal sampling policy.

Given an arbitrary symmetric threshold sampling policy (11)
with stopping times τ1, τ2, . . . , we denote by Nt the number
of samples taken in [0, t]. Let t′, t′ ∈ (0, T ) be a dummy

deterministic time. We decompose the MSE under the given
sampling policy as

E

Nt′−1∑
i=0

∫ τi+1

τi

(Xt − E[Xt|Xτi , τi])
2dt

 (83a)

+E

[∫ t′

τN
t′

(Xt − E[Xt|XτN
t′
, τNt′ ])

2dt

]
(83b)

+E
[∫ τN

t′+1

t′
(Xt − E[Xt|XτN

t′
, τNt′ ])

2dt

]
(83c)

+E

 NT∑
i=Nt′+1

∫ τi+1

τi

(Xt − E[Xt|Xτi , τi])
2dt

 , (83d)

where τNT+1 ≜ T .
Under the given sampling policy τ1, τ2, . . . , we construct a

sampling policy by inserting an extra deterministic sampling
time t′. The resultant MSE is the same as (83) with (83c)
replaced by

E
[∫ τN

t′+1

t′
(Xt − E[Xt|Xt′ ])

2dt

]
, (84)

since a sample is taken at time t′ under the constructed
sampling policy. Since

σ(XτN
t′
, τNt′ ) ⊆ σ(Ft′) (85a)

E[Xt|Ft′ ] = E[Xt|Xt′ ], (85b)

where (85b) is due to the strong Markov process (i) in
Section I-B, we conclude that (83c) ≥ (84).

Thus, by introducing extra sampling times, we can achieve
the same or a lower MSE. We can express the difference
between the frequency constraint F and the average sampling
frequency under the given sampling policy as

FT − E[NT ] = I +D, (86)

where I ∈ N represents the non-negative integer part, and
D ∈ (0, 1) represents the decimal part. By introducing I
different deterministic sampling times, we can compensate the
integer part I . By introducing a random sampling time stamp
t with probability D to sample and probability 1 − D not
to sample, we can compensate the decimal part. Therefore,
for any sampling policy whose average sampling frequency is
strictly less than F , we can always construct a sampling policy
that achieves the maximum sampling frequency F and leads
to an MSE no worse than that achieved by the arbitrarily fixed
sampling policy.

APPENDIX E
PROOF OF COROLLARY 1.3

We show that symmetric thresholds {ai(r, s)}Tr=s in (58)
must satisfy (13) for all s ∈ Supp(fτi).

Due to (vi), the probability on the right side of (58) is
continuous in t ∈ [s, T ] for all s ∈ Supp(fτi). Thus, for
all s ∈ Supp(fτi), t ∈ [s, T ),

lim
δ→0+

P
[
X̃ ′

r ∈ (−ai(r, s), ai(r, s)), ∀r ∈ [s, t+ δ]
∣∣∣τ ′i = s

]
(87a)

= P
[
X̃ ′

r ∈ (−ai(r, s), ai(r, s)), ∀r ∈ [s, t]
∣∣∣τ ′i = s

]
. (87b)
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By the continuity of X̃ ′
r in (iii-b), (87) implies (13).

APPENDIX F
PROOF OF THEOREM 2

First, we introduce Lemma 6, stated next, that will be
helpful in proving (15). Second, we prove that symmetric
threshold sampling policies (11) in Theorem 1 can be reduced
to (14) in the setting of Theorem 2, i.e., under the assumption
that {Xt}t≥0 has time-homogeneous property in Definition 3
and T = ∞. Then, we show that Remark 1 holds and prove
that (15) holds using Lemma 6.

Lemma 6. (e.g. [29, Proposition 1(ii)]) Suppose that
Z0, Z1, . . . are i.i.d. Let Qt ≜

∑∞
i=0 1[0,t]

(∑i
k=0 Zk

)
. Let

R0, R1, . . . be i.i.d rewards, and let St ≜
∑Qt

i=0 Ri be the
renewal reward process. If 0 < E[Zi] < ∞, E[|Ri|] < ∞,
then

lim
T→∞

E[ST ]

T
=

E[R0]

E[Z0]
. (88)

Since the stochastic process considered in Theorem 2 is
infinitely long, we use the DFF in the infinite time horizon:

D∞(F ) = inf
{Pt}t≥0∈Π:

(5b)

lim sup
T→∞

1

T
E

[∫ T

0

(X̃t − ¯̃Xt)
2

]
, (89)

where Π is the set of all sampling-decision processes (33) of
the form (11) satisfying (iv) and (v) in Section I-B over the
infinite time horizon. Note that for any stopping time τ , and
for any t ≥ τ , we have

{X̃t}t≥τ and {X̃t−τ}t−τ≥0 have the same distribution, (90)

{X̃t}t≥τ is independent of {X̃t}τt=0, (91)

where (90) is due to the time-homogeneity of {Xt}t≥0 in
Definition 3, and (91) is due to (iii-a) in Section I-B.

Using (90)–(91) and assumption (iv), we will prove that
the sampling-decision process that achieves the D∞(F ) for
time-homogeneous continuous Markov processes satisfying
assumptions (i)–(iii) is of the form (14).

Given an arbitrary sampling-decision process {Pt}t≥0 of
the form (11), we define its MSRE (53) and REE (54)
processes as

X̃t ≜ X̃t({Ps}s≥0),
¯̃Xt ≜

¯̃Xt({Ps}s≥0).
(92)

Denote by τ1, τ2, . . . the stopping times of the causal sampling
policy characterized by {Pt}t≥0. Assume that the sampling-
decision process that achieves D∞(F ) (89) is

{
P(a)
t

}
t≥0

. We

have,

D∞(F ) (93a)

= inf
{Pt}t≥0∈Π:

Pt=P(a)
t ,t≤τi,
(5b)

lim sup
T→∞

1

T
E

[∫ T

τi

(X̃t − ¯̃Xt)
2dt

]
(93b)

= inf
{Pt}t≥0∈Π:

(5b)

lim sup
T→∞

1

T
E

[∫ T−τi

0

(X̃t − ¯̃Xt)
2dt

]
(93c)

= D∞(F ), (93d)

where (93b) is due to assumption (iv); (93c) is due to (90);
the equality in (93d) is achieved since (93c) is upper-bounded
by (93d) and is equal to (93a) simultaneously. Suppose that
the sampling-decision processes that achieve (93b)–(93c) are
{P(b)

t }t≥0 and {P(c)
t }t≥0, respectively. From (93a) and (93b),

we observe that{
P(a)
t

}
t≥τi

=
{
P(b)
t

}
t≥τi

, i = 0, 1, . . . (94)

We prove that under sampling-decision processes satisfying
assumption (iv), it holds that

E

[∫ T

T−τi

(X̃t − ¯̃Xt)
2

]
<∞, (95)

so that using (93c), (93d), and (95), we conclude{
P(c)
t

}
t≥0

=
{
P(a)
t

}
t≥0

. (96)

By assumption (iv) we know that there exist sampling-decision
processes that lead to

E
[∫ τi

0

(X̃t − ¯̃Xt)
2dt

]
<∞. (97)

Thus, there exist sampling-decision processes such that (95)
holds. Since the goal is to minimize the MSE, it suffices to
consider sampling-decision processes that lead to (95).

Due to (90), the probability distributions of X̃t, t ∈ [0, T −
τi] in (93b) and X̃t, t ∈ [τi, T ] (93c) are the same. Thus,
the sampling-decision process {Pt}t≥τi =

{
P(a)
t−τi

}
t−τi≥0

achieves the infimum in (93b). We conclude{
P(b)
t

}
t≥τi

=
{
P(a)
t−τi

}
t−τi≥0

, i = 0, 1, . . . (98)

Using (94) and (98), we conclude that
{
P(a)
t−τi

}
t−τi≥0

={
P(a)
t

}
t≥τi

, i = 0, 1, . . . , i.e.,

a0(s, 0) = ai(s+ τi, τi). (99)

Thus, (14) follows.
Next, we show Remark 1 using (14). We conclude that

the sampling intervals Ti ≜ τi+1 − τi, i = 0, 1, . . . , are
independent due to (91) and the fact that the sampling-
decision process (14) is independent of the process prior to
the last stopping time; the sampling intervals Ti, i = 0, 1, . . . ,
are identically distributed due to (90) and the fact that the
sampling-decision process (14) only takes into account the
time elapsed from the last sampling time t− τi, t ∈ [τi, τi+1),
i = 0, 1, . . .

We proceed to show that the optimization problem asso-
ciated with D∞(F ) can be reduced to (15) by Lemma 6.
The assumptions in Lemma 6 are satisfied with Zi ← Ti,
Ri ←

∫ τi+1

τi
(Xt − E[Xt|Xτi , τi])

2dt. The sampling intervals
T0, T1, . . . are i.i.d. due to Remark 1. The expectation of
Ti is finite by assumption (iv). The reward random variables
Ri are i.i.d. due to (90)–(91) and Remark 1. Furthermore,
the expectation of the reward is finite by assumption (iv).
Therefore, using (88), we simplify the DFF in (10) to (15).
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APPENDIX G
PROOF OF THEOREM 3

Achievability is shown right after the statement of Theo-
rem 3. We here show the converse (21). Denote by ΠT the set
of all sampling-decision processes (33) that satisfy (iv)–(vi)
on [0, T ]. Denote by CT the set of all causal compressing
policies on [0, T ]. We lower bound the DRF in (18) as
(100) (see (100) on the next page), where (100b) holds since
E[N ] ≤ E

[∑N
i=1 ℓ(Ui)

]
, and U i belongs to the σ-algebra

generated by the stochastic process {Xs}τis=0. The equality
in (100c) is obtained by subtracting and adding E[Xt|Xτi , τi]
to Xt in (100b), where

E[X̃t|τi, t < τi+1]

= E[Xt|{Xs}τis=0, τ
i, t < τi+1]− E[Xt|Xτi , τi] (101)

holds due to the argument that justifies (54d) with {Xτj}ij=1

replaced by {Xs}τis=0.
While (100) shows that the converse (21) holds for the finite

horizon (T < ∞), the converse also holds for the infinite
horizon (T =∞). This is because (100) continues to hold with
the minimization constraints {Pt}Tt=0 ∈ ΠT , {ft}Tt=0 ∈ CT ,
(2a), and E[N ]

T ≤ R replaced by {Pt}t≥0 ∈ Π∞, {ft}t≥0 ∈
C∞, (2b), and lim supT→∞

E[N ]
T ≤ R, respectively, and with

lim supT→∞ inserted right before the objective functions in
(100a)–(100c).

APPENDIX H
PROOF OF PROPOSITION 1

Using (12), we calculate that for t ∈ [τi, τi+1),

Xt − X̄t = Ot−τi ≜
σ√
2θ

e−θ(t−τi)We2θ(t−τi)−1. (102)

Let

Ti ≜ τi+1 − τi, i = 0, 1, 2, . . . (103)

We write the objective function of (15) as

E
[∫ Ti

0
O2

t dt
]

E[Ti]
(104a)

=
E
[
R2(O

2
Ti
)
]

E[R1(O2
Ti
)]

(104b)

≥
R2(E[O2

Ti
)])

R1(E[O2
Ti
])
, (104c)

where (104a) is obtained by plugging (102)–(103) into (15);
(104b) holds by solving Dynkin’s formula [11, Eq.(44)] for
R1(O

2
Ti
) and R2(O

2
Ti
) in (23)–(24) to obtain

E

[∫ Ti

0

O2
t dt

]
= E

[
R2(O

2
Ti
)
]
, (105a)

E[Ti] = E[R1(O
2
Ti
)], (105b)

and plugging (105) into (104a); (104c) is obtained by letting

A ≜
σ2

2θ
E[R1(O

2
Ti
)], (106a)

B ≜
σ2

2θ
R1(E[O2

Ti
]), (106b)

C ≜
1

2θ
E[O2

Ti
], (106c)

E
[
R2(O

2
Ti
)
]
= A− C, (106d)

R2(E[O2
Ti
)]) = B − C, (106e)

applying Jensen’s inequality to R1(v), which is convex in v >
0, to obtain A ≥ B, and using the fact that A−C

A ≥ B−C
B for

A ≥ B ≥ C ≥ 0.
By (105b) ([11, Eq.(43)]) and Jensen’s inequality, we write

the minimization constraint in (15) as,

R1(E[O2
Ti
]) ≤ E[R1(O

2
Ti
)] = E[Ti] =

1

R
. (107)

For any R1(E[O2
Ti
]) in the range (107), (104c) is a lower

bound to (104a). Choosing R1(E[O2
Ti
]) that satisfies (107)

with equality leads to (104c) being equal to D(R) in (26).
Plugging (25) into (104b), we verify that the lower bound

in (104b) is achieved by the symmetric threshold sampling
policy in (25).

APPENDIX I
RECOVERING Lt FROM Zt

Denote by δ(·) the Dirac-delta function. Let νi be the i-th
discontinuous point of {Zt}Tt=0. For {Zt}Tt=0 in (29), νi is
simply equal to the sampling times τi, i = 1, 2, . . . Without
loss of generality, we assume that {Zt}Tt=0 is right-continuous
at the discontinuous point νi, since the mean-square cost
in (28) is not affected by the assumption. Denote by ν−i the
time just before time νi, where Zν−

i
̸= Zνi .

Proposition 4. Assume that {Zt}Tt=0 is almost surely ACG∗
on [νi, νi+1) and is right-continuous at the discontinuous point
νi. Then, control signal {Lt}Tt=0 in (31) for t ∈ [νi, νi+1),
i = 1, 2, . . . , is given by

Lt =

{(
Zνi
− Zν−

i

)
δ(t− νi), t = νi,

limδ→0+
Zt−Zt−δ

δ , t ∈ (νi, νi+1).
(108)

Proof. For t ∈ [νi, νi+1), we rewrite (32) as∫ t

νi

Lsds = Zt − lim
δ→0+

∫ νi−δ

0

Lsds (109a)

= Zt − Zν−
i

(109b)

= (Zt − Zνi) + (Zνi − Zν−
i
), (109c)

which is equivalent to (108).

Note that Lνi is an impulse control at t = νi [7], [34]–[37],
and Lt, t ∈ (νi, νi+1) is equal to the left-derivative of Zt.
This is because Zt may not be differentiable at t, but its left-
derivative exists since the ACG∗ property of Zt implies that
it is differentiable almost everywhere on (νi, νi+1) [39]. For
example, if Xt = Wt, the optimal control signal (29) is Zt =
−Wτi , t ∈ [τi, τi+1), and the corresponding control signal
in (31) is Lt = −(Wτi −Wτi−1

)δ(t− τi) for t ∈ [τi, τi+1).
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D(R) = inf
{Pt}T

t=0∈ΠT ,

{ft}T
t=0∈CT :
(2a)

1

T
E

[
N∑
i=0

∫ τi+1

τi

(Xt − E[Xt|U i, τ i, t < τi+1])
2dt

]
(100a)

≥ inf
{Pt}T

t=0∈ΠT :
E[N]
T ≤R

1

T
E

[
N∑
i=0

∫ τi+1

τi

(Xt − E[Xt|{Xs}τis=0, τ
i, t < τi+1])

2dt

]
(100b)

= inf
{Pt}T

t=0∈ΠT :
E[N]
T ≤R

1

T
E

[
N∑
i=0

∫ τi+1

τi

(X̃t − E[X̃t|τi, t < τi+1])
2dt

]
(100c)

= D(R). (100d)
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