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Exact minimum number of bits
to stabilize a linear system

Victoria Kostina, Yuval Peres, Gireeja Ranade, Mark Sellke

Abstract—We consider an unstable scalar linear stochastic
system, Xn+1 = aXn + Zn − Un, where a ≥ 1 is the system
gain, Zn’s are independent random variables with bounded α-
th moments, and Un’s are the control actions that are chosen
by a controller who receives a single element of a finite set
{1, . . . ,M} as its only information about system state Xi. We
show new proofs that M > a is necessary and sufficient for
β-moment stability, for any β < α. Our achievable scheme
is a uniform quantizer of the zoom-in / zoom-out type that
codes over multiple time instants for data rate efficiency; the
controller uses its memory of the past to correctly interpret
the received bits. We analyze the performance of our scheme
using probabilistic arguments. We show a simple proof of a
matching converse using information-theoretic techniques. Our
results generalize to vector systems, to systems with dependent
Gaussian noise, and to the scenario in which a small fraction
of transmitted messages is lost.

Index Terms—Linear stochastic control, source coding, data
rate theorem.

I. INTRODUCTION

We study the tradeoff between stabilizability of a linear
stochastic system and the coarseness of the quantizer used to
represent the state. The evolution of the system is described
by

Xn+1 = aXn + Zn − Un, (1)

where constant a ≥ 1; X1 and Z1, Z2, . . . are independent
random variables with bounded α-th moments, and Un is
the control action chosen based on the history of quantized
observations. More precisely, an M -bin causal quantizer-
controller for X1, X2, . . . is a sequence {fn, gn}∞n=1, where
fn : Rn 7→ [M ] is the encoding (quantizing) function, and
gn : [M ] 7→ Rn is the decoding (controlling) function, and
[M ] , {1, 2, . . . ,M}. At time i, the controller outputs

Un = gn(f1(X1), f2(X2), . . . , fn(Xn)). (2)
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The fundamental operational limit of quantized control of
interest in this paper is the minimum number of quantization
bins to achieve β-moment stability:

M?
β , inf

{
M : ∃M -bin causal quantizer-controller

s.t. lim sup
n

E
[
|Xn|β

]
<∞

}
, (3)

where 0 < β < α is fixed.
The main results of the paper are new proofs of the

following achievability and converse theorems, whose various
special cases have been previously shown in literature.

Theorem 1 (achievability). Let X1, Zn in (1) be independent
random variables with bounded α-moments. Then for any
0 < β < α

M?
β ≤ bac+ 1. (4)

Theorem 2 (converse). Let X1, Zn in (1) be independent
random variables. Let h(X1) > −∞, where h(X) ,
−
∫
R fX(x) log fX(x)dx is the differential entropy. Then, for

all β > 0,
M?
β ≥ bac+ 1. (5)

The first achievability results [1], [2] focused on unstable
scalar systems with bounded disturbances, i.e. |Zn| ≤ B
a.s., and showed that a simple uniform quantizer with the
number of quantization bins in (4) stabilizes such systems.
That corresponds to the special case α = β =∞. Nair and
Evans [5] showed that time-invariant fixed-rate quantizers are
unable to attain bounded cost if the noise is unbounded [5],
regardless of their rate. The reason is that since the noise is
unbounded, over time, a large magnitude noise realization
will inevitably be encountered, and the dynamic range of the
quantizer will be exceeded by a large margin, not permitting
recovery. This necessitates the use of adaptive quantizers of
zooming type [?], [?], [6]. Such quantizers “zoom out” (i.e.
expand their quantization intervals) when the system is far
from the target and “zoom in” when the system is close to
the target. Nair and Evans [5] constructed such an adaptive
fixed-length quantizer with nonuniform quantization levels
and showed second-moment stability via a recursive bound
on its mean-squared error, under the assumption that the
system noise has bounded 2 + ε moment, for some ε > 0.
Under the same assumption, Yüksel [9] (see [10], [11] for
generalizations to vector systems and to β = 1, 2, . . .) showed
second-moment stabilizability using a uniform scalar quantizer
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that enters its zoom-out mode whenever its input falls outside
its dynamic range. When applied to encode each k-th system
state over the following k time instances, the schemes in [5],
[9] attain (4) for a large enough k. See also [?], which explores
the use of constrained quantizers to encode the overflow event
over multiple time instances.

The converse in the special case of β = 2 was proved
in [5], where it was shown that it is impossible to achieve
second moment stability in the system in (1) using a quantizer-
controller with the number of bins < bac+ 1. This implies
the validity of Theorem 2 for β ≥ 2. Variants of the necessity
result in Theorem 2 are known for vector systems with
bounded disturbances [3], for noiseless vector systems under
different stability criteria [4], and for packet-drop channels [?].

In this paper, we construct a new zoom-in zoom-out scheme
that most of the time operates as if the noise were bounded,
and relies on a periodic magnitude test to determine whether
the state has left the quantized region. Similar to an application
of the schemes in [5], [9] to an undersampled system with
the transmission of a codeword over multiple time slots
mentioned above, our strategy uses coding over multiple time
instants, and the controller uses its memory of the past to
correctly interpret the received bits. While the controller in the
above modification of the known schemes is almost always
silent, producing a large signal once in k time instances, our
controller is almost always active, producing a control signal
optimized for bounded noise. Thus it introduces less delay. If
the periodic magnitude test is failed, the controller-quantizer
enters the zoom-out mode, which is essentially the same as
in [9]: the controller looks for the Xn in exponentially larger
intervals until it is located, at which point it returns to the
zoom-in mode. We provide an elementary analysis of our
scheme with an explicit bound on k leading to Theorem 1.

We also present a short proof of the converse result in
Theorem 2 that uses information-theoretic arguments.

In Section II, we describe our achievable scheme and give
its analysis. In Section III, we present a short proof of the
converse in Theorem 2. Section IV presents an extension of
Theorem 1 to vector systems. The results in this paper were
partially presented at CDC [12]. The achievability proof for
vector systems, an elementary converse proof for stabilizability
in probability that is tight for non-integer a, and extensions
to packet drop channels and dependent system noise are
presented in the extended version [17].

II. ACHIEVABLE SCHEME

A. The idea

Here we explain the idea of our achievable scheme. For
readability we focus on the case a ∈ [1, 2) and show that
the system can be controlled with 1 bit. In this case we will
be able to restrict to two types of tests, a sign test and a
magnitude test (see Fig. 1), which simplifies our procedure.
The straightforward extension to an arbitrary a ≥ 1, in which
the sign test is replaced by a uniform quantizer, is found in
Section II-E below.

+

0

−
Xn

(a) Sign test

+−
Cn−Cn

−
Xn

(b) Magnitude test

Fig. 1. The binary quantizer uses two kinds of tests on a schedule determined
by the previous ±’s to produce the next + or −.

In the case of bounded noise a uniform time-invariant
quantizer deterministically keeps Xn bounded [1], [2]. Indeed,
when |Zn| ≤ B, n = 1, 2, . . . and |X1| ≤ C1, if C1 ≥ B

1−a/2
one can put

C2 , (a/2)C1 +B ≤ C1, (6)

and putting further Cn+1 , (a/2)Cn + B, we obtain
a monotonically decreasing to B

1−a/2 sequence numbers
{Cn}∞n=1. Setting

Un = (a/2)Cn sgn(Xn) (7)

requires only 1 bit of knowledge about Xn (i.e., its sign). If
|Xn| ≤ Cn then

|Xn+1| ≤ (a/2)Cn +B = Cn+1, (8)

and

lim sup
n→∞

|Xn| ≤
B

1− a/2 . (9)

Actually, this is the best achievable bound on the uncertainty
about the location of Xn, as a simple volume-division
argument shows [3], [13].

When Zn merely have bounded α-moments the above
does not work because a single large value of Zn will cause
the system to explode. However we can use the idea of the
bounded case with the following modification. Most of the
time, in normal, or zoom-in, mode, the controller assumes
the Xn are bounded by constants Cn and forms the control
actions according to the above procedure, but occasionally,
on a schedule, the quantizer performs a magnitude test and
sends a bit whose sole purpose is to inform the controller
whether the Xn is staying within desired bounds. If the test
is passed, the controller continues in the normal mode, and
otherwise, it enters the emergency, or zoom-out, mode, whose
purpose is to look for the Xn in exponentially larger intervals
until it is located, at which point it returns to the zoom-in
mode while still occasionally checking for anomalies. We
will show that all this can be accomplished with only 1 bit
per controller action.

The intuition behind our scheme is the following. At any
given time, with high probability Xn is not too large. Thus,
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the emergencies are rare, and when they do occur, the size of
the uncertainty region tends to decrease exponentially. The
zoom-in mode operates almost exactly as in the bounded
case, except that we choose B large enough to diminish the
probability that the noise exceeds it. We now proceed to
making these intuitions precise in Section II-B.

B. The Algorithm

Here we describe the algorithm precisely and then prove
that it works. Specifically, we consider the setting of The-
orem 1 with a ∈ [1, 2) and Zn with bounded α-moments.
We find Un - a function only of the sequence bits received
from the quantizer - that achieves β-moment stability, for
0 < β < α.

First we prepare some constants. We fix B ≥ 1 large
enough. We set the probing factor P = P (α, β) - a large
positive constant (how large will be explained below, but
roughly P blows up as β ↑ α). Fix a small δ > 0 and a large
enough k = k(a) so that

(a/2)k−1a ≤ 1− 3δ. (10)

We proceed in “rounds” of at least k + 1 moves, k moves in
normal (zoom-in) mode and k + 1’th move to test whether
Xn escaped the desired bounds. If that magnitude test comes
back normal, the round ends; otherwise the controller enters
the emergency (zoom-out) mode, whose duration is variable
and which ends once the controller learns a new (larger)
bound on Xn. In normal mode, we use the update rule in (7),
where Cn ≥ B is positive. In the emergency mode, Un ≡ 0
while Cn grows exponentially. A precise description of the
operation of the algorithm is given below.

1) At the start of a round at time-step m, |Xm| ≤ Cm, the
controller is silent, Um = 0, and Xm+1 = aXm + Zm.
Set

Cm+1 = aCm +B, (11)

and for each i ∈ {2, . . . , k},

Cm+i =
a

2
Cm+i−1 +B (12)

= (a/2)
i−1

Cm+1 +
1− (a/2)i−1

1− a/2 B. (13)

In this normal mode operation, the quantizer sends
a sequence of signs of Xn (see Fig. 1(a)), while
the controller applies the controls (7) successively to
Xm, . . . , Xm+k−1. This normal mode operation will
keep Xm+i bounded by Cm+i unless some Zm+i is
atypically large.

2) The quantizer applies the magnitude test to check whether
|Xm+k| ≤ Cm+k (see Fig. 1(b)). If |Xm+k| ≤ Cm+k,
we return to step 1. If |Xm+k| > Cm+k, this means
some Zm+i was abnormally large; the system has blown
up and we must do damage control. In this case we enter
emergency (zoom-out) mode in Step 3 below.

3) In emergency mode, we repeatedly perform silent
(Um+k+j ≡ 0) magnitude tests via

Cm+k+j = P Cm+k+j−1 = P jCm+k j ≥ 0 (14)

until the first time τ that the magnitude test is passed,
i.e.

τ , inf {j ≥ 0: |Xm+k+j | ≤ Cm+k+j} . (15)

We then set m← m+ k + τ and return to Step 1.
The controller is silent at the start of a round because it does
not know the sign of Xm. Each round thus includes one silent
step at the start, and τ ≥ 0 silent steps of the emergency
mode.

C. Overview of the Analysis

We analyze the result of each round. At the start of each
round m we know that Xm is contained within interval
[−Cm, Cm]. We will show that when Cm is large, the
uncertainty interval tends to decrease by a constant factor
each round.

At the start of the round, |Xm| ≤ Cm. Assume that for
each i ∈ {0, 1, . . . , k}, we have

|Zm+i| ≤ B. (16)

and thus

|Xm+i| ≤ Cm+i. (17)

In particular, applying (10), (11) and (12), we bound the state
at the end of the round as

|Xm+k| ≤ Cm+k (18)

≤ (1− 3δ)Cm +
B

1− a/2 , (19)

which means that Cm+k ≤ Cm, provided that Cm ≥
B

3δ(1−a/2) . Thus, even starting with the silent step we have
successfully decreased Cm, provided that it was large enough.

What if (16) fails to hold? Because the Zi have bounded
α-moments, by the union bound and Markov’s inequality, the
chance (16) fails is at most

P
[
∪ki=0 {|Zm+i| > B}

]
≤ (k + 1)E [|Z|α]B−α. (20)

In this case, we show that we can control the blow-up
to avert a catastrophe. Recall that in emergency mode our
procedure will take exponentially growing Cn (see (14)) so
that we will soon observe that |Xn| ≤ Cn. The controller then
exits emergency mode and returns to the normal mode, starting
a new round at time step n. Using boundedness of α-moments
of Zi, we will show in Section II-D below that the chance that
on step n = m+ k + j this fails is exponentially small in j.
We will see that in each round starting at Xm ∈ [−Cm, Cm],
there is a high chance to shrink the magnitude of the state
and a small chance to grow larger. In the next section we
explain how to obtain precise moment control.
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D. Precise Analysis

Here we give details of the analysis outlined in Section II-C,
demonstrating that when the Zn are i.i.d. with bounded α-
moments, our strategy in Section II-B yields

lim sup
n

E[|Xn|β ] <∞ (21)

for all 0 < β < α.
The following tools will be instrumental in controlling the

tails of the accumulated noise.

Proposition 1. If the random variable Z has finite α-moment,
then

tαP[|Z| > t] (22)

are bounded in t. Conversely, if (22) are bounded in t then
Z has a finite β-moment for any 0 < β < α.

Proof. The first part is the Markov inequality. The second is
a standard use of the tail-sum formula.

Lemma 1. Suppose a > 1 is fixed and Zi are (arbitrarily
coupled) random variables with uniformly bounded absolute
α moments. Then the random variables

Z̃j ,
j∑
i=0

a−iZi (23)

also have uniformly bounded absolute α-moments.

Proof. It is easy to see that for any α > 0, ε > 0 there is
c = cα,ε such that for all

(x+ y)α ≤ cα,εxα + (1 + ε)yα (24)

holds for all x, y ≥ 0. Indeed, to see this, assume without loss
of generality that x = 1, and note that when y is sufficiently
large we already have

(1 + y)α ≤ (1 + ε)yα. (25)

The set of y for which (25) does not hold is bounded, hence
so is the value of (1 + y)α; take c to be an upper bound for
this expression. The equation will now hold for any value of
y.

Applying (24) repeatedly yields

|Z̃k|α ≤ (26)

c|Z0|α + c
k−1∑
i=1

(1 + ε)ia−αi|Zi|α + (1 + ε)ka−αk|Zk|α.

Since E [|Zi|α] are uniformly bounded and for 1 + ε < aα

the geometric series
∑j−1
i=1 (1 + ε)ia−αi converges, E[|Z̃j |α]

is bounded uniformly in j, as desired.

Remark 1. The mild assumptions of Lemma 1 make it easy
to generalize our results to dependent noise in [17, Sec. IV].

The bound in Lemma 2 below considers the evolution of
the system over k + 1 + τ steps, where τ (15) determines

the end of the round. Note that τ is a stopping time of the
filtration generated by {Xn}.
Lemma 2. Fix B,P > 0 and consider our algorithm
described in Section II-B with these parameters. Suppose
that time-step m is the start of a round, so that the round
ends on time-step m+ k + τ . For all 1 < a < 2 and for all
0 ≤ j ≤ τ , it holds that

max {|Xm+1|, . . . , |Xm+k+j |, Cm+k+j} (27)

≤ Pak+j

(
2Cm +

aB

(2− a)(a− 1)
+

k+j−1∑
`=0

a−`−1|Zm+`|
)
,

Proof. Appendix.

Proof of Theorem 1 for the case a ∈ [1, 2). To avoid a spe-
cial treatment of the case a = 1, we assume that a > 1. This
is without loss because showing stability for a implies stability
for all a′ ≤ a. First we prepare some constants. Recall the
choices of k and δ in (10).
• Fix ∆ < α−β an arbitrary fixed constant, e.g. ∆ = α−β

3 ,
so that

β = α− 3∆. (28)

• Fix P large enough so that

P/a ≥ max

{(
a

1− δ

)α−∆

, 2k,
ak+1

2(a− 1)

}
. (29)

Suppose that time-step m is the start of a round, so that
the round ends on time-step m+ k + τ , with stopping time
τ = 0 usually.

We define a modified sequence1 X̃n through, for 1 ≤ i ≤
k + τ ,

X̃m+i ,

(
1

1− δ

)τ−|i−k|+
(30)

max {|Xm+k|, . . . , |Xm+k+τ |, Cm+k+τ} ,

where | · |+ , max{0, ·}. Clearly this definition ensures that

|Xm+k+j | ≤ X̃m+k+j 0 ≤ j ≤ τ. (31)

Furthermore, for all 1 ≤ i ≤ k − 1, there exists universal
constants K1,K2,K3 that depend on a, k and B such that
(Appendix A)

E
[
|Xm+i|β

]
≤ K1 E

[
X̃β
m+k

]
+K2 E

[
X̃β
m

]
+K3. (32)

Inequalities (31) and (32) together mean that to establish (21),
it is sufficient to prove

lim sup
n

E[X̃β
n ] <∞. (33)

The rest of the proof is focused in establishing (33).

1X̃n serves as a Lyapunov function that stochastically controls the growth
of the state process Xn. See [11, Th. 2.1], [14] for a general approach to
proving stability using Lyapunov functions for general Markov chains.
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By definition (30),

X̃m+i ≤ X̃m+1 i = 2, . . . , k + τ, (34)

with equality for i ≤ k.
We will show that

E[X̃β
m+1] ≤ (1− δ)βE[X̃β

m] +K, (35)

where K = K(P, k, δ) is a constant that may depend on
P, k, δ (but is independent of m). Together, inequalities (34)
and (35) ensure that lim supn E[X̃β

n ] is bounded above by
K

1−(1−δ)β .

The intuition behind the definition for X̃n is as follows.
We want to construct a dominating sequence X̃n with the
expected decrease property in (35). During emergency mode,
the original sequence Xn may increase on average during
rounds. The sequence X̃n in (30) takes the potential increase
during each round up front, achieving the desired expected
decrease property. We will see that P in (29) is chosen so
that the constant-factor decrease of the system is preserved
when switching between rounds.

To show (35), we define the filtration Fn as follows: Fn is
the σ-algebra generated by the sequences Z1, Z2, . . . , Zn−1

and X̃1, X̃2, . . . , X̃n. Unless n is the end of a round,
knowledge of X̃n involves a peek into the future, so Fn
encompasses slightly more information than the naive notion
of “information up to time n”. The inequality we will show,
clearly stronger than (35), is

E[X̃β
m+1 | Fm] ≤ (1− δ)βE[X̃β

m | Fm] +K. (36)

Define

Yn ,
X̃n+1

X̃n + B
(1−a/2)(1−3δ)

. (37)

We will show (36) by the means of the following two
statements, where m is the transition between rounds:

(a) For sufficiently large k and P in (10) and (29), respec-
tively, it holds that 2

P [Ym ≥ t|Fm] = O
(
t−(α−∆)

)
, (38)

(b) As B →∞,

P [Ym ≤ 1− 3δ | Fm]→ 1. (39)

We use (38) and (39) to show (36) as follows. First,
observe that by (38) and Proposition 1, {Ym|Fm} has bounded
β + ∆ - moment since we assumed (28) when choosing ∆.
Furthermore, since the right side of (38) is independent of
Fm, the β + ∆ - moment of Ym is bounded uniformly in

2Throughout this section, the implicit constants O (·) may depend on
P, k, δ (but are independent of n and B ≥ 1).

m. Now, pick p > 1 so that βp ≤ β + ∆, and let q satisfy
1
p + 1

q = 1. Write

E
[
Y βm | Fm

]
≤ (1− 3δ)β + E

[
Y βm 1 {Ym > 1− 3δ} | Fm

]
(40)

≤ (1− 3δ)β +
(
E
[
Y βpm | Fm

]) 1
p (P [Ym > 1− 3δ | Fm])

1
q

(41)

→ (1− 3δ)β , B →∞, (42)

where (41) is by Hölder’s inequality, and the second term
in (41) vanishes as B → ∞ due to (39) and uniform
boundedness of the β + ∆ - moment of {Ym | Fm}. Note
that convergence in (42) is uniform in m. It follows that for a
large enough B (how large depends on the values of P, k, δ),

E
[
Y βm | Fm

]
≤ (1− 2δ)β . (43)

Rewriting (43) using (37) yields

E[X̃β
m+1 | Fm] ≤ (1− 2δ)β

(
X̃m +

B

(1− a/2)(1− 3δ)

)β
(44)

≤ (1− δ)βX̃β
m +K, (45)

where to write (45) we used (24). This establishes the
inequality (36).

To complete the proof of Theorem 1, it remains to establish
(38) and (39).

To show (38), recall that the round ends at stopping time
m+ k + τ . Since the events {τ = j} are disjoint, we have

P [Ym ≥ t|Fm] =
∞∑
j=0

P[Ym ≥ t, τ = j|Fm]

+ P[Ym ≥ t, τ =∞|Fm] (46)

Note that since m is the end of the previous round, Fm
does not contain any information about the future.

We estimate the probability of the event in P[Ym ≥ t, τ =
j|Fm] in two ways, and use the better estimate on each term
individually.

We express the system state at time m+ i in terms of the
system state at time m:

Xm+i = ai

(
Xm +

i−1∑
`=0

a−`−1Um+` +
i−1∑
`=0

a−`−1Zm+`

)
.

(47)

Using (7), (11), (12) and recalling that Um = 0, we can
crudely bound the cumulative effect of controls on Xm+i as

ai

∣∣∣∣∣
k−1∑
`=0

a−`−1Um+`

∣∣∣∣∣ ≤ ai (a/2)
∞∑
`=1

a−`−1 (48)(
(a/2)

`−1
Cm+1 +

1− (a/2)`−1

1− a/2 B

)
= ai

(
Cm +

B

a− 1

)
. (49)
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Recalling the definitions of X̃n, Yn in (30), (37), respec-
tively, and invoking Lemma 2, we see that if {Ym ≥ t, τ = j}
holds, then

t(1− δ)k+j−1

(
X̃m +

B

(1− a/2)(1− 3δ)

)
(50)

≤ Pak+j

(
2Cm +

aB

(2− a)(a− 1)
+

k+j−1∑
`=0

a−`−1|Zm+`|
)
.

Noting that both Cm and aB
2−a are dominated by X̃m +

B
(1−a/2)(1−3δ) ≥ 1, we can weaken (50) as

t(1− δ)k+j−1 ≤ Pak+j

(
2 +

1

a− 1
+

k+j−1∑
`=0

a−`−1|Zm+`|
)
.

(51)

Applying Lemma 1 and Proposition 1, we deduce that the
probability of the event in (51) is

O

((
a

1− δ

)αj
t−α

)
. (52)

The bound in (52) works well for small j / large t. For
large j / small t, we observe that {Ym ≥ t, τ = j} ⊆ {τ ≥ j}
and apply the following reasoning. The event {τ ≥ j} means
that the emergency did not end at time j; in other words,

|Xm+k+j−1| > Cm+k+j−1 (53)

= P j
(

2 (a/2)
k
Cm +

B

1− a/2

)
, (54)

where to write (54) we used (11), (13), and (14). Substituting
i← k + j into (47) and recalling (49) and |Xm| ≤ Cm, we
weaken (53)–(54) as

ak+j

(
2Cm +

aB

(2− a)(a− 1)
+

k+j−1∑
`=0

a−`−1|Zm+`|
)

> P j
(

2 (a/2)
k
Cm +

B

1− a/2

)
, (55)

the event equivalent to

(a/P )j
k+j−1∑
`=0

a−`−1|Zm+`| ≥ 2
(
(1/2)k − (a/P )j

)
Cm

+

(
(1/a)k − a(a/P )j

2(a− 1)

)
B

1− a/2 . (56)

Due to the choice of P in (29), the coefficients in front of
Cm and B in the right side of (56) are nonnegative for all
j ≥ 1. Bounding the probability of the event in (56) using
Lemma 1 and Proposition 1, we conclude that 3

P [τ ≥ j] = O
(

(P/a)
−jα
)
. (57)

3Similar exponential bounds to the event P [τ ≥ j] are provided in [11,
Lem. 5.2] and in [15, Lem. 5.2].

Furthermore, (57) means that P [τ =∞] = 0. Indeed, 1{τ =
∞} =

∏∞
j=0 1 {τ ≥ j} = limj→∞ 1 {τ ≥ j} and by Fatou’s

lemma,

P [τ =∞] ≤ lim
j→∞

P [τ ≥ j] = 0, (58)

thus the corresponding term can be eliminated from (46).
Juxtaposing (52) and (57), we conclude that the probability

P[Ym ≥ t, τ = j|Fm] is bounded by

O

(
min

{(
a

1− δ

)αj
t−α, (P/a)

−jα

})
. (59)

Since (29) ensures that (P/a)∆ ≥
(

a
1−δ

)α
, we weaken (59)

as
O
(

(P/a)
j∆

min
{
t−α, (P/a)

−jα
})

. (60)

Recall that we have fixed t and are varying j; this upper
bound peaks at j such that (P/a)j = t at the value t−(α−∆)

and decays geometrically on each side at rates (P/a)∆ and
(P/a)α−∆. Hence the sum of all P[Ym ≥ t, τ = j|Fm] terms
in (46) is bounded by the maximum up to a constant factor
and therefore (38) holds.

To complete the proof of Theorem 1, it remains to establish
(39). By Markov’s inequality (20), with probability converging
to 1 as B →∞, all terms Zm, . . . , Zm+k are within [−B,B],
and τ = 0. In such a case, applying (19) and recalling (30),
we get

X̃m+1 = max{|Xm+k|, Cm+k} (61)

≤ (1− 3δ) X̃m +
B

1− a/2 , (62)

which implies that Ym ≤ 1− 3δ, establishing (39).

E. Finer Quantization

For a ≥ 2, the controller receives an element of an bac+1-
element set instead of a single bit. In this case we restrict
our attention to order-statistic tests, meaning that we split the
real line into bac+ 1 intervals

(−∞, w1,n), [w1,n, w2,n), . . . , [wbac,n,∞), (63)

and the controller receives the index bn ∈ {0, 1, . . . , bac}
of the interval containing Xn. The only real issue is for
the quantizer and the controller to agree upon a rule for
updating the values of wi. However, this is easy; in the
obvious generalization of our algorithm to higher a, the
(uniform) quantizer simply breaks up the interval [−Cn, Cn]
into bac + 1 equal parts, where Cn is the same bound on
the state magnitude as before. Both quantizer and controller
follow the rules in (12) (with a/2 replaced by a/(bac+1) and
in (14) to update Cn. During the normal mode, the controller
applies the control

Un = −Cn + Cn
2bn + 1

bac+ 1
(64)
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which reduces to (7) when bac = 1.
In the case a < 1, the controller does nothing, which by

Lemma 1 achieves β-moment stability.

III. CONVERSE

In this section, we prove the converse result in Theo-
rem 2 using information-theoretic arguments similar to those
employed in [5], [16]. See [17, Th. 3] for an alternative
converse result that uses elementary probability, which implies
Theorem 2 unless a is an integer.

Proof of Theorem 2. Conditional entropy power is defined as

N(X|U) ,
1

2πe
exp (2h(X|U)) (65)

where h(X|U) = −
∫
R fX,U (x, u) log fX|U=u(x)dx is the

conditional differential entropy of X .
Conditional entropy power is bounded above in terms of

moments (e.g. [18, Appendix 2]):

N(X) ≤ κβE
[
|X|β

] 2
β (66)

κβ ,
2

πe

(
e

1
β Γ

(
1 +

1

β

)
β

1
β

)2

, (67)

Thus,

κβE
[
|Xn|β

] 2
β ≥ N (Xn) (68)

≥ N
(
Xn|Un−1

)
, (69)

where (69) holds because conditioning reduces entropy. Next,
we show a recursion on N

(
Xn|Un−1

)
:

N
(
Xn|Un−1

)
= N(AXn−1 + Zn−1|Un−1) (70)

≥ a2N(Xn−1|Un−1) +N(Zn−1) (71)

≥ a2N(Xn−1|Un−2) exp (−2r) +N(Zn−1),
(72)

where (71) is due to the conditional entropy power inequality:4

N(X + Y |U) ≥ N(X|U) +N(Y |U), (73)

which holds as long as X and Y are conditionally inde-
pendent given U , and (72) is obtained by weakening the
constraint |Un−1| ≤ M to a mutual information constraint
I(Xn−1;Un−1|Un−2) ≤ logM = r and observing that

min
PU|X : I(X;U)≤r

h(X|U) ≥ h(X)− r. (74)

It follows from (72) that r > log a is necessary to keep
N
(
Xn|Un−1

)
bounded. Due to (69), it is also necessary to

keep β-th moment of Xn bounded.

4Conditional EPI follows by convexity from the unconditional EPI first
stated by Shannon [19] and proved by Stam [20].

IV. VECTOR SYSTEMS

The results generalize to higher dimensional systems

Xn+1 = AXn + Zn − BUn, (75)

where A is a d × d matrix and Zn, Un are vectors. The
dimensionality of control signals Un can be less than d, in
which case B is a tall matrix.

Theorem 3. Consider the stochastic vector linear system in
(75) with (A,B) stabilizable. Let X1, Zn be independent
random Rd-valued random vectors with bounded α-moments.
Assume that h(X1) > −∞. Let (λ1, ..., λd) be the eigenvalues
of A, and set

a ,
d∏
j=1

max(1, |λj |). (76)

Then for any 0 < β < α, the minimum number of quantization
points to achieve β-moment stability is

M?
β = bac+ 1. (77)

The proof of Theorem 3 relies on an idea previously ex-
plored in e.g. [5] that one can decompose Rd into eigenspaces
of A and rotate attention between these parts. Full proof is
contained in [17, Sec. IV].

V. CONCLUSION

This paper studies the minimum number of bits necessary
and sufficient for stability, when fixed-rate quantizers are used.
Extensions of the results of this paper to constant-length time
delays, to control over communication channels that drop
a small fraction of packets, and to systems with dependent
Gaussian noise are discussed in [17, Sec. IV].

While we picked the constants to guarantee a bounded β-
moment, we did not try to optimize them in order to minimize
it. A natural future research direction, then, is to study, in
the spirit of [16], the tradeoff between rate and the attainable
β-moment. It will be interesting to see whether our scheme
can approach the lower bound in [16], and to compare its
performance with that of the Lloyd-Max quantizer, explored
in the context of control in [21].

APPENDIX

A. Proof of (32)

For 1 ≤ i ≤ k, we express the system state at time m+ k
in terms of the system state at time m+ i:

Xm+k = ak−i

(
Xm+i +

k−i−1∑
`=0

a−`−1Um+i+`

+

k−i−1∑
`=0

a−`−1Zm+i+`

)
. (78)



8

Applying (7), (11) and (13), we can crudely bound the
cumulative effect of controls on Xm+k as∣∣∣∣∣
k−1∑
`=0

a−`−1Um+i+`

∣∣∣∣∣ ≤ (a/2)
∞∑
`=1

a−`−1

(
(a/2)

`
Cm+i +

1− (a/2)`

1− a/2 B

)
(79)

= Cm+i +
B

a− 1
(80)

≤ (a/2)
−k
Cm +

aB

(2− a)(a− 1)
(81)

Unifying (78) and (81), we get

|Xm+i| ≤ |Xm+k|+ (a/2)
−k
Cm

+
aB

(2− a)(a− 1)
+
k−i−1∑
`=0

a−`−1|Zm+i+`| (82)

By Lemma 1, the sum of random variables on the right ride
of (82) has uniformly bounded α-moments, and since by
definition of X̃n in (30), X̃m ≤ Cm and |Xm+k| ≤ X̃m+k,
(32) follows by the means of (24).

B. Proof of Lemma 2

Combining (47), (49) and |Xm| ≤ Cm yields for i =
1, 2, . . . , k + τ ,

|Xm+i| ≤ ai
(

2Cm +
B

a− 1
+

i−1∑
`=0

a−`−1|Zm+`|
)
, (83)

Maximizing the right side of (83) over 1 ≤ i ≤ k + j and
using (83), we conclude

max
1≤i≤k+j

|Xm+i| ≤ ak+j

(
2Cm +

B

a− 1

+

k+j−1∑
`=0

a−`−1|Zm+`|
)
, (84)

It remains to bound Cm+k+j . If j = 0, we may simply apply
(19), which means, crudely,

Cm+k+j ≤ right side of (84) +
ak+jB

1− a/2 . (85)

If j > 0, since the round did not end on step m+ k + j − 1,
we have Cm+k+j−1 < |Xm+k+j−1|, which means that

Cm+k+j < P |Xm+k+j−1|. (86)

Combining (84), (85) and (86) yields (27).
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[8] A. P. Johnston and S. Yüksel, “Stochastic stabilization of partially
observed and multi-sensor systems driven by unbounded noise under
fixed-rate information constraints,” IEEE Transactions on Automatic
Control, vol. 59, no. 3, pp. 792–798, 2014.
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