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Abstract—Finding a computable expression for the feedback
capacity of channels with non-white Gaussian, additive noise
is a long standing open problem. In this paper, we solve this
problem in the scenario where the channel has multiple inputs
and multiple outputs (MIMO) and the noise process is generated
as the output of a state-space model (a hidden Markov model).
The main result is a computable characterization of the feedback
capacity as a finite-dimensional convex optimization problem.
Our solution subsumes all previous solutions to the feedback
capacity including the auto-regressive moving-average (ARMA)
noise process of first order, even if it is a non-stationary
process. The capacity problem can be viewed as the problem
of maximizing the measurements’ entropy rate of a controlled
(policy-dependent) state-space subject to a power constraint. We
formulate the finite-block version of this problem as a sequential
convex optimization problem, which in turn leads to a single-
letter and computable upper bound. By optimizing over a family
of time-invariant policies that correspond to the channel inputs
distribution, a tight lower bound is realized. We show that one
of the optimization constraints in the capacity characterization
boils down to a Riccati equation, revealing an interesting relation
between explicit capacity formulae and Riccati equations.

I. INTRODUCTION

We consider the feedback capacity of a multiple-input

multiple-output (MIMO) Gaussian channel

yi = Λxi + zi, (1)

where Λ is a known matrix, yi ∈ R
m is the channel output

and xi ∈ R
p is the channel input. The noise is a non-white

Gaussian random process generated by a MIMO state-space

model (a hidden Markov model)

si+1 = F si +Gwi

zi = Hsi + vi, (2)

where the sequence (wi,vi) is i.i.d. Gaussian. For a particular

realization of the state-space, well-known random processes

can be revealed, e.g., the auto-regressive moving-average

(ARMA) random processes that were studied in [1]–[3]. State-

space structures are utilized in the fields of control and

estimation to obtain explicit policies. In estimation theory,

for instance, the celebrated Kalman filter is a closed-form

policy obtained using the underlying state-space structure of

the signal and its measurements. In this work, we show that

imposing a state-space structure on the noise process leads to

a computable solution for the feedback capacity problem too.

Our main result is a computable expression for the feedback

capacity. Our assumptions on the state-space are mild and
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include noise processes that are not necessarily stationary,

i.e., when the spectral radius of F is greater than 1. We

show that the feedback capacity can be formulated as a finite-

dimensional convex optimization problem. The optimization

is a standard maximal determinant (max-det) optimization

problem subject to linear matrix inequalities (LMIs) con-

straints [4]–[7]. Maximal determinant formulations previously

appeared in the literature, e.g. [8], but it is a recent develop-

ment that the fundamental limits of problems with memory are

formulated using this important class of convex optimization

problems with sequential methods [9], [10].

Previous literature on the feedback capacity of the (scalar)

Gaussian channel is vast, e.g. [11]–[15], and a detailed survey

can be found in [16]. The feedback capacity of arbitrary Gaus-

sian processes was characterized by a multi-letter expression

in [17]. In [18], a Markov decision processes formulation

provided a computational tool, and an explicit lower bound

for ARMA noise process of first order was derived. The

tightness of the lower bound for the moving average (MA)

process was established in [16], concluding the first explicit

capacity formula. Later, the same author considered general

stationary noise processes and showed that the capacity can be

expressed with a variational formula in the frequency domain

[19]. This approach does not provide a consistent methodol-

ogy to compute the feedback capacity, but for the ARMA

noise process (of first order), they could obtain a closed-

form formula and conclude the tightness of the conjectured

lower bound in [18]. Another contribution of [19] was the

formulation of the capacity as a single-letter (more precisely,

a finite-dimensional) but non-convex optimization problem.

In [20], a change of variable for this optimization problem

showed that it can be reformulated as a convex optimization

problem. However, the change of variable relies on the fact that

a certain covariance matrix is invertible, an imprecise claim

(see Remark 1). We also remark that these results are limited

to the case of stable F and wi = vi which means, effectively,

that the encoder has access to the hidden state of the state-

space. Our solution generalizes these results to an arbitrary

state-space model with possibly non-stationary noise process.

The main idea behind our derivation is a novel formulation

of the n−letter capacity as a sequential convex optimiza-

tion problem (SCOP). We formulate an optimization problem

whose decision variable is a sequence of length n, where

at each time three fixed-dimensional matrices are optimized.

In the SCOP formulation, each of the LMI constraints may

depends on two consecutive times only. While it is well known

that the n-letter capacity is a convex optimization problem, it

is the sequential property that allows us to obtain a single-letter

upper bound for the limiting n-letter capacity. For the lower



bound, an optimization over a family of time-invariant channel

input distributions leads to a non-convex optimization problem

that we show to be equivalent to the single-letter upper bound.

Our derivation shows the optimality of time-invariant input

distributions and therefore extending this important conclusion

from [19] to possibly non-stationary noise processes.

The rest of the paper is organized as follows. In Section

II, we present the setting and problem formulation. Section

III includes our main result on the feedback capacity of the

MIMO Gaussian channel. In Section IV, we present the main

ideas and the technical lemmas that prove our main result.

Due to space limitations, detailed proofs are available at [21].

II. THE SETTING AND PRELIMINARIES

In this section, we define the communication setting and the

noise characteristics. We also present some preliminaries on

Kalman filtering and Riccati equations.

A. The setting

We consider a MIMO additive Gaussian channel

yi = Λxi + zi, (3)

where the channel input is xi ∈ R
m, the additive noise is

zi ∈ R
p, and Λ ∈ R

p×m is a fixed known matrix. We

assume that the encoder has access to noiseless, instantaneous

feedback so that the input xi is a function of the message

and all previous channel outputs yt−1 := y1, . . . ,yt−1. For

a fixed blocklength n, the channel input has an average

power constraint 1
n

∑n
i=1 E[x

T
i xi] ≤ P. The definitions of

the average probability of error, an achievable rate and the

feedback capacity are standard and can be found in [19], for

instance.

We consider a colored Gaussian noise that is generated as

the output of a state-space model:

si+1 = F si +Gwi

zi = Hsi + vi, (4)

where wi ∼ N(0,W ) and vi ∼ N(0, V ) are i.i.d. sequences

with E[wiv
T
i ] = L, and are independent of the initial state

s1 ∼ N(0,Σ1). The class of linear dynamical systems de-

scribed by the state-space in (4) is rich and captures many

known instances like the MIMO ARMA random processes

of kth order given by zi =
∑k

j=1 Aj zi−j +Bjui−j , where

ui ∼ N(0,ΣU ) is an i.i.d. sequence.

B. The Kalman filter and the Riccati equation

The Kalman filter is a simple, recursive method to compute

the maximum likelihood estimation of the hidden state based

on the measurements. The predicted-state estimation and the

prediction estimation error covariance are defined as

ŝi = E[si| zi−1]

Σi = cov(si − ŝi). (5)

Then, the standard Kalman filter is given by the recursion

ŝi+1 = F ŝi +Kp,i(zi −H ŝi), (6)

with

Kp,i = (FΣiH
T +GL)Ψ−1

i

Ψi = HΣiH
T + V, (7)

and the error covariance is described by the Riccati recursion

Σi+1 = FΣiF
T +GWGT −Kp,i(HΣiH

T + V )KT
p,i. (8)

The innovation process defined by ei = zi −H ŝi holds the

property that it is orthogonal (statistically independent) from

previous instances of the measurements zi−1 [22].

Note that in (7), it is assumed that Ψi ≻ 0 for all i.

This is a natural assumption in our communication setting

since otherwise the capacity is infinite. Namely, if Ψi is

only positive semidefinite, a coordinate in the noise vector

zi is a deterministic function of the past noise instances

zi−1. Building an infinite-rate scheme is straightforward: the

encoder transmits xj = 0 for j ≤ i−1 so that yj = zj . Then,

based on zi−1, the encoder and the decoder can communicate

an inifinite number of bits on this vector coordinate (assuming

the image of Λ is not degenerated at this particular direction).

We move on to present our assumptions on the state-space

model. The stability of F is significant since it determines the

stationarity of the noise process.

Definition 1. The matrix F is stable if its spectral radius

satisfies ρ(F ) < 1.

Without further assumptions, our results hold for the station-

ary case, i.e., when F is stable. If L 6= 0, the stability of F

should be replaced with the stability of Fs = F −GLV −1H .

For the general case where F is not stable, we need three

additional assumptions. Since the assumptions are satisfied for

the case where F is stable, a reader whose interest is limited

to the stationary case may skip these assumptions.

Assumption 1. The pair (F,H) is detectable. That is, there

exists a matrix K such that ρ(F −KH) < 1.

Assumption 2. The pair (Fs, GW 1/2) is stabilizable. That is,

for any x and λ with |λ| ≥ 1 such that xF = xλ, xGW 1/2 6=
0.

Assumption 3. The matrix F does not have eigenvalues on

the unit circle.

The first two assumptions are made to guarantee that the

Riccati recursion in (8) converges to a matrix that solves a

Riccati equation. More specifically, consider the function

f(Σ) = FΣFT − Σ+W −Kp(Σ)Ψ(Σ)KT
p (Σ), (9)

where Kp(Σ) = (FΣHT + GL)Ψ(Σ)−1 and Ψ(Σ) =
HΣHT + V . The Riccati equation is defined as f(Σ) = 0.

Under Assumptions 1−2, the Riccati recursion converges to a

unique stabilizing solution of the Riccati equation [23, Ch. 14].

That is, there exists a unique Σs � 0 such that f(Σs) = 0 and

F − Kp(Σs)H is stable. Moreover, for any initial condition

Σ1, Σi → Σs at exponential rate. From now on, we refer to

the constants

Kp = (FΣHT +GL)Ψ−1



Ψ = HΣHT + V (10)

as the ones evaluated at the stabilizing solution to the Riccati

equation.

The solution to the Riccati equation also characterizes the

entropy rate of the Gaussian noise process:

1

n
h(zn) =

1

n

n
∑

i=1

h(zi | zi−1)

=
1

n

n
∑

i=1

log det(HΣiH
T + V )

→ log det(Ψ), (11)

as n → ∞
III. MAIN RESULT AND DISCUSSION

In this section we present the feedback capacity of the

MIMO channel, its particularization to the scalar case and

an explicit computation of the feedback capacity for the MA

process. The following is our main result.

Theorem 1. The feedback capacity of the MIMO Gaussian

channel in (3)-(4) is given by the convex optimization problem

Cfb(P ) = max
Π,Σ̂,Γ

1

2
log det(ΨY )−

1

2
log det(Ψ)

s.t. ΨY = ΛΠΛT +HΣ̂HT + ΛΓHT +HΓTΛT +Ψ
(

Π Γ

ΓT Σ̂

)

� 0, Tr(Π) ≤ P,

(

F Σ̂FT +KpΨKT
p − Σ̂ F (ΓTΛT + Σ̂HT ) +KpΨ

(ΛΓ +HΣ̂)FT +ΨKT
p ΨY

)

� 0,

(12)

where Kp and Ψ are constants given in (10).

The objective structure is the difference between the entropy

rates of the channel outputs and the channel noise random

processes. The entropy rate of the noise process {zi}i≥1 is

the constant given in (11), while the entropy rate of the

channel outputs process is 1
2 log det(ΨY ) and is part of the

optimization. The auxiliary decision variable Π along with its

power constraint and the first LMI in (12) ensure that the

channel input power does not exceed P . In Lemma 1 below,

the decision variables Γ and the error covariance matrix Σ̂ will

be given a straightforward interpretation as part of the policy.

The Schur complement of the second LMI constraint in (12)

implies the Riccati inequality

Σ̂ � F Σ̂FT +KpΨKT
p −KY ΨY K

T
Y , (13)

with KY = (F (ΓTΛT + Σ̂HT ) +KpΨ)Ψ−1
Y . In Lemma 6 in

Section IV below, it is shown that optimal decision variables

(Π, Σ̂,Γ) satisfy that the Riccati inequality (13) with equality,

i.e., it is a Riccati equation. This fact reveals that the origin

for explicit capacity formulae expressed as function of roots

to some polynomials in the literature, e.g., [16], [18], [19] is

the Riccati equation. We demonstrate this interesting fact in

Section III-B for the MA noise process.

A. The scalar case:

If the channel outputs, inputs, and the additive noise are

scalars, but the the hidden state of the noise si is possibly a

vector, the capacity in Theorem 1 can be simplified.

Theorem 2. The feedback capacity of the scalar Gaussian

channel (3)-(4) with Λ = 1 is given by the following convex

optimization problem

Cfb(P ) = max
Σ̂,Γ

1

2
log

(

1 +
P +HΣ̂HT + 2ΓHT

Ψ

)

s.t.

(

P Γ

ΓT Σ̂

)

� 0, (14)

(

F Σ̂FT +KpΨKT
p − Σ̂ FΓT + F Σ̂HT +KpΨ

ΓFT +HΣ̂FT +ΨKT
p P +HΣ̂HT + 2ΓHT +Ψ

)

� 0,

where Kp and Ψ are constants defined in (10).

Choosing H = 0 in (14) recovers the capacity formula of

an additive white Gaussian noise channel

Cfb(P ) =
1

2
log

(

1 +
P

V

)

.

Remark 1. The state-space that was studied in [20] can be

recovered by choosing W = V = L = 1. In this case, the

constants are Σ = 0,Kp = G,Ψ = 1 and the capacity in

(14) and that in [20, Th. 4] are almost in full agreement.

Specifically, there is a difference in the sign of the first LMI

in (14) which reads as a strict LMI (≻) in [20]. A strict LMI

implies that the Schur complement satisfies P − ΓΣ̂−1ΓT >

0. However, it can be shown that the optimum is achieved

with equality in the Schur complement at least for particular

instances like the MA noise process in Section III-B. The claim

that the LMI constraint is positive definite was also utilized

in [20] to show their main argument that Σ̂ is invertible, and

thus should be read with care.

B. Moving average noise

In [16], the feedback capacity of the MA noise process of

first order was shown to be

Cfb(P ) = − log x0, (15)

where x0 is the unique positive root of Px2 = (1−|α|x)2(1−
x2). As this noise realization corresponds to the special case

F = 0, H = α,G = W = V = L = 1, we illustrate the

simplicity of computing such expressions from Theorem 2.

Theorem 3. The feedback capacity of the scalar Gaussian

channel with first-order MA noise process is

Cfb(P ) =
1

2
log(1 + SNR), (16)

where SNR is the positive root of the polynomial SNR =
(√

P + |α|
√

SNR

1+SNR

)2

.

The capacity expressions in Theorem 3 and that in [16] are

different, but it can be shown that they are equal. Specifically,

a change of variable in (16) leads to the following equivalent



expression Cfb(P ) = − log x0 where x0 solves 1 − x2 =

x2
(√

P + |α|
√
1− x2

)2

. Interestingly, the new polynomial

and the polynomial in (15) are fundamentally different but it

can be shown that they share a unique positive root meaning

that the capacity is the same.

Proof of Theorem 3. In Lemma 6 in Section IV, it is shown

that the Schur complement of the Riccati LMI (13) is always

achieved with equality. We can show the same property

for the first LMI in (14) using contradiction. Assume that

P − Γ2Σ̂−1 = X for some X > 0. Then, one can choose

Γ′ = Γ
√

1 + Γ−2XΣ̂ to show that the objective is increased.

The Riccati LMI can be verified to be satisfied with this

substitution.

To obtain the capacity expression, we use Γ2 = P Σ̂ and

the Riccati equation which simplifies to Σ̂ = 1−Ψ−1
Y . Substi-

tuting these equations into the objective gives the fixed-point

equation ΨY = 1 + P + α2(1−Ψ−1
Y ) + 2|α|

√

P (1−Ψ−1
Y ),

where the sign of Γ is chosen to maximize ΨY . By the

variable change ΨY = 1 + SNR, we get the polynomial

SNR =
(√

P + |α|
√

SNR

1+SNR

)2

.

Note that the proof is a straightforward computation for all

values of α, regardless of whether noise process is stationary.

IV. PROOF SKETCH OF THE MAIN RESULT

In this section we outline the proof of the main result of

this paper in Theorem 1. We structure the proof as three parts.

1. Sequential convex optimization problem (SCOP):

Define the n-letter capacity as

Cn(P ) = max
P (xn||yN ): 1

n

∑
n

i=1
E[xT

i
xi]≤P

h(Y n)− h(Zn). (17)

The first three lemmas formulate the n-letter capacity as a

SCOP. Since the objective of Cn(P ) is directed information

(e.g. [24], [25]), it is easy to show that it is concave in its

decision variable P (xn‖yn), but the challenge is to formulate

it as a convex optimization problem that enables one to

explicitly compute the limit of Cn(P ) thereafter. To this end,

we realize a SCOP whose fundamental LMI constraint has a

sequential structure.

2. Upper bound via convexity: The second part of the proof

utilizes the SCOP structure to show that the capacity expres-

sion in Theorem 1 is an upper bound on the capacity. Since

the the optimization constraints contain decision variables at

consecutive times, the standard time-sharing random variable

argument does not apply here, and we use a different technique

to show that these constraints are asymptotically satisfied and

not satisfied at all times.

3. Lower bound using Time-invariant inputs: The last

part constructs a time-invariant policy whose parameters’ opti-

mization leads to a lower bound that is expressed as the upper

bound optimization problem with additional constraints. We

show that the additional constraints are redundant, concluding

the proof of the main result.

A. Sequential convex optimization problem

Define the estimators

ŝi , E[si| zi−1]

ˆ̂si , E[ŝi |yi−1], (18)

The first lemma identifies an optimal structure for the input

distribution using these estimators.

Lemma 1 (The optimal policy structure). For a fixed n, it is

sufficient to optimize (17) with inputs of the form

xi = ΓiΣ̂
†
i (ŝi − ˆ̂si) +mi, i = 1, . . . , n (19)

where mi ∼ N(0,Mi) is independent of (xi−1,yi−1), Σ̂†
i is

the Moore-Penrose pseudo-inverse of

Σ̂i = cov(ŝi − ˆ̂si), (20)

Γi is a matrix that satisfies

Γi(I − Σ̂†
i Σ̂i) = 0, (21)

and the power constraint is

1

n

n
∑

i=1

Tr(ΓiΣ̂
†
iΓ

T
i +Mi) ≤ P. (22)

Lemma 1 simplifies the optimization (17) by showing that

the optimization domain is over the sequence of matrices

(Γi,Mi)
n
i=1. Note that Σ̂i is a deterministic function of the

policy up to time i− 1 and thus is not part of the policy. The

main insight is that the input has two signaling components.

The first component is a scaled version of the estimation

error at the decoder (ŝi − ˆ̂si), and its purpose is to refine

the decoder’s knowledge of the channel state ŝi. The other

component is an additive Gaussian corresponding to the new

information sent to the decoder. For instance, if the noise is

white, the entire power is dedicated to the new information

encapsulated in mi.

We remark that a similar policy has been reported in [16,

Section IV] and [20]. Their policy reads xi = Γi(ŝi − ˆ̂si)+mi,

and is missing the scaling Σ̂†
i and the orthogonality constraint

in (21). If Σ̂i is invertible, then both policies are equivalent

by the variable change Γ′
i = ΓΣ̂−1

i . However, the invertibility

is not always true, and the orthogonality constraint must be

introduced prior to the convex optimization formulation (see

also Remark 1). In the next lemma, the dynamics of the

channel output is formalized as a controlled state space.

Lemma 2 (Channel outputs dynamics). For a fixed policy

{(Γi,Mi)}ni=1, the channel outputs admit the state-space

model

ŝi+1 = F ŝi +Kp,i ei,

yi = (ΛΓiΣ̂
†
i +H) ŝi −ΛΓiΣ̂

†
i
ˆ̂si +Λmi + ei, (23)

where Kp,i and ei ∼ N(0,Ψi) are defined in (7). The

estimator in (18) can be written as

ˆ̂si+1 = F ˆ̂si +KY,i(yi −H ˆ̂si), (24)



and its corresponding error covariance Σ̂i = cov(ŝi − ˆ̂si)
satisfies the recursion

Σ̂i+1 = F Σ̂iF
T +Kp,iΨiK

T
p,i −KY,iΨY,iK

T
Y,i (25)

with

ΨY,i = (ΛΓiΣ̂
†
i +H)Σ̂i(ΛΓiΣ̂

†
i +H)T + ΛMiΛ

T +Ψi

KY,i = (F Σ̂i(ΛΓiΣ̂
†
i +H)T +Kp,iΨi)Ψ

−1
Y,i (26)

and Σ̂1 = 0.

Lemma 2 is a consequence of the policy that was derived in

Lemma 1. As seen from (23), the encoders’ policy translates

into an additive measurement noise mi and a modification

of the observability matrix ΛΓiΣ̂
†
i + H . Similar state-space

structures appeared in [19], [26]. It is interesting to realize that

that (23) does not fall into the classical state-space structure

since the observability matrix depends on error covariance

Σ̂i due to our policy. Lemma 2 already reveals an objective

structure that resembles that in Theorem 1. Namely, by (26),

we can write the objective at time i as

h(yi |yi−1)− h(zi | zi−1) =
1

2
log det(ΨY,i)−

1

2
log det(Ψi).

The next lemma summarizes the SCOP formulation.

Lemma 3 (Sequential convex-optimization formulation). The

n-letter capacity can be bounded by the convex optimization

problem

Cn(P ) ≤ max
{Γi,Πi,Σ̂i+1}n

i=1

1

2n

n
∑

i=1

log det(ΨY,i)− log det(Ψi)

s.t.

(

Πt Γt

ΓT
t Σ̂t

)

� 0,
1

n

n
∑

i=1

Tr(Πi) ≤ P,

ΨY,t = ΛΠtΛ
T +HΣ̂tH

T + ΛΓtH
T +HΓT

t Λ
T +Ψt

KY,t = (FΓT
t Λ

T + F Σ̂tH
T +Kp,tΨt)Ψ

−1
Y,t

(

F Σ̂tF
T +Kp,tΨtK

T
p,t − Σ̂t+1 KY,tΨY,t

ΨY,tK
T
Y,t ΨY,t

)

� 0, (27)

where the constraints hold for t = 1, . . . , n and Σ̂1 = 0.

To see that (27) is a standard convex optimization, note

that each of the LMI constraints is a linear function of the

decision variables. In the next section, we provide the single-

letter upper bound on the capacity. The key to the upper

bound is the concavity of the objective function along with

the linearity of the constraints, along with the crucial property

that the Riccati LMI constraint contains decision variables of

two consecutive times only.

B. Single-letter upper bound

The next lemma concludes the upper bound in Theorem 1.

Lemma 4 (The upper bound). The feedback capacity is

bounded by the convex optimization problem

Cfb(P ) ≤ max
Π,Σ̂,Γ

1

2
log det(ΨY )−

1

2
log det(Ψ)

s.t.

(

Π Γ

ΓT Σ̂

)

� 0, Tr(Π) ≤ P,

ΨY = ΛΠΛT +HΣ̂HT + ΛΓHT +HΓTΛT +Ψ

KY = (FΓTΛT + F Σ̂HT +KpΨ)Ψ−1
Y

(

F Σ̂FT +KpΨKT
p − Σ̂ KY ΨY

ΨY K
T
Y ΨY

)

� 0. (28)

The main idea behind the upper bound is to show that

the convex combination of each of the decision variables in

Lemma 3 obtains a larger objective. At a high level, this is

similar to the time-sharing random variable, but the challenge

lies in the constraints. Specifically, one cannot show that the

Riccati LMI constraint (28) is satisfied at all times when

evaluated at the convex combination of the decision variables.

To settle this point, we show that the constraint is satisfied in

the asymptotics.

C. Lower bound

In this section, we prove that the upper bound in Lemma 4

is achievable. It will be shown using two lemmas: the first

formulates a lower bound as an optimization problem that

resembles the upper bound but has two additional constraints.

The second lemma shows that in the upper bound optimization

problem these two constraints are satisfied.

Lemma 5 (Lower bound). For time-invariant policies

xi = Γ(ŝi − ˆ̂si) +mi, i ≥ 1 (29)

with mi ∼ N(0,M), the maximization of (17) over (Γ,M)
achieves the lower bound

Cfb(P ) ≥ max
Γ,Π,Σ̂

log det(ΨY )− log det(Ψ)

s.t.

(

Π Γ

ΓT Σ̂

)

� 0, Tr(Π) ≤ P

KY = (F Σ̂HT + FΓTΛT +KpΨ)Ψ−1
Y

ΨY = ΛΠΛT + ΛΓHT +HΓTΛT +Ψ

Σ̂ = F Σ̂FT +KpΨKT
p −KY ΨY K

T
Y (30)

∃K : ρ(F −K(ΛΓΣ̂† +H)) < 1. (31)

The optimization problem in (31) is the same as the upper

bound in (28) except for the additional constraint (31) and the

Riccati equation (30) which appears as an inequality in the

upper bound (13). Next, we show that these two conditions

can be neglected and conclude the proof of Theorem 1.

Lemma 6 (Equality between the lower and upper bounds).

An optimal tuple (Π, Σ̂,Γ) for the upper bound optimization

problem in (28) satisfies the following:

1) The Schur complement of the Riccati LMI (13) is

achieved with equality.

2) The pair (F,ΛΓΣ̂† +H) is detectable, i.e.,

∃K : ρ(F −K(ΛΓΣ̂† +H)) < 1.

Consequently, the upper bound in Lemma 4 and the lower

bound in Lemma 5 are equal to the feedback capacity.
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[18] S. Yang, A. Kavc̆ić, and S. C. Tatikonda, “On the feedback capacity of

power constrained Gaussian channels with memory,” IEEE Trans. Inf.

Theory, vol. 53, no. 3, pp. 929–954, Mar. 2007.
[19] Y.-H. Kim, “Feedback capacity of stationary Gaussian channels,” IEEE

Trans. Inf. Theory., vol. 56, no. 1, pp. 57–85, 2010.
[20] A. Gattami, “Feedback capacity of gaussian channels revisited,” IEEE

Trans. Inf. Theory, vol. 65, no. 3, pp. 1948–1960, 2019.
[21] O. Sabag, V. Kostina, and B. Hassibi, “Feedback capacity

of MIMO Gaussian channels,” 2021, available online at
http://www.its.caltech.edu/∼oron/Publication.html.

[22] T. Kailath, “An innovations approach to least-squares estimation–part i:
Linear filtering in additive white noise,” IEEE Trans. Autom. Control,
vol. 13, no. 6, pp. 646–655, 1968.

[23] T. Kailath, A. H. Sayed, and B. Hassibi, Linear estimation. Prentice
Hall, 2000.

[24] H. H. Permuter, T. Weissman, and A. J. Goldsmith, “Finite state channels
with time-invariant deterministic feedback,” IEEE Trans. Inf. Theory,
vol. 55, no. 2, pp. 644–662, Feb. 2009.

[25] S. Tatikonda and S. Mitter, “The capacity of channels with feedback,”
IEEE Trans. Inf. Theory, vol. 55, no. 1, pp. 323–349, Jan. 2009.

[26] C. D. Charalambous, C. Kourtellaris, and S. Louka, “New formulas of
feedback capacity for AGN channels with memory: A time-domain suf-
ficient statistic approach,” 2020, available at arxiv.org/abs/2010.06226.


