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Abstract—Finding a computable expression for the feedback
capacity of channels with non-white Gaussian, additive noise
is a long standing open problem. In this paper, we solve this
problem in the scenario where the channel has multiple inputs
and multiple outputs (MIMO) and the noise process is generated
as the output of a state-space model (a hidden Markov model).
The main result is a computable characterization of the feedback
capacity as a finite-dimensional convex optimization problem.
QOur solution subsumes all previous solutions to the feedback
capacity including the auto-regressive moving-average (ARMA)
noise process of first order, even if it is a non-stationary
process. The capacity problem can be viewed as the problem
of maximizing the measurements’ entropy rate of a controlled
(policy-dependent) state-space subject to a power constraint. We
formulate the finite-block version of this problem as a sequential
convex optimization problem, which in turn leads to a single-
letter and computable upper bound. By optimizing over a family
of time-invariant policies that correspond to the channel inputs
distribution, a tight lower bound is realized. We show that one
of the optimization constraints in the capacity characterization
boils down to a Riccati equation, revealing an interesting relation
between explicit capacity formulae and Riccati equations.

I. INTRODUCTION

We consider the feedback capacity of a multiple-input
multiple-output (MIMO) Gaussian channel

yi = Ax; + 24, (D

where A is a known matrix, y; € R™ is the channel output
and x; € RP is the channel input. The noise is a non-white
Gaussian random process generated by a MIMO state-space
model (a hidden Markov model)

Si+1 = FSZ‘ + GWi
z; = Hs; + v, 2

where the sequence (w;, v;) is i.i.d. Gaussian. For a particular
realization of the state-space, well-known random processes
can be revealed, e.g., the auto-regressive moving-average
(ARMA) random processes that were studied in [1]-[3]. State-
space structures are utilized in the fields of control and
estimation to obtain explicit policies. In estimation theory,
for instance, the celebrated Kalman filter is a closed-form
policy obtained using the underlying state-space structure of
the signal and its measurements. In this work, we show that
imposing a state-space structure on the noise process leads to
a computable solution for the feedback capacity problem too.

Our main result is a computable expression for the feedback
capacity. Our assumptions on the state-space are mild and
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include noise processes that are not necessarily stationary,
i.e., when the spectral radius of F' is greater than 1. We
show that the feedback capacity can be formulated as a finite-
dimensional convex optimization problem. The optimization
is a standard maximal determinant (max-det) optimization
problem subject to linear matrix inequalities (LMIs) con-
straints [4]-[7]. Maximal determinant formulations previously
appeared in the literature, e.g. [8], but it is a recent develop-
ment that the fundamental limits of problems with memory are
formulated using this important class of convex optimization
problems with sequential methods [9], [10].

Previous literature on the feedback capacity of the (scalar)
Gaussian channel is vast, e.g. [11]-[15], and a detailed survey
can be found in [16]. The feedback capacity of arbitrary Gaus-
sian processes was characterized by a multi-letter expression
in [17]. In [18], a Markov decision processes formulation
provided a computational tool, and an explicit lower bound
for ARMA noise process of first order was derived. The
tightness of the lower bound for the moving average (MA)
process was established in [16], concluding the first explicit
capacity formula. Later, the same author considered general
stationary noise processes and showed that the capacity can be
expressed with a variational formula in the frequency domain
[19]. This approach does not provide a consistent methodol-
ogy to compute the feedback capacity, but for the ARMA
noise process (of first order), they could obtain a closed-
form formula and conclude the tightness of the conjectured
lower bound in [18]. Another contribution of [19] was the
formulation of the capacity as a single-letter (more precisely,
a finite-dimensional) but non-convex optimization problem.
In [20], a change of variable for this optimization problem
showed that it can be reformulated as a convex optimization
problem. However, the change of variable relies on the fact that
a certain covariance matrix is invertible, an imprecise claim
(see Remark 1). We also remark that these results are limited
to the case of stable F' and w; = v; which means, effectively,
that the encoder has access to the hidden state of the state-
space. Our solution generalizes these results to an arbitrary
state-space model with possibly non-stationary noise process.

The main idea behind our derivation is a novel formulation
of the n—letter capacity as a sequential convex optimiza-
tion problem (SCOP). We formulate an optimization problem
whose decision variable is a sequence of length n, where
at each time three fixed-dimensional matrices are optimized.
In the SCOP formulation, each of the LMI constraints may
depends on two consecutive times only. While it is well known
that the n-letter capacity is a convex optimization problem, it
is the sequential property that allows us to obtain a single-letter
upper bound for the limiting n-letter capacity. For the lower



bound, an optimization over a family of time-invariant channel
input distributions leads to a non-convex optimization problem
that we show to be equivalent to the single-letter upper bound.
Our derivation shows the optimality of time-invariant input
distributions and therefore extending this important conclusion
from [19] to possibly non-stationary noise processes.

The rest of the paper is organized as follows. In Section
I, we present the setting and problem formulation. Section
IIT includes our main result on the feedback capacity of the
MIMO Gaussian channel. In Section IV, we present the main
ideas and the technical lemmas that prove our main result.
Due to space limitations, detailed proofs are available at [21].

II. THE SETTING AND PRELIMINARIES

In this section, we define the communication setting and the
noise characteristics. We also present some preliminaries on
Kalman filtering and Riccati equations.

A. The setting
We consider a MIMO additive Gaussian channel

yi = Ax; + 24, 3)

where the channel input is x; € R™, the additive noise is
z; € RP, and A € RP*™ is a fixed known matrix. We
assume that the encoder has access to noiseless, instantaneous
feedback so that the input x; is a function of the message
and all previous channel outputs y'~! := y;,...,y, ;. For
a fixed blocklength n, the channel input has an average
power constraint + " | E[x] x;] < P. The definitions of
the average probability of error, an achievable rate and the
feedback capacity are standard and can be found in [19], for
instance.

We consider a colored Gaussian noise that is generated as
the output of a state-space model:

Si+1 = FSi + GWZ'
z; = Hs; + vy, “4)

where w; ~ N(0,W) and v, ~ N(0,V) are i.i.d. sequences
with E[w;v!] = L, and are independent of the initial state
s1 ~ N(0,%;). The class of linear dynamical systems de-
scribed by the state-space in (4) is rich and captures many
known instances like the MIMO ARMA random processes
of kth order given by z; = Z?:l Ajz;_; +Bju;_;, where
u; ~ N(0,3y) is an ii.d. sequence.

B. The Kalman filter and the Riccati equation

The Kalman filter is a simple, recursive method to compute
the maximum likelihood estimation of the hidden state based
on the measurements. The predicted-state estimation and the
prediction estimation error covariance are defined as

éj, = ]E[Si‘ Ziil}

¥, =cov(s; — ;). &)
Then, the standard Kalman filter is given by the recursion
§i+1 = Féi +Kp7i(Zi —-H éi), (6)

with
K,i;=(FS,H' + GL)Y; !
U, =HY,HT +V, (7)
and the error covariance is described by the Riccati recursion
Sig1 = FSFT + GWGT — K, ;(HSHT + V)KL, (8)

The innovation process defined by e; = z; —H §; holds the
property that it is orthogonal (statistically independent) from
previous instances of the measurements z*~! [22].

Note that in (7), it is assumed that ¥, = 0 for all <.
This is a natural assumption in our communication setting
since otherwise the capacity is infinite. Namely, if ¥; is
only positive semidefinite, a coordinate in the noise vector
z; is a deterministic function of the past noise instances
z'~1. Building an infinite-rate scheme is straightforward: the
encoder transmits x; = 0 for j < ¢—1 so that Y = zj. Then,
based on z~!, the encoder and the decoder can communicate
an inifinite number of bits on this vector coordinate (assuming
the image of A is not degenerated at this particular direction).

We move on to present our assumptions on the state-space
model. The stability of F' is significant since it determines the
stationarity of the noise process.

Definition 1. The matrix F' is stable if its spectral radius
satisfies p(F') < 1.

Without further assumptions, our results hold for the station-
ary case, i.e., when F' is stable. If L # 0, the stability of F’
should be replaced with the stability of Fy = F — GLV ~'H.

For the general case where F' is not stable, we need three
additional assumptions. Since the assumptions are satisfied for
the case where F' is stable, a reader whose interest is limited
to the stationary case may skip these assumptions.

Assumption 1. The pair (F, H) is detectable. That is, there
exists a matrix K such that p(F — KH) < 1.

Assumption 2. The pair (F,, GW1'/2) is stabilizable. That is,
for any 2 and \ with |\| > 1 such that zF = z\, zGW /2 +#
0.

Assumption 3. The matrix F' does not have eigenvalues on
the unit circle.

The first two assumptions are made to guarantee that the
Riccati recursion in (8) converges to a matrix that solves a
Riccati equation. More specifically, consider the function

fE)=FSFT =S+ W - K,(S)¥ (DK (2), (9

where K,(X) = (FXHT + GL)¥(X)~! and ¥(¥) =
HYHT + V. The Riccati equation is defined as f(X) = 0.
Under Assumptions 1 — 2, the Riccati recursion converges to a
unique stabilizing solution of the Riccati equation [23, Ch. 14].
That is, there exists a unique X > 0 such that f(Xs) = 0 and
F — K,(X,)H is stable. Moreover, for any initial condition
Y1, ¥; — X, at exponential rate. From now on, we refer to
the constants

K, = (FSH" + GL)¥ !



U=HYH" +V (10)

as the ones evaluated at the stabilizing solution to the Riccati
equation.

The solution to the Riccati equation also characterizes the
entropy rate of the Gaussian noise process:

1 " 1 n .
~h(z") =~ h(zi|2"")
i=1

n

1 n
= > logdet(HE;H +V)
=1

— log det (), (11)

as n — oo

III. MAIN RESULT AND DISCUSSION

In this section we present the feedback capacity of the
MIMO channel, its particularization to the scalar case and
an explicit computation of the feedback capacity for the MA
process. The following is our main result.

Theorem 1. The feedback capacity of the MIMO Gaussian
channel in (3)-(4) is given by the convex optimization problem

1 1
C#(P) = max - logdet(¥y) — - logdet(¥)
mer 2 2
st. Uy = AIIAT + HSHT + ATH”T + HTTAT + 0

r’ s
FEFT + K, UK] -8 F(ITAT + SHT) + K, ¥\ _ o
(AT + HY)FT + VKT Ty -7

(H F)z& T () < P,

(12)
where K, and V are constants given in (10).

The objective structure is the difference between the entropy
rates of the channel outputs and the channel noise random
processes. The entropy rate of the noise process {z;};>1 is
the constant given in (11), while the entropy rate of the
channel outputs process is %log det(¥y) and is part of the
optimization. The auxiliary decision variable II along with its
power constraint and the first LMI in (12) ensure that the
channel input power does not exceed P. In Lemma 1 below,
the decision variables I and the error covariance matrix ¥ will
be given a straightforward interpretation as part of the policy.

The Schur complement of the second LMI constraint in (12)
implies the Riccati inequality

S < FYFT + K,WK! — Ky Uy KT, (13)

with Ky = (F(TTAT + SHT) + K,¥)¥,'. In Lemma 6 in
Section IV below, it is shown that optimal decision variables
(11, i, T') satisfy that the Riccati inequality (13) with equality,
i.e., it is a Riccati equation. This fact reveals that the origin
for explicit capacity formulae expressed as function of roots
to some polynomials in the literature, e.g., [16], [18], [19] is
the Riccati equation. We demonstrate this interesting fact in
Section III-B for the MA noise process.

A. The scalar case:

If the channel outputs, inputs, and the additive noise are
scalars, but the the hidden state of the noise s; is possibly a
vector, the capacity in Theorem 1 can be simplified.

Theorem 2. The feedback capacity of the scalar Gaussian
channel (3)-(4) with A = 1 is given by the following convex
optimization problem

1
Cyp(P) = max - log (1 +
ST o2

P T
S.1. FT i EO,

FYFT + K,O0KI —-%  FI'T + FSHT + K, U 0
TFT + HSFT + WK! P+ HSHT + 2THY +¥) = 7

where K, and U are constants defined in (10).

P+ HSHT + 2FHT)
7

(14)

Choosing H = 0 in (14) recovers the capacity formula of
an additive white Gaussian noise channel

1 P
Cyp(P) = ilog <1+ V> .

Remark 1. The state-space that was studied in [20] can be
recovered by choosing W =V = L = 1. In this case, the
constants are ¥ = 0,K, = G,¥ = 1 and the capacity in
(14) and that in [20, Th. 4] are almost in full agreement.
Specifically, there is a difference in the sign of the first LMI
in (14) which reads as a strict LMI () in [20]. A strict LMI
implies that the Schur complement satisfies P — -1t >
0. However, it can be shown that the optimum is achieved
with equality in the Schur complement at least for particular
instances like the MA noise process in Section IlI-B. The claim
that the LMI constraint is positive definite was also utilized
in [20] to show their main argument that Y is invertible, and
thus should be read with care.

B. Moving average noise

In [16], the feedback capacity of the MA noise process of
first order was shown to be

Cyp(P) = —logzo, (15)

where x is the unique positive root of Pz? = (1—|a|x)?(1—
2?). As this noise realization corresponds to the special case
F=0H=aG=W =V =L =1, we illustrate the
simplicity of computing such expressions from Theorem 2.

Theorem 3. The feedback capacity of the scalar Gaussian
channel with first-order MA noise process is

Cfb(P) = %log(l + SNR), (16)

where SNR is the pogitive root of the polynomial SNR. =
(VP +lal /558

T+SNR
The capacity expressions in Theorem 3 and that in [16] are
different, but it can be shown that they are equal. Specifically,
a change of variable in (16) leads to the following equivalent



2

expression Cy,(P) = —logao where zg solves 1 — z® =

(\F + |a|V1— x2) Interestingly, the new polynomial
and the polynomial in (15) are fundamentally different but it
can be shown that they share a unique positive root meaning
that the capacity is the same.

Proof of Theorem 3. In Lemma 6 in Section IV, it is shown
that the Schur complement of the Riccati LMI (13) is always
achieved with equality. We can show the same property
for the first LMI in (14) using contradiction. Assume that
P —T22-! — X for some X > 0. Then, one can choose

=T'vV1+T-2XY to show that the objective is increased.
The Riccati LMI can be verified to be satisfied with this
substitution.

To obtain the capacity expression, we use I'? = PY and
the Riccati equation which simplifies to S=1- \Il;l. Substi-
tuting these equations into the objective gives the fixed-point
equation Uy =1+ P+ a?(1 — ¥y') + 2|aly/P(1 — ),
where the sign of I' is chosen to maximize Uy . By the
variable change ¥y = 1+ SNR we get the polynomial

SNR = (\F+|a\,/1§§;}R) 0

Note that the proof is a straightforward computation for all
values of «, regardless of whether noise process is stationary.

IV. PROOF SKETCH OF THE MAIN RESULT

In this section we outline the proof of the main result of
this paper in Theorem 1. We structure the proof as three parts.

1. Sequential convex optimization problem (SCOP):
Define the n-letter capacity as

Cn(P) = max

Pan|lyN): g o0, Elx] x] <P

h(Y™) —h(Z™). (17)
The first three lemmas formulate the n-letter capacity as a
SCOP. Since the objective of C,,(P) is directed information
(e.g. [24], [25]), it is easy to show that it is concave in its
decision variable P(x"||y™), but the challenge is to formulate
it as a convex optimization problem that enables one to
explicitly compute the limit of C,,(P) thereafter. To this end,
we realize a SCOP whose fundamental LMI constraint has a
sequential structure.

2. Upper bound via convexity: The second part of the proof
utilizes the SCOP structure to show that the capacity expres-
sion in Theorem 1 is an upper bound on the capacity. Since
the the optimization constraints contain decision variables at
consecutive times, the standard time-sharing random variable
argument does not apply here, and we use a different technique
to show that these constraints are asymptotically satisfied and
not satisfied at all times.

3. Lower bound using Time-invariant inputs: The last
part constructs a time-invariant policy whose parameters’ opti-
mization leads to a lower bound that is expressed as the upper
bound optimization problem with additional constraints. We
show that the additional constraints are redundant, concluding
the proof of the main result.

A. Sequential convex optimization problem
Define the estimators
éi £ E[SZ| Zi_l]
si 2 E[8i |y, (18)

The first lemma identifies an optimal structure for the input
distribution using these estimators.

Lemma 1 (The optimal policy structure). For a fixed n, it is
sufficient to optimize (17) with inputs of the form

x; =036, -8)+m;, i=1,...,n (19)
where m; ~ N (0, M;) is independent of (x*~1,y*=1), £ is
the Moore-Penrose pseudo-inverse of

Y= cov(§; — él), (20)

T'; is a matrix that satisfies
LI —%0%) = @21)

and the power constraint is
% Z Te(D,SI07 + M) < P. (22)

i=1

Lemma 1 simplifies the optimization (17) by showing that
the optimization domain is over the sequence of matrices
(T;, M;)™_,. Note that 3; is a deterministic function of the
policy up to time ¢ — 1 and thus is not part of the policy. The
main insight is that the input has two signaling components.
The first component is a scaled version of the estimation
error at the decoder (§; —éi), and its purpose is to refine
the decoder’s knowledge of the channel state S;. The other
component is an additive Gaussian corresponding to the new
information sent to the decoder. For instance, if the noise is
white, the entire power is dedicated to the new information
encapsulated in m;.

We remark that a similar policy has been reported in [16,
Section IV] and [20]. Their pohcy reads x; = I';(8; — $;)+m;,
and is missing the scaling E and the orthogonality constraint
in (21). If 3; is invertible, then both policies are equivalent
by the variable change I', = Ff],; ! However, the invertibility
is not always true, and the orthogonality constraint must be
introduced prior to the convex optimization formulation (see
also Remark 1). In the next lemma, the dynamics of the
channel output is formalized as a controlled state space.

Lemma 2 (Channel outputs dynamics). For a fixed policy
{(Ts, M)}, the channel outputs admit the state-space
model

Sit1 =F'8; +K, e,
= (Afzij + H) Si —AFIXA)I él +Am; + e;, (23)
where K, and e; ~ N(0,V;) are defined in (7). The
estimator in (18) can be written as

éz'-s-1 = F§; +Ky(y,—H éi)» (24)



and its corresponding error covariance Y; =
satisfies the recursion

cov(s; —§;)

Sip1 = FSFT + K, U KE — Ky, Uy, KL, (25)

with
Uy, = (AL + H)S(ADS! + H)T + AMAT + 0,
Ky, = (FSi(ADS] + H)T + K, 9,) 0y} (26)

and 33, = 0.

Lemma 2 is a consequence of the policy that was derived in
Lemma 1. As seen from (23), the encoders’ policy translates
into an additive measurement noise m; and a modification
of the observability matrix Al"ii;r + H. Similar state-space
structures appeared in [19], [26]. It is interesting to realize that
that (23) does not fall into the classical state-space structure
since the observability matrix depends on error covariance
3, due to our policy. Lemma 2 already reveals an objective
structure that resembles that in Theorem 1. Namely, by (26),
we can write the objective at time ¢ as

. ) 1 1
hy;ly'™") = h(zi |z ") = 3 log det(¥y,;) — 3 log det(¥;).

The next lemma summarizes the SCOP formulation.

Lemma 3 (Sequential convex-optimization formulation). The
n-letter capacity can be bounded by the convex optimization
problem

C’n(P) < max
{000,341},

o, Ty 1 &
t. Ll=0, =N () < P
st (FtT Et>_0’ n; () < P,
Wy, = AILAT + HS,HT + AT HT + HTTAT + 0,
Ky, = (FTTAT + FS,HT + K, ,0,) 05}

1 n
— 1 Uy,) — 1 v,
5 ; ogdet(Py ;) — log det(T;)

(Ff)t FT 4+ Kp,tqthKg P S Ky’tq/y’t> 0, @7
‘I/Y,tKY,t \I/Y,t
where the constraints hold for t =1,...,n and $1=0.

To see that (27) is a standard convex optimization, note
that each of the LMI constraints is a linear function of the
decision variables. In the next section, we provide the single-
letter upper bound on the capacity. The key to the upper
bound is the concavity of the objective function along with
the linearity of the constraints, along with the crucial property
that the Riccati LMI constraint contains decision variables of
two consecutive times only.

B. Single-letter upper bound
The next lemma concludes the upper bound in Theorem 1.
Lemma 4 (The upper bound). The feedback capacity is

bounded by the convex optimization problem

1 1
Cp(P) < max — logdet(¥y) — - log det(¥)
ms,r 2 2

T s
Uy = AIIAT + HSHT + ATHT + HTTAT + @
Ky = (FTTAT + FSHT + K,0)¥;!
o e
FYFT + K,,\I;Kp - Ky¥y)
Uy KT Ty

s.t. (H F) =0, Tr(Il) <P,

(28)

The main idea behind the upper bound is to show that
the convex combination of each of the decision variables in
Lemma 3 obtains a larger objective. At a high level, this is
similar to the time-sharing random variable, but the challenge
lies in the constraints. Specifically, one cannot show that the
Riccati LMI constraint (28) is satisfied at all times when
evaluated at the convex combination of the decision variables.
To settle this point, we show that the constraint is satisfied in
the asymptotics.

C. Lower bound

In this section, we prove that the upper bound in Lemma 4
is achievable. It will be shown using two lemmas: the first
formulates a lower bound as an optimization problem that
resembles the upper bound but has two additional constraints.
The second lemma shows that in the upper bound optimization
problem these two constraints are satisfied.
Lemma 5 (Lower bound). For time-invariant policies
1>1 (29)

with m; ~ N(0, M), the maximization of (17) over (I', M)
achieves the lower bound

Crp(P)

X; = F(él — éz) + m;,

> max log det(¥y) — log det(P)
I8

on T
.1 N <
5.t (FT 2)—0’ Te(I) < P

Ky = (FSHT + FTTAT + K, 0)¥!

Uy = AIAT + ATH” + HTTAT +©

S =FYF" + K, K] — Ky Uy Ky
3K : p(F — K(ATS! + H)) < 1.

(30)
3D

The optimization problem in (31) is the same as the upper
bound in (28) except for the additional constraint (31) and the
Riccati equation (30) which appears as an inequality in the
upper bound (13). Next, we show that these two conditions
can be neglected and conclude the proof of Theorem 1.

Lemma 6 (Equality between the lower and upper bounds).
An optimal tuple (I1, f), ') for the upper bound optimization
problem in (28) satisfies the following:
1) The Schur complement of the Riccati LMI (13) is
achieved with equality.
2) The pair (F, AT + H) is detectable, i.e.,

3K : p(F — K(ATS + H)) < 1.

Consequently, the upper bound in Lemma 4 and the lower
bound in Lemma 5 are equal to the feedback capacity.
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