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Abstract—An n-dimensional source with memory is ob-
served by K isolated encoders via parallel channels, who
compress their observations to transmit to the decoder via
noiseless rate-constrained links while leveraging their memory
of the past. At each time instant, the decoder receives K
new codewords from the observers, combines them with the
past received codewords, and produces a minimum-distortion
estimate of the latest block of n source symbols. This scenario
extends the classical one-shot CEO problem to multiple
rounds of communication with communicators maintaining
the memory of the past.

We extend the Berger-Tung inner and outer bounds to the
scenario with inter-block memory, showing that the minimum
asymptotically (as n — co) achievable sum rate required to
achieve a target distortion is bounded by minimal directed
mutual information problems. For the Gauss-Markov source
observed via K parallel AWGN channels, we show that the
inner bound is tight and solve the corresponding minimal
directed mutual information problem, thereby establishing
the minimum asymptotically achievable sum rate. Finally, we
explicitly bound the rate loss due to a lack of communication
among the observers; that bound is attained with equality in
the case of identical observation channels.

The general coding theorem is proved via a new nonasymp-
totic bound that uses stochastic likelihood coders and whose
asymptotic analysis yields an extension of the Berger-Tung
inner bound to the causal setting. The analysis of the Gaussian
case is facilitated by reversing the channels of the observers.

Index Terms—CEO problem, Berger-Tung bound, dis-
tributed source coding, causal rate-distortion theory, Gauss-
Markov source, LQG control, directed information.

I. INTRODUCTION

We set up the CEO (chief executive or estimation
officer) problem with inter-block memory as follows.
An information source {X;} emits a block of length
n, X; € A", at time i; it is observed by K encoders
through K noisy channels; at time 4, kth encoder sees
Y} generated according to P)/ik|X1,_“’X’i7ylk7‘__7yikil. See
Fig. 1. The encoders (observers) communicate to the decoder
(CEO) via their separate noiseless rate-constrained links.
At each time 4, kth observer forms a codeword based on
the observations it has seen so far, i.e., Y}, ..., Y. The
decoder at time ¢ forms the estimate, Xi € /l”, based on
the codewords it received thus far. The goal is to minimize

the average distortion
1
=3 E {d(X,;,Xi)} :
i=1
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where ¢ is the time horizon over which the source is being
tracked, and d: A" x A" — R is the distortion measure.
Encoding and decoding operations leverage the memory of
the past but cannot look in the future. In this causal setting
no delay is allowed neither at the encoders in producing
codewords to encode X; nor at the decoder in producing X;.
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Fig. 1. The CEO problem with inter-block memory: the encoders and
the decoder keep the memory of their past observations.

In the classical setting with ¢ = 1, the CEO problem was
first introduced by Berger et al. [2] for a finite alphabet
source. In the classical Gaussian CEO problem, an i.i.d.
Gaussian source is observed via AWGN channels and
reproduced under mean squared error (MSE) distortion.
The Gaussian CEO problem was studied by Viswanathan
and Berger [3], who proved an achievability bound on
the rate-distortion dimension for the case of K identical
Gaussian channels, by Oohama [4], who derived the sum-
rate rate-distortion region for that special case, by Prabharan
et al. [5] and Oohama [6], who determined the full Gaussian
CEO rate region, by Chen et al. [7], who proved that the
minimum sum rate is achieved via waterfilling, by Behroozi
and Soleymani [8] and by Chen and Berger [9], who showed
rate-optimal successive coding schemes. Wagner et al. [10]
found the rate region of the distributed Gaussian lossy
compression problem by coupling it to the Gaussian CEO
problem. Wagner and Anantharam [11] showed an outer
bound to the rate region of the multiterminal source coding
problem that is tighter than the Berger-Tung outer bound
[12], [13]. Wang et al. [14] showed a simple converse on the
sum rate of the vector Gaussian CEO problem. Concurrently,
Ekrem and Ulukus [15] and Wang and Chen [16] showed
an outer bound to the rate region of the vector Gaussian
CEO problem that is tight in some cases and not tight in
others and that particularizes the outer bound in [11] to the
Gaussian case. Courtade and Weissman [17] determined
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the distortion region of the distributed source coding and
the CEO problem under logarithmic loss.

None of the above results directly apply to the tracking
problem in Fig. 1 because of the past memory in encoding
the n-blocks of observations and in producing )A(Z in (1),
which imposes blockwise causality constraints onto the
coding process. The most basic scenario of source coding
with causality constraints is that of a single observer
directly seeing the information source [18]. The causal
rate-distortion function for the Gauss-Markov source was
computed by Gorbunov and Pinsker [19]. The link between
the minimum attainable linear quadratic Gaussian (LQG)
control cost and the causal rate-distortion function is
elucidated in [20]-[22]. A semidefinite program to compute
the causal rate-distortion function for vector Gauss-Markov
sources is provided in [23]. The remote Gaussian causal
rate-distortion function, which corresponds to setting K = 1
in Fig. 1, is computed in [22]. The causal rate-distortion
function of the Gauss-Markov source with a Gaussian side
observation available at the decoder (the causal counterpart
of the Wyner-Ziv setting) is computed in [24] for the
scalar source and in [25] for the vector source. That causal
Wyner-Ziv setting can be viewed a special case of our
causal CEO problem (2), (3) with two observers, with
one of the observers enjoying an infinite rate. Stability of
linear Gaussian systems with multiple isolated observers is
investigated in [26].

The first contribution of this paper is an extension of
the Berger-Tung inner and outer bounds [12], [13] to the
distributed tracking setting of Fig. 1 that sandwich the
minimum asymptotically achievable (as n — oco) sum rate
R'+. ..+ R¥ required to achieve a given average distortion
(1). Provided that the components of each X; € A™ are i.i.d.
(X can still depend on X7y, ..., X;_1), the channels act on
each of those components independently, and the distortion
measure is separable, that minimum sum rate is bounded in
terms of the directed mutual information from the encoders
to the decoder. The converse (outer bound) follows via
standard data processing and single-letterization arguments.
To prove the achievability, we show a nonasymptotic bound
for blockwise-causal distributed lossy source coding that
can be viewed as an extension of the nonasymptotic Berger-
Tung inner bound by Yassaee et al. [27], [28], applicable
to the setting with K = 2 sources and ¢ = 1 rounds of
communication, to the setting with an arbitrary number of
sources and communication rounds. We view the horizon-t
causal coding problem as a multiterminal coding problem in
which at each step coded side information from past steps
is available, and we use a stochastic likelihood coder (SLC)
by Yassaee et al. [27], [28] to perform encoding operations.
The SLC-based encoder mimics the operation of the joint
typicality encoder while admitting sharp nonasymptotic
bounds on its performance. While the SLC-based decoder
of [27], [28] is ill-suited to the case K > 2, we propose
a novel decoder that falls into the class of generalized
likelihood decoders [29] and uses K different threshold
tests depending on the point of the rate-distortion region
the code is operating at. An asymptotic analysis of our
nonasymptotic bound yields an extension of the Berger-

Tung inner bound [12], [13] to the setting with inter-block
memory.

The second contribution of the paper is an explicit evalua-
tion of the minimum sum rate for the causal Gaussian CEO
problem. In that scenario, the source is an n-dimensional
Gauss-Markov source,

Xiy1 = aX; +V;, (2)
and the k-th observer sees
=X, +Wk, k=1,... K, (3)

where X7 and {V;, W}, W2 ... , WXL | are independent
Gaussian vectors of length n with i.i.d. components; each
component of V; is distributed as N(0,0%), and each
component of W} as N(0,03, ). Note that different

observation channels can have different noise powers. The
distortion measure is the normalized squared error

“4)

We characterize the minimum sum rate as a convex opti-
mization problem over K parameters; an explicit formula is
given in the case of identical observation channels. Similar
to the corresponding result for ¢ = 1 [5], [6], [30, Th. 12.3],
our extension of the Berger-Tung inner bound is tight in
this case. To compute the bound, we split up the directed
minimal mutual information problem into a sum of easier-
to-solve optimization problems. To tie the parameters of
those optimization problems back to those of the original
optimization problem, we extend the technique developed
by Wang et al. [14] for the time horizon t = 1,to t > 1. A
device that helps us track the behavior of optimal estimation
errors over multiple time instances is the reversal of the
channels from {X;} to {Y/*}:

Xi =X+ W/,

~ 1 ~
d (XX) — X — X2
n

®)

where

(6)

and W}’ L XF are Gaussian independent random vectors
representing the errors in estimating X; from {Yj’“ }é-:l.
While for ¢t = 1, it does not matter whether the encoders
compress Y} or X since the latter is just a scaled version
of the former, for ¢ > 1, compressing Y;* instead of XF is
only suboptimal.

The third contribution of the paper is a bound on the rate
loss due to a lack of communication among the different
encoders in the causal Gaussian CEO problem: as long
as the target distortion is not too small, the rate loss is
bounded above by K — 1 times the difference between
the remote and the direct rate-distortion functions. The
bound is attained with equality if the observation channels
are identical, indicating that among all possible observer
channels with the same minimum MSE in the estimation of
{X;} from {ij}jgmzl,m,;(, the identical channels case
is the hardest to compress. This result contributes to the
discussions of the rate loss in the classical CEO [31, Cor. 1]
and multiple descriptions [32, Lemma 3] problems.

The rest of the paper is organized as follows. In Section II,
we consider the general (non-Gaussian) causal CEO problem

XFEE[X Y, Y],



and prove direct and converse bounds to the minimum
sum rate in terms of minimal directed mutual information
problems (Theorem 1). In Section III, we characterize the
causal Gaussian CEO rate-distortion function (Theorem 4).
In Section IV, we bound the rate loss due to isolated
observers (Theorem 5).

Notation: Logarithms are natural base. For a natural
number M, [M] £ {1,..., M}. Notation X < Y reads
“replace X by Y’; notation X | Y reads “X is independent
of Y’; notation £ reads “by definition”. The temporal index
is indicated in the subscript and the spatial index in the su-
perscript: Y is the temporal vector (Y{", ..., Y}*); v5 s
the spatial vector (Y;!,... YV;K)T; Y[£]K] e (Y- ,Y[ff)
Delay operator D acts as DXy £ (0,X1,...,X;_1). For
a random vector X with i.i.d. components, X denotes a
random variable distributed the same as each component of
X. We adopt the following shorthand notation for causally
conditional [33] probability kernels:

t
N
PY[t]HX[t] = HPYJY[FL]A,XW' @)
i=1

Given a distribution PXm and a causal kernel PYMH Xpp»
the directed mutual information is defined as [34]

t
I(Xp = Yg) 2T (X YilViir) . ®)
i=1

II. SUM RATE VIA DIRECTED INFORMATION
A. Overview

In this section, we present and prove our extension of
the Berger-Tung bounds to the setting inter-block memory
that sandwich the minimum achievable sum rate in terms of
minimal directed mutual information problems. The bounds
apply to an abstract source with abstract observations.
The operational scenario and achievable rates are formally
defined in Section II-B. The directed mutual information
bounds are presented in Section II-C. The converse is proven
in Section II-D. The nonasymptotic achievability bound and
its asymptotic analysis are presented in Section II-E. A set
of remarks in Section II-F completes Section II.

B. Operational problem setting

A CEO code with inter-block memory, or a causal CEO
code, is formally defined as follows.

Definition 1 (A CEO code with inter-block memory).

Consider a discrete-time random process {X;}!_, on X,
observed by K causal observers via the channels

Pyyx, s X% = V¥, ke [K]. 9)

Letd: X x X R be the distortion measure.
A CEO code with inter-block memory consists of:

a) K encoding policies

t
Pop vy Y% T[H, € )

=1

(10)

R cro(d) £ inf {R: (R, d) is achievable

b) a decoding policy

t

PX[[I]Q ”B[[:]q : H[Mzk] — 2€'®t. (11D
i=1
If the encoding and decoding policies satisfy
1
SY E[d(X.%)] <4, (12)
i=1

we say that they form an (M, [[tl](], d) average distortion code.

If the encoding and decoding policies satisfy

g [O {d (XX) > di}] <e

1=

13)

we say that they form an (M, [[ff}?d[t], €) excess distortion
code.

The probability measure in
(13) is generated by X« the  joint
Pt Py, P e Pogivg:

(12) and
distribution

A distortion measure d,: A" X A" s R, is called
separable if

(14)

where d: A x A — R, and (i), #(i) denote the i-th
components of vectors © € A" and & € A", respectively.

Definition 2 (Operational rate-distortion function). Con-
sider a discrete-time random process {X;}!_, on X = A™
equipped with a separable distortion measure, observed by
K causal observers via the channels (9).

The rate-distortion tuple (R d) is asymptotically
achievable at time horizon t if for ¥y > 0, dng € N
such that ¥m > ng, an <M [[tl]q ,d+ 7) average distortion
CEO code with inter-block memory exists, where

t
1
~ > logM}F < RF, ke [K]. (15)
i=1

The rate-distortion pair (R,d) is asymptotically achiev-
able if a rate-distortion tuple (R[K],d) with

K
ZRk <R
k=1

is asymptotically achievable.
The causal CEO rate-distortion function at time horizon
t is defined as follows:

(16)

a7)

at time horizon t in the CEO prublem.}



C. Berger-Tung bounds with inter-block memory

Consider a discrete-time random process {X;}!_; on
X = A" equipped with separable distortion measure d,
observed by K causal observers via the channels (9) with
Y = B" and

Px,ix 0 = P, (18)
Pyxx, aYE P\‘%"LX (19)

@1]

Denote the minimal directed mutual information problems

B N : (K] (K]
Ricwo(d) £, inf 1 (Y= Ul eo
U IV
P %0 ]”U{t]] 1 (24)
A : (K] (K]
Riceo(d) = U[K]Hlj[lf] (23>I (Y[t] = Uy ) @h
(6] e
X IupsT @9
where the constraints are as follows:
i H Pyt v, (22)
Puﬁ]uvgt] PU{;]HYf;] Vk e [K]  (23)
1< .
5 S E [d (xx)} <d (24)
=1

Fixing a k € [K] and marginalizing {U[’;]/ , k' # k} out of
both sides of (22), one can see that any joint distribution that
satisfies the separate encoding constraint (22) also satisfies
(23). Thus, the optimization problems (20) and (21) differ
in that the constraint (22) is more stringent than (23). They
represent extensions of the Berger-Tung inner ((20)) and
outer ((21)) bounds [30, Th. 12.1, 12.2] to the causal setting.

One can convexify R;cpo(d) by adding to the opti-
mization parameters a scalar o € (0,1] and a distribu-
tion P- [K ”Y[K] satisfying the separate encoding constraint
analogous to ](22) and replacing the directed information

in (20) by oI (Y{ff U{f]q) (1—a)l (\?{ff] N 05]{]).
This is equivalent to introducing into (20) a binary time
sharing random variable. Given the achievability of (20), the
achievability of the convexification follows by the standard
time sharing argument [30, Ch. 4.4].

Since a mixture of distributions P 1) 1K1 ) satisfying (23)
[t)

|
Ui
also satisfies (23), the convexity of R, ¢ (d) follows from

the convexity of directed mutual information in P [K] v (K],

with no need for an explicit auxiliary time sharmg random
variable.

Theorem 1 (Berger-Tung bounds with inter-block memory).
Consider a discrete-time random process {X;}._, on
X = A™ equipped with a separable distortion measure
d, observed by K causal observers via the channels (9)
with Y = B"™ and (18), (19) satisfied. Suppose further that

for some p > 1, there exists a vector X|; such that

1< RY »
(g s

The causal rate-distortion function is bounded as

Ricro(d) < Ricro(d) < Ricro(d). (26)

Condition (25) is a technical condition needed to apply a
standard argument using Holder’s inequality to pass from an
excess to average distortion in the proof of the achievability
bound (Appendix B).

To prove the upper bound on the sum rate in (26), we
actually show a more accurate characterization of the entire
rate tuple RI¥] (Theorem 3, below).

We will see in Section III below that the inner (upper)
bound in (26) is tight in the quadratic Gaussian setting.
This is in line with the corresponding result in the setting
of block coding without inter-block memory [30, Th. 12.3].

While in general the ¢-step optimization problems (20)
and (21) are challenging to compute, we illustrate in this
paper that the normalized limit as ¢ — oo is possible to
compute in the Gaussian setting. Similar limit results in
other communication scenarios were shown in [19], [22],
[24], [25], [35]-[38].

D. Theorem 1: proof of converse

The proof of the converse uses standard techniques. We
will use the following definition and lemma.
Causally conditioned directed information is defined as

¢
= ZI(X[i]?Yi|Y[i—1],Z[i]).
i=1

Lemma 1 ( [33, (3.14)—(3.16)]). Directed information chain
rules:

I(X[t] — Y[t] ||Z[t]) 27

I( X1, Yi) = Zp) = I( X1 — Zy)

+ 1Yy = Ziyll Xy),  (28)
I( Xy — (Y, Z1y)) = 1(Xpg — YiyllDZp)

+1( X = ZilYg)-  29)

Fix an (M[[ff],d) code in Definition 1. Denote by BY €
[MF] the codeword sent by k-th encoder at time 4. Since

the codewords satisfy the sum rate constraint (16),

K
nR > H(Bf) (30)
k=1
(K]
>H (B[t] ) G1)
> 1 (vl = By) (32)

> inf I (Y[gf] - B[[f]‘]) . (33)
B[[g]f Hy[[? l'Ik 1 Bk] Hy[’;] ’
PX[K] HB[K (12) holds

[t] [t]

where (31) holds because the joint entropy is upper-bounded
by the sum of individual entropies, and (32) holds because
the mutual information is upper-bounded by the entropy.
Note that (33) is the n-letter version of (20).

We proceed to apply a standard single-letterization
argument to (33). For an n-dimensional vector Y, we

?

denote by Y[(j) its j-th component; for sets K C [K]



and Z C [n], we denote by Y/*(Z) the components of the
vectors (Y*: k € K) indexed by Z.

Denote by R:cro(d) the right-hand side of (26). We
introduce auxiliary random objects

UkG) = (BEYIG - 1), Gel G4
The directed mutual information in the right side of (33)
o (K

can be rewritten in terms of U,

(v = o)

= ZI(Y[H%) = BIVIG-1) 6
j=1

= X1 (ro = (B G- )
j=1
~1 (v o - @i - miesl’) 6o

=S (v - (B i G -1m)) 6D
j=1

= > (v o)~ vl o) (38)
=1

> min ZRtCEO(d]) (39

dj,j€[n]: 1

Zd <nd I=

> nR;cpo(d) (40)

where (35) is by the chain rule of mutual information; (36)
is by the chain rule of directed information (29); (37) holds
because P K|y (K] = P [K]H is a causal kernel, which

means that jDY[[t%]”DB[[t]] =
DB[%(] in (36) can be eliminated, and the resulting directed
information is zero because different components of the
vector Ylk are independent due to (18), (19); (38) is by

substituting (34) (39) holds because UF(j) (34) satisfies
PU{;] (j)HY[Ef o = Fuk v Gy the distortion measure is

separable and (18), (19) hold; and (40) is by the convexity
of R, cro(d) as a function of d. O

(K]
Vi

YK hence conditioning on
(]

E. Theorem 1: proof of achievability

To show that (26) is achievable in the asymptotics n —
oo, we first show a nonasymptotic bound. Then, via an
asymptotic analysis of the bound, we derive an extension
of the Berger-Tung inner bound [12], [13] to the setting
with inter-block memory.

Before we present our nonasymptotic achievability bound
in Theorem 2 below, we prepare some notation.

For a fixed conditional distribution PUlgcY[gﬁ Uk
the conditional information density

 (shysuiut_ ) 2 log

denote

dPUk:|Yk Uk: 1 (uf|y{2],uﬁ_l])

ki, k
dPU,i’“|U[’;".71] (Uz |“[i—1]> an

] and bounded as follows.

For a fixed joint distribution PU[K] , denote the relative

conditional information densities

qP k-1], [K] )
F(47)

k
UflU,!’“*”U{ﬂ](“i lw” gy
k| ok
APy (“ | “[H})
For a permutation 7: [K] — [K], we denote the ordered
set

7(K) & {n(k): k € K}.

Theorem 2 (nonasymptotic Berger—Tung inner bound
with inter-block memory). Fix P and parameters

(43)

M[[f](], d% ]] e. For any scalars o; ,,3 any integers L¥ >
MF, i € [t], k € [K], any causal kernels P Kyt =
i Pur,

m: [K] — [K]|, there exists an (M[[f]q,d[t],e) excess
distortion CEO code with inter-block memory such that

|yr and Py o<, and any permutatlon
] 0 10

e<P[E]+7, (44)
where event & is given by
t
e2(J{a (X XF) > ai} 45)

<.
—

-« |

(-
C=

{z (Y[f], Uik|U[]§_1}) >log LF — af}

{ ) (uﬁmn) < log

and constant vy is given by

«
Il
-
~
Il
-

(k)

L (k)
Mﬂ.(k) + ﬂl ’

%

-
C=

©
Il
A
S
Il
—

vE1- (46)

1
HE:l {ZICQK exp(— Zkelc sz)} Hszl [1 + exp(—af)] .

Proof sketch. We employ the achievability proof technique
developed by Yassaee et al. [27], [28] that uses a stochastic
likelihood coder (SLC) to perform encoding operations. An
SLC makes a randomized decision that coincides with high
probability with the choice that a maximum likelihood (ML)
coder would make (in fact, the error probability of the SLC
exceeds by at most a factor of 2 the error probability of the
ML coder [39, Th. 7]). We view the horizon-¢ causal coding
problem as a multiterminal coding problem in which at each
step coded side information from past steps is available,
and we define the SLC based on the auxiliary transition
probability kernel PUf\Y[’;] vk, (see (132) in Appendix A)
that is also used to generate random codebooks.

While [28, Th. 6] shows a sharp nonasymptotic bound for
the classical distributed source coding problem with K = 2
terminals, the decoder employed there does not extend to the
case K > 2. In (136) in Appendix A, we propose a novel
decoder that falls into the class of generalized likelihood
decoders (GLD) conceptualized by Merhav [29, eq @]
and that uses an auxiliary indicator function g <B[ (137).
With our GLD we are able to recover the full Berger-Tung



region ((52), below) for any K. One can view the set of
outcomes ug]q for which g (ug](]) =1 as a jointly typical
set. That set depends on the choice of 7 and thus on the
particular rate point that the code is operating at. Checking
for membership in that set involves K threshold tests. In
contrast, the jointly typical set defined by Oohama [4, eq.
(46)] involves 2% —1 threshold tests, one for each nonempty
subset of [K].

Full details are given in Appendix A. O

Theorem 3 (Berger-Tung inner bound with inter-block

memory). Under the assumptions of Theorem 1, the rate-

distortion tuple (R d) is asymptotically achievable at

time horizon t if for some single-letter causal kernels

PU[K 1y PX[K] Ul satisfying (22), (24) and some per-
AT 1] e

mutation 7: [K| — [K], it holds for all k € [K]

w(k m(k) _, yr®) )y k=1D) [K]
R0 > 1 (YRR = upPupe pufl) @
Proof. Appendix B. O
Theorem 3 implies that the sum rate
k [K]
ZR > 1 (Yl = Ul (48)

is achievable. Indeed, summing (47) over k and using U¥ —
(Y[l U[Z 1 ) — U%Z.I]q\{k} leads to (48). Therefore, the sum
rate in (21) 1s achievable. O

F. Remarks
We conclude Section II with a set of remarks.

1. Theorems 2 and 3 are easily extended to distributed
source coding with inter-block memory, where the goal is
to separately compress (and jointly decompress) K pro-
cesses {Y;*} under the individual distortion constraints

7Z1E[ (v} Y’“)]gdk, kel[K]l.  (49)

Theorem 2 continues to hold with d (Xi, Xf) > d; in

(45) replaced by d* (Yik, Yf) > d¥. Consequently, The-
orem 3 also continues to hold, replacing the constraint
in (24) by

7ZE [d’“ (YE, ¥E) } <d*, kelK].  (50)

2. Case t = 1 corresponds to the classical CEO / distributed
source coding problems. The region in (47) simplifies to
R > p(y=k), yrk)|yr (k=1

Vk € [K],Vpermutation 7: [K] — [K]. (51)

The multiterminal Berger-Tung inner region is usually

(e.g. [17, Def. 7], [3, eq. (2)]) specified as
> ORF>I(YAUAUAY), VACIK]L  (52)
ke A

These characterizations are equivalent (Appendix C).

3. While the sum rate bound in (48) is the same regardless
of the choice of permutation 7, different 7’s in (47)
correspond to different orders in which the chain rule of
mutual information can be applied, and are needed to
specify the full achievable region of rates and distortions.

4. We chose to omit the time-sharing random variable
in Theorem 3 for simplicity of presentation. It can
be introduced in (47) using the standard time sharing
argument [30, Ch. 4.4].

III. GAUSSIAN RATE-DISTORTION FUNCTION
A. Problem setup

This section focuses on the scenario of the Gauss-Markov
source in (2) observed through the Gaussian channels in (3)
under squared error distortion (4). Given an encoding policy
in Definition 1, the optimal decoding policy P [K]H B

that achieves the minimum expected squared error 1s

X AR {X |B[K] . (53)

For simplicity we focus on the infinite time-horizon limit.

Rcro (d) £ lim sup R ceo (d) 54)
t—o0

In other words, the causal CEO rate-distortion function
Rcro(d) is the infimum of R’s such that Vy > 0, 3ty >
0 such that Vt > tg, dng € N such that Vn > ng, an

M [[tﬁq,d + 7) average distortion causal CEO code exists

with M[[ff] satisfying (15) and (16).

Taking the limit ¢ — oo simplifies the solution of many
minimal directed mutual information problems ([22, Th. 9],
[24, Th. 6, Th. 7], [35, Th. 1], [36, Th. 2], [37, Th. 1])
by eliminating the transient effects due to the starting
location X of the process {X;} that is being transmitted. In
this steady state regime, the optimal rate allocation across
time is uniform (i.e., log M{“ = ... =log Mtk in (15)).
Furthermore, R;cgo(d) approaches its steady-state value
(54) as O (1) (this is a consequence of [24, eq. (83)-(85),
(92)] and (82), (86), (93) below).

In Section III-B, we present the Gaussian rate-distortion
function as a convex optimization problem over K parame-
ters (Theorem 4), which reduces to an explicit formula in
the identical-channels case (Corollary 1). These results are
obtained by showing that the inner bound in Theorem 1 is
tight in the Gaussian case and by evaluating the correspond-
ing minimal directed mutual information. In Section III-C,
we give auxiliary estimation lemmas that are useful in the
proof of Theorem 4. We give the proof of Theorem 4 in
Section III-D.

Notation: For a random process {X;} on R, its stationary
variance (can be +o00) is denoted by

ok = limsupE [X?]. (55)
1—00
The minimum mean squared error (MMSE) in the estimation

of X; from Yg]q is denoted by

2 2 _ WIEIT
i 2 E [(x E [xiIvji]) ] . (56)
and the steady-state causal MMSE by
O’X”Y[K £ limsup o2 &)

ivoo XilY()



B. Gaussian rate-distortion function

In Theorem 4, the Gaussian rate-distortion function is
expressed as a convex optimization problem over param-
eters {dj,}5_, that determine the individual rates of the
transmitters and that correspond to the MSE achievable at
the decoder in the estimation of {X;}!_, provided that the
codewords from k-th transmitter are decoded correctly.

Theorem 4 (Gaussian rate-distortion function with in-
ter-block memory). For all U>2<|\Y[Kl <d< 0)2(, the causal
CEO rate-distortion function (54) for the Gauss-Markov
source in (2) observed through the Gaussian channels in
(3) is given by

i} . o,
1 d 1 dp — o o d
Repo(d) = 5 log 7+ min Z§1og7XHY’”j

d {di}i_y 1 dy, — (7)2(Hyk Cik7
(58)
where
d 2 a?d+ 0%, (59)
dy & a*dy + o, (60)
and the minimum is over dy, k € [K], that satisfy
K
1 1 1 1
=< - -1, (61)
d ™ v ; <J>2<|vk dk)
U)Q(Hyk- <dp < 0)2(- (62)
Proof. Section III-D. O

If the source is observed directly by one or more of the

encoders, say if 0)2(”\/1 =0,thend; =d, do = ... =dg =
a>2< is optimal, and (58) reduces to the causal rate-distortion
function [19, eq. (1.43)] (and e.g. [20], [40, Th. 3], [22,
(64)]), [24, Th. 6]):
d
7
The sum over k € [K] in (58) is thus the penalty due
to the encoders not observing the source directly and not
communicating with each other.

If the observation channels satisfy

R(d) = % log (63)

oXvr = - = (7>2(”YK, (64)

we can explicitly write the rate-distortion function

RESS™ (d) for this symmetrical scenario.

Corollary 1 (Observation channels with the same SNR).
If, in the scenario of Theorem 4, the observation channels
satisfy (64), the causal CEO rate-distortion function (54)
is given by

. 1 d K Czl - 0)2<Hyl dq
RE-9™(d) = Zlog = + — log ———5—=*, (65
cro  (d) g o8t Ogdl_giuvl 4 (65)
where d; satisfies
1 1 K K
=+ —. (66)

2 )
d oy Oxpyr A

Proof. 1t suffices to show that the minimum in (58) is

attained by d; = ... = dg. Since each of the terms in the
sum in (58) is a convex function of dy, applying Jensen’s
inequality concludes the proof. O

Let us think now of adding identical observers by letting
K — oo in (64). Since 0’>2<Hy[K] — 0, had the observers
communicated with each other, they could have recovered
the source exactly, and they could have operated at the sum
rate (63) in the limit. As the following result demonstrates,
lim g 00 Rope™ (d) is actually strictly greater than (63),
thus a nonvanishing penalty due to separate encoding is
present in this regime. See Section IV for a more thorough

discussion on the loss due to separate encoding.

Corollary 2 (Many channels asymptotics). In the scenario
of Corollary 1,

. K —sym 1 J 1 é B %
U)Z(HYl o2
Proof. By Lemma 3 in Section III-C below,
1 K K-1
g =3 it (68)
X||YLK] XYt X

Eliminating d; and O'>2(HY[K] from (65) using (66) and (68),
one readily verifies that

d 1 v 1
=it x+o(x) @
O-XHYl oy

and (67) follows. O]

I

=

K—sym 1
Repo (d) — 9 log

Corollary 2 extends the result of Oohama [4, Cor. 1] to
the compression with inter-block memory, and coincides
with it if a = 0.

Considering the scenario where the encoders and the
decoder do not memorize past observations or codewords,
we may invoke the results on the classical Gaussian CEO
problem in [5], [7] to express the minimum achievable sum
rate as

no mem 1 2
Rigo Y (d) = 5 log %(

2 2
1. 0% — Oy d
+ min Y Zlog XMLk (90
{dk}{le k=1 2 dk - O-X‘Yk’ O-X

where the minimum is over

K

1 1 1 1

- < — —_— (71)

= " 2 ’

d Ix|yIK] ; <Jx|vk dk)

oxpyr < di, < 0% (72)
Here O’)Q(‘Yk £ limjeo ox, v+ and U)2(|Y[K] £
lim; oo 02 x) denote the stationary MMSE achievable

X;|Yt
in the estimation of X; from Yf and YZ[-K] respectively, i.e.,
without memory of the past.

If a = 0, the observed process (2) becomes a stationary
memoryless Gaussian process, the predictive MMSEs reduce
to the variance of X;: d = dy = 0% = ol; similarly,

2 _ 2 2 _ 2
OXvE = Ox|vE and OXvix] = Ox|yix]s and the result of



Theorem 4 coincides with the classical Gaussian CEO rate-
distortion function (70). This shows that if the source is
memoryless, asymptotically there is no benefit in keeping
the memory of previously encoded estimates as permitted
by Definition 1. Classical codes that forget the past after
encoding the current block of length n perform just as well.

If |a| > 1, the benefit due to memory is infinite: indeed,
since the source is unstable, 0>2< = oo, while d < co. If
la] < 1, that benefit is finite and is characterized by the

2
discrepancy between the stationary variance o = 16‘(’12 of
the process {X;}22; and the steady state predlctlve MMSE
d< O’X, as well as that between Ux\Yk and O’X“Yk

C. MMSE estimation lemmas

We record two elementary estimation lemmas that will
be instrumental in the proof of Theorem 4.

Lemma 2. Let X ~ N(O,Ug(), W ~ N(OJ?,V), w1

X, and let
Y=X+W (73)
Then,
2
Xy = 0% (1 - Zg‘) . (74)
Y
Proof. Appendix D. [

Lemma 3. Ler X}, and W/ be Gaussian random variables,
{Xk}k L {W’ i1, such that wi L WJ’», j#k, and

X ZXk —‘rW]g. (75)

Then, the MMSE estimate and the estimation error 0‘2,‘,, £
2

O XX of X given the vector X[K] satisfy
_ L
E[X|Xi] =D 35Xk, (76)
=1 W}
K
1 1 K—-1
= - 77)
0'12/‘// kzz:l UlQ/V]é gg(
Proof. Appendix D. 0

Lemma 3 converts the “forward channels” from X to
observations Y

Ye=X+Wi, k=1,...,K, (78)

where W), ~ N (0, J%,Vk I) (I denotes the identity matrix),

Wi, L Wj, j # k, into “backward channels” from estimates

X to X (75). While both representations are equivalent,

(75) is more convenient to work with. Backward channel

representations find a widespread use in rate-distortion
theory [41].

D. Proof of Theorem 4: converse

1) Proof overview: We evaluate the n-letter converse
bound (33). We break up the minimal directed mutual
information problem in (33) into subproblems, and we
use the tools we developed in [24] to evaluate the causal
rate-distortion functions for each subproblem. To link the
parameters of the subproblems together to obtain the
solution of the original problem, we extend the proof
technique by Wang et al. [14], developed for the case
t =1, to t > 1. Converting the “forward channels” from
X[y to observations Y[f] into the “backward channels” from
MMSE estimates X ;) to X;) and applying the lemmas in
Section III-C above are key to that extension.

2) Decoupling the problem into K subproblems: Recall
the notation in (6). We expand the right-hand side of (33):

(79)
(80)

—inf (Xm - B[K]) +1 (X[[ff] — Bl HX[t])}

(81)

I
{
—inf {1 (X[t] = B[[tffl) + ZK:I (X[’g] ~ Bl X[t])}

k=1
(82)

where

e (79) holds by the chain rule
(K] K]y [K] _
1(x = Bive) =
over kernels PB[[f]q X [[f](]
encoding constraint

(28)
0. The infimum is
satisfying both the separate

using

Py xix HPB (83)
and the distortion constraint
1<
=S E[IX - Xil?] <d 84
— ; | ] < (84)

wl[lege Xi (53) is the MMSE estimate of X; given
B
[4 >
e (80) is due to the chain rule of directed informa-
tion (28), and I (X B[[t]]( HX[[tI]( =0;
o (81) is by the chain rule of directed information (28);

e (82) is due to (83).

3) Using causal rate-distortion functions to evaluate the
terms in (82): We lower-bound the first term in (82) using
a classical result on the point-to-point causal Gaussian rate-



distortion function [19, eq. (1.43)]

(K]
i nt 1 (X~ B3)
(84) holds
(K]
> Jim . nf I(XH - Xl ) (85)

[t] ”X[t]

(84) holds
n. d

where d is uniquely determined by d via (59). Furthermore,

(86) is achieved by the Gaussian kernel Py oI XG such that
X; =Xy +2, Z ~N(0,dl), (87)

{Z!} are i.i.d. and independent of {X}}, and
d= U>2<\|>”<* (88)
d= U>2<\|D>”<*' (89)

For each of the remaining K terms in (82), note that
{XF} is a Gauss-Markov process
X'k-i-l - G'sz + Vikv

3

(90)

where VF NN<0 ( IXEYE T X’“IYl 1]> I)' The pro-
cess {X;} can be expressed through {X}} as

X; = XF4wk', 91)

where W}’ are independent, W/’ ~ N/ <0, O’X IvE, I),and

Wk" 1 XF. Thus, we may apply the result [24, Th. 7] on
the causal counterpart of Gaussian Wyner-Ziv rate-distortion
function to the process {XF} (90) with side information
{X;} (91) to write (while stated for the scalar Gaussian
source, the same argument applies to n parallel Gaussian
sources of the same power, as is the case here; see [25] for
the general vector case)

lim inf

t—o0 P

ko xk "
B ¥y
1 t

2
t 24i=1 Oxk|x ;) BE <Pk
i

[1]
Pk
R

I (X[’;] — Bl HX[t]) (92)

= Dlog (93)
2 7 pe
where py, is uniquely determined by py via
1 1 1
— == 3 7 94
Pk Ower  0°pr+ 0y
Furthermore, (93) is attained by the Gaussian kernel
PBk* | X*
B = XF4+7ZF, Z; ~ N(0,0%.1), (95)
{Z;} are i.i.d. and independent of { X}, and
pk = O.)g(kHX,Bk*a (96)
PE = o-)g(k‘lx’DBkaw 7

The variances agk in (95) are set to satisfy (96).

ISee also [24, Th. 6]; while stated for the scalar Gaussian source, the
same argument applies to n parallel Gaussian sources of the same power,
as is the case here; see [23] for the general vector case.

4) Linking {pr}5_, to d: It remains to establish the

connection between {py }5_; (96) and d (88).
Setting X* in (87) to

XA [X Bl } (98)

attains equality in (85), implying that the same Gaussian

kernel (95) simultaneously attains the infima of both terms
in (82). Thus, putting together (82), (86) and (93), we have

Rceo(d) > 99)
2 K 2
. 1 OX|| DBIKI* 1 Ok ||X, DB*
inf {210g02| 7+Z§10g ng
{o2k pors b, X|BU 2 XF|[X,B
Jiuu[K]*:d

Invoking Lemma 3 with X < X;, X + XF, W/ + Wk’
We express

X, 2F {xzw[”f]} (100)
K 0)2(1 K]

=y 5 Yia Xk, (101)
=1 XYk

[4

which implies in particular

K U>2< [y
e (K]« _ M| <k [£]
E [ XX, Bl = > ——E XX, By | 102)
2
_ S lelY] k
= Z E [X¥|Xp, (103)
> B
k=1 = Xi|YE

[4]

It follows that steady-state causal MMSE in estimating X;

from X; and Bg]q* satisfies

K 04”
2 X[y
IX|IX,BUI = > 2 (104)
k=1 OX|Y¥
Observe that
2 2
7 = %% _E[% 105
inX[i],BL{]ﬂ* xiflE[X”xm’B{f]ﬂ*] ( )
2
=95 < . 106
X=X —E[Xi =X X3 B[] (106)
_ 2
T IR, =X —E[Ri =X X —X?] (107)
2
= O, XXX (108)

Now, we apply Lemma 2 with X < X; — —X, Y X=X,
W < X; — X; to establish

o2
. 2 _ 2 X[y
Zlggo T %X % = XY (1 ~ , (109)
which, together with (104) and (108), means
K
1 1
<=y (110)
IXIY k=1 TXIIY
Also, note that
0 < o < 0% x- (1)



We can now simplify the constraint set in the infimum in
(99): the infimum is over {pj}/_, that satisfy (110) and
(111).

It remains to clarify how the form in (58), (61), (62),
parameterized in terms of

i, £ 0% gee (112)

rather than py, is obtained. An application of Lemma 2
with X « X; = XF, ¥ + X; = XE, W « XF — X leads to

0.2
_ 2 XYk
Pk — O'X”Yk <1 dk .

Plugging (113) into (110) leads to (61). Applying Lemma 2
with X + X; — Xk Y «+ X;, W« Xk we express

0' :
2 _ 2 X[ Y*
Txk|x = OX|| Yk <1 T2 |
X

which, together with (113), implies the equivalence of (111)
and (62). Finally, applying Lemma 2 with X < X; — Xk,
Y X; —aXb |, W« XF —aX¥ |, we express

2
5y = o 1= Xl
k p— k - = .
X[y A

Plugging (113) and (115) into (99), we conclude the
equivalence of (99) and (58). L]

(113)

(114)

(115)

E. Proof of Theorem 4: achievability

We evaluate the Berger-Tung inner bound with inter-
block memory (20). In the proof of the converse, we lower-
bounded the n-letter version of that bound, i.e., (33), by
computing the right-hand side of (82). Thus, it suffices to
show that equality holds in (79). But this is easily verified
by substituting the optimal kernel (95) into the left side
of (79). O

IV. LOSS DUE TO ISOLATED OBSERVERS
A. Overview

In Section IV, we investigate how the rate-distortion
function in Theorem 4 compares to what would have been
achievable had the encoders communicated with each other.
A tight upper bound on the rate loss due to separate encoding
is presented in Section IV-B (Theorem 5). Its proof relies
on an upper bound on Rcgo(d) presented in Section IV-C
(Proposition 1). The proof of Theorem 5 in Section IV-D
concludes the section.

B. Loss due to isolated observers

Unrestricted communication among the encoders is
equivalent to having one encoder that sees all the obser-
vation processes . } It is also equivalent to allowing

iy[ ]
joint encoding policies Py ”Y in lieu of independent

encoding policies Hk,l PBmy[kl in Definition 1.
- t t
The lossy compression setup in which the encoder has
access only to a noise-corrupted version of the source has

LEINT3

been referred to as “remote”, “indirect”, or “noisy” rate-

distortion problem in the literature [41]-[44]. The setting

with causal coding was considered in [22, Th. 5-8, Cor. 1].
We denote the joint encoding counterpart of the opera-

tional fundamental limit Rcgo(d) (54) by Rym(d) (remote).
The following result is a corollary to Theorem 4.

Corollary 3 (Remote rate-distortion function with in-
ter-block memory). For all 0>2<HY[K] <d< 0'>2<, the rate-
distortion function with joint encoding for the Gauss-
Markov source in (2) observed through the Gaussian
channels in (3) is given by

1, d-

o2
X YIK]
2 10 Il

)
d - xuv

Riw(d) = (116)

where d is defined in (59).

Proof. Examining its proof, it is easy to see that Theorem 4
continues to hold in the scenario with vector observations
Yf (that are still required to be jointly Gaussian with X;).
In light of this fact, we view the joint encoding scenario
as the CEO scenario with a single encoder that has access
to all K observations, and we see that (58) indeed reduces
to (116) in that case.

Previously, the minimal mutual information problem
leading to R;m,(d) was solved in [22] in a different
form using a different method; both forms are equivalent
(Appendix E). O

The loss due to isolated encoders is bounded as follows.

Theorem 5 (Loss due to isolated observers). Consider the
causal Gaussian CEO problem (2), (3). Assume that target

distortion d satisfies ‘7>2(||Y[KJ < d and
1 1 K
=2 — —5 — min — . (117)
d = oy Ox KEIK] Oy

Then, the rate loss due to isolated observers is bounded as
RCEO(d) - er(d) S (K - 1) (er(d) - R(d)) 3 (118)

with equality if and only if O'>2(HYk are all the same, where
R(d) is given in (63) and R, (d) is given in (116).

Proof. Section IV-D. O

Theorem 5 parallels the corresponding result for the
classical Gaussian CEO problem [31, Cor. 1], and recovers
it if @ = 0. It is interesting that in both cases, the rate loss is
bounded above by K — 1 times the difference between the
remote and the direct rate-distortion functions. In the case
of identical observation channels, condition (117) reduces
to d < Ux The rate loss (118) grows without bound in the
high resolution regime d | (TX”Y x) and vanishes in the low

resolution regime d 1 o3.

C. A suboptimal waterfilling allocation

We present an upper bound to Rcpo(d), which is
obtained by waterfilling over dj’s. This parallels the cor-
responding result for the classical Gaussian CEO problem
[31, Cor. 1]. Like [31], we use waterfilling to obtain this
result, but unlike the case ¢t = 1 considered in [31] where



waterfilling is optimal [7], it is only suboptimal if ¢ > 1
due to the memory of the past steps at the encoders and
the decoder. This is unsurprising, as for the same reason
waterfilling cannot be applied to solve the vector Gaussian
rate-distortion problem for ¢ > 1 [22, Remark 2].

Proposition 1 (Suboptimal waterfilling rate allocation). For
all O’X”Y[K < d < 0}, the causal CEO rate-distortion
function for the Gauss-Markov source in (2) observed
through the Gaussian channels in (3) is upper-bounded
as

. 1 xnvk dy
Rcro d - og —|— log — . (119)
( 2 Z dy — x”yk dy;
where dy, k € [K]| satisfy
1 1 1 1 1
. —_min{,Q—Q}, (120)
TX v dp A oxvE Ox
A is the solution to
1 1 1
me 7*7 =5, (121
)\ O'XHYk 0% TY|vix] d

and d, d, are defined in (59), (60) respectively. Inequality
in (119) holds with equality if all U)Q(HYk are equal.

Proof. We first check that the choice in (120) is feasible.

Since the right side of (120) is lower-bounded by 0 and
upper bounded by — ﬁ, (62) is satisfied. Furthermore,
X

‘ vk

v
substituting (121) ensures that (61) is satisfied with equality.

To claim equality in the symmetrical case, it suffices to
recall that in that case, the minimum in (58) is attained by
di = ...=dg (Corollary 1). O

D. Proof of Theorem 5

Under the assumption (117), the waterfilling allocation
in Proposition 1 results in all active transmitters, and (120)
reduces to

1 1 1
—_—— = 122
while (121) reduces to
-1
1 1
A=K |————- . (123)
XHY[K] d

Substituting (122) into (119) we conclude that under
assumption (117),

RCEo(d)

log + = Zlogl( =" dt)% (124)

K

1. d K 1 1) A

< —log - + = log A 25
2 d 2 [; <U>2<|Yk dk) K]
1. d 1 1\ A

el i B (L ) A (126)
278472 g( xuw« d) K
L d-o? ko1 d-

— ~log allid L iog X”Y (127)
2 T d= oy 2 d— xnvm d

where

o (125) is by Jensen’s inequality, since log is concave;
e (126) is due to

K
1 1 K-1
=y (128)
X[y =1 X||y* Ix
K
1 1 K-1
TN 1L 129
T T T (129)

which holds by Lemma 3 even if the source is
nonstationary (that is, |a| > 1 and O’X = 00), as a
simple limiting argument takin
¢ (127) holds by substituting (122) 1nto (126).

Notice that (118) is just another way to write (127), using
(116) and (63). To verify the condition for equality, note that
‘="holds in (124) in the symmetrical case by Proposition 1,
and that ‘=" holds in (125) only in the symmetrical case
due to strict concavity of the log function. O

V. CONCLUSION

In this paper, we set up the causal CEO problem
(Definition 1, Definition 2) and we prove that the rate-
distortion function is upper bounded by the directed mutual
information from the encoders to the decoder minimized
subject to the distortion constraint and the separate encoding
constraint, and lower bounded by the minimal directed mu-
tual information subject to a weaker constraint (Theorem 1).
The proof of the direct coding theorem hinges upon an
SLC-based nonasymptotic bound (Theorem 2) that extends
[28, Th. 6] to the case with K > 2 observers and ¢t > 1
time steps. An asymptotic analysis of Theorem 2 leads to
an extension of the Berger-Tung inner bound [12], [13] to
t > 1 time steps (Theorem 3).

By showing that the achievability bound in Theorem 1 is
tight in the Gaussian case and by solving the correspoding
minimal directed mutual information problem, we charac-
terize the causal Gaussian CEO rate-distortion function
as a convex optimization problem over K parameters
(Theorem 4). We give an explicit formula in the identical-
channels case (Corollary 1), and we study its asymptotic
behavior as K — oo (Corollary 2). We derive the causal
Gaussian remote rate-distortion function as a corollary to
Theorem 4 with K =1 (Corollary 3). Using a suboptimal
waterfilling allocation over the K optimization parameters
in Theorem 4 (Proposition 1), we upper-bound the rate loss
due to separated observers (Theorem 5).

We chose not to treat correlation between n components
of X; and WF in this paper merely to keep things simple.
We expect our results to generalize to the scenario in which
the components of the source and the noise are not i.i.d. A
further interesting generalization would be to consider the
general vector state-space model

= AX; +V;
=CX; + Wk,

(130)
(131)

z+1

where A is an n xn matrix and C' is an m x n matrix. It will
also be interesting to determine the full rate-distortion region
of the causal Gaussian CEO problem as opposed to the sum



rate we found in this paper. While Theorem 3 already gives
an inner bound to that region, developing a converse remains
open. The techniques in [11], [15], [16] appear promising
in that pursuit. Certain causal multiterminal source coding
problems also appear within reach in view of the result in
[10] and the applicability of Theorem 3 to multiterminal
source coding.
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APPENDIX A
PROOF OF THEOREM 2

Codebooks: Encoder k maintains separate codebooks
U If U ’2“ s Ul f to use at the transmission instances
1,2,...,trespectively. Codebook Qf is an n.x L’f X
dimensional array: there is a separate codebook for each
possible realization of past chosen codewords.
€ TI;_,[L5], we denote by
ur (¢157) the codeword corresponding to index /;, given
the past indices £[;_1;. For subsets K C [K] and Z C [t],
we denote the collection of codebooks U% 2 (U¥: k €
K,i € I). For indices ¢¥ € [LF], i € [t], k € [K],
we denote their collection /% £ (¢F: k € K,i € I).
Finally, Uk (/%) £ (Uk(éﬁ]) k € K,i € T) denotes the
codewords corresponding to £5; 15 denotes the array of
1’s of dimension || x |Z|.

Codebook 1 for encoder k, U’ ]f consists of L’f codewords
drawn i.i.d. from PU{C. For ¢« = 2,...,t, codebook ¢ for

For vector of indices /};

user k, Q i » consists of Lk codewords drawn i.i.d. from
1—1 k
PU,i’“\U[i_l]:Qﬁ,_” (zk' ) for each E[ 1] c H [L ).

Random binning: Let BY: [LF] — [MF], i =1,2,... ¢,
be random mappings in which each element of [L¥] is
mapped equiprobably and independently to the set [MF].

We will use the notation Bf (¢/5) & (Bk(ﬁk ) kekK,ie

T) denotes the codewords corresponding to E’C.

In the description of coding operations that follows, we
denote the instances of the random codebooks in operation
by u¥ and those of the random binning functions by b¥.

Encoders: The encoders use the stochastic likelihood
coder (SLC) [27], [28] followed by random binning. Each
user k£ maintains a collection of encoders indexed by time
i =1,2,...,t; at time 7, encoder ¢ is invoked to form and
transmit a codeword at that time.

Encoder i for user k: Given an observation y¥ € V¥
and past codewords £f;_,, € ]_[1 ! 1[L], the SLC chooses
[L%] with probability

By =l (4oy) (Q]”C (gﬁ]))
- exp (z (yfi];gi-“ ( m) Juf_, (gﬁ_

S exp (l (yﬁ];@f ((Eﬁ_u@) |uf;

where the conditional information density is with respect
to the given distribution Py« UKUE_ - Encoder ¢ transmits

an index Ek

e (132)

1))

mk = bF(¢¥) to the decoder, a realization of the random
variable we denote by BF.

The causal encoder k is the resulting causal probability
kernel

QB’“ Y (mkt Hyﬁ])

= Z { ( [t]) = mﬁ]}QU’f ¥ (Eﬁ]Hyﬁ]) (133)
40

X LE-

g (%))

Since the encoders operate independently,

K

QU[[t{fluy[[th = HQU[§]\|Y[’;]7 (134)
K

sl Bl :HQBWY[’?]' (135

Decoder: Having received the collection of bin numbers

Kl e HkK:1 [MF] at time i and remembering the past, the
decoder invokes a generalized likelihood decoder (GLD)
[29, eq. (4)] to select among indices that fall into those bins
a collection of indices EEK € Hle [L¥] with probability

Qoo o, i, gy (81 (8)) -
( i (( )) {?“

we (w7

_Q_
L
5
=
el
—
S
X

where

AK]

Having determined E[
transformation P

, the decoder applies the given

‘U[K] X to form the estimate of

[7] >
the source X (u (E[K )) The causal decoder is the
resulting causal kernel Q5 KBl

Error analysis: We consider two error events:

gdec U # U[K

o U (7))

=1

(138)

(139)

where U[[éq are the codewords chosen by the encoders

at encoding step (132), and U [tK] is the decoder’s es-
timate of those codewords after decoding step (136).
Note that Ego. is the event that some codewords are
not recovered (decoding error), and &, is the event
that some distortions exceed threshold even if all the
codewords are recovered correctly (encoding error). We
denote for brevity by F the 31gma algebra generated by
K K K
v, o (1 L]]ﬁ i (1a”), Ko (Ul (1fi") ): by
Q the probability measure generated by the code; and by
Fik, G; the denominators in (132) and (136), respectively.
Following Shannon’s random coding argument and the
Jensen inequality technique of Yassaee et al. [27], [28],
we proceed to bound an expectation of the indicator of



the correct decoding event with respect to both the actual
source code and the random codebooks.

t

Q lHl{d (i %) < i | U} ,B{fﬂ}”
i=1

> B [@[é5.n i | L Bl

E[ 2 Quye (Eh () )

el TR, [L5)
{Bi () = i}

>
K1) Bl =l (Q[K] (f{ff )) 8 enc}]

miy €lims T M
=Hnww

k=11:=1
{ [QU sy (U5 () 137)
(Bl (1f") = 14"}

“Qp 015 | Bl =[5 (Qh (1{5](])) HE ) | ]-'H (142)

[t]

[[1]a2!

k=11i=1

(140)

(141)

Y

T Y5 UF (1) | Ufimy (Le
E gil:[le}(p<l( b ]E([ziik)|ﬂ[ i (1 1])))
(02 (1) ) )
E (G| F]
o(mox @ () <o} | s
where

o the expectation E in (141) is with respect to the
codebooks U [K] , the random binning functions Bg]q,

the decoder P U] and X [t]> Y[E]K];
e (142) uses that botl[l]the codewords and the binning
functions for the ¢-th time instant are independently

and identically distributed, thus each choice of EH](]

K] tesults in the same probability as the

[t
choice E{ 1[5] and mﬁ] = 1{1]{] Here we also

condltloned on }J before taking an outer expectation
with respect to it, which will facilitate the next step
of the calculation.

« the main step (143) is shown as follows. The product
Qyl ”Y K]QU[K ”B (x] i proportional to the product

of (K + 1)t factors 1_[Z 1 G Hk 1 F" Applying
Jensen’s inequality to this ]omtly convex function of
(K + 1)t variables yields

and m

We compute each factor in (144) as follows.
[F ’“\f]
_E Zexp ( (l/[z (1[171],Z) |QF271] (1[171])))|]:

- exp( (v 1% (1) 1y () ) ) + (2 = 1)

]E{exp (Z (YWQ( -1 2IUGi—y) (- 1))) |f}
(146)

= exp( (Yh]v P (DI (- 1]))) +(Li = 1),
(147)

where to write (146) we used that the codewords
{U? (1i—1),£): £ # 1} are identically distributed condi-
tioned on F.

To evaluate E [G;|F], we partition the set of all E[K]
Hz L[L¥] into index sets parameterized by K C [K]:

K
Li(K) 2 {Wﬂ e [Jizt: ¢® =1k ek,

i=1

o) £ | e /CC}, (148)

and for each KEK] € L£;,(K), K C K, we upper-bound g(-)
as

o (1 (1, 6°)) 9
<[l { " (DY > log L B }
kekKe Mz
(150)
7 (k)
< TT M e (0 (w0 (189,40 ) — 574,
kekce i
(151)
while for K = [K], we upper-bound it as
g( o (1{?)) 1. (152)
Note that for each EEK] e LK), KCK
0 (gD (4151l ;]
kgcexp( (™ (1125:64)))
(153)

The upper-bound in (151) and the equality in (153) are key
to the analysis of our GLD (136).



Now, E [G;|F] is bounded as

E[G;|F] =
Bl Y e(u (A))
M, [Lh)

B ) = 111} |f] (154)
- (7)1 {0 1)

P B (U (1 A) 1 F

RCIK] | ¥, (k)
1
11 7-1{32“’6)(1“):1”} (155)
kelCe 7
<1 {BEK](l[Kl) - 1[“} (156)
+ D e ( > BZ“““’) {870 0%) =17},
KC[K] keke

where (156) follows from (151), (152) and (153).

Now, plugging (147) and (156) into (143) and computing
the expectation in (143) with respect to the codebooks and
the binning functions, we conclude that the probability of
successful decoding is bounded below as

1—e> (157)

]ELHlHl % eXp( YﬁvU”Uﬁ—u))*(l*ﬁﬁ)
.g(U[i] ) d(X X( [i] ))Sd’}

L+ Ykc i) P (= Xpexe B)

Loosening the bound (157): Here we again follow the
recipe of Yassaee et al. [27], [28].

K t 1
gg(ﬁ)—lexp( ( v UF|UE 1))+1
K (i) 1{d (xi. % (Uff) < di}]

2Kc(K] €XP (= ke BY) oy

K t P[SC]
UH [1—|—exp( )] |:ZICQ[K} €exXp (_ EkeKﬁf)}
(159)

where (158) holds by weakening (157) using 1 — (Lf)fl <
1 and rewriting for brevity

1+ Z exp (— Z ﬂf)
keKe

KC[K]

P

> 5f> ;
KC[K] keK

(160)

(159) is obtained by weakening (158) by multiplying the
random variable inside the expectation by 1 {€¢} and using

the conditions in £ (45) to upper-bound ¢ (Y[f], Uik|U [12—1])
in the denominator.
Rewriting (159), we obtain

e<1- (1e1)
ﬁ 1 P €]
vt [1+exp(—ah)] [Sci (= e )]
=PE]+~yP[&°] (162)
<P[E]+ (163)
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We analyze the bound in Theorem 2 with
_ p®n
PU[t]“ Yig = Po UgIYE, (164
®71
PX[[ff ot P K1yt (165)
single-letter kernels chosen so that
% (Y] —
E[d (xl,xl (UM ))} —d;+4, (166)

for some 6 > 0. We also fix an arbitrary permutation
m: [K] — [K]. Denote for brevity the divergences

pr® 2R []W(k) (UE;]([K]))}

:D P‘l\'k w([k—1 ([K P‘lrk 7 (k Pﬂ'k*l 7 ([K
Ty 1>U“<7[1]J>H Ui()IU[iif]I U (=10 (15

(167)

For k € [K], i € [t], let
af = BF =ns, (168)
and choose L¥, MF to satisfy
log L¥ > nl(vfgl;uﬂuf;”) +2aF, (169)
log M ™®) > 1og LT® — DT 4 2%, (170)

Note that since U¥ — ( JUE 1]) Uﬁq\{k} it holds that
vy &), k) yrk=1D) (= (KD

1 (Yg®sur® U gt
—1(y™®). yr* (k)
_1( 9 ur®urt 1)—Di :

and thus summing both sides of (170) over ¢ € [t] we obtain
(cf. (47))

t
1 k w(k) _, (k) (k=1 pyylK]
=Y tog M > 1 (Y5 = U U puf?)

(171)

+ 4t4. (172)

Applying the union bound to P[£] and the law of large
numbers to each of the resultant (2K +1)¢ terms, we further
conclude that P[E] — 0 as n — oo. Furthermore, v — 0 as
n — o0, and therefore by Theorem 2 there exists a sequence
of codes with log Lf and log Ml’C satisfying (169), (170)
with excess-distortion probability e — 0 as n — oo.

Under our assumption on the p-th moment of the distor-
tion measure (25), the existence of an (M [[tl]q, dpy), €) excess-
distortion code with 1 Zf 1 d; < d implies the existence
of an (M, T a1 — )+ dpe'1/P) average distortion code
via a stan(fard argument using Holder’s inequality [45, Th.
25.5].



APPENDIX C
TWO CHARACTERIZATIONS OF BERGER-TUNG BOUND

Proposition 2. The region R in (52) is equivalent to the
region R’ in (51).

Proof of Proposition 2. Observe that any subset A of [K]
with cardinality k is equal to 7([k]), for some permutation
7 on [K].

First, we show that R’ C R. Fix 7 and consider K =
7([k]). Since given Yy, Uy, is independent of UK}

k
IOYSUR) =3 T I(Y (i Un( U™V Y), (173)
j=1

K

IOYRSURTUR) = Y I(Ya()s Uny UTF 1Y) (174)
j=k+1

From (174), we conclude that any set of rates that satisfies

(51) for  must also satisfy (52) for A = K¢. Thus, R’ C R.

To show that R C R’, note, using the operational Markov
chain condition UB —YB —YA\B_yA\B that for all B C A,

I(Y4U4) = I(YABUAIU8) 1 1(Y5;UF). (175)

Since

>17 >T
S12 4 e o h g
S1+ 8y > 11 + I So > 1o
(175) implies that for any A C [K],
Ypeae B = 1(YA U4 U (177)
Zke[K] RF > 1YW UlKT)
k >7 Y.A A
= 2real . ( f’lcU )A 4 (178)
Dpeae BY = I(Y4; U [UF)
and for any B C A,
RF > I(YB,UB
ZkeB k_ ( A’ A) (179)
ZkeAR > I(Y4; U4
k> T YB. B
e ey (50
ZkeA\BR = I(Y VB A |U®)

For B = n([k — 1]) and A = 7([k]), the second inequality
in (180) is exactly the inequality (51). Since any set of rates
satisfying (52) must also satisfy (180) for all B C A C [K],
we conclude that R C R’. O

APPENDIX D
MMSE ESTIMATION LEMMAS
Lemmas 2 and 3 are corollaries to the following result.
Lemma 4. Let X ~ N (0,0%), and let
Yi=X+W, k=1,... K, (181)
where Wi ~ N (0,03, ), We L Wj, j # k. Then, the

MMSE estimate and the normalized estimation error of X
given Y|k are given by

K U?qy
(]

E [X|Yix] =) = Y (182)

k=1 Wk

K

1 1 1
=5+ (183)
5 O-g( k=1 U‘%Vk

Proof of Lemma 4. The result is well known; we provide a
proof for completeness. For jointly Gaussian random vectors
XY,

E[X|Y =y =E[X]+ZxySyy (y —E[Y]), (184)

Cov[X|Y]=Yxx — Exy X3y Sy x- (185)
Denote for brevity
U?,Vl 0
S = (186)
0 Oy,

In our case, X is a scalar and Y = Y[ is a vector, and

Yxx = 0%, (187)
1

Syy =3Sw+ || ok [1 1], (188)
1

Sxy =ox 1 1]. (189)

Using the matrix inversion lemma, we compute readily

Cov[X|Y] ' =53 — O Sxy

_ -1 _
(EyxExxExy —Syy)  SyxEyy (190)
=3¢ + 2k Sy S Sy x Sy (191)
1 1 1
= +t=+...+ =, (192)
0x Ow, Wk

which shows (183). To show (182), we apply the matrix
inversion lemma to Xy y to write:

1
Sy =50~ Zw || 0%y [ 1] S5
1
(193)
It’s easy to verify that
) 1
ox[1 o | Li——-S3 |1 ... 1]
UX|Y[K] 1
=1 1], (194)
where I, is the n X n identity matrix, so
E[X]Y =y] = BxyEyyy (195)
=[1 1] E;Vlo%mmy, (196)
which is equivalent to (182). ]
Proof of Lemma 2. Equality (74) follows from
0% =o% + oY, (197)
1 1 1
o= 5 T (198)
)y 9% w
where (198) is a particularization of (183). L]

Proof of Lemma 3. Notice that (75) with X;, = E [X|Y}]
and W} ~ N(0, aﬁm) is just another way to write (181).
Reparameterizing (182) and (183) accordingly, one recovers
(76) and (77). O



Remark 1. We may use Lemma 4 to derive the Kalman filter
for the estimation of X; (2) given the history of observations

Y{f]q 3):

2
_ L
Xi=aXi—1+ Y —5 1 (YF—aXi_1), (199)
=1 Wi
K
1 1 1
5 = + Z — (200)
o X X o
Xi|Y[[i]] Xl\YL ]1] k=1 Wk

where X; is defined in (100). Equation (199) is the
Kalman filter recursion with Kalman filter gain equal to
v Lz ﬁ , and (200) is the

. Y . K
corresponding Riccati recursion for the MSE.

the row vector o2

APPENDIX E
TWO EQUIVALENT REPRESENTATIONS OF Ry, (d)
In this appendix, we verify that (116) coincides with the

lower bound on the causal remote rate-distortion function
derived in [22]. Indeed, [22, Cor. 1 and Th. 9] imply

2 2
Ix|IDYE] ~ IX|yIK]

— 2
d = 05 yix

Rim(d) > %log a’+ (201)

Here, o ) 1s the variance of the innovations

2 o2
X|| DY ~ OXy v
of the Gauss-Markov process {X;}, i.e.

Xit1 = aX; + V;, (202)

Vi ~ N(0,0% pyix) = Oxyix;)- The form in (201) leads
to that in (116) via (59) and

oR oyl = Q0% i + OV (203)

O
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