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Variable-length Feedback Codes with Several
Decoding Times for the Gaussian Channel

Recep Can Yavas, Victoria Kostina, and Michelle Effros

Abstract—We investigate variable-length feedback (VLF) codes
for the Gaussian point-to-point channel under maximal power,
average error probability, and average decoding time con-
straints. Our proposed strategy chooses K < oo decoding
times n1,n2,...,nk rather than allowing decoding at any time
n = 0,1,2,.... We consider stop-feedback, which is one-bit
feedback transmitted from the receiver to the transmitter at
times n1,n2,... only to inform her whether to stop. We prove
an achievability bound for VLF codes with the asymptotic

Nowr) \/Nln(K,l)(N)WP), where

approximation In M = T iy
In(x)(-) denotes the K-fold nested logarithm function, N is the
average decoding time, and C'(P) and V (P) are the capacity and
dispersion of the Gaussian channel, respectively. Our achievabil-
ity bound evaluates a non-asymptotic bound and optimizes the
decoding times n1,...,nx within our code architecture.

Index Terms—Variable-length stop-feedback codes, Gaussian
channel, second-order achievability bound.

For a full version of this paper, see arXiv:2103.09373.

I. INTRODUCTION

Although Shannon’s work [1] shows that feedback does
not increase the capacity of memoryless, point-to-point chan-
nels, it is known that feedback has several important bene-
fits in channel coding such as simplifying coding schemes
and improving higher-order achievable rates. Several results
demonstrate this effect in the fixed-length regime. Feedback
simplifies coding in Horstein’s scheme for the binary symmet-
ric channel [2] and Schalkwijk and Kailath’s scheme [3] for
the Gaussian channel. Wagner ef al. [4] show that feedback
improves the second-order achievable rate for any discrete
memoryless channel (DMC) with multiple capacity-achieving
input distributions giving distinct dispersions.

The benefits of feedback increase for codes with arbitrary
decoding times (called variable-length or rateless codes). In
[5], Burnashev shows that feedback significantly improves the
optimal error exponent of variable-length codes for DMCs.
In [6], Polyanskiy et al. extend the work of Burnashev to
the finite-length regime with non-vanishing error probabili-
ties, introducing variable-length feedback (VLF) and variable-
length feedback with termination (VLFT) codes and deriving
achievability and converse bounds for their performance. In
VLF codes, the receiver decides when to stop transmissions
and decode; in VLFT codes, the transmitter decides when to
stop transmissions using its knowledge of the source message
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and the feedback that it receives from the receiver. As a
special case of VLF codes, Polyanskiy et al. define variable-
length stop-feedback (VLSF) codes that use feedback from
the receiver to the transmitter at each potential decoding time
to inform the transmitter whether to stop transmitting; in this
regime, the codewords are fixed when the code is designed,
and feedback affects how much of a codeword is sent but
not that codeword’s value. The result in [6, Th. 2] shows
that variable-length decoding improves the first-order term in
the asymptotic expansion of the maximum achievable message
size from NC' to {V—_Ce where C' is the capacity of the DMC,
N is the average decoding time, and € is the average error
probability. The second-order achievable term within the class
of VLF and VLFT codes is O(In N), which means that VLF
and VLFT codes have zero dispersion, and the convergence
to the capacity is much faster than that achieved by the fixed-
length codes [7], [8].

Variations of VLSF and VLFT codes are studied in [9]-
[16]. In [9], Kim et al. consider VLSF codes where decoding
must occur at a decoding time less than or equal to some
constant ¢ and the decoding times satisfy n; = id for some
d € Z%. In [10], Altug et al. modify the VLSF coding
paradigm by replacing the average decoding time constraint
with a constraint on the probability that the decoding time
exceeds a target value; the benefit in the first-order term
does not appear under this probabilistic delay constraint [10].
Truong and Tan [11], [12] extend the results in [6] to the
Gaussian point-to-point and multiple access channels under
an average power constraint. Trillingsgaard e al. [13] study
the VLSF scenario where a common message is transmitted
across a K-user discrete memoryless broadcast channel.

For the Gaussian channel, the effect of feedback depends
both on whether the power constraint limits maximum or
average power! and on whether the code is fixed-length
or variable-length. For example, in the fixed-length regime,
feedback does not improve the code performance in its first-,
second-, or third-order terms under the maximal power con-
straint [8], but does improve the achievable second-order term
under the average power constraint [17]. In the variable-
length regime where the decoder can decode at any time and
an average power constraint is employed, feedback improves
performance in the first-order term [12].

While high rates of feedback are impractical for many
applications — especially wireless applications on half-duplex

I'The maximal power constraint is also called the short-term, per-codeword,
or peak power constraint; the average power constraint is also known as the
long-term or expected power constraint.
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devices — most prior work on VLSF codes [9]-[13] allows an
unbounded number of potential decoding times, i.e., K = oc.
A notable exception is [14], which considers VLF and VLFT
codes with K < oo decoding times. In [14], Vakilinia et
al. introduce a sequential differential optimization (SDO)
algorithm to optimize the choices of K potential decoding
times ni,...,Nng, approximating the distribution of the ran-
dom decoding time 7 by a Gaussian random variable. They
apply the SDO algorithm to non-binary low-density parity-
check codes over binary-input additive white Gaussian noise
channels, determining the mean and variance of 7 through
simulation. Extensions of [14] include [15], which uses a
new reliability-output Viterbi algorithm at the decoder, and
[16], which extends [14] to account for the feedback rate and
applies the SDO algorithm to random linear codes over the
binary erasure channel. As noted in [14]-[16], VLSF codes
can be viewed as incremental redundancy hybrid automatic
repeat request (IR-HARQ) schemes.

This paper presents the first asymptotic expansion for an
achievable rate bound on VLSF codes with K falling between
the extremes: K = 1 (the fixed-length regime analyzed in
[71, [18]), and K = oo (the classical variable-length regime
defined in [6, Def. 1]). We consider VLSF codes over the
Gaussian point-to-point channel and limit the number of
decoding times to some finite integer K that does not grow
with the average decoding time N. We impose a new maximal
power constraint, bounding the power of codewords at every
potential decoding time. The feedback rate of our code is
% when the decoding time is ng. Thus our feedback rate
approaches 0 as nj grows while most other VLSF codes use
feedback rate 1 bit per channel use. Throughout the paper, we
employ the average error and average decoding time criteria.
Our main result shows that for VLSF codes with 2 < K < co
decoding times, message set size M satisfying

In M =~ NlCi(P) - \/Nln(K_l)(N)‘l/(P)

— € — €

(D

is achievable. Here In(x)(-) denotes the K-fold nested log-
arithm function, N is the average decoding time, and C(P)
and V(P) are the capacity and dispersion of the Gaussian
channel, respectively. The order of the second-order term in (1)
depends on K. The convergence to % in (1) is slower than
the convergence to C'(P) in the fixed-length scenario, which
has second-order term O(v/N) [7]. The K = 2 case in (1)
recovers the variable-length scenario without feedback, which
has second-order term O(v/ N In N) [6, Th. 1], achieved with
nq, = 0; our bound in [19, Th. 4] shows that when K = oo,
the asymptotic approximation in (1) is achievable with the
second-order term replaced by —O(v/N). Our result in (1)
demonstrates how the performance of VLSF codes interpolates
between these two extremes. To show that the decoding
times nq,...,nk that achieve (1) are chosen optimally within
our code structure, we use the SDO algorithm introduced
in [14] (see [19, Sections IV-C, IV-E]). Despite the order-
wise dependence on K, (1) grows so slowly with K that it
suggests little benefit to choosing a large K. For example,

when K = 4, \/NlIng_1)(N) behaves very similarly to
O(V/'N) for practical values of N (e.g., N € [10% 10%)).
Notice, however, that the given achievability result provides
a lower bound on the benefit of increasing K'; bounding the
benefit from above would require a converse, a topic left to
future work.

In what follows, Section II introduces VLSF codes with
K decoding times, and Section III presents our main results
and discusses their implications. Proof sketches appear in
Section 1V, with details available in [19].

II. PROBLEM STATEMENT

A. Notation
For any positive integers k and n, [k] £ {1,...,k} and
" 2 (z1,...,2,). For any 2" and integers n; < ny < n,

A .
32 = (Tny, Tny 415 - - - Tny). The Buclidean norm of vector

2™ is denoted by ||z"| £ />_;_, #2. We use In(-) to denote
the natural logarithm. We measure information in nats. We use

the standard O(-) and o(-) notations, i.e., f(n) = O(g(n))
if limsup,,_,, |f(n)/g(n)] < oo and f(n) = o(g(n)) if
lim,, oo | f(n)/g(n)] = 0. We denote the distribution of a
random variable X by Py, and we write NV (u,0?) to denote
the univariate Gaussian distribution with mean p and variance
o2. We use Q(-) to represent the complementary Gaussian cu-

. . . . . 2
mulative distribution function Q(z) £ —= [% exp {—%} dt
and Q~1(-) to represent its functional inverse.

The k-fold nested logarithm function is defined as

Ingey (z) 2 In(x) %f k=1 2>0 2
h’l(h’l(k,l) (.’17)) if k> 1, h’l(k,l) (.’L’) > 0,

and undefined elsewhere.

B. Channel Model
The output of a memoryless, point-to-point Gaussian chan-
nel in response to input X" € R" is

Y" = X"+ 27, 3)

where Z1, ..., Z, are N'(0,1) random variables independent
of X™ and of each other.
The channel’s capacity and dispersion are

o(P) £ L1+ P) 4
. P(P+2
VIip) = 2((1 +J;3)g’ ©)

respectively. The information density of a channel Pyn|x=
under input distribution Px~ is defined as

Py xn(y"]z")
Pyn(ym)

where Py~ is the marginal of Pxn Pyn xn.

1(z™;y™) 2 1n (6)
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C. VLSF Codes with K Decoding Times

We consider VLSF codes with a finite number of potential
decoding times n; < ny < --- < ng. The receiver chooses
to end the transmission at the first time ny € {n1,...,nx}
that it is ready to decode. The transmitter learns of the
receiver’s decision via a single bit of feedback at each of times
ni,...,nk. Feedback bit “0” at time n; means that the receiver
is not yet ready to decode and the transmitter should continue;
feedback bit “1” means that the receiver can decode at time
n; and the transmitter must stop. We impose a maximal power
constraint at each possible decoding time and employ average
decoding time and average error probability constraints. The
definition, below, formalizes our code.
Definition 1: Fix ¢ € (0,1), positive scalars N and P,
and non-negative integers n; < < ng and M. An
(N, {n;},, M, e, P) VLSF code comprises
1) a finite alphabet ¢/ and a probability distribution Py on U
defining a common randomness random variable U that is
revealed to both the transmitter and the receiver before the
start of the transmission,>

2) a sequence of encoding functions f,,: U x [M] - R, n =
1,...,ng that assign a codeword

f(u,m)™x £ (fi(u,m), ... T,

w (u,m)) %)

to each message m € [M] and common randomness in-
stance u € U. Each codeword satisfies the nested maximal
power constraint P on all sub-codewords, giving

[f(w, m)™|* < npP VYme [M,uecl,kelK], 8

3) a non-negative integer-valued random stopping time 7 €
{n1,...,nk} for the filtration generated by {U, Y™ }K
that satisfies an average decoding time constraint

E[r] < N, ©)

4) K decoding functions g,, : U x R™ — [M] for k € [K],
satisfying an average error probability constraint

Plg. (U, YT) # W] <, (10)

where the message W is equiprobable on the set [M], and

X™=1UW)".

Random variable U is common randomness shared by the
transmitter and receiver. As in [6], [13], [20], the traditional
random-coding argument does not prove the existence of a
single (deterministic) code that simultaneously satisfies two
conditions on the code (e.g., (9) and (10)). Therefore, ran-
domized codes are necessary for our achievability argument;
here, [U| < 2 suffices [20, Appendix D].

The average power constraint on length-nyx codewords in
Truong and Tan’s VLSF code [12, Def. 1] is given by

M ng

E I wys)?] = = 3 S B

m=1 i=1

< NP.

m))?] D)
(12)

2The realization u of U specifies the codebook.

As noted in [12, eq. (100)-(103)], for any code with stopping
time 7, the expected value on the left-hand side of (11) can
be replaced by the expected value E [Hf (U, w)|I?
setting the symbols after time-slot 7 to 0 does not affect the
average error probability. Our maximal power constraint (8)
implies the average power constraint (12), which follows by
taking the expected value of (8) with respect to the stopping
time 7 € {nq,...,nk} and the equiprobable message W.

Given K decoding times and nested maximal power con-
straint P, we define the maximum achievable message size
M*(N,K,e, P) as

M*(N,K,e,P) 2 max{M: 3 an (N, {n;} X, M,e, P)
VLSF code}. (13)

We define an (N, {n;}X,, M, e, P)ye VLSF code under the
average power constraint and the corresponding maximum
achievable message size M™*(N, K, €, P),ye similarly, replac-
ing the nested maximal power constraint (8) by the average
power constraint (12).

D. Related Work

The following discussion summarizes prior asymptotic ex-
pansions of the maximum achievable message size for the
Gaussian channel.

1) M*(N,1,¢,P): For K =1, P >0, and € € (0,1), Tan

5

] because

and Tomamichel [18, Th. 1] and Polyanskiy et al. [7, Th. 54]
show that
lnM*(N,l,e p)
1
= NC(P)—/NV(P)Q™! 5111N+O(1). (14)

The converse for (14) follows from [7, Th. 54]; the achiev-
ability for (14) follows from [18, Th. 1], which generates
i.i.d. codewords uniformly distributed on the n-dimensional
sphere with radius vnP and applies maximum likelihood
(ML) decoding. These results imply that random codewords
uniformly distributed on a sphere and ML decoding are,
together, third-order optimal, meaning that the gap between
the achievability and converse bounds in (14) is O(1).

2) M*(N,1,€, P)aye: For K =1 with an average-power-
constraint, Yang et al. show in [21] that

P
lnM*(N,l,e,P)ave:NC'<1 )—
—€

vkmwv(})>+m¢) (1)
Yang et al. use a power control argument to show the achiev-
ability of (15). They divide the messages into disjoint sets .4
and [M]\ A, where |A| = M (1—¢)(1—0(1)). For the messages
in A, they use an (N, {N}7\A|,\/ﬁ,%(l —o(1))
VLSF code with a single decoding time N. The codewords
are generated i.i.d. uniformly on the sphere with radius

N+£(1—0(1)). The messages in [M]\ A are assigned
the all-zero codeword. The converse for (15) follows from an
application of the meta-converse [7, Th. 26].
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3) M*(N,o0,€, P)aye: : For VLSF codes with K = oo,
n; = ¢—1 for all 4, and average power constraint (12), Truong
and Tan show in [11, Th. 1] that for any € € (0,1) and P > 0,

NC(P
# —InN+O(1) <In M*(N,00,€,P)ave
— €
< NC(P) + hp(€)
- 1—¢ ’

(16)
a7)

where hy(€) 2 —elne— (1 —¢)In(1 —e¢) is the binary entropy
function (in nats). The bounds in (16)—(17) indicate that the
e-capacity (the first-order achievable term) is

c(p)

L 1 . _
thlgfooﬁlnM (N,K,e, P) = (18)

The achievable dispersion term is zero, i.e., the second-order
term in the fundamental limit in (16)—(17) is o(v/N). The
results in (16)—(17) are analogous to the fundamental limits
for DMCs [6, Th. 2] and follow from arguments similar to
those in [6]. Since the information density 2(X;Y") for the
Gaussian channel is unbounded, bounding the expectation of
the decoding time in the proof of [11, Th. 1] requires different
techniques from those applicable to DMCs [6].

III. MAIN RESULT

Our main result is an asymptotic achievability bound for the
scenario where K > 2 decoding times are available.

Theorem 1: Fix a finite integer K > 2 and real numbers
P > 0 and € € (0,1). For the Gaussian channel with noise
variance 1 (3), the maximum message size (13) achievable by
(N, {n;}EX,, M, e, P) VLSF codes satisfies

\/Nln(K 1 V( )

o < ln(K—l)(N)> .

As noted previously, any (N,{n;}, M,e P) VLSF
code is also an (N,{n;}2,, M, ¢, P)ae VLSF code. There-
fore, the converse in (17) provides an upper bound on
In M*(N, K, e, P). Theorem 1 and (17) together imply that
the e-capacity (18) achievable within the class of VLSF codes
in Def. 1 is % Neither switching from the average to
maximal power constraint nor limiting the number of decoding
times to finite K changes the first-order term. In fact, the same
e-capacity is achievable by a variable-length code without
feedback that decodes at time 0 with probability e(1 — o(1))
(see the achievability proof of [6, Th. 1]). However, comparing
Theorem 1 and (16), we see that the second-order term of our
new achievability bound is significantly worse than the earlier
results. Whether this is the consequence of our tighter power
constraint or finite K or a weakness of our code construction
is a topic for future research.

In the achievability bound in Theorem 1,
the second-order term, —\/ Nlngg_q1y(N )‘i —, depends on
the number of decoding times K. The rate convergence to
the capacity grows with K. However, this dependence on

InM*(N,K,e, P) >

19)

the order of

P)
°
©

Achievability for K =4

Achievability for K =3 and average power (16)

In M*(N, K, e

Achievability for K =2

Achievability for K =1

200 400 600 800 1000 1200 1400 1600 1800 2000
Average decoding time N

Fig. 1. The achievability bounds for the maximum achievable rate

W MINKGP) for K = 1 (14) and K € {2,3,4} (Theorem 1), and

the achievability (16) and converse (17) bounds for In M*(N,00,¢,P)ave are

shown. Here, P = 1 and ¢ = 1073, The achievability bounds use the
asymptotic approximation, i.e., we ignore the O(-) term in (16) and (19).

K is weak since Inx_1)(IN) grows very slowly in N even
when K is large. For example, for K = 4 and N = 1000,
Ingx_1)(N) ~ 0.659. Furthermore, for € = 1073, P =1, and
N = 1000, 83.6% of the e-capacity is achieved with K =1,
85.3% with K = 2, 92.2% with K = 3, and 95.4% with
K = 4. The achievability bounds for K € [4] and the maximal
power constraint, and the achievability (16) and converse (17)
bounds for K = oo and the average power constraint are
illustrated in Fig. 1.

Theorem 1 builds on the following achievability bound for
an gVN, {ni Y&, M, W’P) VLSF code.

Theorem 2: Fix an integer K > 1 and a real num-
ber P > 0. For the Gaussian channel with noise vari-
ance 1 (3), the maximum message size (13) achievable by

(N, {n YK M, \/ﬁ7 P) VLSF codes satisfies

In M* (N, K, P> > NC(P)

1
VNInN’
N

The K = 1 case in Theorem 2 is recovered by [22, Th. 7],
which investigates moderate deviations bounds in channel
coding.

Theorems 1 and 2 follow from an application of the follow-
ing non-asymptotic achievability bound.

Theorem 3: Fix a constant v and decoding times ny < --- <
nk. For any positive numbers N, P, and ¢ € (0,1), there
exists an (N, {n;}2£,, M, e, P) VLSF code for the Gaussian
channel (3) with

e<P[ (X”K-Y”K) <A+ (M — 1) exp{—>}

U {||X”L

K—
E nz+1 - nz

where Pxnx is a product of K distributions on subvectors of
dimensions n; —n;_1, j € [K], ie.,

> mp} 1)

i

() {o(X™5Y™) <7}

Jj=1

, (22)
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Pxng ( (23)

HP o (@ 1)-

The proof sketches for Theorems 1-3 appear in Section IV.

IV. PROOF SKETCHES
A. Proof Sketch for Theorem I

Our achievability proof is inspired by Polyanskiy et al.’s
coding scheme in [6] for DMCs, where the number of decod-
ing times is unlimited. In [6], to prove an achievability result
with an average error probability € and an average decoding
time NN, the decoder decodes to an arbitrary message at time
ny = 0 with probability p = ;:Z\V’ . With probability 1 —p, the
code uses another VLSF code with average decoding time N’
and average error probability ¢y = % Truong and Tan [11],
[12] adapt this coding scheme with the same choice of €y to
the Gaussian point-to-point and multiple access channels with
an unlimited number of decoding times and an average power
constraint. Like [6], [11], [12], our coding strategy fixes the
smallest decoding time ny to 0. To achieve the best second-
order term withiq our code structure, we set €y = \/ﬁ
Before transmission starts, the decoder generates a random
variable D ~ Bernoulli(p) with

!

A €E— €N
2 X
1—-¢€y

p (24)
If D = 1, then the decoder decodes to an arbitrary message
at time ny = 0; otherwise the encoder and decoder use
an (N, {nx}E_,, M,éy, P) VLSF code. The average error
probability for this coding scheme is bounded by

1-p+éy-(1—p) =c¢ (25)
and the average decoding time is bounded by
N=E[r]=p-0+(1—p)-N' =(1—-p)N". (26)
From (24) and (26), we get the asymptotic expansion
N = N (1+O<1>>. 27)
1—e¢ NInN

By Theorem 2, there exists an (N', {n }~_,, M, €/, P) VLSF
code with

In M = N'C(P \/N’an H(N)V(P)

N/
+ O _ .
( 1D(K1)(N’)>

Plugging (27) into (28) and using the Taylor series expansion

of the function \/N'In(x_1)(N’) completes the proof. W
B. Proof Sketch and Discussion for Theorem 2

1) Random encoder design: To prove Theorem 2, we
choose the distribution of the random codewords, Pxnx, in
Theorem 3 as in our prior work [23, Th. 4]. Fixing decoding
times nji,ng,...,ng, we generate M i.i.d. codewords as
follows. Set ng = 0 The sub-codewords are drawn inde-
pendently, with X _.4+1» J € [K], drawn from the uniform

(28)

distribution on the (n; —n;_1)-dimensional sphere with radius
\/(n; —nj_1)P. The resulting codewords are uniformly dis-
tributed on the subset of the n i -dimensional power sphere that
satisfies our K maximal power constraints (8) with equality.

2) Probability analysis: The VLSF code in Theorem 2
considers a Vani‘shing error probability, ﬁ, that does ~not
decay exponentially with N. Therefore, with an appropriate
choice of ~, bounding the first probability term in (21) and
the probability term in (22) requires moderate deviations
techniques. We use [24, Ch. 8, Th. 4] and [25, Prop. 2] to
bound these probabilities. The decoding times n1,...,nx are
chosen to minimize the right-hand side of (22). |

Applying our analysis of multiple access code performance
in [23] to the Gaussian point-to-point channel, we see that
for any finite K and sufficiently large increments n; — n;_
for all i € [K], using the restricted subset in our random
codebook design instead of the entire n g -dimensional power
sphere results in no change in (14) up to the third-order term.

From Shannon’s work in [26], it is well-known that for the
Gaussian channel with a maximal power constraint, drawing
1.i.d. Gaussian codewords yields a performance inferior to that
achieved by the uniform distribution on the power sphere.
While almost all tight achievability bounds for the Gaussian
channel in the fixed-length regime under a variety of settings
(e.g., all four combinations of maximal or average power
constraint and feedback or no feedback [8], [17], [18], [21])
employ random codewords drawn uniformly on the power
sphere, Truong and Tan’s result (16) for VLSF codes with
an average power constraint employs i.i.d. Gaussian inputs.
The Gaussian distribution works in this scenario because when
K = oo, the term P [o( X% ; Y "X ) < ] in (21), which is usu-
ally dominant, disappears. The second term (M —1) exp{—~}
in (21) is not affected by the input distribution. Unfortunately,
drawing codewords i.i.d. N'(0, P) satisfies the average power
constraint (12) but not the maximal power constraint (8). When
K < oo and the probability P [o(X™5; Y™K ) < ~] dominates,
using i.i.d. A'(0, P) inputs achieves a worse second-order term
in (19). This implies that when K < oo, using our uniform
distribution on a subset of the power sphere is again beneficial
even under the average power constraint. In particular, i.i.d.
N(0, P) inputs achieve (19) where the dispersion V(P) is
replaced by V(P) = 1+P, which is the variance of +(X;Y)
when X ~ N (0, P); here V(P) is greater than the dispersion
V(P) for all P > 0 (see [27, eq. (2.56)]).

C. Proof Sketch for Theorem 3

The proof of Theorem 3 extends the arguments of the
random coding bound in [6, Th. 3] to the scenario with finite
K where each codeword must satisfy a list of maximal power
constraints (8). Variations of Theorem 3 are proved in [9]
and [15]. |
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