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Abstract—This paper investigates variable-length feedback
codes for discrete memoryless channels in point-to-point, multiple
access, and random access communication. The proposed nested
code employs L decoding times n1, n2, . . . , nL for the point-
to-point and multiple access channels and KL decoding times
{nk,` : 1 ≤ k ≤ K, 1 ≤ ` ≤ L} for the random access
channel with at most K active transmitters; in the latter case,
decoding times nk,`, 1 ≤ ` ≤ L are reserved for decoding in
the scenario where the decoder believes that the number of
active transmitters is k. The code has a nested structure, i.e.,
codewords used to decode messages from k active transmitters
are prefix of codewords used to decode messages from k+1 active
transmitters. The code employs single-bit, scheduled feedback
from the receiver to the transmitters at each potential decoding
time to inform the transmitters whether or not it is able to
decode. Transmitters cease transmission, thereby truncating their
codewords, when no further transmissions are required by the
decoder. The choice of decoding times is optimized to minimize
the expected decoding time subject to an error probability
constraint, and second order achievability bounds are derived.

I. INTRODUCTION

Noiseless feedback does not increase the capacity of discrete
memoryless (DM) point-to-point channels (PPCs) [1]. Neither
does it improve the error exponent of symmetric DM-PPCs in
the fixed-length regime [2]. However, feedback has several
benefits, including simplified coding schemes [3], [4] and
improved second-order achievable rates [5].

Feedback becomes even more beneficial to code perfor-
mance when employed in variable-length codes that allow
decoding at arbitrary time instants. In [6], Burnashev shows
that variable-length codes with feedback achieve significant
improvement in the achievable error exponent. Polyanskiy
et al. [7] introduce variable-length feedback (VLF) codes
for DM-PPCs and extend Burnashev’s result to the finite
blocklength regime with non-vanishing error probabilities.
Polyanskiy et al. [7] prove that the achievable rates of VLF
codes converge more quickly to the channel capacity than
those of fixed-length codes without feedback, giving VLF
codes a particular advantage at short blocklengths. As a special
case of variable-length feedback codes, Polyanskiy et al. define
variable-length stop-feedback (VLSF) codes that use one-bit
feedback at each of the potential decoding times. In VLSF
codes, feedback is used only to inform the transmitter whether
it should end the transmission or continue to transmit. Hence,
codewords are not a function of the received feedback signal.
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Several works that study VLSF codes in different scenar-
ios include [8]–[13]. In all of these works, the decoder is
allowed to decode at any of the time instants 0, 1, 2, . . . , i.e.,
the number of potential decoding times L = ∞. By large
deviations theorem, using more than cN decoding times does
not yield a greater second-order term than of achieved by
an unbounded L. Therefore, in this paper, we evaluate the
scenario with L = ∞ as L = Ω(N). Some examples that
consider VLSF codes with L = O(1) decoding times are
[14]–[17]. The setting with L = O(1) is also studied in the
literature under the name of incremental redundancy hybrid
automatic repeat request codes. Our work in [17] derives
the first asymptotic expansion for the achievable rates of
VLSF codes with L decoding times for the Gaussian PPC
with maximal power constraints. Using the code construction
in [17], the performance improvement due to increasing L
diminishes rapidly beyond L > 4. VLSF codes with sparse
feedback achieve fairly high coding rates. For example, 95.4%
of the ε-capacity can be achieved by VLSF codes with L = 4,
N = 1000, and 0 dB signal-to-noise ratio.

This paper extends VLSF codes with L decoding times to
the DM-PPC, discrete memoryless multiple access channel
(DM-MAC), and discrete memoryless random access channel
(DM-RAC). Heidari et al. [18] extend Burnashev’s work to the
DM-MAC and derive lower and upper bounds on the error
exponent of VLF codes for the DM-MAC. Bounds on the
performance of VLSF codes appear in [9] for the Gaussian
MAC with expected power constraints, and in [12] for the DM-
MAC. In both [9] and [12], 2k − 1 simultaneous information
density threshold rules are employed for the k-transmitter
MAC. The central result of [19] is that for permutation-
invariant RACs under some mild symmetry conditions, it is
possible to attain the first- and second-order terms of the best-
known code for the MAC in operation. In [19], the code
employs K decoding times n1, . . . , nK , where the decoder
decodes messages at nk if it believes that the number of active
transmitters is k, and at each potential decoding time, one-bit
feedback is sent from the receiver to the transmitters.

In this work, we revisit the impact of feedback in variable-
rate codes for the DM-PPC, DM-MAC, and DM-RAC. For
non-corner points in the achievable MAC region and L =
Ω(N), we employ a single threshold rule to improve the
second-order term achieved in [9] from −O(

√
N) to − lnN .

For the DM-RAC, we employ the channel model from [19],
which comprises a single receiver and an unknown number of
active transmitters. We here extend our approach from [19] for
the RAC from one possible decoding time nk for each possible
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estimate k of the number of active transmitters to L ≥ 1
decoding times nk,1, nk,2, . . . , nk,L. This extension increases
the expected achievable rate at the expense of increasing the
number of feedback bits in the communication epoch. Note
that the feedback employed for the DM-RAC is still sparse as
the total number of feedback bits is at most KL.

The paper is organized as follows. We define notation and
channel models in Section II. Section III introduces VLSF
codes. Section IV presents and discusses the main results.
Proofs are relegated to the extended version [20].

II. SYSTEM MODEL

A. Notation and Definitions

For any positive integers k and n, [k] , {1, . . . , k} and
xn , (x1, . . . , xn). For a collection of length-n vectors
xn1 , . . . , x

n
K and any subset A ⊆ [K], we denote the sub-

vectors indexed with the elements in A by xnA , {xna : a ∈
A}. We write xA

π
= yA to indicate that there exists a permu-

tation π of yA such that xA = π(yA), and we write xA
π

6= yA
to indicate that there exists no such permutation. We use ln(·)
to denote the natural logarithm. We measure information in
nats. We use the standard O(·), Ω(·), and o(·) notations, i.e.,
f(n) = O(g(n)) if lim supn→∞ |f(n)|/g(n) < ∞, f(n) =
Ω(g(n)) if lim infn→∞ f(n)/g(n) > 0, and f(n) = o(g(n))
if limn→∞ |f(n)|/g(n) = 0. We denote the distribution of
a random variable X by PX . We use Q(·) to represent
the complementary Gaussian cumulative distribution function
Q(x) , 1√

2π

∫∞
x

exp
{
− t

2

2

}
dt and Q−1(·) to represent its

functional inverse.
The k-fold nested logarithm function is defined as

ln(k)(x) ,

{
ln(x) if k = 1, x > 0

ln(ln(k−1)(x)) if k > 1, ln(k−1)(x) > 0,
(1)

and undefined for all other (k, x) pairs.
For a channel transition probability PYk|X[k]

with k trans-
mitters, let PYk

denote the marginal output distribution in-
duced by the input distribution PX[k]

. The unconditional and
conditional information densities are defined as

ıAk (xA; y) , ln
PYk|XA(y|xA)

PYk
(y)

(2)

ıAk (xA; y|xAc) , ln
PYk|X[k]

(y|x[k])
PYk|XAc (y|xAc)

(3)

for any A ⊆ [k], where A 6= ∅ and Ac = [k] \ A.
The corresponding mutual informations under the input dis-

tribution PX[k]
and the channel transition probability PYk|X[k]

are defined as

Ik(XA;Yk) , E
[
ıAk (XA;Yk)

]
(4)

Ik(XA;Yk|XAc) , E
[
ıAk (XA;Yk|XAc)

]
. (5)

For brevity, we define

Ik , Ik(X[k];Yk) (6)

Vk , Var
[
ı
[k]
k (X[k];Yk)

]
. (7)

B. Channel Models: DM-PPC, DM-MAC, and DM-RAC

Definition 1: A DM-PPC is described by (X , PY |X ,Y),
where X and Y are finite input and output alphabets of the
channel, and the conditional probability PY |X describes the
channel transition probabilities.

Definition 2: A K-transmitter DM-MAC is defined by(∏K
i=1 Xi, PY |X[K]

,Y
)

, where Xi is the finite input alphabet
for transmitter i ∈ [K], Y is the finite output alphabet of the
channel, and PYK |X[K]

is the channel transition probability.
We define a DM-RAC that consists of an unknown number

of active transmitters and a single receiver as in [19].
Definition 3: A permutation-invariant, reducible DM-RAC

for the maximal number of transmitters K <∞ is defined by

a family of DM-MACs
{(
X k, PYk|X[k]

,Yk
)}K

k=1
, where the

k-th DM-MAC defines the channel for k active transmitters.
Each of the DM-MACs satisfies the permutation-invariance

assumption

PYk|X[k]
(y|x[k]) = PYk|X[k]

(y|x̂[k]) (8)

for all x̂[k]
π
= x[k] and y ∈ Yk, k ∈ [K], and different DM-

MACs are connected by reducibility assumption

PYs|X[s]
(y|x[s]) = PYk|X[k]

(y|x[s], 0k−s) (9)

for all s < k, x[s] ∈ X[s], and y ∈ Ys, where 0 ∈ X specifies a
unique “silence” symbol that is transmitted when a transmitter
is silent.

In addition to simplifying the presentation, the permutation-
invariance (8) and reducibility (9) assumptions allow us to
show that the symmetrical rate point (R,R, . . . , R) at which
the code operates lies on the sum-rate boundary of the under-
lying DM-MAC, enabling the use of a single-threshold rule at
the decoder.

III. VLSF CODES

A. VLSF Code Definitions for the PPC and MAC

For both the PPC and MAC, we consider the VLSF code
with L decoding times introduced in [17] for the Gaussian
PPC with maximal power constraints. The code employs L
predetermined decoding times n1 < n2 < · · · < nL. The
receiver stops the transmission at the first potential decoding
time n` ∈ {n1, . . . , nL} at which it is able to decode. The
transmitters are informed of the receiver’s decision by a one-
bit feedback signal at times n1, . . . , n`. Feedback bit “0” at
time ni means that the decoder is not ready to decode, the
decoder output at time ni is an erasure symbol “e”, and the
transmitters should continue to transmit symbols. Feedback
bit “1” means that the decoder is ready to declare a message
outcome, and transmission should stop. We require the average
decoding time of a VLSF code to be bounded by N , and
the average error probability to be bounded by ε. Below, we
formally define VLSF codes for the DM-PPC.

Definition 4: Fix ε ∈ (0, 1), N ∈ (0,∞), integers 0 ≤ n1 <
· · · < nL, and M > 0. An (N, {n`}L`=1,M, ε) VLSF code for
the PPC comprises
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1) a finite alphabet U and a probability distribution PU on U
defining a common randomness random variable U that
is revealed to both the transmitter and the receiver before
the start of the transmission,

2) a sequence of encoding functions fn : U × [M ] → X ,
n = 1, . . . , nL that assign a codeword

f(u,m)nL , (f1(u,m), . . . , fnL
(u,m)) (10)

to each message m ∈ [M ] and common randomness
instance u ∈ U ,

3) a non-negative integer-valued random stopping time τ ∈
{n1, . . . , nL} for the filtration generated by {U, Y n`}L`=1,
satisfying an average decoding time constraint

E [τ ] ≤ N, (11)

4) L decoding functions gn`
: U × Yn` → [M ] ∪ {e} for

` ∈ [L], satisfying an average error probability constraint

P [gτ (U, Y τ ) 6= W ] ≤ ε, (12)

where the message W is uniformly distributed on the set
[M ], and Xτ = f(U,W )τ .

The given code definition differs slightly from those in [7],
[17]. The code in [17] requires the codewords f(u,m)nL to
satisfy a list of maximal power constraints, while the code in
Definition 4 does not. The code in Definition 4 differs from
that in [7, Def. 1] only in that Definition 4 limits the number
of potential decoding times by L, while [7, Def. 1] imposes
no limit.

A VLSF code for the MAC is defined similarly to the VLSF
code for the PPC. For simplicity, we define VLSF codes for
the MAC only for the two-transmitter case. This definition
extends naturally to the K-transmitter MAC.

Definition 5: Fix ε ∈ (0, 1), N ∈ (0,∞), integers 0 ≤ n1 <
· · · < nL, and M1,M2 > 0. An (N, {n`}L`=1,M1,M2, ε)
VLSF code for the MAC comprises

1) two finite alphabets U1 and U2 defining two common
randomness random variables U1 and U2,

2) two sequences of encoding functions f
(i)
n : Ui × [Mi] →

Xi, i = 1, 2,
3) a stopping time τ for the filtration generated by
{U1, U2, Y

n`}L`=1, satisfying an average decoding time
constraint (11), and

4) L decoding functions gn`
: U1 × U2 × Yn` → {[M1] ×

[M2]} ∪ {e} for ` ∈ [L], satisfying an average error
probability constraint

P [gτ (U1, U2, Y
τ ) 6= (W1,W2)] ≤ ε, (13)

where the independent messages W1 and W2 are uni-
formly distributed on the sets [M1] and [M2], respectively.

B. VLSF Code Definition for the RAC

The VLSF RAC code defined here combines the rateless
communication strategy that we introduce in [19] with the
VLSF PPC and MAC codes described above. In this case,
when the decoder concludes that k transmitters are active, it

can decode at any of the L decoding times nk,1 < nk,2 <
· · · < nk,L as opposed to just at nk as in [19], [21]. At
time nk,`, the receiver broadcasts feedback bit “1” to the
transmitters if it is able to decode k messages; otherwise, it
outputs an erasure symbol “e” and sends feedback bit “0”
signaling that decoding has not occurred and transmission
should continue.

As in [19], [21], we assume a compound RAC model,
that is, we do not assign probabilities to the potential set
of transmitters A ⊆ [K], and an agnostic RAC model, that
is, the transmitters know nothing about the set A except
their own membership and the receiver’s feedback at potential
decoding times. We employ identical encoding [22], that is, all
transmitters use the same codebook. This implies that the RAC
code operates at the symmetrical rate point, i.e., Mi = M for
i ∈ [K]. Due to the identical encoding, the decoder is required
to decode the list of the messages transmitted by the active
transmitters but not the identities of the transmitters.

We formally define VLSF codes for the RAC as follows.
Definition 6: Fix ε ∈ (0, 1), N1, . . . , NK ∈ (0,∞), and

a set of integers N , {nk,` ≥ 0: k ∈ [K], ` ∈ [L]}. An
({Nk}Kk=1,N ,M, ε) identical-encoder VLSF code comprises

1) a common randomness random variable U on an alpha-
bet U ,

2) a sequence of encoding functions fn : U × [M ] → X ,
n = 1, 2, . . . , nK,L, defining M length-nK,L codewords,
where nK,L is assumed to be the largest decoding time
in N ,

3) K non-negative integer-valued random stopping times
τk ∈ N for the filtration generated by {U, Y nk }n∈N ,
satisfying that

E [τk] ≤ Nk (14)

when k ∈ [K] messages W[k] are transmitted,
4) KL decoding functions gnk,`

: U × Ynk,`

k → [M ]k ∪ {e}
for k ∈ [K] and ` ∈ [L], satisfying an average error
probability constraint

P
[
gτk(U, Y τkk )

π

6= W[k]

]
≤ ε (15)

when k ∈ [K] messages W[k] are transmitted, where W[k]

are independent and equiprobable on the set [M ].

IV. MAIN RESULTS

Our main results are second-order achievability bounds for
the VLSF codes with sparse feedback over the DM-PPC, DM-
MAC, and DM-RAC.

A. DM-PPC

Theorem 1: Fix ε ∈ (0, 1), an integer L = O(1) ≥ 2, and a
distribution PX . For any DM-PPC (X , PY |X ,Y), there exists
an (N, {n`}L`=1,M, ε) VLSF code provided that

lnM ≤ NI1
1− ε

−
√
N ln(L−1)(N)

V1
1− ε

2021 IEEE Information Theory Workshop (ITW)

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on March 18,2022 at 23:53:13 UTC from IEEE Xplore.  Restrictions apply. 



+O

(√
N

ln(L−1)(N)

)
. (16)

The decoding times that achieve (16) satisfy the equations

lnM = n`I1 −
√
n` ln(L−`+1)(n`)V1 − lnn` +O(1) (17)

for ` ∈ {2, . . . , L}, and n1 = 0.
Theorem 1 is proved by analyzing the bounds in [23, Th. 3].
In [7, Th. 2], Polyanskiy et al. show that the second-order

term − lnN is achievable for the DM-PPC in a scenario where
all time instants are available for decoding, i.e., L = Ω(N).
They also show that the second-order term in the converse is
+O(1) for L = Ω(N); the converse applies to the scenario
with L = O(1) as well. How to close the gap between the
achievability bound in Theorem 1 and the converse bound in
[7, Th. 4] remains an open problem.

The coding strategy and the technique to prove Theorem 1
are closely related to those of [17, Th. 1], where VLSF codes
with L decoding times for the Gaussian PPC are considered.
The main difference is that the sub-vectors of the random
codewords employed in [17] are distributed uniformly over
their corresponding power spheres, while for the DM-PPC,
we employ an i.i.d. code ensemble according to some PX .
Adapting the analysis of the optimization problem in [23,
Sec. IV-C, E], applicable to the Gaussian PPC with maximal
power constraints, to the i.i.d. code ensembles, we deduce that
the choice of decoding times in (17) minimizes the average
decoding time N within our code structure.

As discussed in [17], Theorem 1 suggests that under our
code structure there is little benefit to having more than L = 4
decoding times for practical values of N (i.e., N ∈ [103, 105]).

Using the maximization lemmas in [24, Appendix J], we
see that the optimal P ∗X that maximizes the right-hand side
of (16) up to the second-order term is the capacity-achieving
input distribution with the minimum dispersion V1.

B. DM-MAC With Two Transmitters

Theorem 2: Fix ε ∈ (0, 1), an integer L = O(1) ≥ 2,
and distributions PX1

and PX2
. For any DM-MAC with

two transmitters (X1 × X2, PY |X[2]
,Y), there exists an

(N, {n`}L`=1,M1,M2, ε) VLSF code with

lnM1 + lnM2 ≤
NI2
1− ε

−
√
N ln(L−1)(N)

V2
1− ε

+O

(√
N

ln(L−1)(N)

)
, (18)

provided that the rate pair
(
lnM1

N , lnM2

N

)
approaches a point

on the sum-rate boundary, i.e., the (M1,M2) pair satisfies(
lnM1

N
,

lnM2

N

)
∈
{

(r1 + o(1), r2 + o(1)) :

r1 + r2 =
I2

1− ε
, r1 <

I2(X1;Y |X2)

1− ε
, r2 <

I2(X2;Y |X1)

1− ε

}
.

(19)

Theorem 3: Under the setting of Theorem 2, where L =
Ω(N), for any rate point approaching a point on the sum-rate
boundary (19), there exists an (N, {n`}L`=1,M1,M2, ε) VLSF
code provided that

lnM1 + lnM2 ≤
NI2
1− ε

− lnN +O(1). (20)

Theorems 2 and 3 follow from an application of the non-
asymptotic achievability bound, Theorem 4, below.

Theorem 4: Fix constants ε ∈ (0, 1), γ, λ1 > 0, λ2 > 0,
integers 0 ≤ n1 < · · · < nL, and distributions PX1

and PX2
.

For any DM-MAC with two transmitters (X1×X2, PY |X[2]
,Y),

there exists an (N, {n`}L`=1,M1,M2, ε) VLSF code with

ε ≤ P
[
ı
[2]
2 (XnL

[2] ;Y nL) < γ
]

(21)

+ (M1 − 1)(M2 − 1) exp{−γ} (22)

+
L∑
`=1

P
[
ı22(Xn`

2 ;Y n`) > NI2(X2;Y ) +Nλ1
]

(23)

+ (M1 − 1) exp{−γ +NI2(X2;Y ) +Nλ1} (24)

+
L∑
`=1

P
[
ı12(Xn`

1 ;Y n`) > NI2(X1;Y ) +Nλ2
]

(25)

+ (M2 − 1) exp{−γ +NI2(X1;Y ) +Nλ2} (26)

N ≤ n1 +
L−1∑
i=1

(ni+1 − ni)P
[
∩
j∈[i]
{ı[2]2 (X

nj

[2] ;Y
nj ) < γ}

]
.

(27)

The proof of Theorem 4 uses a random coding argu-
ment that employs i.i.d. codebook ensembles with distribu-
tions PX1 and PX2 . The decoder uses a single threshold
rule based on the information density. At time n`, it com-
putes the information densities ı[2]2 (Xn`

1 (m1), Xn`
2 (m2);Y n`),

and, if there exists a message pair (m̂1, m̂2) satisfying
ı
[2]
2 (Xn`

1 (m̂1), Xn`
2 (m̂2);Y n`) > γ, then (m̂1, m̂2) is de-

coded. Otherwise, the decoder passes the decoding time n`
without decoding. If n` < nL, the transmission continues until
the next decoding time.

In Theorem 4, the term (21) bounds the probability that
the information density corresponding to the true messages
is below the threshold for all decoding times; the term (22)
bounds the probability that both messages are decoded in-
correctly; and the terms (23)-(26) bound the probability that
one of the transmitted messages is decoded correctly and the
other message is decoded incorrectly. In the application of
Theorem 4 to prove Theorems 2 and 3, we choose λ1, λ2, γ
so that the terms in (23)-(26) decay exponentially with N ,
which become negligible compared to (21) and (22). Between
(21) and (22), the term (21) is dominant when L does not
grow with N , and (22) is dominant when L grows linearly
with N .

The single threshold rule employed in the proof of The-
orem 4 differs from the decoding rules employed in [9] for
VLSF codes over the Gaussian MAC with expected power
constraints and in [12] for the DM-MAC. In both [9] and
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[12], L = Ω(N), and the decoder employs three simultaneous
threshold rules for each of the boundaries that define the
pentagonal achievable region of the MAC. The threshold rules
are

ı12(Xn`
1 (m1);Y n` |Xn`

2 (m2)) > γ1 (28)

ı22(Xn`
2 (m2);Y n` |Xn`

1 (m1)) > γ2 (29)

ı
[2]
2 (Xn`

1 (m1), Xn`
2 (m2);Y n`) > γ3 (30)

for some γ1, γ2, and γ3. Our decoder is a special case of
(28)–(30), obtained by setting γ1 = γ2 = −∞.

While [12] does not provide a second-order achievability
bound, [9] could only show an achievability bound with a
second-order term −O(

√
N) for the Gaussian MAC with

expected power constraints and L = Ω(N). Employing our
single threshold rule and analysis to the Gaussian MAC with
expected power constraints improves the second-order term
−O(
√
N) in [9] to − lnN for the non-corner points in the

achievable region. In [9], the main challenge is to derive a
tight bound on the expectation of the maximum of stopping
times τ (1), τ (2), and τ (3) for the threshold rules (28)–(30),
respectively. In our analysis, we avoid that challenge by
employing a single threshold decoder, whose average decoding
time is bounded by E

[
τ (3)

]
.

For the achievability of non-corner rate points that do not lie
on the sum-rate boundary, we can modify the single threshold
rule by replacing (30) either by (28) or by (29), depending
on the location of the rate point. Following similar steps to
the proof of Theorem 3, the second-order term − lnN can be
achieved for those points as well.

C. DM-RAC With At Most K transmitters

To guarantee the existence of decoding times nk1,`1 <
nk2,`2 for any k1 < k2, (`1, `2), and a large enough M ,
and that the symmetrical rate point arising from the identical
encoding lies on the sum-rate boundary for all k ∈ [K], we
assume that there exists an input distribution PX that satisfies
the friendliness and the interference assumptions from [19].
The friendliness assumption is

Ik(X[s];Yk|X[s+1:k] = 0k−s) ≥ Ik(X[s];Yk|X[s+1:k]) (31)

for all s < k ≤ K, and the interference assumption is

PX[t]|Yk
6= PX[s]|Yk

PX[s+1:t]|Yk
∀ s < t ≤ k ≤ K. (32)

See [19, Lemmas 1 and 2] for how (31) and (32) together
with permutation-invariance (8) and reducibility (9) imply the
desired symmetry conditions for the DM-RAC.

In order to be able to detect the number of active transmit-
ters using the received symbols Y nk,` but not the codewords
themselves, we require that the input distribution PX satisfies
the distinguishability assumption

PYk1
6= PYk2

∀ k1 6= k2 ∈ [K], (33)

where PYk
is the marginal output distribution under the DM-

MAC with k transmitters and the input distribution PX[k]
=

(PX)k.

An example of permutation-invariant and reducible DM-
RACs that satisfy the friendliness (31), interference (32),
and distinguishability (33) assumptions is the adder-erasure
RAC in [19], [25]

Yk =

{∑k
i=1Xi, w.p. 1− δ

e w.p. δ,
(34)

where Xi ∈ {0, 1}, Yk ∈ {0, . . . , k} ∪ {e}, and δ ∈ (0, 1).
Theorem 5: Fix ε ∈ (0, 1), finite integers K ≥ 1

and L ≥ 2, and a distribution PX satisfying (31)–(33).
For any permutation-invariant (8) and reducible (9)

DM-RAC
{

(X k, PYk|X[k]
,Yk)

}K
k=1

, there exists an

({Nk}Kk=1, {nk,` : k ∈ [K], ` ∈ [L]},M, ε) VLSF code
provided that

k lnM ≤ NkIk
1− ε

−
√
Nk ln(L−1)(Nk)

Vk
1− ε

+O

(√
Nk

ln(L−1)(Nk)

)
. (35)

for k ∈ [K].
The coding strategy to prove Theorem 5 is as follows. The

decoder at time nk,1 applies a binary composite hypothesis
test using the output sequences Y nk,1 to decide whether the
null hypothesis H0 that Y nk,1 is drawn i.i.d. from PYk

, or the
alternative hypothesis H1 that Y nk,1 is drawn i.i.d. from one
of the alternative distributions PYs

, s ∈ [K] \ {k}, is true.
From (33), using the log-likelihood ratio test in [19, Sec. VI-
C], we show that the probabilities of both type-I and type-II
errors decay exponentially with nk,1

PYk
[H1] ≤ exp{−nk,1Ek,k} (36)

PYs [H0] ≤ exp{−nk,1Ek,s} for s 6= k, (37)

where Ek,i > 0 for k, i ∈ [K]. If the hypothesis test outputs
H0, then the decoder decodes k messages at one of the times
nk,1, . . . , nk,L using the VLSF code for the DM-MAC with k
transmitters and L decoding times. If the hypothesis test out-
puts H1, the decoder skips the decoding times nk,1, . . . , nk,L
without decoding, and broadcasts feedback bit “0” at each of
them to inform the transmitters about its decision. The proof
of Theorem 5 combines the log-likelihood ratio test and the
threshold rule used for VLSF codes with k ∈ [K] transmitters.

An alternative to determining the number of active transmit-
ters using a composite hypothesis testing applied at each of
times n1,1, n2,1, . . . , nK,1 is to estimate the number of active
transmitters using a K-ary hypothesis test at time n1,1. In this
case, the decoder feeds back the estimate, k̂, to the transmitters
using dlog2Ke bits. In this scenario, transmitters listen to
the feedback signal only at times n1,1 and nk̂1, . . . , nk̂L;
therefore, the number of feedback bits used is bounded by
dlog2Ke+L rather than KL. Both the composite hypothesis
test in [19] and the K-ary hypothesis test in [26] yield a
probability of incorrect decision that decays exponentially with
the underlying decoding time. This implies that both tests
achieve the asymptotic expansion in (35).
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