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Abstract. Amidst the COVID-19 pandemic, restaurants become more reliant on no-contact
pick-up or delivery ways for serving customers. As a result, they need tomake tactical plan-
ning decisions such as whether to partner with online platforms, to form their own delivery
team, or both. In this paper, we develop an integrated prediction-decision model to analyze
the profit of combining the two approaches and to decide the needed number of drivers
under stochastic demand. We first use the susceptible-infected-recovered (SIR) model to
forecast future infected cases in a given region and then construct an autoregressive-mov-
ing-average (ARMA) regression model to predict food-ordering demand. Using predicted
demand samples, we formulate a stochastic integer program to optimize food delivery
plans. We conduct numerical studies using COVID-19 data and food-ordering demand
data collected from local restaurants in Nuevo Leon, Mexico, from April to October 2020, to
show results for helping restaurants build contingency plans under rapid market changes.
Our method can be used under unexpected demand surges, various infection/vaccination
status, and demand patterns. Our results show that a restaurant can benefit from partnering
with third-party delivery platforms when (i) the subscription fee is low, (ii) customers can
flexibly decide whether to order from platforms or from restaurants directly, (iii) customers
require more efficient delivery, (iv) average delivery distance is long, or (v) demand vari-
ance is high.

Funding: This work was supported by the National Science Foundation [Grant CMMI-2041745] and
U.S. Department of Energy [Grant DE-SC0018018].

Keywords: on-demand grocery or food delivery • demand uncertainty • susceptible-infected-recovered (SIR) model •
autoregressive-moving-average (ARMA) • stochastic integer programming

1. Introduction
As of mid-April 2021, almost 1.5years after its first
known outbreak in December 2020 in Wuhan China,
the SARS-CoV-2 virus (COVID-19) infections contin-
ue being transmitted worldwide with the total
number of confirmed cases being almost 140 million
and nearly 3 million deaths (WHO 2020). In many
countries, public gathering prohibition and social
distancing are mandatory to reduce the risk of
contacts between susceptible and infected groups
(Dingel and Neiman 2020, Koren and Pető 2020).
These nonpharmaceutical interventions decrease travel
frequency and reshape service patterns of traditional
restaurant dine-in businesses.

In recent years, rapid growth of online food ordering
and grocery delivery using digital platforms such as
Doordash, Grubhub, and so on, has been seen in many
places because of the blooming of smartphones and
proliferation of e-commerce (Hirschberg et al. 2016).

This trend became much more significant worldwide
in the last year, especially after the pandemic was an-
nounced by the World Health Organization (WHO).
An increasing number of restaurants decide to only of-
fer curbside pick-up or no-contact delivery, especially
in places with high number of infections (Banskota et al.
2020). Yang et al. (2020) show the negative effects of
COVID-19 on dine-in businesses in the United States
from February to April 2020, and Abay et al. (2020)
show the increasing demand for no-contact food deliv-
ery service worldwide after March 2020. The resilience
of most businesses during and after the pandemic
mainly relies on continuous access to customers. There-
fore, well-designed and properly deployed online ser-
vice platforms play essential roles in reliable food
delivery (Raj et al. 2020). Restaurants also need to pre-
pare for increasing food delivery demand because of
shelter-in-place order from local governments. To this
end, they may choose to partner with third-party service
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platforms by paying subscription fees or partial reve-
nue from their sales (typically 20%–30%) to expand
their capacities of delivery while ensuring safe and
timely delivery to customers.

To offer on-demand food ordering and delivery serv-
ices, there are mainly three types of decisions to make:
strategic planning, tactical, and operational. For example,
strategic decisions include where to locate restaurants,
which locations to provide online ordering options, and
how to improve users’ experience, whereas operational
decisions take into account individual order–related ac-
tivities and involve routes and schedules for delivering
food to specific customer locations. As something in be-
tween, tactical decisions are made for targeted periods
and include whether to partner with a third-party plat-
form and how many drivers to recruit as we consider in
this paper. Before COVID-19, a large number of restau-
rants focused on dine-in service and did not partner
with service platforms because of their high subscription
fee, and one purpose of this paper is to provide adequate
methods for restaurants to make tactical planning deci-
sions under order demand uncertainty because of the
stochastic and fluctuating trends of infections in many
countries worldwide.

In this paper, we solve for tactical decisions that are
the most relevant to restaurant owners who aim to adapt
their business operations to daily demand fluctuations
during the pandemic. We consider that strategic deci-
sions, such as restaurant locations, are fixed and cannot
be easily changed. We also do not involve operational
decision variables such as specific routes and schedules
for delivering each received takeout order, but instead
estimate the overall net profit based on restaurants’ part-
nership strategies. The focus of this paper is to integrate
different methods from epidemiology, statistics, and op-
timization for developing a decision tool for restaurants
to evaluate the profit of collaborating or not with third-
party service platforms. The main contributions of the
paper are threefold. First, we provide restaurants a scien-
tific integrated model for making collaboration and
service-expansion decisions under the unprecedented
pandemic and future demand uncertainties. The pro-
posed stochastic optimization model can solve this prob-
lem under decision-dependent demand uncertainty
through a decision-independent modeling approach.
Second, the derived theoretical solution properties
and computational results provide insights to guide
the process of partnering with online food ordering
platforms or hiring dedicated drivers under different
demand patterns. Third, this study fills the gap of
limited work on tactical decision making in the appli-
cation of shared mobility and food delivery, although
a substantial amount of research has been conducted
on strategic and operational problems in this area.

We build a model that integrates different methods
in epidemiological modeling, statistical learning, and

optimization for restaurants to integrate different
approaches for attracting online orders and safe delivery.
The model consists of two parts: demand prediction
and decision. We first use the susceptible-infected-re-
covered (SIR) model to analyze the disease spread
based on historical COVID-19 infection data. This
SIR model is used to understand the infection pat-
tern and scale, so that one can estimate potential
infected cases during the targeted periods. Then, we
construct a linear autoregressive-moving-average
regression model (ARMA; Fuller 2009) to predict the
amount of takeout food orders in the targeted peri-
ods. The ARMA model takes the forecasted infected
cases as input. Finally, we formulate a stochastic in-
teger program to make the tactical decisions for max-
imizing the total expected profit during the targeted
periods. The optimization-based decision model uses
samples of future demand predicted by the above
SIR and ARMA, stochastic revenue brought by the
randomness of order sales, and delivery travel cost
given possible locations of future orders. We present
an overview of the prediction-and-decision model in
Figure 1.

The severity of infection and government policies
such as mask requirement, travel restriction can have
significant impacts on customers’ attitudes toward on-
line shopping for food and groceries, and mainly on
strategic planning decisions. We refer the interested
readers to the following work related to strategic plan-
ning for online food shopping. Ingham et al. (2015) re-
view a dozen years of prolific and versatile empirical
research on factors that have influence on consumers’
incentives of using online shopping. Yeo et al. (2017)
study consumer experiences toward online food de-
livery services, and Suhartanto et al. (2019) analyze
the effects of food delivery service on customer loyal-
ty. Based on the existing diverse literature, one can
conclude that the main factors for choosing online
services include convenience, age (Chopra and Rajan
2016), usefulness (Littler and Melanthiou 2006, Kimes
2011, Saarijärvi et al. 2014), values and pleasure from
shopping (Alavi et al. 2016), previous experiences of
using Internet (Rezaei et al. 2018), and website design
and information security (Zulkarnain et al. 2015). Zhao
and Bacao (2020) derive the key factors that determine
customer continuously using food delivery platforms
during the COVID-19 pandemic period.

In contrast, operational decisions for grocery and
food delivery are typically modeled using the frame-
work of the vehicle routing problem with time win-
dows (VRPTM; Bräysy and Gendreau 2005, Pisinger
and Ropke 2007). Hsu et al. (2007) extend the general
VRPTM by considering the randomness in food
delivery processes and formulate a model to obtain
optimal delivery routes, loads, fleet dispatching, and
departure times. Gera et al. (2018) take the drivers’
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availability into account when formulating food deliv-
ery models to satisfy customers’ demand. Zulvia et al.
(2020) propose a VRPTW model for delivering perish-
able food and take into account multiple objectives,
such as the operational cost, deterioration cost, carbon
emissions, and customer satisfaction.

Regarding tactical decisions considered in this paper,
the demand prediction model we develop is closely
related to the following three papers that also use statis-
tical models to predict future sales and demand of res-
taurants: Liu et al. (2001) apply data mining techniques,
including autoregressive integrated moving average
(ARIMA) model, a series of automatic modeling proce-
dures, and outlier detection; Meneghini et al. (2018)
first fit an exponential smoothing model and then in-
corporate qualitative contextual factors through expert
elicitation; and Huber et al. (2017) apply a clustered
hierarchical approach based on ARIMA to predict the
demand of several stores in different organization levels.
The main difference between our work and these three
papers is that they analyze and predict stationary de-
mand including both dine-in and takeout orders in
normal time, whereas in our setting, we consider time-
varying takeout-order demand dependent on time-
varying disease infections. Therefore, we use an ARMA
model and take the daily infected cases as our indepen-
dent variables rather than the ARIMA model. We refer
the interested readers to a survey paper by Lasek et al.
(2016) about food demand forecast using different tech-
niques based on variables such as time, weather condi-
tions, economic factors, random situations, and so on.
During the COVID-19 pandemic, it is crucial for res-
taurant owners and managers to understand the new

demand patterns of takeout food orders and make tacti-
cal decisions to guarantee their profitability accordingly.

The rest of this paper is organized as follows. In Sec-
tions 2 and 3, we provide problem description and de-
velop the mathematical prediction-and-decision model.
Specifically, Section 2 focuses on demand prediction,
and Section 3 provides details of the stochastic integer
program for optimal partnership decision making. In
Section 4, we numerically validate our approach using
instances generated based on real data from April to
October 2020 of COVID-19 infections and the related
food-ordering demand at local restaurants in Nuevo
Leon, Mexico. In Section 5, we conclude the paper and
describe future research directions.

2. Demand Prediction
Restaurants are facing unprecedented challenges to sur-
vive in this pandemic. As online food delivery demand
surges, restaurants must seek help from third-party
food delivery service platforms even the latter may
charge substantially high fees. In this paper, we consider
the partnership and having a fleet of drivers dispatched
by individual restaurants as tactical decisions that are
made and kept unchanged for certain time periods, for
example, weeks or months. We refer to the time periods
as future targeted periods and predict food demand
during the targeted periods as follows. In Section 2.1,
we describe an SIR model to analyze the disease spread
and predict trends of infections. In Section 2.2, we con-
struct an ARMA model using the weekdays, the num-
ber of daily infected cases, and the number of takeout
orders during previous days as inputs to predict takeout
food orders during the targeted periods.

Figure 1. AnOverview of the Prediction-and-DecisionModel
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2.1. SIR Model for Infection Forecast
We use the traditional SIR model to predict the future
spread of an infectious disease (Bagal et al. 2020,
Biswas et al. 2020, Dhanwant and Ramanathan 2020).
This epidemiological compartmental SIR model sepa-
rates the total population in a given region into three
subgroups for each period t: The susceptible subgroup
St of populations, the infectious subgroup It of popu-
lations who have been infected and are capable of
infecting susceptible individuals, and the recovered
subgroup Rt of populations who have been infected
and have either recovered from the disease or died.
The total population, denoted by N, is a constant,
such that N � St + It +Rt, ∀t ≥ 0. There are two impor-
tant parameters in the SIR model: β represents the
contact rate, that is, the probability of transmitting
disease between a susceptible and an infectious indi-
vidual; and γ represents the recovery rate, which com-
monly takes the value as 1=D where D is the average
duration of the infection. The actual values of β and γ
can be different when considering different periods
during different stages after an outbreak.

During period t + 1, we expect to see new infected
cases as βStIt=N, where It=N can be viewed as the ex-
pected number of contacts with infectious people for
each susceptible person. Similarly, we can expect that
γIt individuals will recover. Therefore, an SIR model
consists of the following three differential equations
of dynamic population subgroups for each period t as

(Susceptible Equation) dSt
dt

� −βStIt
N

, (1a)

(Infectious Equation) dIt
dt

�βStIt
N

−γIt, (1b)

(Recovered Equation) dRt

dt
�γIt: (1c)

After analyzing the historical infection time series,
one can estimate the values of β and γ, denoted as β̂
and γ̂, and further construct the correspondent SIR
model of the service region. The SIR model assumes
fixed transmission rate β and recovery rate γ over all
time periods, and thus the decision makers should
use the most recent infectious data to fit the SIR
model for reliable infection forecast. In the remain-
ing of the paper, we denote the actual size of the
subgroups in the past period t as {St, It,Rt} and the
predicted size of the subgroups for future period t′
as {S^t′ , I

^

t′ ,R
^

t′ }. We use one day as the length of
one period and thus refer to period t and day t
alternatively.

2.2. ARMA Model for Takeout-Order
Demand Prediction

Next, we predict the takeout-order demand of a giv-
en restaurant for the targeted periods. We construct
a multivariate linear ARMA model that is widely

used in the analysis of time series (Whittle 1951,
Brillinger 2001, Fuller 2009). The dependent variable
of this ARMA model is Ot, representing the number
of takeout orders received during period t. We in-
clude three types of independent variables. First,
consider the effects of the weekdays on potential
customers’ behavior of ordering food online. Thus,
we use a six-dimensional dummy vector wt to repre-
sent the categorical weekdays of period t, where the
vector with kth position being one represents the kth
weekday from Monday to Saturday and the all-zero
vector representing Sunday. We denote the corre-
spondent coefficients as βw ∈ R

6. We also incorporate
the relationship between takeout demand and dis-
ease outbreak and thus include the daily new in-
fected cases as data input. Because of the latency
between the time when people prefer to order online
and when they obtain current infection status, we
use the daily infected cases in day t – 1 to predict the
demand in day t. For the daily new infected cases it,
the infected population It, and the recovered popula-
tion Rt in day t, we have

Rt � Rt−1 + rt, (2a)
It � It−1 + it − rt, (2b)

where rt denotes the newly added population from
the infected population It to the recovered population
Rt in day t. By analyzing the relationship between the
daily infected cases in previous J1 days and the num-
ber of takeout orders, we use logit−j, j � 1, 2, : : : , J1 as
independent variables and denote the correspondent
coefficients as βij , j � 1, 2, : : : , J1. Furthermore, the num-
ber of daily takeout orders forms a time series, and
this is also the reason that we use the ARMA model to
capture the endogenous relationship among depen-
dent variables, Ot. We assume that the orders in day t
depend linearly on orders in previous J2 days and
thus consider autoregressive (AR) variables Ot−j, j �
1, 2, : : : , J2 and denote the correspondent coefficients
as αj, j � 1, 2, : : : , J2. We assume that the stochastic
terms for the orders of each day are correlated and
thus consider moving-average (MA) variables, that
is, the noise of the current and previous J3 days, εt−j,
j � 0, 1, 2, : : : , J3, and denote the correspondent coeffi-
cients for previous noise as φj, j � 1, 2, : : : , J3.

Finally, we present the ARMAmodel as follows:

Ot � β0 + βTwwt +
∑J1

j�1
βij · logit−j +

∑J2

j�1
αjOt−j

+∑J3

j�1
φjεt−j + εt, (3)

where εt−j:i�0,1,: : : ,J3 ~N (0,σ) denote random noises.
Consider the prediction function for the number of
takeout orders Ôt such that
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Ôt � β0 + βTwwt +
∑J1

j�1
βij · logit−j +

∑J2

j�1
αjOt−j +

∑J3

j�1
φjεt−j:

(4)

We estimate the coefficients (β0,βw,βd,α,φ) from the
observed number of historical ordersOt and the corre-
spondent independent variables (wt, it) during periods
t, t ∈ This, where we use This to denote the days of his-
torical order data. The estimated values of coefficients
are reflecting the feature importance of independent
variables, such as infection, weekdays, and past sales.
Specifically, parameters are estimated by a least-square
loss function:

β̂0, β̂w, β̂d, α̂, φ̂ � argmin
β0,βw,βd,α,φ

∑

t∈This

(Ot − Ôt)2: (5)

For a future target day t′ that we need to predict the
number of takeout orders, we may not know its previ-
ous days’ infected cases. Therefore, we use the fore-
casted infected populations in previous days before
day t′ to estimate it′−j, j � 1, 2, : : : , J1. That is, for each
future time period t′:

O
^

t′ � β̂0 + β̂
T
wwt′ +

∑J1

j�1
β̂ij

· log i^t′−j +
∑J2

j�1
α̂jO

^

t′−j

+∑J3

j�1
φ̂jε

^

t′−j, (6)

where i
^

t′−j � S
^

t′−j − S
^

t′−j−1 +R
^

t′−j −R
^

t′−j−1 is the fore-
casted daily infected cases for day t′ − j with (S^ ,R

^ )
from the SIR model (see Equation (2)); O

^

t′−j is the pre-
dicted order for day t′ − j (if we can access the actual
order data of day t′ − j, then use the actual demand);
and ε

^

t′−j is predicted noise for day t′ − j (similarly, if
day t′ − j is before the day we make decisions, then
use the actual noise). There could exist redundant AR
and MA variables depending on the historical data.

3. Decision Model Formulation and
Solution Properties

We present the stochastic optimizationmodel in Section
3.1. We discuss the problem settings and how our mod-
el can be used to decide delivery radius optimally for
restaurants (if they choose to partner with a platform)
without explicitly modeling decision-dependent uncer-
tainty in Section 3.2.We derive three solution properties
and summarize the managerial insights under uncer-
tain markets in Section 3.3. These properties are
also verified in the computational experiments in
Section 4.

3.1. Optimizing Partnership Decisions via
Stochastic Integer Programming

We formulate a stochastic integer program to solve for
the tactical decisions. Consider the targeted periods T .

For every hired driver, the restaurant needs to pay a
fixed base salary cv per day. The driver will also receive
an additional stipend, proportional to the travel time
and distance of each delivery, at unit cost rates cτ and
cd, respectively. Every hired driver can serve at most Δ
number of orders each day. (This value can be relaxed
if we allow service delays and thus the number of or-
ders queued in the system could be more than the cur-
rent capacity.) Let Õt denote the uncertain future take-
out orders in day |Õt | �O

^

t, where O
^

t is predicted in
Section 2. For each order o ∈ Õt, t ∈ T , we denote the
unknown random delivery distance, delivery time, and
sales profit as d̃o, τ̃o, and p̃o, respectively. For notation
convenience, we use Õ to denote Õt, t∈T and the corre-
spondent uncertain parameters {d̃o, τ̃o, p̃o} of any future
order o.

3.1.1. Partnering with Third-Party Food Delivery
Service Platforms. If the restaurant partners with a
food delivery service platform, then some potential
customers will choose to use the service platform,
such as a mobile app, to make takeout-food orders.
For orders received from the platform, the restaurant
needs to pay δ portion of the sales profit to the plat-
form and the platform will take over the delivery pro-
cess by assigning a driver to deliver the food to the
customer. We consider a threshold Y for the number
of drivers hired by the restaurant. If the restaurant
hires more than Y number of drivers, at least θ por-
tion of the customers will order food through the plat-
form rather than directly contacting the restaurant. If
the number of hired drivers is smaller than Y, we as-
sume that more customers will order food through
the service platform because of the lack of service ca-
pacity of the own delivery team for the restaurant. In
particular, we assume that another Γ portion of cus-
tomers will use the service platform once there is
one reduction of hired drivers from Y. Therefore, we
also have that ΓY ≤ 1− δ to guarantee that at most
100% of potential customers will use the service plat-
form. Therefore, if the restaurant hires y number of
drivers and has in total O number of takeout orders,
the number of orders received from the service plat-
form is at least θO+ ΓO(Y− y)+, where (·)+ �max{0, ·}.
Figure 2 shows two examples of the minimum portion
of orders received from the service platform versus the
number of hired drivers.

Based on the previous assumption on the number
of orders received from the third-party delivery plat-
form, we formulate a two-stage stochastic integer pro-
gramming model. The first-stage decisions include a
binary variable x, where x� 1 denotes partnering with
third-party platforms and x� 0 otherwise, and a non-
negative integer variable y denoting the number of
drivers that will be hired during the targeted periods
T . The second-stage decisions are binary variables uo
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and vo, ∀o ∈ Õ. For order o ∈ Õ, uo � 1 represents that
this order o is delivered by the drivers hired by the
restaurant, and vo � 1 means that the order is deliv-
ered by the service platform. Let parameter M repre-
sents the maximum number of daily takeout orders
during targeted periods, that is, M �maxt∈T |Õt |
�maxt∈T O

^

t. Then, we can formulate a stochastic inte-
ger program to maximize the total expected profit as

maxx,y − cv |T | y+EÕ[Q(x,y, Õ)], (7a)
s:t: x ∈ {0, 1}, (7b)

y ≥ 0 integer, (7c)

where the function Q(x,y, Õ) represents the profit of
the restaurant under the first-stage decisions (x, y) and
future orders Õ:

Q(x,y, Õ) � maxu,v
∑

o∈Õ
(p̃o − cdd̃o − cττ̃o)uo + (1− δ)p̃ovo,

(8a)

s:t: uo + vo ≤ 1 ∀o ∈ Õ, (8b)
∑

o∈Õt

uo ≤ Δy ∀t ∈ T , (8c)

∑

o∈Õ t

vo ≤Mx ∀t ∈ T , (8d)

∑

o∈Õ t

vo ≥ θO
^

t + ΓO
^

t(Y− y)

−M(1− x) ∀t ∈ T , (8e)
∑

o∈Õt

vo ≥ θO
^

tx ∀t ∈ T , (8f)

uo,vo ∈ {0, 1} ∀o ∈ Õ: (8g)

The second-stage objective function (8a) computes the
total profit from serving orders by their own hired
drivers or by the third-party delivery platform. Con-
straints (8b) restrict that each order can be delivered
by at most one approach, that is, by the restaurant, or

by the service platform, or neither one. Constraints
(8c) are delivery capacity constraints of hired drivers
for each day. (One can also define a penalty term
Pt ≥ 0 for each period t, revise Constraints (8c) as∑

o∈Õt
uo ≤ Δy+Pt for all t ∈ T , and subtract

∑
t∈T Pt in

the objective function to penalize the number of deliv-
eries that exceeds drivers’ capacities in the objective
function to allow service delay.) Constraints (8d), (8e),
and (8f) together restrict the number of orders deliv-
ered by the service platform. Constraints (8d) require
that orders can be delivered by the service platform
only if the restaurant decides to partner with a third-
party platform. Constraints (8e) and (8f) restrict the
minimum number of orders delivered by the service
platform if the restaurant decides to partner with a
service platform, based on the aforementioned as-
sumption. Constraints (8e) and (8f) allow more orders
to be delivered by the service platform, which is con-
sistent with real service context. For each order re-
ceived by the restaurant, if the delivery cost by hired
drivers is higher than the partial sale profit charged
by the service platform, the restaurant can make an
identical order through the service platform to reduce
the cost and thus to improve the total profit.

Proposition 1. Constraints (8e) and (8f) are the linear
formulation of

∑

o∈Õ t

vo ≥ x(θO^ t + ΓO
^

t(Y − y)+) ∀t ∈ T : (9)

Proof. Without loss of generality, in the following
proof we consider Inequality (9) and Constraints (8e)
and (8f) of a specific time period t ∈ T . Inequality (9)
means, if the restaurant partners with a third-party
service platform, that is, x � 1, then the number of or-
ders that will be delivered by the service platform is
at least θO

^

t + ΓO
^

t(Y− y)+. Otherwise, there is no

Figure 2. Two Examples of Portion of Orders Received fromDelivery Platform

Notes. Solid line, the minimum percentage of orders received from app and the number of hired drivers; dashed line, the 100% reference line.
(a) Y � 5, θ � 0:3, Γ � 0:1. (b) Y � 5, θ � 0:5, Γ � 0:05.
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restriction on the minimum number of orders deliv-
ered by the service platform; that is, we have∑

o∈Õ t
vo ≥ 0.

Consider Constraints (8e) and (8f). If x � 1, then we

have
∑

o∈Õ t
vo ≥ θO

^

t + ΓO
^

t(Y− y) and
∑

o∈Õ t
vo ≥ θO

^

t,

which is equivalent to
∑

o∈Õt
vo ≥max{θO^ t + ΓO

^

t(Y− y),
θO

^

t} � θO
^

t + ΓO
^

t(Y− y)+. If x � 0, by the definition of
M, we have the right-hand side of (8e) is less than or equal
to zero and the right-hand side of (8f) is zero. Based on
the previous analysis, we have

∑
o∈Õt

vo ≥ 0. w

We approximate the optimization formulation (7)
through a finite number of realizations of uncertain
parameters (p̃, d̃, τ̃), as in the sample average approxi-
mation (SAA) approach (Kleywegt et al. 2002). Thus,
we consider a finite sample set Ω of the realizations
for the random variables (p̃, d̃, τ̃), also denoted for
short as the order set Õ. All scenarios ω ∈Ω are gener-
ated following the Monte Carlo sampling scheme and
thus they are independent with each other. Denote
the realization of random parameters for scenario ω ∈
Ω as Õω. Then, we can use the following optimization
problem to approximate formulation (7):

maxx,y − cv |T | y+ ∑

ω∈Ω

1
|Ω |[Q(x,y, Õω)], (10a)

s:t: x ∈ {0, 1}, (10b)
y ≥ 0 integer, (10c)

where the function Q(·) is the same as that defined
in (8).

3.1.2. Random Order-Scenario Generation by Monte
Carlo Sampling. We generate the scenario set Ω for
future orders. For all scenarios, we generate a fixed
number of orders O

^

t in the future day t ∈ T , i.e.,
|Õt| �O

^

t, where O
^

t is predicted by ARMA model
from Equation (6). The orders Oω,t in each scenario
ω ∈Ω for day t, t ∈ T is generated through the follow-
ing procedures. First, we independently simulate O

^

t

number of demand locations within a radius r from
the restaurant’s location following certain distribu-
tions through random coordinates generation. These
simulated locations are delivery locations for orders
o ∈Oω,t. The radius r and the probability that an order
shows in a certain area depend on the location and
the service pattern of the given restaurant, and they
can be either estimated from the historical orders or
given by the restaurant operators. Next, we use Goo-
gle Maps application programming interface (API) to
estimate the travel time τo and the distance do between
the generated delivery locations and the restaurant
in the given road network, for o ∈Oω,t. Finally, we
independently generate random sale profit po ~ P for

o ∈Oω,t, where the profit distribution P can also be es-
timated from historical order data.

3.2. Discussions

Remark 1. The modules of this integrated tool, such
as the prediction and the optimization models, can be
modified according to specific practical scenarios,
depending on the forms of historical sales data and
specific operational restrictions of a restaurant. For ex-
ample, if a restaurant can access a high-dimensional
context variable as prediction input and there exists a
large volume of historical data to use, it can use a neu-
ral network as the prediction module instead of the
ARMA used here.

Remark 2. The optimization model (10) can be used
during normal business time where future demand
orders can be predicted through other statistical learn-
ing approaches without the consideration of infec-
tions. In Section 4.2, we present numerical results
where the demand orders follow different patterns.

3.2.1. Order Delivery Options. The formulation (8) is
an optimistic model with respect to order delivery as-
signments between restaurants and the platform. In
each scenario ω, optimal solutions of the decision vari-
ables vo, ∀o ∈ Õω, which indicate whether each order
is delivered by the service platform (if vo � 1 for order
o) or by the restaurant (if vo � 0), are obtained to maxi-
mize the total profit, through solving Model (8). That
is, Model (8) can estimate the best outcome for a res-
taurant if it decides to partner with a third-party
service platform because it also performs an optimal
order assignment between the platform and restau-
rants’ own delivery teams. One can flexibly extend
this model to accommodate specific requirements on
delivery options related to each order. For example,
if some orders are submitted directly and will be
delivered by the platform, one can set vo � 1 for the
corresponding orders and add them as constraints in
Model (8).

3.2.2. Modeling Advantage. Another benefit of using
Model (8) is to decide the optimal delivery radius
without specifically modeling decision-dependent
uncertain demand and its probability distributions.
According to the partnering process between a restau-
rant and a third-party delivery platform, the delivery
radius shown to users is a decision that needs to be
made by the restaurant, which will affect the number
of orders received through the platform (i.e., the de-
mand). Thus, if we specify the delivery radius as a
decision variable in our formulation, we will have
decision-dependent uncertain demand parameter
and the model cannot be directly solved via state-of-
the-art optimization methods or solvers. To avoid
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specifically modeling the relationship between deliv-
ery range and the resultant demand (which is also am-
biguously known), in Model (8), we set the delivery
radius as large as possible to cover all potential de-
mand orders. After obtaining the optimal solutions,
one can then infer a reasonable choice of the preferred
delivery radius, for example, the distance to the far-
thest location of all the orders that are assigned to the
platform to deliver. The specific structure of the deliv-
ery radius and the corresponding decision-dependent
order uncertainty allow us to (i) first omit the radius
decision and (ii) then recover the optimal radius deci-
sion based on the optimal solutions and uncertainty
realizations. In this way, we avoid modeling the
specific function between delivery radius and the de-
mand, as well as the resulting nonlinearity and com-
putational difficulty of the problem.

3.3. Model and Solution Properties
In this section, we derive three solution properties
and summarize the related managerial insights.

Proposition 2. Consider two possible values δ1 < δ2. Let
Z(δ) denote the optimal value of Model (8) with input data
δ, and specifically, let Zp(δ) denote the optimal value condi-
tional on x � 1, that is, if partnering with a third-party
platform, and Zn(δ) denote the optimal value conditional on
x � 0, that is, if not partnering with a third-party platform.
Therefore, Z(δ) �max{Zp(δ),Zn(δ)}. Then, we have the
following:

1. Always Z(δ1) ≥ Z(δ2);
2. If Z(δ1) � Zn(δ1), then Z(δ2) � Zn(δ2);
3. If Z(δ2) � Zp(δ2), then Z(δ1) � Zp(δ1).

Proof. We denote Model (8) with δ1 as P1 and that
with δ2 as P2. Consider that one optimal decision of P2

for achieving Z(δ2) is x∗2, then we can conclude that (i)
x∗2 is also feasible to P1 because the feasible regions of
P1 and P2 are exactly the same; and (ii) P1(x∗2) ≥ P2(x∗2)
because δ1 < δ2 and the parameter δ only shows in the
objective function. The optimal value of P1 is at least
the objective value of any feasible solution, and thus
we have

Z(δ1) ≥ P1(x∗2) ≥ P2(x∗2) � Z(δ2),
which completes the proof of the first statement.

If Z(δ1) � Zn(δ1), we have Zn(δ1) ≥ Zp(δ1). Parameter
δ only affects the model when the participating deci-
sion x equal to one, and thus we also have Zn(δ1)
� Zn(δ2). Therefore, we have

Zn(δ2) � Zn(δ1) ≥ Zp(δ1) ≥ Zp(δ2),
where the last inequality is because δ1 < δ2 and the
parameter δ only shows in the objective function. We
derive that Zn(δ2) ≥ Zp(δ2), and thus we have Z(δ2)
� Zn(δ2), which completes the proof of the second
statement.

If Z(δ2) � Zp(δ2), we have Zp(δ2) ≥ Zn(δ2). Similarly,
we always have Zn(δ1) � Zn(δ2). Therefore, we have

Zp(δ1) ≥ Zp(δ2) ≥ Zn(δ2) ≥ Zn(δ1),
where the first inequality is because δ1 < δ2 and the
parameter δ only shows in the objective function. We
derive that Zp(δ1) ≥ Zn(δ1), and thus we have
Z(δ1) � Zp(δ2), which completes the proof of the third
statement. w

Proposition 3. Consider two possible values θ1 < θ2. Let
Z(θ) denote the optimal value of Model (8) with input data θ,
and specifically, let Zp(θ) denote the optimal value conditional
on x � 1, that is, if partnering with a third-party platform,
and Zn(θ) denote the optimal value conditional on x � 0, that
is, if not partnering with a third-party platform. Therefore,
Z(θ) �max{Zp(θ),Zn(θ)}. Then, we have

1. Always Z(θ1) ≥ Z(θ2);
2. If Z(θ1) � Zn(θ1), then Z(θ2) � Zn(θ2);
3. If Z(θ2) � Zp(θ2), then Z(θ1) � Zp(θ1).

Proof. The proof here is similar to that of Proposition
2. We define P1 and P2 regarding θ1 and θ2. The pa-
rameter θ only shows in Constraints (8e) and (8f).
Consider that one optimal decision of P2 for achieving
Z(θ2) is x∗2, then we can conclude that (i) x∗2 is also fea-
sible to P1 because the feasible region of P1 is larger
than that of P2, given θ1 < θ2; and (ii) P1(x∗2) � P2(x∗2)
because the objective functions are the same. The opti-
mal value of P1 is at least the objective value of any
feasible solution, and thus we have

Z(θ1) ≥ P1(x∗2) � P2(x∗2) � Z(θ2),
which completes the proof of the first statement.

If Z(θ1) � Zn(θ1), we have Zn(θ1) ≥ Zp(θ1). Parame-
ter θ only affects the model when the participating
decision x equal to one, and thus we also have Zn(θ1)
� Zn(θ2). Denote the optimal decision to P2 condition-
al on participating with the delivery platform as x∗2p,
then by θ1 < θ2, we have x∗2p is also feasible to P1 and
P1(x∗2p) � P2(x∗2p) � Zp(θ2). Therefore, similarly to the
proof of Proposition 2, we have

Zn(θ2) � Zn(θ1) ≥ Zp(θ1) ≥ P1(x∗2p) � P2(x∗2p) � Zp(θ2),

where the inequality Zp(θ1) ≥ P1(x∗2p) is because the
former is the optimal objective value conditional on
x � 1 and the latter is the objective value of a feasible
solution conditional on x�1. We derive that Zn(θ2)
≥ Zp(θ2), and thus we have Z(θ2) � Zn(θ2), which
completes the proof of the second statement.

If Z(θ2) � Zp(θ2), we have Zp(θ2) ≥ Zn(θ2). Similarly,
we always have Zn(θ1) � Zn(θ2). Therefore, we have

Zp(θ1) ≥ Zp(θ2) ≥ Zn(θ2) � Zn(θ1),
where the first inequality is proved in the previous
paragraph in the proof of the second statement. We
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derive that Zp(θ1) ≥ Zn(θ1), and thus we have
Z(θ1) � Zp(θ1), which completes the proof of the third
statement. w

Proposition 4. Consider two possible values Γ1 < Γ2. Let
Z(Γ) denote the optimal value of Model (8) with input data
Γ, and specifically, let Zp(Γ) denote the optimal value condi-
tional on x � 1, that is, if partnering with a third-party
platform, and Zn(Γ) denote the optimal value conditional
on x � 0, that is, if not partnering with a third-party
platform. Therefore, Z(Γ) �max{Zp(Γ),Zn(Γ)}. Then, we
have

1. Always Z(Γ1) ≥ Z(Γ2);
2. If Z(Γ1) � Zn(Γ1), then Z(Γ2) � Zn(Γ2);
3. If Z(Γ2) � Zp(Γ2), then Z(Γ1) � Zp(Γ1).

Proof. The proof here follows the same analysis steps
as those of Propositions 2 and 3. We define P1 and P2

regarding Γ1 and Γ2. The same as the input θ as dis-
cussed in Proposition 3, the parameter Γ also only
shows in Constraints (8e).

Consider that one optimal decision of P2 for achiev-
ing Z(Γ2) is x∗2, then we can conclude that (i) x∗2 is also
feasible to P1 because the feasible region of P1 is larger
than that of P2, given Γ1 < Γ2; and (ii) P2(x∗2) � P1(x∗2)
because the objective functions are the same. The opti-
mal value of P1 is at least the objective value of any
feasible solution, and thus we have

Z(Γ1) ≥ P1(x∗2) � P2(x∗2) � Z(Γ2),
which completes the proof of the first statement.

If Z(Γ1) � Zn(Γ1), we have Zn(Γ1) ≥ Zp(Γ1). Parame-
ter Γ only affects the model when the participating de-
cision x equal to 1, and thus we also have Zn(Γ1)
� Zn(Γ2). Denote the optimal decision to P2 condition-
al on participating with the delivery platform as x∗2p,
then by Γ1 < Γ2, we have x∗2p is also feasible to P1 and
P1(x∗2p) � P2(x∗2p) � Zp(Γ2). Therefore, we have

Zn(Γ2) � Zn(Γ1) ≥ Zp(Γ1) ≥ P1(x∗2p) � P2(x∗2p) � Zp(Γ2),
where the inequality Zp(Γ1) ≥ P1(x∗2p) is because the
former is the optimal objective value conditional on
x�1 and the later is the objective value of a feasible
solution conditional on x � 1. We derive that Zn(Γ2)
≥ Zp(Γ2), and thus we have Z(Γ2) � Zn(Γ2), which
completes the proof of the second statement.

If Z(Γ2) � Zp(Γ2), we have Zp(Γ2) ≥ Zn(Γ2). Similarly,
we always have Zn(Γ1) � Zn(Γ2). Therefore, we have

Zp(Γ1) ≥ Zp(Γ2) ≥ Zn(Γ2) � Zn(Γ1),
where the first inequality is proved in the previous par-
agraph in the proof of the second statement. We derive
that Zp(Γ1) ≥ Zn(Γ1), and thus we have Z(Γ1) � Zp(Γ1),
which completes the proof of the third statement. w

Propositions 2–4 indicate that a restaurant can bene-
fit from partnering with a third-party platform, when

(i) the proportion of the sales that needs to be paid to
the platform drops (i.e., δ decreases), (ii) the minimum
amount of orders placed through the platform de-
creases (i.e., θ decreases), or (iii) the percentage of cus-
tomers, who will only choose the platform rather than
placing orders directly with the restaurant, decreases
(i.e., Γ decreases), respectively. The results of the three
propositions are also reflected in the computational
results later in Section 4.1.3.

4. Numerical Studies
We conduct two sets of numerical experiments. In Sec-
tion 4.1, we evaluate our model, consisting of demand
prediction and tactical decision, with COVID-19 infec-
tion data and historical order data of a restaurant.

The numerical results are consistent with the solu-
tion properties derived in Section 3.3.

Section 4.2 focuses on testing the optimization for-
mulation developed in Section 3 for different demand
patterns.

From the numerical results in Sections 4.1 and 4.2,
we conclude that the tactical decisions are mainly
affected by partnering policies, demand response,
and demand patterns. Specifically, when (i) the pro-
portional revenue charged by the platform is low,
(ii) customers can flexibly decide whether to order
from platforms or restaurants directly, (iii) custom-
ers require more efficient delivery, (iv) average de-
livery distance of all the orders is long, and (v) the
demand variance is high, restaurants can gain more
benefits from partnering with third-party delivery
platforms.

4.1. Results of a Real-World Example During
the COVID-19 Pandemic

We consider a real-world restaurant located in Nuevo
Leon, a state in the northeast of Mexico. The historical
daily infection data and the number of takeout orders
of the restaurant from April 2 to October 19, 2020, are
presented in Figure 3.

4.1.1. Results of SIR Model and Infection Prediction.
We follow the approaches in Bagal et al. (2020) to esti-
mate the two parameters of the SIR model, β and γ,
for Nuevo Leon, Mexico. We use COVID-19 data from
COVID-19 Mexico (2020), an interactive website main-
tained by the Mexican government. We first convert
the daily infected, recovery, and death data into the
population of subgroups It and Rt for each day t. We
estimate the parameters and compute the susceptible
population St by plugging in the total population of
Nuevo Leon as n � 5,000,000.

We first construct an SIR model with data from
April 2 to October 19, 2020. The estimation results are
shown in Figure 4. Figure 4(a) shows the real-world
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COVID-19 data we collected from COVID-19 Mexico
(2020), including cumulative infected cases, death
tolls, and recovery cases. Figure 4(b) shows the log-
plot of It versus t, where we compute It by the differ-
ence between the cumulative infected cases minus the
cumulative recovered cases (including cases who
have been infected and recovered later or died). We
estimate the value of β̂ − γ̂ by the slope of the fitted

line in the log-plot as 0.0293 and further estimate
that β̂ � 0:0675 and γ̂ � 0:0382. Figure 4(c) shows the
predicted population of three subgroups, that is,
(S^t, I

^

t,R
^

t), for 500 days by SIR starting from I0 � 10.
Figure 4(d) compares the real-world populations of
three subgroups (solid) and the predicted populations
of three subgroups by the SIR model (dashed) from
April 2 to October 19, 2020.

Figure 3. (Color online) Historical Data fromApril 2 to October 19, 2020

Notes. (a) Number of takeout orders of a local restaurant in Nuevo Leon, Mexico. (b) Log plot of daily new infected cases of Nuevo Leon,
Mexico.

Figure 4. (Color online) Results for SIRModel with Data fromApril 2 to October 19, 2020

Notes. (a) Real-world infected, recovery, and death cases. (b) Estimation from the slope of the fitted line (orange): β̂ − γ̂ � 0:0293. (c) SIR predic-
tion of subgroup populations for 500 days. (d) Real-world subgroup populations versus predicted subgroup populations by SIR.
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From the comparison results in Figure 4(d), we can
observe that the real-world infected subgroup grows
faster than that of the SIR model in the first 150 days
and then slower than that of the SIR model in the rest
50 days. The reason is that the SIR model assumes
fixed transmission rate β and recovery rate γ over all
time periods while in the real-world, both rates
change because of the reshaping of human activities,
policies issued by governments, improvement of dis-
ease treatment, and so on. Therefore, we construct an-
other SIR model with COVID-19 data in shorter time
periods, where we assume the transmission and the
recovery rates are fixed during this period and in fu-
ture days, so that we can predict future infected cases
through this SIR model. We assume that both trans-
mission and recovery rates keep stable from Septem-
ber 1, 2020, to November 3, 2020. We use COVID-19
data from September 1 to October 19, 2020, to estimate
the parameters for the SIR model and later predict the
daily infected cases for October 20 to November 3,
2020, that is, two weeks in the future. The estimation
results are shown in Figure 5. The contents of Figure
5, (a) to (d), are similar to those of Figure 4, (a) to (d).
The estimated transition rate is β̂ � 0:0313, and the

estimated recovery rate is γ̂ � 0:0240. From the estimat-
ed values of β and γ in these two SIR models, we notice
that the spread of COVID-19 disease in Nuevo Leon in
September 2020 is slower than that in April 2020. This
can also be directly observed by comparing Figures 4(c)
and 5(c), where in the latter, the infected subgroup
grows much slower. Figure 4(c) predicts 500 days start-
ing on April 2, and Figure 5(c) predicts 350 days start-
ing on September 1, and thus these two figures end
almost on the same day. In Figure 5(d), we conclude
that this new SIR model fits the historical data well, and
we believe it can also well predict the infected and re-
covery cases for the two weeks in the future.

4.1.2. Results of ARMA Model and Order Prediction.
We analyze the historical order data of the given res-
taurant from April 2, 2020, to October 19, 2020. As
stated in Section 2.2, we tested different combinations
of independent variables, including log daily infected
cases in previous days, the historical orders in previ-
ous days, and random errors in previous days. We
also verify that the model including log daily infected
cases performs significantly better than that directly
using daily infected cases. We finally build the following

Figure 5. (Color online) Results for SIRModel with Data from September 1 to October 19, 2020

Notes. (a) Real-world infected, recovery, and death cases. (b) Estimation from the slope of the fitted line (orange): β̂ − γ̂ � 0:0073. (c) SIR predic-
tion of subgroup populations for 350 days. (d) Real-world subgroup populations versus predicted subgroup populations by SIR.
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model according to the significance of independent vari-
ables:

Ot � β0 +
∑

i�0, 1, 2, 3, 4
βwi

wi + βi2 · logit−2 + α1Ot−1 + εt:

(11)

All the independent variables in the ARMA Model (11)
are significant, and the p values associating with all coef-
ficients are less than 0.05, which means that all the coef-
ficients are not zero with at least 95% confidence. The
R2 of Model (11) is 0.471, and the adjusted R2 is 0.447.

The p value of coefficient βw5
of Model (3) is 0.7, and

thus we cannot conclude that w5 can affect the number
of orders. This result indicates that there are no signifi-
cant changes in takeout orders on Saturday and Sunday.
This observation is consistent with people’s intuition
that Saturday and Sunday are weekends, and thus hu-
man activities are similar on these two weekdays. There-
fore, Model (11) does not differentiate between Saturday
and Sunday when predicting the orders. We also com-
pare the results of using the daily infected cases during
the order date versus using the daily infected cases of
previous dates. We find that the daily infected cases of
previous dates have a more significant effect on the
number of takeout orders, which validates our assump-
tion on the latency between the time of notifying the in-
fected cases and the time of making online takeout food
orders. Moreover, we find that for this specific order
data set, the ARMA model has the best performance
when only including the number of takeout orders of
yesterday and the log value of the number of daily in-
fected cases of the day before yesterday.

4.1.3. Results of Tactical Decision. We make tactical
decisions for the future two weeks, that is, from Octo-
ber 20, 2020, to November 3, 2020. We forecast the
daily infected cases by the SIR model and use the fore-
casted results to predict the number of orders by Mod-
el (11). The results are presented in Table 1.

We sample 10 scenarios for the locations of future
orders within a radius r � 10 km. We use Google
Maps distance matrix API to export the travel distance
and time between the restaurant and sampled order
locations. The order sales profit is generated following
a truncated normal distribution with the mean and
variance computed from the historical order data. We
set the daily salary paid to each driver as $50. The res-
taurant also pays hired drivers $4 for every 1 km and
$15 for every hour as a stipend during the delivery
process. The restaurant needs to pay 20%–30% of the
sales profit to the third-party delivery platform for the
orders delivered by the platform. We further assume
different values for model parameter, θ and δ, which
affect the percentage of orders received by the third-
party service once deciding to partner. The results of
solving Optimization Program (10) are shown in Table 2.
The columns Partner decision and Number of driv-
ers show the tactical decisions for the restaurant.
The column Delivered by restaurant shows the aver-
age percentage (for all scenarios) of orders delivered
by the restaurant, computed through the optimal de-
cisions u∗ as (∑ω∈Ω

∑
o∈Oω

u∗o,ω)(|Ω|∑t∈T O
^

t). Similarly,
the column Delivered by third-party service shows
the average percentage of orders delivered by the
service platform, computed through the optimal
decisions v∗ as (∑ω∈Ω

∑
o∈Oω

v∗o,ω)=(|Ω|∑t∈T O
^

t). The last
column computes the average percentage of orders
being served by either the restaurant or the delivery
service platform.

4.1.4. Delivery Capability of Driver D. Comparing the
solutions under different assumptions on the number
of orders that a driver can deliver, we notice that
when the capability Δ is larger, then the restaurant
tends to not partner with a third-party delivery
service platform. This result is consistent with our in-
tuition. When the capability is larger, the number of
required drivers is smaller (it can also be observed

Table 1. Predicted Daily Infection and Orders for Future Two Weeks

Date Predicted daily infection Predicted demand

10/20/20 446 7
10/21/20 450 5
10/22/20 454 7
10/23/20 455 6
10/24/20 459 9
10/25/20 463 9
10/26/20 465 4
10/27/20 469 6
10/28/20 471 5
10/29/20 475 7
10/30/20 479 6
10/31/20 482 9
11/01/20 485 9
11/02/20 489 4
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from the table). Therefore, the cost of operating their
delivery service by the restaurant is smaller.

4.1.5. Percentage of Sales Profit Paid to the Third-
Party Delivery Service Platform δ. The results are con-
sistent with Proposition 2. If the delivery service fee
charged by the third-party platform is relatively low-
er, then the restaurant tends to partner with the ser-
vice platform to reduce the cost and thus improve the
profit. We also observe that under the current parame-
ter settings, the restaurant always hires drivers while
deciding to partner with the third-party service plat-
form. The reason is that for orders whose locations are
close to the restaurant, the cost of delivering by hired
drivers is less than the partial sales profit paid to the
third-party service. Therefore, the restaurant prefers
to deliver these orders by themselves to improve the
total profit. When the restaurant decides to partner
with a third-party delivery service platform, all the
orders can be served. When the restaurant does not
partner with a third-party platform, it may reject
some orders to maximize the total profit.

4.1.6. Percentage of Customers Using the Third-Party
Service θ. The decision to partner with a third-party
service platform will also affect the percentage of

orders that will be received from the service platform
or from the restaurant itself. Comparing settings 4, 5,
and 6 (also by settings 13, 14, and 15), we conclude that
when the minimum percentage of orders received from
the service platform is larger, the restaurant may decide
not to partner. From the results of Settings 13 and 14
(or by Settings 21 and 22), we can observe that in some
cases, the restaurant decides to hire one more driver
when partnering with a delivery service platform. This
contradicts our intuition, while we typically assume the
restaurant will hire fewer drivers when partnering with
third-party platforms because the total number of or-
ders that need to be delivered by hired drivers is small-
er. The reason is the assumption that the minimum
number of orders received by the service platform in-
creases when the hired drivers are fewer than a thresh-
old value of Y. Therefore, in some cases, the restaurant
even hires more drivers, that is, pays more for operat-
ing its own delivery team, to decrease the minimum
number of orders delivered by the platform to increase
the total profit. Therefore, we can infer that, although
the idleness of drivers increases, the total profit rises
also. The results are consistent with Proposition 3.

4.2. Results of Different Order Patterns
We consider the tactical decisions under different or-
der patterns. We focus on time-stationary demand,

Table 2. Optimal Decisions Under Different Settings When Partnering with Third-Party Services

Index Δ δ θ Obj
Partner
decision

Number of
drivers

Delivered
by

restaurant
(%)

Delivered
by third-
party ser-
vice (%)

Served
orders (%)

1 2 0.1 0.2 248,323.0 Yes 1 22.04 77.96 100.00
2 2 0.1 0.4 248,219.4 Yes 1 21.29 78.71 100.00
3 2 0.1 0.6 247,245.5 Yes 2 18.49 81.51 100.00
4 2 0.3 0.2 233,624.1 Yes 4 70.75 29.25 100.00
5 2 0.3 0.4 231,943.9 No 5 93.66 0.00 93.66
6 2 0.3 0.6 231,943.9 No 5 93.66 0.00 93.66
7 2 0.5 0.2 231,943.9 No 5 93.66 0.00 93.66
8 2 0.5 0.4 231,943.9 No 5 93.66 0.00 93.66
9 2 0.5 0.6 231,943.9 No 5 93.66 0.00 93.66
10 6 0.1 0.2 248,618.3 Yes 1 26.99 73.01 100.00
11 6 0.1 0.4 248,315.7 Yes 1 23.01 76.99 100.00
12 6 0.1 0.6 247,245.5 Yes 2 18.49 81.51 100.00
13 6 0.3 0.2 234,324.1 Yes 3 70.75 29.25 100.00
14 6 0.3 0.4 234,043.9 No 2 93.66 0.00 93.66
15 6 0.3 0.6 234,043.9 No 2 93.66 0.00 93.66
16 6 0.5 0.2 234,043.9 No 2 93.66 0.00 93.66
17 6 0.5 0.4 234,043.9 No 2 93.66 0.00 93.66
18 6 0.5 0.6 234,043.9 No 2 93.66 0.00 93.66
19 10 0.1 0.2 248,618.3 Yes 1 26.99 73.01 100.00
20 10 0.1 0.4 248,315.7 Yes 1 23.01 76.99 100.00
21 10 0.1 0.6 247,245.5 Yes 2 18.49 81.51 100.00
22 10 0.3 0.2 234,743.9 No 1 93.66 0.00 93.66
23 10 0.3 0.4 234,743.9 No 1 93.66 0.00 93.66
24 10 0.3 0.6 234,743.9 No 1 93.66 0.00 93.66
25 10 0.5 0.2 234,743.9 No 1 93.66 0.00 93.66
26 10 0.5 0.4 234,743.9 No 1 93.66 0.00 93.66
27 10 0.5 0.6 234,743.9 No 1 93.66 0.00 93.66
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where the patterns are not changing over time, and
specifically, we take three features of order pattern
into consideration. The first feature is the average
number of orders received each day. For large restau-
rants, they receive more delivery orders compared
with restaurants on a relatively small scale. The sec-
ond feature is the standard deviation of the number of
orders received each day. For restaurants that serve a
relatively fixed group of customers, the orders they
received each day is more stable compared with the
restaurants that do not have a fixed group of custom-
ers. The third feature is the service radius for the
delivery orders. For restaurants in downtown or other
population-gathering areas, most of the orders are
from customers nearby, and thus the service radius is
small. For restaurants in the suburb, the orders can
from customers living in different areas of the city,
and therefore the service radius is large.

We present the results of several instances, where
we vary the value of one feature and keep the other
two features fixed. For all instances, we consider the
tactical decisions for future 14 days, that is, T � [14].
The number of orders |Õt| of day t, ∀t ∈ T are sam-
pled from truncated independent and identically dis-
tributed (i.i.d.) normal distributions with mean Ō and
standard deviation (STD) σO. Then, the order realiza-
tions in each scenario ω ∈Ω are generated following

the same Monte Carlo sampling approach under radius
r. To fully show the changes in profits when the restau-
rant partners with the third-party service platform or
not and to show the transition between the decision for
partnering or not partnering, we present the optimal
profit of the restaurant when it partners or does not
with the third-party service platform separately. There-
fore, the optimal objective profit of Problem (10) is the
maximum value of these two types of profit.

4.2.1. Decisions Under Different Service Radius. We
consider two levels of the average order numbers, Ō ∈
{5, 50} and two levels of the STD of order numbers,
σO � {0:1, 0:6} × Ō. We vary the radius r in {3+ 2 × i :
i � 0, 1, 2, : : : , 6} km. We present the results in Figure 6.

Generally, when the service radius is becoming
larger, the optimal decision for the restaurant changes
from not partnering to partnering by observing the
blue line becomes above the red line. When the aver-
age number of orders per day is larger, the restaurant
benefits more from partnering with a third-party plat-
form by observing the intersection points are at small-
er radii in Figure 6, (c) and (d) compared with Figure
6, (a) and (b). When the variance of the number of or-
ders per day is larger, that is, larger STD, the restau-
rant benefits more from partnering with a third-party
platform, by observing the intersection points are at

Figure 6. (Color online) Optimal Profits of the Restaurant When the Service Radius Changes from 3 to 15 Km

Notes. Blue, profits when restaurant partners with a third-party service platform; red, profits when restaurant does not partner with a third-
party service platform. (a) Ō � 5, σO � 0:1Ō. (b) Ō � 5, σO � 0:6Ō. (c) Ō � 50, σO � 0:1Ō. (d) Ō � 50, σO � 0:6Ō.
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smaller radii in Figure 6, (b) and (d) compared with
Figure 6, (a) and (c) (slightly smaller in these instan-
ces). Our model will always choose the decision that
achieves the higher value. Therefore, if a restaurant
makes a different partnering decision, then the differ-
ence between these two curves will reflect the revenue
enhancement that will be brought by our model (the
same in Figures 7 and 8).

4.2.2. Decisions Under Different Average Number of
Orders. We consider two levels of radius, r ∈ {3, 15}
km and two levels of the STD of order numbers,
σO � {0:1, 0:6} × Ō. We vary the average order num-
bers Ō ∈ {5+ 5 × i : i � 0, 1, 2, : : : , 9}. We present the re-
sults in Figure 7.

When the average number of orders is becoming
larger, the difference between partnering or not part-
nering is also becoming larger, which requires the
restaurant to pay more attention to tactical decisions.
We draw the same conclusion as in Section 4.2.1,
when the service radius is larger, the restaurant
tends to partner with the delivery service platform
by observing that the blue line is above the red
line in Figure 7, (c) and (d), and vice versa in

Figure 7, (a) and (b). Comparing Figure 7, (a) and (b)
(or Figure 7, (c) and (d)), we observe that the differ-
ence between partnering or not partnering is smaller
when the variance of daily orders is large. Because
under both decisions, partnering or not, the restau-
rant hires drivers and thus needs to pay a fixed sala-
ry to drivers, which may lead to idleness and cost
because of the unstable demand.

4.2.3. Decisions Under Different Standard Deviation of
Number of Order. We consider two levels of radius,
r ∈ {3, 15} km and two levels of the average number of
daily orders Ō � {5, 50}. We vary the STD of the num-
ber of daily orders in the range σO � {0:1 × i : i � 1, 2,
: : : , 6} × Ō. We present the results in Figure 8.

We conclude that when the variance of the number
of orders is larger, the total profit of both partnering
decisions, partnering or not, is decreasing. Similar to
Sections 4.2.1 and 4.2.2, we can conclude that when
the service radius is smaller, the restaurant tends to
not partner with a third-party platform because the
cost for operating an own delivery team is relatively
low. However, in Figure 8(b), we can observe that
when the variance is becoming larger and larger, the

Figure 7. (Color online) Result 2: Optimal Profits of the Restaurant When the AverageNumber of Daily Orders Changes from
5 to 50

Notes. Blue, profits when restaurant partners with a third-party service platform; red, profits when restaurant does not partner with a third-
party service platform. (a) r � 3, σO � 0:1Ō. (b) r � 3, σO � 0:6Ō. (c) r � 15, σO � 0:1Ō. (d) r � 15, σO � 0:6Ō.
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restaurant will switch to partner with a third-party
platform to counter the risk from the unstable demand
and decrease the cost.

5. Conclusion
In this paper, we developed a prediction-and-decision
model to help restaurants to make tactical decisions,
including whether to partner with third-party deliv-
ery services and the number of drivers to be hired
during or post a pandemic under stochastic demand
surge. Our approach implemented demand prediction
and decision making sequentially. We used an SIR
model in epidemiology to analyze the disease spread
and further constructed an ARMA model to predict
the number of future orders, which took the forecast-
ed infected cases as inputs. Then, we formulated a sto-
chastic integer program based on the predicted
amount of orders and sampled sales profit and loca-
tions of future orders. We conducted numerical ex-
periments using real-world COVID-19 infection data,
restaurant food ordering data, and simulated various
demand patterns to derive computational results.

Results along the following future research direc-
tions can provide more support for restaurants’

tactical decision making. First, one can explore and in-
volve more features that have impacts on order de-
mand to improve the prediction power of the regres-
sion model. Second, it is interesting to compare results
obtained by using optimization frameworks based on
different risk measures of the undesirable outcomes
under stochastic demand surges.
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