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ABSTRACT: Neopentylene ring fusions (ring-fused 4,4-dimethylcyclopentane polycycles) are found in many natural products, but 
they are largely absent from synthetic compound libraries and focused medicinal chemistry research. Here is reported a synthetic 
approach to one of the few non-natural product-based target compounds from medicinal chemistry that includes a neopentylene ring 
fusion: an analogue of ibuprofen referred to herein as “neoprofen”. The approach features ring-opening fragmentation reactions of 
dimedone derivatives coupled with transition metal-catalyzed benzannulation and hydrocarboxylation methods.  

As part of a larger medicinal chemistry interest in exploring 
diverse 3D molecular structural topologies, we recently pre-
pared “neoprofen” (Figure 1, 1),1 a known analogue of ibu-
profen in which the flexible isobutyl side chain of ibuprofen has 
been morphed into a compact and rigid neopentylene ring fu-
sion. This compound had previously been prepared in 9 steps 
from benzaldehyde as part of medicinal chemistry efforts prob-
ing the ibuprofen pharmacophore.2 We reasoned that this stra-
tegic ring fusion (and one-atom change in the molecular for-
mula) would impact key pharmacological properties. Molecular 
docking simulations suggested that neoprofen would not pene-
trate as deeply into a hydrophobic cavity in the human COX-2 
enzyme as does ibuprofen. In initial tests of this hypothesis, we 
demonstrated that the inhibitory activity of neoprofen in a sim-
ple human COX-2 assay is significantly different from that of 
ibuprofen. As noted in our previous publication,1 “we anticipate 
that neopentylene ring-fused structures should have strategic 
value in molecular pharmacology.” 
The strategic value of neopentylene ring-fused structures 

cannot be realized without viable synthetic options for incorpo-
rating the neopentylene ring fusion. Neopentylene ring fusions 
are found in many naturally occurring sesquiterpenes (Figure 
2). We developed efficient synthetic routes to alcyopterosins A3 
and O4 and illudinine,5 as well as intersected with known 

 

Figure 1. Structures of ibuprofen and neoprofen. 

 

Figure 2. Neopentylene ring fusions in natural products. 

routes to hirsutene6 and illudol7 to produce streamlined formal 
syntheses of these compounds.8 We also noted that 
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neopentylene ring fusions are largely absent from synthetic 
compound libraries and medicinal chemistry efforts.1  

 

Figure 3. Synthetic strategy to prepare neoprofen from dimedone. 

The discrepancy between naturally and synthetically pro-
duced neopentylene ring-fused structures reflects limitations in 
modern methods for chemical synthesis. Therefore, the synthe-
sis of designer targets like neoprofen stands in our minds as an 
important challenge toward the long-term goal of producing 
high-value neopentylene ring-fused structures.  
Our general approach to this challenge has been to develop 

ring-opening fragmentation reactions9,10 that can leverage dim-
edone (Figure 3) to give rise to bifunctional neopentylene-teth-
ered building blocks for chemical synthesis (e.g., tethered al-
kynyl ketones,11,12 1,6-enynes,3,5,8 etc.). For example, benzannu-
lation of neopentylene-tethered p-systems can produce dime-
thylindanes; we reported an oxidative cycloisomerization of 
dienyne 3 that provides benzoate 413 in 4 steps (ca. 56% overall) 
from dimedone (Scheme 1), and we produced 4 on a gram-scale 
in connection with other on-going projects in our lab.14 Here we 
report an improved synthesis of neoprofen by this general ap-
proach, augmented with critical methodological examination 
and key innovations in metal-catalyzed benzannulation and hy-
drocarboxylation reactions (Figure 3).  
Scheme 1. Synthesis of neopentylene-fused styrene 

 
(a) Tf2O, pyridine, DCM, >95%; (b) DIBAL-H, THF, >95%; 
(c) LDA, EtO2CCH=CHCH2P(O)(OEt)2, THF, 81%; (d) 1 
mol% [RhCl(nbd)]2, 4 mol% AgSbF6, DCM; DDQ, 77%; (e) 
DIBAL-H, DCM, 95%; (f) 5 mol% CuBr2, bpy, TEMPO, 10 
mol% NMI, CH3CN, rt, air, 93%; (g) Ph3P=CH2, 86% 

For neoprofen, we can now access neopentylene-fused sty-
rene 6 in three simple steps from benzoate 4 — reduction, oxi-
dation, and methylenation (ca. 76% overall, Scheme 1) — from 
which we envisioned obtaining neoprofen by metal-catalyzed 
hydrocarboxylation with incorporation of CO2 (vide infra). 
Alternatively, we identified a novel benzannulation reaction 

based on metal-catalyzed [2+2+2] cyclotrimerization method-
ology, in which 1-sulfonyl-1,6-enyne 7 serves as a surrogate for 
4,4-dimethyl-1,6-heptadiyne (8). The Ni(CO)2(PPh3)2-
catalyzed reaction of sulfonyl enyne 7 with propargyl alcohol, 
with in situ elimination of phenylsulfinic acid, provides neo-
pentylene-fused benzyl alcohol 5 in 75% yield (Scheme 2).  

Scheme 2. Synthesis of sulfonyl enyne 7 and tandem cyclotri-
merization / elimination with propargyl alcohol 

 
(a) Tf2O, pyridine, DCM, >95%; (b) DIBAL-H, THF, >95%; 
(c) PhO2SCH2 P(O)(OEt)2, LDA, THF, 93%; (d) 10 mol% 
Ni(CO)2(PPh3)2, 1.5 equiv. HCºCCH2OH, toluene, 100 °C, 16 
h, 75% 

Ni(CO)2(PPh3)2 was previously employed for alkyne cyclot-
rimerization of a neopentylene-tethered 1,6-diyne derived from 
8.15 Such diynes are difficult to prepare: the synthesis of 1,6-
diyne 8 required 6 steps from isophorone,16  although we re-
cently developed a 4-step alternative from dimedone.4 Sulfonyl 
enyne 7 is available in 3 steps (ca. 85% overall) from dimedone 
(Scheme 2), based on our prior methodology.8,17 Other neopen-
tylene-tethered sulfonyl enynes are similarly available.  
Moreover, the tandem Ni-catalyzed cyclotrimerization / 

elimination reaction of propargyl alcohol with sulfonyl enyne 7 
outperforms the analogous alkyne cyclotrimerization with 
diyne 8 in preliminary experiments under the same conditions 
(Eq 1). Vinyl sulfones are generally recognized as versatile 
functional groups for synthesis18 and medicinal chemistry.19 
The use of vinyl sulfones as alkyne surrogates for [2+2+2] cy-
cotrimerization is expected to have general utility and is being 
explored further.20,21 

 
Having thus prepared neopentylene styrene 6 by two distinct 

benzannulation methods (Schemes 1 and 2), we turned our at-
tention to the direct installation of the requisite carboxylic acid 
functionality by regioselective hydrocarboxylation.22 We have 
on-going interests in metal-mediated alkene hydrofunctionali-
zation,23 including methodologies focused on sustainable chem-
ical synthesis based on earth-abundant metals and/or CO2 as the 
C1 source.  
We evaluated five one-step hydrocarboxylation methods for 

converting styrene 6 into neoprofen (1), with 4-methylstyrene 
(9) and 3,4-dimethylstyrene (10) included as positive controls 
in most cases (Table 1; see Supporting Information for addi-
tional experiments and discussion). Ultimately, Shi’s Pd-cata-
lyzed hydrocarboxylation using formic acid as the C1 source 
(entry 13) provided the best yield of neoprofen 1. We consist-
ently observed lower yields for hydrocarboxylation of 6 com-
pared with 9 and 10, underscoring the impact of the neopen-
tylene structural feature and the on-going challenges it presents 
for chemical synthesis. These findings highlight the need for 
continued innovation in hydrocarboxylation reactions using 
CO2 as the C1 source. 
Table 1. Evaluation of Hydrocarboxylation Methodologies  
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entry methoda substrate Yieldb 

(%) 
a:bc Convnb 

 (%) 

1 A 
 

6 6 –  >95 

2 9 19 – >95 

3 10 6 – >95 

4 B 
 

6 26 – 88 

5 9 70 – >95 

6 10 61 – >95 

7 C 
 

6 14 >20:1 80 

8 9 82 3:1 91 

9 10 42 2:1 88 

10 D 6 50 >20:1 >95 

11  9 94 >20:1 >95 

12  10 66 >20:1 >95 

13 E 6 72 – >95 

a Method A: 0.3 M styrene, 10 mol% Ni(acac)2, 20 mol% Cs2CO3, 
2.5 equiv ZnEt2, CO2 (1 atm), 16 h, THF, rt, then acid quench; 
Method B: 0.3 M styrene, 5 mol% NiCl2•6H2O, 5 mol% 
Me•DBBPY, 4.0 equiv Mn, 9.0 equiv H2O, CO2 (1 atm), 48 h, 0–
25 °C, then acid quench; Method C: 0.3 M styrene, 5 mol% 
Cp2TiCl2, 1.1 equiv LiBr, 1.1 equiv iPrMgCl, Et2O, 24 h, 30 °C, 
then quench CO2 (1 atm), THF, 2 h, rt, then acid quench; Method 
D: 0.3 M styrene, 1 mol% FeCl2, 1 mol% PDI, 1.5 equiv iPrMgCl, 
1–4 h, rt, then CO2 (1 atm), 1 h, rt, then acid quench; Method E: 0.3 
M styrene, 5 mol% Pd(OAc)2, 20 mol% PAr3 (Ar = 4-CF3 C6H4), 
20 mol% Ac2O, 3.0 equiv HCO2H, PhCH3, 80 °C, 48 h. b Yield and 
conversion determined by 1H NMR spectroscopy using 1,3,5-tri-
methoxybenzene as an internal standard. c Where no ratio is re-
ported, the a-isomer was the sole identifiable regioisomer.  

In conclusion, we report the target-oriented synthesis of ne-
oprofen as a case-study in the broader challenge of crafting ne-
opentylene-fused pharmacophores. Our recent oxidative cycloi-
somerization methodology13 provided the initial synthetic entry 
via benzoate 4, and we introduce a novel benzannulation — tan-
dem Ni-catalyzed cyclotrimerization / elimination of sulfonyl 
enyne 7 — as a means of preparing neopentylene-fused arenes 
(e.g., 5 and 14). The use of vinyl sulfone as an alkyne surrogate 
for Ni-catalyzed [2+2+2] cyclotrimerization is expected to be 
of broader synthetic utility and is the focus of on-going 

development. We also explored various styrene hydrocarboxy-
lation methods, with the Shi method22e providing the highest 
yield for the neoprofen synthesis, ultimately realizing a 7-step 
synthesis of neoprofen in 36% overall yield from dimedone 
(Scheme 3). These findings will inform future work on the syn-
thesis of neopentylene-fused pharmacophores and perhaps of 
polysubstituted arenes more broadly. 
Scheme 3. Tandem cyclotrimerization / elimination of 9 

 
(a) Tf2O, pyridine, DCM, >95%; (b) DIBAL-H, THF, >95%; 
(c) PhO2SCH2 P(O)(OEt)2, LDA, THF, 93%; (d) 10 mol% 
Ni(CO)2(PPh3)2, 1.5 equiv. HCºCCH2OH, toluene, 100 °C, 16 
h, 75%; (e) 5 mol% CuBr2, bpy, TEMPO, 10 mol% NMI, 
CH3CN, rt, air, 93%; (f) Ph3P=CH2, 86%; (g) 5 mol% 
Pd(OAc)2, 20 mol% PAr3 (Ar = 4-CF3 C6H4), 20 mol% Ac2O, 
3.0 equiv HCO2H, PhCH3, 80 °C, 48 h, 72%; 36% overall yield. 

EXPERIMENTAL SECTION 
General Information. Commercially available compounds 

were purchased from Alfa Aesar, ACROS, or Sigma–Aldrich 
and used as received. The solvents were purchased from Fisher 
Scientific and dried via a Glass Contour solvent purification 
system. For reactions requiring elevated temperatures, reaction 
mixtures were heated using heat blocks contoured to the size 
and shape of the flask. Column chromatography was performed 
on either a Biotage instrument or on hand-packed silica gel flash 
columns. Air and moisture sensitive compounds were manipu-
lated under nitrogen using Schlenk technique or in a nitrogen 
filled glovebox. 1H and 13C NMR spectra were recorded on 
JEOL and Agilent 400MHz NMR spectrometers. Deuterated 
chloroform was purchased from Cambridge Isotope Laborato-
ries. Chemical shifts (d) are reported in parts per million and 
referenced to the internal standard, tetramethylsilane (TMS), 
and/or the residual solvent peaks (e.g., CHCl3). High Resolution 
Mass Spectrometry (HRMS) data were obtained on a Hybrid 
Quadrupole-Orbitrap Mass Spectrometer or APCI-Q-TOF. 
3-Hydroxy-5,5-dimethylcyclohex-1-en-1-yltrifluoro-

methanesulfonate (2) (a) To a solution of dimedone (5.0 g, 36 
mmol, 1 equiv) in dichloromethane (0.2M) under nitrogen was 
added pyridine (5.7 mL, 71 mmol, 2 equiv). The mixture was 
then stirred at -78°C for 10 minutes, then trifluoromethanesul-
fonic anhydride (6.6 mL, 39 mmol, 1.1 equiv) was added drop 
wise via syringe. The temperature was maintained for an addi-
tional 20 minutes, then warmed to room temperature over 30 
minutes. The starting material consumption was monitored via 
TLC, following this the reaction was quenched with 1M HCl 
(72 mL). The reaction was extracted 3 times with diethyl ether 
(3x40 mL). The resulting organic layers were washed with 
aqueous Na2CO3 and water, dried over Na2SO4, filtered and 
concentrated by rotary evaporation. The residue was purified by 
flash column chromatography eluent mixture: 2-5% 

Method
A–E

CO2H

(α isomer shown)

6 9 10

α

SO2Ph

O

O

a,b,c d
OH

dimedone 7 5

6

e,f

CO2H

neoprofen (1)

g



 

EtOAc/Hexane to give the triflate (9.2 g, 34 mmol, 95%), which 
was used in step (b). The 1H and 13C NMR data were as previ-
ously reported.8 

(b) To a solution of triflate from step (a) (9.2 g, 34 mmol, 1 
equiv) in THF (0.25M) at -78°C was slowly added DIBAL-H 
(1.0M in toluene, 40.6 mL, 41 mmol, 1.2 equiv). The reaction 
mixture was stirred at -78°C for 10 minutes then warmed to 
room temperature and stirred for an additional 30 minutes. The 
reaction was diluted with diethyl ether (100 mL), cooled to 0°C 
and quenched by the addition of water and 15% NaOH. The 
mixture was stirred for 15 minutes upon a gel formation, 
MgSO4 was added and stirred for an additional 15 minutes. 
Vacuum filtration, rotary evaporation, and column chromatog-
raphy (eluent mixture: 5-20% EtOAc/Hexanes) gave product 2 
(8.8 g, 32.0 mmol, 95%). The 1H and 13C NMR data were as 
previously reported.8 

Ethyl (2E,4E)-7,7-dimethyldeca-2,4-dien-9-ynoate (3) 
Diisopropylamine (1.1 mL, 7.6 mmol, 2.1 equiv) was added to 
a flask containing THF (0.1M) under N2 gas. The flask was 
cooled to -78°C and kept at this temperature for 15 minutes. To 
this cooled solution n-BuLi (1.6M in hexanes, 4.8 mL, 2.1 
equiv, 7.6 mmol) was added dropwise. The reaction was stirred 
at -78°C for 15 minutes, warmed to 0°C for 25 minutes and then 
cooled to -78°C. To the cold reaction, a solution of 2 (1.0 g, 3.6 
mmol, 1 equiv) was added slowly followed by addition of ethyl-
E-4-(diethoxyphosphoryl)but-2-enoate. The reaction was held 
at -78°C for an additional 10 minutes, warmed to room temper-
ature slowly, and then heated at 60°C for 2 hours. After con-
sumption of starting material, as confirmed by TLC, the reac-
tion was cooled and quenched with a saturated NH4Cl solution 
and a small amount of water to maintain a homogeneous aque-
ous layer. The product was extracted with Et2O (3 x 20 mL). 
The combined organic layers were washed with water and 
brine, dried with MgSO4, and concentrated by rotary evapora-
tion. The resulting crude oil was purified by silica gel chroma-
tography using 0-5% eluent mixture of EtOAc/hexanes to give 
dienyne 3 (655 mg, 81%) as a clear yellow-tinted oil. The 1H 
and 13C NMR data were as previously reported.13 

Ethyl-E-4-(diethoxyphosphoryl)but-2-enoate The prepa-
ration was modified from Greirson et al.24 E-ethyl-4-bromobut-
2-enoate (75% assay, 5.33 g , 28 mmol, 1 equiv) was added to 
triethyl phosphite (4.63 g, 28 mmol, 1.0 equiv) at 120°C and 
stirred for 1 hour. Distillation of the reaction mixture provided 
the desired product as a yellow-orange oil (6.1 g, 89%). The 1H 
and 13C NMR data were as previously reported.24 
Ethyl 2,2-dimethyl-2,3-dihydro-1H-indene-5-carboxylate 

(4) To a solution of dienyne 3 (500 mg, 2.2 mmol, 1 equiv) in 
CH2Cl2 (0.05M) under N2 gas, [RhCl(nbd)]2 (10.5 mg, 0.02 
mmol, 0.01 equiv) and AgSbF6 (31.2 mg, 0.08 mmol, 0.04 
equiv) were added sequentially at room temperature over a pe-
riod of 30 minutes. DDQ (631 mg, 2.7 mmol, 1.2 equiv) was 
added after 3 was consumed, as confirmed by TLC, and the re-
sulting mixture was stirred for an additional 2 hours. The reac-
tion was quenched with 5 mL of 15% aqueous NaOH, extracted 
with CH2Cl2 (3 x 10 mL), and concentrated by rotary evapora-
tion.. The residue was purified by silica gel chromatography, 
eluting with 0-10% EtOAc/Hexanes, to give 4 (381 mg, 77%) 
as a light-yellow oil. The 1H and 13C NMR data were as previ-
ously reported.13 

(2,2-Dimethyl-2,3-dihydro-1H-inden-5-yl)methanol (5) 
— by reduction of ester 4. A solution of ester 4 (627 mg, 2.9 
mmol, 1 equiv) in DCM (0.1M) was cooled to -78°C, DIBAL 

(6.3 mL, 6.3 mmol, 2.2 equiv) was added dropwise, and stirred 
at constant temperature for 1 hour. Following completion of the 
reaction, as confirmed by TLC, the solution was warmed to 
room temperature, quenched with EtOAc (10 mL) and potas-
sium sodium tartrate (Rochelle’s salt, 10 mL). The reaction was 
further diluted with EtOAc and stirred for approximately 2 
hours until two clearly separable layers formed. The layers were 
separated, the organics were extracted with EtOAc (3 x 20 mL), 
and the combined organic layers were concentrated by rotary 
evaporation. The residue was purified by silica gel chromatog-
raphy, eluting with 0-10% EtOAc/hexanes, to produce alcohol 
5 as a clear, light-yellow oil (480 mg, 95%). 1H NMR (400 
MHz, Chloroform-d) δ 7.18-7.10 (m, 3H), 5.06 (s, 1H), 4.64 
(s,1H), 2.72-2.71 (m, 4H), 1.15 (s, 6H). 13C{1H}NMR (100 
MHz, Chloroform-d) δ 143.8, 140.7, 133.4, 132.9, 129.4, 127.6, 
81.4, 71.0, 42.7, 34.4, 31.7, 26.8. HRMS (ESI+) calculated for 
C12H17O+ [M+H+] 177.1274; found: 177.1273. 
2,2-Dimethyl-5-vinyl-2,3-dihydro-1H-indene (6) (a) To a 

solution of 5 (962 mg, 5.5 mmol, 1 equiv) in acetonitrile (1M) 
the following were added sequentially, CuBr2 (61 mg, 0.27 
mmol, 0.05 equiv in 5.5 mL CH3CN), 2,2’-bipyridine (43 mg, 
0.27 mmol, 0.05 equiv in 5.5 mL CH3CN), TEMPO (43 mg, 
0.27 mmol, 0.05 equiv in 5.5 mL CH3CN) and NMI (45 mg, 
0.55 mmol, 0.05 equiv in 5.5 mL CH3CN). The reaction was 
stirred overnight (12-18 hours). Following consumption of the 
starting material as determined by TLC, the reaction mixture 
was concentrated by rotary evaporation and purified by silica 
gel chromatography, eluting 0-5% EtOAc/Hexanes, to give 2,2-
dimethyl-2,3-dihydro-1H-indene-5-carbaldehyde as a light-yel-
low oil (882 mg, 93%).25  1H NMR (400 MHz, Chloroform-d) δ 
9.93 (s, 1H), 7.67-7.61 (m, 1H), 7.29 (d, J = 7.4 Hz, 1H), 
7.13 (d, J = 7.9 Hz, 1H), 2.77 (s, 2H), 2.70 (d, J =3.6, 2H), 
1.15 (s, 6H). 13C{1H}NMR (100 MHz, Chloroform-d) δ 192.5, 
151.7, 144.8, 135.3, 129.2, 125.6, 125.3, 48.0, 47.2, 40.7, 28.7. 
HRMS (ESI+) calculated for C12H15O+ [M+H+] 175.1117; 
found: 175.1115. 
(b) A solution of THF (0.1M) and PPh3MeBr (946 mg, 2.6 

mmol, 1.5 equiv) was cooled to -78°C. n-BuLi (1.6M in hex-
anes, 1.7 mL, 2.7 mmol, 1.6 equiv) was added dropwise and 
stirred for 30 minutes. The reaction was then warmed to room 
temperature, stirred for 1 hour and then cooled to -78°C again. 
The aldehyde from step (a) (302 mg, 1.7 mmol, 1 equiv) was 
added slowly and the resulting mixture was stirred overnight at 
room temperature. The reaction was quenched with the addition 
of EtOAc and water until the mixture became biphasic. The 
aqueous layer was then extracted with EtOAc (3 x 10 mL), and 
the combined organic layers were washed with brine, dried over 
Na2SO4, and concentrated by rotary evaporation Purification by 
silica gel chromatography, eluting 0-5% EtOAc/Hexanes, gave 
alkene 6 as a yellow oil (257 mg, 86%).26 1H NMR (400 MHz, 
Chloroform-d) δ 7.24 (s, 1H), 7.17 (d, J = 7.7 Hz, 1H), 7.14 
– 7.08 (m, 1H), 6.70 (dd, J = 17.6, 10.9 Hz, 1H), 5.73 – 5.65 
(m, 1H), 5.16 (d, J = 10.9 Hz, 1H), 2.72 – 2.69 (m, 4H), 1.15 
(s, 6H). 13C{1H}NMR (100 MHz, Chloroform-d) δ 144.0, 
143.6, 137.3, 135.8, 124.8, 122.3, 112.5, 47.7, 40.4, 28.9. 
HRMS (ESI+) calculated for C13H17+ [M+H+] 173.1325; found: 
173.1325. 
2-(2,2-Dimethyl-2,3-dihydro-1H-inden-5-yl)propanoic 

acid (1) — by hydrocarboxylation. To a mixture of Pd(OAc)2 
(9.8 mg, 0.04 mmol, 0.05 equiv), tris(4-trifluoro-
methylphenyl)phosphine (81.2 mg, 0.17 mmol, 0.2 equiv), and 
toluene (0.50 mL, 1M) in a septum-sealed vial (2 dram) was 



 

added via syringe successive solutions of 6 (150 mg, 0.87 
mmol, 1 equiv in 0.37 mL toluene), formic acid (99 µL, 2.6 
mmol, 3 equiv) and Ac2O (16 µL, 0.17 mmol, 0.2 equiv) . The 
septum was removed and the vial sealed with a Teflon cap. The 
reaction mixture was stirred at 80 °C for 48 hours, cooled to 
room temperature, diluted with CH2Cl2, and transferred into a 
separatory funnel followed by the addition of 1M NaOH. The 
mixture was washed with CH2Cl2 with vigorous shaking. The 
aqueous layer was acidified to pH 1-2 with 3M HCl, extracted 
with CH2Cl2, dried over Na2SO4, filtered, and concentrated to 
give carboxylic acid 1 as a white solid (136.8 mg, 72%). The 1H 
and 13C NMR data were as previously reported.1 
Diethyl (phenylsulfonyl)methylphosphonate A mixture of 

chloromethyl phenyl sulfide (2.0 mL, 15 mmol, 1 equiv) and 
triethyl phosphite (3.1 mL, 18 mmol, 1.2 equiv) was heated at 
reflux in a 120 °C-bath for 72 hours. The excess reagent was 
removed via short path distillation (90°C, 12.3 psi) to give a 
clear, colorless oil (3.1 g, 80%) that was subsequently dissolved 
in methanol (47.6 mL, 0.25M) and cooled to 0°C. Potassium 
peroxymonosulfate (10.5 g, 17 mmol, 1.5 equiv) in water (47.6 
mL, 0.25M) was added dropwise. The solution was warmed to 
room temperature and stirred for 18 hours. The solution was fil-
tered and extracted with CH2Cl2 (3 x 50 mL), the filtrate was 
washed with CH2Cl2, and the CH2Cl2 layers were combined, 
dried (MgSO4), and concentrated by rotary evaporation to give 
the phosphonate product as a clear, colorless oil (2.8 g, 81%). 
The 1H and 13C NMR data were as previously reported.27 
(E)-4,4-Dimethyl-1-(phenylsulfonyl)-1-hepten-6-yne (7) 

A 0.1M solution of diisopropylamine (2.2 mL, 15 mmol, 2.1 
equiv) in THF was cooled at –78 °C for 15 min, and n-BuLi, 
(1.6M in hexanes, 9.6 mL, 15 mmol, 2.1 equiv), was added 
dropwise. The reaction mixture was stirred at –78 °C for 15 
minutes, warmed to 0°C for 20 minutes, then re-cooled to –
78 °C. A solution of 2 (2.0 g, 7.3 mmol, 1 equiv) in 3 mL THF 
was added slowly dropwise, followed by di-
ethyl(phenylsulfonyl)-methylphosphonate (2.3 g, 8.0 mmol, 1.1 
equiv). The reaction mixture was maintained at –78 °C for an 
additional 10 minutes, warmed to room temperature, and heated 
at 60°C for 2 hours. After consumption of the starting material, 
as confirmed by TLC, the reaction was quenched with a satu-
rated NH4Cl solution and a small amount of water to maintain 
a homogeneous aqueous layer. The mixture was extracted with 
Et2O, and the organics were washed with brine and concen-
trated under reduced pressure. The product was purified via sil-
ica gel chromatography (0-10% eluent mixture of EtOAc/hex-
anes) to give 7 as a clear yellow-tinted oil (1.87 g, 93%).8 1H 
NMR (400 MHz, Chloroform-d) δ 7.87 (d, J = 8.8 Hz, 2H), 
7.63–7.51 (m, 3H), 6.98 (dt, J = 15.7, 8.0 Hz, 1H), 6.36 (d, 
J = 14.9 Hz, 1H), 2.25 (d, J = 8.8 Hz, 2H), 2.06 (d, J = 2.6 
Hz, 2H), 1.99 (t, J = 2.6 Hz, 1H), 0.99 (s, 6H). 13C{1H}NMR 
(100 MHz, Chloroform-d) δ 143.7, 140.7, 133.3, 132.9, 129.3, 
127.5, 81.3, 70.9, 42.6, 34.4, 31.7, 26.7. HRMS (ESI+) calcu-
lated for C15H17O2S+ [M–H+] 261.0955; found: 261.0954. 
(2,2-Dimethyl-2,3-dihydro-1H-inden-5-yl)methanol (5) 

— by Ni-catalyzed cyclotrimerization with 7. In a glovebox, 
sulfonyl enyne 7 (21.8 mg, 0.08 mmol, 1 equiv) was weighed 
into a vial and subsequently dissolved by a solution of 
Ni(PPh3)2(CO)2 (5.3 mg, 0.008 mmol, 0.1 equiv) in 1 mL of dry 
toluene (0.03M). The vial was sealed by a Teflon-septum cap, 
removed from the glovebox, connected via inlet syringe to a 
Schlenk line under N2 gas, and a solution of propargyl alcohol 
(7.0 µL, 0.12 mmol, 1.5 equiv) in dry toluene (1.8 mL) was 

added. The reaction mixture was heated at 100 °C for 16 hours, 
then cooled to room temperature. The product was purified by 
silica gel chromatography (eluting 0-10% EtOAc/Hexanes) to 
produce 5 as a clear, light-yellow oil (11 mg, 75%). The 1H and 
13C NMR data were as reported above for compound 5. 
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