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ARTICLE INFO ABSTRACT

Editor: Jing M. Chen Remote sensors, onboard orbital platforms, aircraft, or unmanned aerial vehicles (UAVs) have emerged as a
promising technology to enhance our understanding of changes in ecosystem composition, structure, and

Keywords: function of forests, offering multi-scale monitoring of forest restoration. UAV systems can generate high-

Forest landscape restoration resolution images that provide accurate information on forest ecosystems to aid decision-making in restora-

Tropical forests
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tion projects. However, UAV technological advances have outpaced practical application; thus, we explored
combining UAV-borne lidar and hyperspectral data to evaluate the diversity and structure of restoration
Hyperspectral remote sensing plantings. We developed novel analytical approaches to assess twelve 13-year-old restoration plots experimen-
Leaf area density tally established with 20, 60 or 120 native tree species in the Brazilian Atlantic Forest. We assessed (1) the
Vegetation indices congruence and complementarity of lidar and hyperspectral-derived variables, (2) their ability to distinguish tree
richness levels and (3) their ability to predict aboveground biomass (AGB). We analyzed three structural attri-
butes derived from lidar data—canopy height, leaf area index (LAI), and understory LAl—and eighteen variables
derived from hyperspectral data—15 vegetation indices (VIs), two components of the minimum noise fraction
(related to spectral composition) and the spectral angle (related to spectral variability). We found that VIs were
positively correlated with LAI for low LAI values, but stabilized for LAI greater than 2 m?/m?. LAI and structural
VIs increased with increasing species richness, and hyperspectral variability was significantly related to species
richness. While lidar-derived canopy height better predicted AGB than hyperspectral-derived VIs, it was the
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fusion of UAV-borne hyperspectral and lidar data that allowed effective co-monitoring of both forest structural
attributes and tree diversity in restoration plantings. Furthermore, considering lidar and hyperspectral data
together more broadly supported the expectations of biodiversity theory, showing that diversity enhanced
biomass capture and canopy functional attributes in restoration. The use of UAV-borne remote sensors can play
an essential role during the UN Decade of Ecosystem Restoration, which requires detailed forest monitoring on an

unprecedented scale.

1. Introduction

An ambitious restoration agenda has been set to increase forest
cover in deforested and degraded landscapes, to improve their multi-
functionality and capacity to provide essential ecosystem services,
such as maintaining biodiversity, water supply and carbon storage
(Erbaugh and Oldekop, 2018). Forest monitoring will play a crucial
role to track the success of these goals and also support adaptive
management (Brancalion and Holl, 2020; Fagan et al., 2020), given the
widespread failures in ecosystem restoration and the unprecedented
scale of restoration pledges (Versluijs et al., 2019; Chagas et al., 2021).
Currently, there is a pressing need to develop social collaborative and
effective technologies for monitoring ecosystem recovery over large
areas (hundreds to millions of hectares) using multiple key ecological
indicators (Guariguata and Evans, 2020; Hohl et al., 2020). Remote
sensors onboard orbital platforms, aircraft, or unmanned aerial vehi-
cles (UAVs) have emerged as promising technologies to upscale forest
restoration monitoring. Particularly, UAV systems can generate high-
resolution images that provide accurate information on forest stands
with or without the need for ground-based data (e.g., calibration or
validation) to estimate important forest attributes such as the number
of trees, aboveground biomass, or canopy openness (Almeida et al.,
2020a; Kotivuori et al., 2020; Ferreira et al., 2020).

Accurate methods to estimate forest attributes to support decision-
making are required for the effective remote monitoring of forests
undergoing restoration (Almeida et al., 2019a). For example, forest
cover, biomass stock and tree species diversity vary along forest suc-
cessional sequences and are commonly employed to monitor forest
restoration (Wortley et al., 2013). To this aim, multispectral sensors
have proven useful, offering estimates of these critical variables.
However, a high leaf area index (LAI) saturates most vegetation indices
(VIs) derived from remote sensing (Turner et al., 1999). This saturation
complicates their use to monitor structural attributes (such as above-
ground biomass - AGB) in high-LAI tropical forests, which account for a
large portion of global restoration commitments (Timothy et al., 2016;
Crouzeilles et al., 2019). On the other hand, the light detection and
ranging (lidar) sensor has been hailed as a promising technology for
retrieving forest canopy structural attributes, regardless of canopy leaf
area density. Lidar enables the estimation of canopy structural attri-
butes with high precision and accuracy, such as vegetation density in
the understory, LAI tree height, the identification and measurement of
forest gaps, and AGB (Almeida et al., 2019b; da Costa et al., 2020;
Valbuena et al., 2020; Dalagnol et al., 2021). On the other hand, lidar
technology is of limited use for assessing tree species diversity, for
which hyperspectral has shown greater potential (Asner and Martin,
2009).

Assessing the different facets of forest diversity, such as tree rich-
ness, functional diversity, and composition, is one of the most impor-
tant but challenging modern remote sensing tasks (Asner, 2015). With
lidar, one approach is to use canopy structural attributes as predictive
variables for indirectly estimating tree species diversity (Herndndez-
Stefanoni et al., 2014; Ali et al., 2019; De Caceres et al., 2019; Adhikari
et al., 2020). Notably, a more species-rich forest is expected to have a
more heterogeneous and complex canopy structure (Zellweger et al.,
2019; Mensah et al., 2020). Secondary forests with higher biomass are
expected to have reached a later stage of succession, supporting more

tree species (Gamfeldt et al., 2013; Lasky et al., 2014; Finegan et al.,
2015; Poorter et al., 2015). However, structure-richness relationships
are not ubiquitous and depend on a wide range of factors, such as forest
type, management, use and disturbance history. Consequently, the
lidar approach has so far demonstrated a limited ability for local scale
prediction of species richness, especially in hyper-diverse tropical bi-
omes (Marselis et al., 2020; Almeida et al., 2019a; Valbuena et al.,
2020).

Hyperspectral imaging (HSI) has a significant potential for esti-
mating or measuring taxonomical and functional diversity of highly
diverse tropical forests (Féret and Asner, 2014; Vaglio Laurin et al.,
2016; Duran et al. 2019). HSI measures reflected radiation from the
forest canopy over hundreds of narrow spectral bands (or channels)
within the visible- to short-wave infrared wavelength range (VSWIR,
400-2500 nm). The rationale for using hyperspectral sensors to
discriminate species-richness is that each species (or group of species)
has specific combinations of spectral features. These include absorption
by specific chemical constituents of leaves and non-photosynthetic ele-
ments and scattering driven by vegetation structure at different scales,
such as leaf anatomy, leaf area index, leaf angle distribution function
(Ferreira et al., 2016). However, this combination of spectral traits does
not necessarily result in a unique species-specific spectral identity (and
thus perfect discrimination among species), as significant intraspecific
variability in spectral traits was evidenced (Amaral et al., 2018;
Camarretta et al., 2020). For example, a single species’ spectral char-
acteristics can vary widely depending on environmental variables (e.g.,
water availability) or species and community attributes (e.g., leaf
amount and leaf age) (Yan et al., 2018; Ferreira et al., 2019; Goncalves
et al.,, 2020). Another rationale is that the spectral heterogeneity is
related to tree species diversity and composition (Rocchini et al., 2010;
Féret and Asner, 2014; Asner et al., 2017; Laliberté et al., 2020). HSI also
enables linking canopy reflectance to biophysical and chemical prop-
erties using various approaches, including narrow-band vegetation
indices, which are designed to be used as proxies for both structural (e.
g., vegetation density) and physiological (e.g., leaf chemical composi-
tion and water stress) properties (Zhao et al., 2018).

Using HSI data to study species diversity or the retrieval of canopy
chemical properties is still challenging, particularly in tropical ecosys-
tems due to their high biodiversity and structural complexity (Feret and
Asner, 2013). HSI data acquisition with airborne surveys is usually
costly, planning intensive, and may be operationally prohibitive in
places with poor infrastructure and resources, such as in some tropical
forest regions. Conversely, restoration practitioners face the challenges
of monitoring tree diversity in tropical forest regions (Crouzeilles et al.,
2019), given the difficulty of properly identifying hundreds of tree
species and the reduced accessibility of restoration areas for forest in-
ventories (Keil and Chase, 2019). As restoration programs are usually
composed of several small to mid-size polygons scattered across large
and heterogeneous areas, airborne surveys are less viable.

Recent technological developments have allowed for manufacturing
UAV-compatible HSI sensors, a promising approach to mainstreaming
the common use of HSI in tropical forest restoration monitoring. UAVs
are a technological frontier of remote sensing data acquisition and may
constitute an alternative to high-cost airborne hyperspectral and lidar
campaigns. The use of UAV-borne remote sensors, both lidar and HSI,
nonetheless presents pros and cons. The main advantage is the higher
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spatial resolution. Point cloud density from airborne lidar usually ranges
between 0.4 and 30 points per m? (ppmz), whereas UAV lidar acquisi-
tions can reach 100-1000 ppm2 (d’Oliveira et al., 2020; Prata et al.,
2020). The high point density increases the accuracy of estimating
structural parameters, such as vertical profiles of leaf area density
(Almeida et al., 2019a). It can even allow the individualization of trees
and measurement of stem volume in open-canopy forests such as euca-
lyptus plantations (Dalla Corte et al., 2020) and temperate forests
(Krucek et al., 2020). For UAV-HSI, the centimetric resolution of the
pixels allows a better characterization of target objects, detecting
vegetation-free patches, removing background contribution, and
capturing the spectral variability within and among crowns. Conversely,
flight instability of the UAV, changing view and illumination geometry
and changing sky conditions make the use of these images challenging.
HSI reflectance retrievals from UAVs require a matched incident radi-
ance HSI sensor and non-trivial pre-processing steps, including correc-
tions for bidirectional reflectance distribution function (BRDF) and
atmospheric effects (Jia et al., 2020).

To date, few investigations have assessed the potential of UAV-lidar-
HSI systems in tropical forest monitoring. Sankey et al. (2017) and Lin
et al. (2019) used UAV-lidar-HSI systems to monitor semi-arid and pine
forests, respectively. Here, we explored the fusion of UAV-borne lidar
and hyperspectral data to remotely access the structure and diversity of
restored tropical forests. We developed a novel analytical approach for a
mixed-species, 13-year-old restoration plantation experimentally
established with 20, 60, and 120 native tree species in the Brazilian
Atlantic Forest. Specifically, we assessed (1) the congruence of lidar and
hyperspectral variables, (2) their usefulness to distinguish tree species
richness levels, and (3) their ability to predict aboveground biomass.
Our work goes well beyond traditional measurements based on sampling
plots, providing high-accuracy and precision information for upscaling
field variables to satellite-based hyperspectral and lidar observations,
representing an effective strategy for large-scale forest restoration
monitoring during the United Nations Decade on Ecosystem Restoration
(2021-2030).
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2. Methods
2.1. Experimental site and field data

We used an experimental mixed-species restoration plantation with
three diversity levels to explore the potential and limitations of fusing
UAV-borne lidar and hyperspectral data to assess structure and di-
versity. The experimental plots were established in May 2006 in
Anhembi-SP, southeastern Brazil, in a completely randomized design
with 20, 60, and 120 native tree species (hereafter sp.), each with four
replicates, in 45 x 48 m plots (Fig. 1). The area was previously covered
by pastures, with no regeneration of native tree species. Tree seedlings
were randomly planted with 3 x 1.5 m spacing and ensuring a homo-
geneous density across species. The species pool present in the treat-
ments with the lowest richness was contained in the treatments with
higher richness, i.e., species of the treatment of 20 species are contained
in the treatment of 60 species, which are also contained in the treatment
of 120 species. Extensive information on the study site and experiment is
provided by Duarte et al. (2021). Due to the low coverage of HSI in one
plot, the treatment of 120 species had only three replicates for the
analysis using HSI data. Forest inventory field data were collected in
November 2019, when the plantation was 13.5 years old. At this time,
58 and 114 species had survived in the 60- and 120 species treatments,
respectively. For all living stems, we identified the tree species in this
inventory, measured diameter 30 cm above the ground and measured
total height. We used the allometric equation developed by Ferez et al.
(2015) for a neighboring restoration plantation to estimate aboveground
woody biomass of each individual (Eq. (1)). Wood densities were ob-
tained for all tree species based on wood discs (cross-sections from the
stem) sampled in destructive plots established, using three individuals
per species (see Ferez, 2012 for more details).

In(AGB,,) = 6.039 + 0.945In(SA) + 0.96 1In(Hf) + 1.002 In(p) )

where: AGBw = Aboveground woody biomass (Mg/ha); SA: sectional
area of the stem (mz); Ht: total height (m); p = wood density (g/cm3).

0S

001
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Fig. 1. Study area and plot designs. Left) site location; upper right) sample design and lidar point cloud example of one plot; bottom right) hyperspectral image
colored by a false RGB composition using the first components from the minimum noise fraction transformation.



D.R.A. Almeida et al.
2.2. UAV-borne lidar and hyperspectral data

Data were collected using the GatorEye Unmanned Flying Labora-
tory, consisting of a hardware system with custom algorithm workflows
incorporating lidar, hyperspectral, thermal, and visual (RGB) sensors.
The hardware and processing workflows are described in detail in the
GatorEye overview manuscript (Broadbent et al., 2021) available at
www.gatoreye.org. The data is also available under the section “2019
Brazil Sao Paulo State August/082819”.

The system uses a DJI Matrice 600 Pro hexacopter platform, with
mission planning conducted using Universal Ground Control Station
(UGCS) software. GNSS base station data are collected within 3 km of
data collection areas, then post-processed online via the Trimble Cen-
terPoint RTX platform, providing typically <2 cm 3D uncertainty within
a 2-h collection period (and < 0.25 cm within 4+ hour collections). The
computational sensor core is based on a Phoenix Ultra Scout, a Novatel
STIM 300 IMU tactical grade and differential GNSS system. Integrated
into this is a (a) Velodyne VLP-32¢ Ultra Puck LiDAR sensor, (b) Nano
VNIR Hyperspectral Headwall sensor (640 pixels x 270 spectral bands
in a 100-hertz line scan approach), (c) high-resolution RGB camera, (d)
radiometric thermal camera, and (e) time-synchronized downwelling
hyperspectral Ocean Optics Flame (upward viewing spectrometer, 400-
1025 nm wavelength range, and 1.70 nm spectral resolution) (Fig. S1).
See Broadbent et al. (2021) for more details.

The Velodyne Ultra Puck sensor features 32 individuals 905 nm la-
sers, situated to provide a 360° horizontal (cross-track) and 40° vertical
(along-track) field of view. The Ultra Puck fires 600,000 times per sec-
ond, recording for each pulse the strongest and the last (dual) return, for
a theoretical points/s of 1,200,000 at a range of up to 200 m. The
Headwall Photonics Nano VNIR 270 spectral band lab-calibrated radi-
ance hyperspectral sensor acquires 1400 spectral bands from 400 to
1000 nm every 0.5 s and allows conversion of radiance to reflectance by
ratioing with the spectral bands most similar in wavelength from the
upward-facing Ocean Optics Flame sensor (Broadbent et al., 2021).

The GatorEye overflew the experimental area 27-30 Aug of 2019 at
approximately solar noon at an aboveground mean altitude of 100 m.
The local solar zenith angle was 32 degrees at solar noon (based on the
date 28 Aug 2019, lat, long = —22.75, —48.11). Four flight lines were
acquired to cover the majority of plots. The speed was 12-14 m/s,
resulting in a forward pitch of approximately 12 degrees during flight.
Acquisitions were performed under clear sky conditions with no atmo-
spheric haze. The specific lidar and hyperspectral GatorEye deliverables
used in this study were: (a) the Canopy Height Model (CHM), (b) the
cleaned lidar point cloud, and (c) the ‘reflectance-calibrated hyper-
spectral shade-filtered orthomosaic’ (e.g., HSI image).

Lidar flight lines were processed to standard products using the
GatorEye Multi-scalar Post-Processing workflow — using the software
Lastools (Isenburg, 2020) and “lidR” R package (Roussel and Auty,
2019). This procedure automatically merges flight lines, classifies
ground points and removes noise — to generate the cleaned point clouds
and the rasters DTM (digital terrain model), DSM (digital surface model)
and CHM. More details are given in Almeida et al. (2019b, 2020a),
Almeida et al. (2020b). The point density of the final lidar point cloud
was 360 + 137 (mean + SD) ppmz, of which 80.4% were first returns.

Hyperspectral data were processed in three steps. (1) The non-
orthorectified time-synchronized lab-calibrated radiance data from the
downward-facing boresighted Nano hyperspectral camera was projected
onto the DSM from the lens using a ray-tracing algorithm. (2) The
radiance bands were then converted to reflectance using the also time-
synchronized and lab-calibrated upward-facing Flame hyperspectral
irradiance sensor. (3) The shade was removed through a separate pro-
cess where solar geometry was calculated and then applied, through a
ray tracing algorithm (Broadbent et al., 2021), to map portions of the
DSM to be either in full sunlight or in the shade at the moment of data
acquisition. Shaded pixels were masked in the final hyperspectral
reflectance orthomosaic. Hyperspectral images are orthorectified onto

Remote Sensing of Environment 264 (2021) 112582

the lidar derived digital surface models using a custom ray tracing
workflow (Broadbent et al., 2021). The spatial resolution of the final HSI
image was 0.20 m. We performed additional filtering on the hyper-
spectral data using a 0.20 m moving window filter across the CHM to
remove pixels with a height below four meters. This filtering enabled us
to restrict the spectral data to vegetation targets when estimating tree
species compositional values versus being dominated by the ground
level exposed soil spectra which greatly differ from vegetation.

The bidirectional reflectance distribution function (BRDF) describes
the variations in reflectance or radiance intensity measured by a sensor
as a function of (1) the angle of separation of two vectors - view and
illumination - and of (2) forward-scatter (viewing toward the sun) and
backscatter (sun behind the viewer). In remotely sensed imagery, BRDF
significantly impacts the retrieval of biophysical surface properties
(Wanner et al., 1995). We corrected the HSI orthomosaic for BRDF ef-
fects using a kernel-driven approach. More details can be found in the
Supplementary Material.

2.3. Data processing and analysis

Post-deliverables data processing was performed in the R environ-
ment (R Core Team, 2020). Three structural attributes were derived
from lidar data: canopy height, leaf area index - LAI, and leaf area index
in the understory - LALunder. (Table 1). At the plot level, we calculated
the mean canopy height and its heterogeneity (standard deviation). The
canopy height was obtained directly from the CHM (0.20 m resolution).
To calculate canopy height, the cloud pulse density was not filtered to a
standard density, ensuring the highest accuracy. Nonetheless, Silva et al.
(2017) have shown that the accuracy of canopy height estimate in
Amazon forests stabilizes when pulse density reaches 4 ppm?. The LAI
(1 m resolution) was calculated from the leaf area density (LAD) esti-
mated using the lad.voxels function from the “leafR” package (Almeida
et al., 2019c¢). The LAl is the sum of the entire LAD vertical profile, and
the LAI understory is the sum of the LAD vertical profile between 1 and
5 m in height. To improve the accuracy of the LAD estimates and remove
lidar pulse density bias, the normalized lidar cloud was filtered to first
returns only and then homogenized to 30 ppm? before the LAD calcu-
lation. Almeida et al. (2019a) found that higher pulse densities result in
higher LAI estimates in tropical forests. While this bias is small when
pulse densities exceed 20 ppm?, for all LAI and LAD estimates we elected
to standardize to 30 ppm? using a homogenizing filter. The method used
to estimate the LAD uses the MacArthur-Horn equation (MacArthur and
Horn, 1969) and is based on the Beer-Lambert law, i.e., the attenuation
of the energy transmission rate (lidar pulses) between the canopy ver-
tical strata. See Almeida et al. (2019a) for more details.

A total of 18 variables derived from HSI data were calculated
(Table 1): 15 vegetation indices (VIs), the first two components of the
minimum noise fraction (MNF) transformation (related to spectral
composition), and the spectral angle (related to spectral variability). VIs
were divided into four categories: (i) Structural, (ii) Chlorophyll, (iii)
Anthocyanin / Carotenoid, and (iv) Physiology. MNF is a linear trans-
formation of the original HSI data that applies two cascaded PCA and
maximizes the signal/noise ratio (Green et al., 1988). We performed
MNF using ENVI software version 5.3.

To assess if species diversity is related to canopy spectral diversity,
we computed the spectral angle between all pairwise combinations of
the pixels of each treatment. The spectral angle (0) is a suitable measure
of the spectral variability (Richter et al., 2016; Ferreira et al., 2018), and
was computed as follows, according to Price (1994):

o ( F XY (1)
[ xoran] [ vora]

(2)

where 0 is the spectral angle, measured in radians, between the spectral
reflectance of the pixel X and the pixel Y in the spectral interval A, to Ap,
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Table 1
Variables and their respective descriptions and references. “p” indicates reflec-
tance of a hyperspectral band, followed by its wavelength center in nanometers.

Variable

Description

Reference

Field-derived
Aboveground biomass -
AGB (Kg)

Canopy structural attribute
(Lidar-derived)

Canopy height - CH (m)

Leaf area index - LAI
LAI understory - LALunder

Structural VIs (HSI-derived)
Vegetation
Atmospherically Resistant
Index (VARI)

Simple Ratio (SR)
Normalized Difference
Vegetation Index (NDVI)
Enhanced Vegetation Index
(EVID)

Chorophyll VIs (HSI-derived)
Structurally Insensitive
Pigment Index (SIPI)
Chlorophyll Absorption in
Reflectance Index (CARI)
Chlorophyll Red-Edge
Index (ClL.rededge)
Chlorophyll Green Index
(Cl.green)

Anthocyanin VIs (HSI-derived)
Modified Anthocynanin
Reflectance Index (mARI)
Anthocyanin Content Index
(ACD

Carotenoid VI (HSI-derived)
Carotenoid Reflectance
Index (CRI)

Physiology VIs (HSI-derived)
Photochemical Reflectance
Index (PRI)

Red-edge Vegetation Stress
Index (RVSI)
Red edge position (REP)

Water Band index (WBI)
Spectral composition (HSI-
derived)
MNF.1
MNF.2
Spectral heterogeneity (HSI-

derived)
Spectral angle

Eq. (1)

Mean of canopy height
model

Sum of leaf area density
profile

Sum of leaf area density
profile (1-5 m)

(557 - p643) / (p557 +
p643 — p465)

p865 / p672

(p865 — p672) / (p865 +
0672)

2.5 x ((p865 — p672) /
(p865 + 6 x p672-7.5 x
p464 + 1))

(p800 — p445) / (p80O +
0680)

(p700 — p670) — 0.2 x
(p700 — p550)

p851 / p730-1

p730 / p531-1

(1/p551) — (1 / p701)

p531 / p941

(1/p511) — (1 / p551)

(p531 — p571) / (p531 +
p571))
(p712 + p753) / 2 — p733)

Max first derivative:
680-750 nm
p900 / pX970)

First component of minimal
noise fraction

Second component of
minimal noise fraction

Eq. (2)

Ferez et al., 2015

Almeida et al.,
2019b
Almeida et al.,
2019a
Almeida et al.,
2019b

Gitelson et al.,
2002

Jordan, 1969
Rouse et al., 1974

Huete et al., 2002

Penuelas et al.,
1995
Kim (1994)

Gitelson et al.,

2006

Gitelson et al.,
2006

Gitelson et al.,
2006

van den Berg and
Perkins, 2005

Gitelson et al.,
2007

Gamon et al., 1997
Merton and
Huntington, 2021
Horler et al., 1983
Penuelas et al.,
1997

Green et al., 1988

Green et al., 1988

Price, 1994

i.e., 400 to 1000 nm. The spectral angle was computed with sunlit
foliated canopy pixels that were selected using NDVI >0.8 and canopy
height > 4 m. We used sunlit foliated canopy pixels to avoid the influ-
ence of non-photosynthetic canopy elements (e.g., branches) in the
quantification of spectral diversity. Non-photosynthetic vegetation
causes variations in the spectral amplitude, that is, brightness differ-
ences that may increase the spectral variability even if the spectral
shapes were the same.

We used Spearman’s correlation diagram to assess the relationship
between the VIs (HSI-derived) and the canopy structural variables
(lidar-derived). This analysis was performed at the pixel level (0.20 m
resolution). The variables AGB (field-derived) and spectral angle (HSI-
derived) were evaluated at the plot level. For comparing the spectral
angle, only the highest spectral angles of each plot (percentile 90%)
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were considered. This ensures that the test assesses the most significant
differences within the plots. To determine the relationship of the vari-
ables with the tree species richness levels (treatments), we performed
ANOVA and post-hoc Tukey tests (plot-level analysis). For these ana-
lyses, we considered the variables’ mean value and standard deviation
within the plots, and the latter was used to describe the heterogeneity of
each variable within plots. Finally, the predictive power of AGB from
lidar and HSI variables was evaluated using simple and multiple ordi-
nary least square regressions. To identify and eliminate outliers, we used
t-tests based on studentized residuals implemented using the function
outlier.test in R package “car” (Fox and Weisberg, 2019). The assess-
ment of model accuracy was performed by a leave-one-out cross-vali-
dation (LOOCV) procedure (Almeida et al., 2020a). The relationship
between the observed and predicted (via LOOCV) values were evaluated
by testing their 1:1 correspondence under the null hypothesis that their
regression intercept and slope were 0 and 1, respectively (Valbuena
et al., 2017).

3. Results
3.1. Variables derived from lidar and HSI

Lidar-derived LAI was significantly correlated with almost all HSI-
derived variables at the pixel level (Fig. 2). The structural VIs (HSI-
derived) had the highest correlations with LAI (r > 0.50, p-values
<0.05). In general, structural VIs increased between LAI values ranging
from 0 to 2, but then saturated (Fig. 3). The canopy height attribute CH
(lidar-derived) was significantly correlated with seven HSI-derived
variables (Fig. 2), with EVI being the VI variable with the highest cor-
relation (r = 0.22, p-value = 0.006). The EVI and the other structural VIs
all showed a positive correlation with CH for values ranging from 5 to
15 m, but they stabilized or decreased for CH values within 15-20 m
(Fig. 3). The lidar-derived understory LAI (LALunder) showed no sig-
nificant correlation with any of the HSI-derived variables.

3.2. Distinguishing tree species richness levels

The 20 sp. treatment had lower field-derived AGB (mean + SE, 69.5
+ 10.4 Mg/ha) than the 60 sp. treatment (94.3 + 9.8 Mg/ha), whereas
the 120 sp. treatment had intermediate (88.7 + 15.6 Mg/ha) AGB and
did not differ statistically from the other two treatments (Table 2).
However, when changing the significance level to 0.1 (instead of 0.05),
the two treatments with the highest species richness (60 and 120 sp.)
showed higher AGB than the treatment with the lowest species richness
(20 sp.).

The CH (lidar-derived) was higher in the two species-richer treat-
ments (60 and 120 sp.) (Table 2). However, the CH heterogeneity did
not significantly differ between richness levels (Table S1, p-value =
0.59). The richest treatment had the highest LAI value, and when
considering the significance level at 0.1, a significant increase in LAl was
verified with the increase in species richness class. The LAI heteroge-
neity was higher in the two richest treatments (Table S1, p-value
<0.001). LALunder showed no difference among richness levels
(Table 2 and Fig. 5). The vertical distribution of the LAD was mono-
modal, with a higher concentration of vegetation in the middle layer
of the canopy for all three treatments (Fig. 4).

For the HSI-derived VIs, the structural VIs (VARI, SR, NDVI, and EVI)
increased with increasing richness (Table 2), and in some of them (VARI
and NDVI), the heterogeneity was lower in the 120 sp. treatment (Table
S1, p-values <0.05). For the VIs related to chlorophyll concentration,
SIPI decreased with increasing richness (SIPI is inversely proportional to
chlorophyll concentration), while Cl.rededge and CI.green increased
with increasing species richness. The CARI VI showed no significant
difference among richness treatments. For the VIs related to the antho-
cyanin concentration, the mARI has no significant difference, although
its heterogeneity was greater in the richest treatment. ACI was lower in
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Fig. 2. Spearman’s correlation diagram
among the lidar- and hyperspectral-derived
variables. The correlation values are ranked
using a color gradient from —1 to 1, where
0 means no correlation, —1 a strong negative
correlation (red color), and one a strong
positive correlation (blue color). The p-value
significance levels are “*” 0.05, “**” 0.01,
and “***” 0.001. Acronyms of variables are
described in Table 1. (For interpretation of
the references to color in this figure legend,
the reader is referred to the web version of
this article.)
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Fig. 3. Standardized hyperspectral-derived structural vegetation indices (Vegetation Atmospherically Resistant Index - VARI, Simple Ratio - SR, Normalized Dif-
ference Vegetation Index - NDVI, and Enhanced Vegetation Index - EVI) as a function of lidar-derived leaf area index (LAI) (left) and lidar-derived canopy height (CH)
(right). Lines are the smoothed mean of the observations (pixels of 0.20 m resolution).

the lowest richness treatment. The VI related to carotenoid concentra-
tion, CRI, was higher in the richest treatment (with a significant gradual
increase at the 0.1 significance level).

For the physiological VIs, RVSI decreased with the increase in rich-
ness, while the REP showed a directly proportional relationship with the
increase in richness. WBI presented no significant difference, and PRI

did not show a clear relationship with richness levels. The composition
variable MNF.1 increased its mean and heterogeneity proportionally
with richness (Table 2 and Table S1). The MNF.2 did not show any
significant difference between treatments. Spectral variation increases
with increasing richness (Fig. 5). The spectral angle, a proxy for the
spectral diversity, showed a significant difference with richness levels
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Table 2

Statistical analysis (mean + SE; ANOVA post hoc Tukey) of field, lidar, and hyperspectral (HSI) variables by plot comparing diversity
level treatments (20, 60, and 120 sp.). Lidar and hyperspectral variables were summarized by the mean of the pixels (0.20 m resolution).
The significant variables were colored green ranging from the lowest (light green) to the highest (dark green) values.

A Treatment
Type Variable 20sp 60sp 120sp p-value
Field AGB 69.459 + 10.409 b 0.043
CH 10331+1.029 b 0.01
Lidar LAI 1.063+0.149b  1.711+0.139b 0.001
LALunder  0.074+0.007 0.092 + 0.017 0.08+0.014 0.223
VARI 0.11+0.023 ¢ <0.001
Steuctural  SE 7.728 + 0.882 ¢ <0.001
ructural - Npvi 0.722 +0.024 ¢ <0.001
EVI 0.436 + 0.009 b 0.008
SIPI (SO0 1078 £0.012b  1.042+£0.004 ¢ <0.001
Chioronhvl  CARI 0.027 + 0.001 0.028 + 0.002 0.027 + 0.005 0.612
PR Clrededge  0.504 + 0.038 b 0.005
Cl.green 3.226+0.179 ¢ <0.001
mARI 1.691 + 0.079 1.78 + 0.143 1.798 + 0.071 0.381
Anth/Caro  ACI [ONSSEOOE 0.166 + 0.011 b 0.143 +0.004 b 0.001
CRI 12.574+1.672b 15327+1.834b 0.004
PRI -0.084 + 0.002 ab 0.021
Phusiol RVSI -0.012+0.001 b 0.032
ys1ologY  rep 715.857 £2.854 b 0014
WBI 1.232 +0.014 1.233 £0.015 1.251 +0.008 0.169
yperspecran ML ASGSE041 5 EOSTEOISTN S < '
iﬂifiﬁﬁféa MNE.2 -0.608 + 0.322 0.118 + 0.82 -0.079 +0.972 0.391
¢ Spectral angle  0.111 + 0.008 0.122+0.011 0.127 + 0.004 0.09
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Fig. 4. Mean leaf area density (LAD) profiles (left) and cumulative leaf area (LAI) (right) for the three tree diversity level treatments (20, 60, and 120 sp.). Lines are
the plots’ mean, and the dashed polygons represent the standard error amplitude.
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Fig. 5. Mean (left) and standard deviation (SD) (right) of reflectance for the three tree richness level treatments (20, 60, and 120 sp.).

only when the significance of 0.1 was considered (p-value = 0.09).

3.3. Predicting aboveground biomass

The AGB were significantly correlated (p < 0.001) with one lidar-
derived variable (CH, r = 0.81), and three HIS-derived VIs (RVSI, r =
0.78; EVI, r = 0.76; and CARI, r = 0.77) (Fig. S2). However, after
eliminating an outlier observation, the best AGB predictors were CH 2
= 0.82, RMSE = 7.62, relative RMSE = 9.0%), followed by the RVSI (r2
= 0.75, RMSE = 8.98, relative RMSE = 10.1%) (Fig. 6). Multiple
regression models did not provide significant improvements.

4. Discussion

Our UAV-lidar-HSI system showed a strong potential to assess can-
opy structure, AGB, and tree diversity in tropical forest restoration plots,
combining lidar and the VIs derived from HSI. It also helped reveal a
suite of canopy differences related to forest structure and ecosystem

function over an experimental biodiversity gradient. This included both
bulk properties like height and LAI (from lidar) and physiologically-
linked community traits such as EVI ‘greeness’ (from hyperspectral),
consistent with theories about the advantages of higher biodiversity in
restoration. To our knowledge, this is the first study to use both lidar and
HSI onboard a UAV to monitor tropical forest restoration (but see Vaglio
Laurin et al., 2014 for a pioneer attempt in a mature tropical forest).

4.1. Variables derived from lidar and HSI

Almost all HSI variables were significantly correlated with the LAIL In
general, VIs including information from the NIR domain (750-850 nm, a
spectral region characterized by multiple scattering of foliar tissues)
show sensitivity to LAL. However, the VIs tend to saturate for LAI values
higher than 2. Only mARI and PRI (which do not use NIR information)
did not correlate with LAI. VARI and CRI do not have NIR bands in their
equation but nonetheless showed a saturating correlation with LAIL
These VIs are related to the photosynthetically active leaf area, with

Fig. 6. Aboveground biomass of plots as a function of (A)

lidar-derived canopy height (CH); and (C) hyperspectral-
derived RVSI. The “*” purple point is an outlier plot not
included in these regressions. Numbers in parentheses are the
standard errors for each coefficient. (B) and (D) are Leave-one-
out cross-validations (LOOCV) of aboveground biomass as a
function of CH and RVSI, respectively. The dashed line repre-
sents a 1:1 correspondence, and the solid line is the linear
regression fit between observed and leave-one-out predicted
values (obs; = o + p-pred;). The values of a and p showed no
significant difference from 0 and 1, respectively, in both cases.
Point color represents the treatments of 20, 60, and 120 species
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VARI using the ratios between the green (~ 550 nm) and red (~ 650 nm)
bands and the CRI using two different green bands (~ 500 nm) (Gitelson
et al., 2002, 2007). VARI has been proposed as a substitute for NDVI to
measure canopy structure using ordinary RGB images (Fuentes-Peailillo
et al., 2018; Gitelson et al., 2002). Among the structural VIs, EVI is
known to have lesser degree of saturation with increasing LAI due to its
higher sensitivity to NIR reflectance (non-saturated) than red reflec-
tance, making it more responsive to canopy structural variations than
indices such as NDVI (e.g. Huete et al., 2002). However, in our study EVI
showed saturation at LAI = 2.0. Our analysis was conducted on an un-
precedented fine spatial scale, allowing a better understanding of the
relationship between the LAI and the VIs derived from high-spatial-
resolution optical sensors, without the confounding effects of leaf age
or sub-pixel shade fraction. Nevertheless, relationships (including VIs
saturation) may be dependent on season and spatial resolution, an
important question for future UAV-based high-resolution analysis that
must be answered to connect UAV observations to those from coarser
grain airborne and orbital sensors. We also note that the lidar-derived
LAI represents a proxy for the actual LAI (Almeida et al., 2019a) and
includes surface area contributions from other canopy components such
as branches.

As expected, no HSI-derived variable was correlated to the under-
story LAI since HSI data are limited to the canopy surface, as is usual for
optical sensors. On the other hand, lidar can record understory vegeta-
tion, providing information for forest restoration monitoring. The un-
derstory LAI showed potential to distinguish forest succession stages and
forest types (Almeida et al., 2019a; Almeida et al., 2020a). Almeida et al.
(2020a, 2020b), using a UAV-lidar system, showed that forest age was
negatively correlated with understory LAL

Some structural VIs were less spatially heterogeneous in the plots
with higher LAI values (and higher richness levels). The saturation ef-
fect, in those cases, decreased their spatial heterogeneity, limiting the
effectiveness of methods based on the spatial variation of VIs for esti-
mating tree species diversity or the separation of forest types. VIs are
limited in distinguishing between secondary and primary growth for-
ests. However, using multiangular, off-nadir viewing hyperspectral data
can improve forest successional stage discrimination (Galvao et al.,
2009; Garcia Millan and Sanchez-Azofeifa, 2018). Combining temporal
VIs analyses of land cover (vegetation or exposed soil) allows the
determination of cover classes such as forest regeneration (including
forest age) or short-term agricultural crop (Silva Junior et al., 2020).

The restoration plantations that we studied have a more homogenous
canopy structure when compared with sites under natural regeneration,
likely related to the even-aged cohort that comprises the canopy layer.
We expect heterogeneity to increase with time through stand develop-
ment competitive thinning dynamics, enhanced potentially by the years-
to-decades that some slow-growing tropical trees require to express their
unique structural characteristics and profile in the canopy. We believe
that the ability of lidar technology to differentiate tree diversity levels
may improve along with the structural development of forest stands.
Conversely, the HSI spatial patterns were relevant proxies for dis-
tinguishing tree diversity levels even in 13-year-old restoration, high-
lighting the potential of this technology to monitor broad-scale
restoration programs.

4.2. Distinguishing tree species richness levels

Several lidar-derived variables were more sensitive to differences in
diversity than AGB. While we detected differences in AGB only between
the treatments with 20 and 60 sp., LAI differed among all three diversity
treatments and increased with each increasing species richness level. For
the same study site, Duarte et al. (2021) found that AGB saturated from
60 sp. to 120 sp. while LAI and light interception (both derived from LAI-
2200C equipment) were positively correlated to diversity even at very
high richness levels. However, both our and Duarte et al. study evalu-
ated only stem AGB and did not consider branches and leaves. Our
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results also showed that canopy height was positively associated with
species richness. Previous studies have shown that enhanced light
interception and LAI in diverse tropical forests result from enhanced
complementarity among crowns in canopy space, promoted by a high
diversity of crown shapes and heights among species and neighborhood-
driven plasticity in crowns (Guillemot et al., 2020; Duarte et al., 2021;
Williams et al., 2017). We showed that the diversity effects on stand
structure and AGB were efficiently captured by lidar-derived variables,
which open promising perspectives for the large-scale monitoring of
hyper-diverse tropical forest functioning. Canopy height heterogeneity
and the LAI under the canopy did not significantly vary among treat-
ments, which may be explained by the forest’s low maturity and struc-
tural homogeneity. Increasing diversity and associated LAI in the upper
canopy do not appear to impact understory LAI. A potential explanation
for this surprising result is that light use efficiency increases with
diversity—an expectation of higher crown type diversity—such that
understory light availability changes little over this diversity gradient.

Structural VIs were positively associated with species richness. The
capacity of VIs to discriminate among richness levels can be explained
by the relatively low LAI compared with natural regeneration and
mature forests (Almeida et al., 2019a). However, increasing LAI may
result in saturation of the structural VIs and reduced ability to differ-
entiate among richness levels. In general, the VIs that showed a signif-
icant difference among the treatments also showed an association with
the canopy structure (i.e., significant correlation with LAI). It is
important to note that many of the biochemical VIs were developed from
laboratory spectrometers characterized by a higher signal-to-noise ratio
(Meneses et al., 2019). The aerial collection of hyperspectral images (e.
g. from drones) is subject to interference from the conditions of acqui-
sition (atmospheric properties, geometry of acquisition) and canopy
structure. However, some studies have shown promising results from VIs
for tropical tree species classification (Ferreira et al., 2016).

One of the most interesting results concerning HSI data was that
spectral diversity appeared to increase with richness treatments. The
spectral angle was significantly different across categorical classes of
species richness at p < 0.1 (Tukey test) and at p < 0.05 when species
richness was treated as a continuous predictor in a simple linear
regression (Table S2). The hyperspectral composition variable (MNF.1)
differed among treatments in both mean and variance, and the spectral
response showed higher variability in treatments with greater diversity
(Fig. 5). By computing the spectral angle among the treatments, we
showed that the spectral variability increased with diversity, which
broadly agrees with the spectral variation hypothesis (Palmer et al.,
2002). This hypothesis states that the spectral heterogeneity is induced
by variations in habitat and has been used to assess forest canopy di-
versity with hyperspectral data (Féret and Asner, 2014). Our results
suggested that tree diversity itself impacts spectral heterogeneity.

4.3. Predicting aboveground biomass

Some lidar and HSI variables demonstrated a remarkable capacity to
estimate AGB accurately. This prediction represents a well-known po-
tential of lidar structural data but is a less-universal finding for HSI
variables. While VIs are known to saturate at high biomass and LAI
values, the low plot-level density of vegetation (LAl ~ 2) in our study
maintained VIs in an unsaturated range, where there is a strong corre-
lation with AGB. This non-saturated stage behavior was also found in
another study focusing on young, low diversity plantations established
in a temperate forest ecosystem (Williams et al., 2021). The RVSI (Red-
edge Vegetation Stress Index) was the most accurate predictor for
biomass, which can be explained by the high positive correlation be-
tween the red-edge region (680-750 nm), the chlorophyll content, and
the canopy LAI (Filella & Penuelas, 1994). The increase in the chloro-
phyll content tends to move the red-edge position to longer wave-
lengths, while the increase in LAI increases the difference between NIR
and red reflectance. As the RVSI uses bands near the end of the red edge
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(>730 nm), it may be sensitive to AGB variations induced by LAI and
chlorophyll content.

The AGB predictions performed by the structural attribute derived
from lidar (canopy height) did better than that of HSI-derived VIs. Lidar
sensors have been shown to be the best tool for AGB estimates, especially
in dense tropical rainforests (Wulder et al., 2012). Adding more vari-
ables to the model (multiple regression models) did not improve the
prediction, probably due to the low structural complexity and low age of
the vegetation. In a previous study performed in the same region but
based on a greater number of forest types and more structurally complex
forests, the addition of more variables improved AGB models (Almeida
et al., 2019a). The utility of fusing lidar and hyperspectral data for AGB
prediction per se remains an unresolved problem in the literature. Some
studies have shown slight improvement with the addition of hyper-
spectral metrics in the AGB estimation models when they already have
included lidar metrics (e.g. Clark et al., 2011; Fassnacht et al., 2014),
while others have found better performance mixing lidar and HSI vari-
ables (e.g. Almeida et al., 2019b; Vaglio Laurin et al., 2014).

The use of lidar data as an intermediary layer between field and
spectral satellite data (“upscaling” technique) is critical to generate large
samples of AGB with high accuracy and thus generate more robust maps
using satellite images for more extensive areas. Csillik et al. (2019)
combined lidar and high-resolution satellite images to generate a
biomass map for the entire country of Peru. New orbital lidar sensors are
expected to generate more accurate maps of tropical forest AGB and
stand structure attributes. One of them is the “Global Ecosystem Dy-
namics Investigation” (GEDI) orbital lidar sensor; however, its infor-
mation is not spatially continuous and has much lower precision and
accuracy compared with lidar sensors onboard aircraft and UAVs
(Dubayah et al., 2020).

4.4. Monitoring tropical forest restoration

Given the high cost of field inventories, restoration programs have
often used an insufficient number of plots, which have ultimately
compromised the reliability of restoration field assessments (Viani et al.,
2018). Upscaling restoration monitoring requires more than the repli-
cation over space of traditional forest inventory approaches because of
the costs and scales involved (Brancalion and van Melis, 2017). At the
other extreme, satellite images and novel analytical approaches are still
incapable of measuring restoration quality (Rosa et al., 2021). A suc-
cessful monitoring program must consider the gap between detailed and
costly information from field plots and the million hectares of infor-
mation generated by satellites with low capacity to detect restoration
success.

We believe that the novel UAV-borne lidar and hyperspectral system
described here can fill this technological gap, offering data streams that
can be connected with plot-based monitoring and broad-scale remote
sensing alike to improve upscaling and forest restoration monitoring.
Particularly by blending lidar and HSI data, it is possible to assess
biomass structural, functional, and diversity linked restoration out-
comes simultaneously, a great advantage over methods based solely on
either lidar or HSI. Further, it may represent a revolution in tracking
restoration success globally. The development of new remote sensing
approaches and their application to a restoration context would help
expand our capacity to assess restoration over unprecedented spatial
and temporal scales (White et al., 2019). Lidar-HSI upscaling has
recently become possible due to the new generation of orbital sensors. In
addition to the abovementioned spaceborne GEDI lidar mission, the
DESIS (Krutz et al., 2019) and PRISMA (Vangi et al., 2021) hyperspectral
sensors provide data with fine sampling using narrow bands (lower than
10 nm) and 30 m of spatial resolution. Together GEDI and DESIS or
PRISMA data can provide unprecedented results on the structure and
diversity of forest restoration at broader spatial scales. UAV-lidar-HSI
systems are still relatively expensive and potentially unaffordable by
some decision-making organizations such as governments, NGOs, small
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landowners, and companies.

In addition to acquisition costs, a high level of technical knowledge is
required to operate drone-based systems and process and analyze the
data. Thus, their use is still constrained to a minority of research groups.
In tropical countries, particularly, the use of these systems is consider-
ably limited due to high import tariffs and a lack of local technical
assistance. However, these initial constraints are precisely the same
faced by other technological innovations of the past, which are now
broadly present in modern societies worldwide. Despite the constraints,
efficient and relatively inexpensive UAV-lidar systems have been
developed (Hu et al., 2020), which may facilitate their broader use in
diverse sectors, particularly in forest restoration. Institutions in tropical
countries should encourage the development of these technologies
through investing in research, eliminating import taxes, encouraging
open hardware development (Tsanni, 2020) and facilitating the arrival
of specialized companies.

There are many benefits that UAV-lidar-HSI systems bring to forest
restoration monitoring, including the potential to monitor small areas
with very high accuracy, reduced field sampling effort (de Papa et al.,
2020), and the increase of remote sampling for upscaling and generation
of global models. Standardized monitoring protocols would help to
evaluate restoration strategies’ efficacy and compare results across
projects to learn from the past and inform future restoration efforts
(Viani et al., 2018). The unprecedented scale of global forest restoration
targets will need to be accompanied by the evolution of restoration
monitoring approaches and delivering, at much-reduced costs and
higher spatial and temporal scales, critical information for tracking
restoration success and guiding adaptive management. This constitutes
an enormous scientific and technological challenge that has just started
to be addressed by a joint effort of restoration, policymakers, and remote
sensing experts. The positive results obtained by the UAV-lidar-HSI
system described here are very encouraging and may hopefully foster
the ongoing development and application of remote sensing innovations
in ecosystem restoration.
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