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A B S T R A C T   

Remote sensors, onboard orbital platforms, aircraft, or unmanned aerial vehicles (UAVs) have emerged as a 
promising technology to enhance our understanding of changes in ecosystem composition, structure, and 
function of forests, offering multi-scale monitoring of forest restoration. UAV systems can generate high- 
resolution images that provide accurate information on forest ecosystems to aid decision-making in restora
tion projects. However, UAV technological advances have outpaced practical application; thus, we explored 
combining UAV-borne lidar and hyperspectral data to evaluate the diversity and structure of restoration 
plantings. We developed novel analytical approaches to assess twelve 13-year-old restoration plots experimen
tally established with 20, 60 or 120 native tree species in the Brazilian Atlantic Forest. We assessed (1) the 
congruence and complementarity of lidar and hyperspectral-derived variables, (2) their ability to distinguish tree 
richness levels and (3) their ability to predict aboveground biomass (AGB). We analyzed three structural attri
butes derived from lidar data—canopy height, leaf area index (LAI), and understory LAI—and eighteen variables 
derived from hyperspectral data—15 vegetation indices (VIs), two components of the minimum noise fraction 
(related to spectral composition) and the spectral angle (related to spectral variability). We found that VIs were 
positively correlated with LAI for low LAI values, but stabilized for LAI greater than 2 m2/m2. LAI and structural 
VIs increased with increasing species richness, and hyperspectral variability was significantly related to species 
richness. While lidar-derived canopy height better predicted AGB than hyperspectral-derived VIs, it was the 
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fusion of UAV-borne hyperspectral and lidar data that allowed effective co-monitoring of both forest structural 
attributes and tree diversity in restoration plantings. Furthermore, considering lidar and hyperspectral data 
together more broadly supported the expectations of biodiversity theory, showing that diversity enhanced 
biomass capture and canopy functional attributes in restoration. The use of UAV-borne remote sensors can play 
an essential role during the UN Decade of Ecosystem Restoration, which requires detailed forest monitoring on an 
unprecedented scale.   

1. Introduction 

An ambitious restoration agenda has been set to increase forest 
cover in deforested and degraded landscapes, to improve their multi
functionality and capacity to provide essential ecosystem services, 
such as maintaining biodiversity, water supply and carbon storage 
(Erbaugh and Oldekop, 2018). Forest monitoring will play a crucial 
role to track the success of these goals and also support adaptive 
management (Brancalion and Holl, 2020; Fagan et al., 2020), given the 
widespread failures in ecosystem restoration and the unprecedented 
scale of restoration pledges (Versluijs et al., 2019; Chagas et al., 2021). 
Currently, there is a pressing need to develop social collaborative and 
effective technologies for monitoring ecosystem recovery over large 
areas (hundreds to millions of hectares) using multiple key ecological 
indicators (Guariguata and Evans, 2020; Höhl et al., 2020). Remote 
sensors onboard orbital platforms, aircraft, or unmanned aerial vehi
cles (UAVs) have emerged as promising technologies to upscale forest 
restoration monitoring. Particularly, UAV systems can generate high- 
resolution images that provide accurate information on forest stands 
with or without the need for ground-based data (e.g., calibration or 
validation) to estimate important forest attributes such as the number 
of trees, aboveground biomass, or canopy openness (Almeida et al., 
2020a; Kotivuori et al., 2020; Ferreira et al., 2020). 

Accurate methods to estimate forest attributes to support decision- 
making are required for the effective remote monitoring of forests 
undergoing restoration (Almeida et al., 2019a). For example, forest 
cover, biomass stock and tree species diversity vary along forest suc
cessional sequences and are commonly employed to monitor forest 
restoration (Wortley et al., 2013). To this aim, multispectral sensors 
have proven useful, offering estimates of these critical variables. 
However, a high leaf area index (LAI) saturates most vegetation indices 
(VIs) derived from remote sensing (Turner et al., 1999). This saturation 
complicates their use to monitor structural attributes (such as above
ground biomass - AGB) in high-LAI tropical forests, which account for a 
large portion of global restoration commitments (Timothy et al., 2016; 
Crouzeilles et al., 2019). On the other hand, the light detection and 
ranging (lidar) sensor has been hailed as a promising technology for 
retrieving forest canopy structural attributes, regardless of canopy leaf 
area density. Lidar enables the estimation of canopy structural attri
butes with high precision and accuracy, such as vegetation density in 
the understory, LAI, tree height, the identification and measurement of 
forest gaps, and AGB (Almeida et al., 2019b; da Costa et al., 2020; 
Valbuena et al., 2020; Dalagnol et al., 2021). On the other hand, lidar 
technology is of limited use for assessing tree species diversity, for 
which hyperspectral has shown greater potential (Asner and Martin, 
2009). 

Assessing the different facets of forest diversity, such as tree rich
ness, functional diversity, and composition, is one of the most impor
tant but challenging modern remote sensing tasks (Asner, 2015). With 
lidar, one approach is to use canopy structural attributes as predictive 
variables for indirectly estimating tree species diversity (Hernández- 
Stefanoni et al., 2014; Ali et al., 2019; De Cáceres et al., 2019; Adhikari 
et al., 2020). Notably, a more species-rich forest is expected to have a 
more heterogeneous and complex canopy structure (Zellweger et al., 
2019; Mensah et al., 2020). Secondary forests with higher biomass are 
expected to have reached a later stage of succession, supporting more 

tree species (Gamfeldt et al., 2013; Lasky et al., 2014; Finegan et al., 
2015; Poorter et al., 2015). However, structure–richness relationships 
are not ubiquitous and depend on a wide range of factors, such as forest 
type, management, use and disturbance history. Consequently, the 
lidar approach has so far demonstrated a limited ability for local scale 
prediction of species richness, especially in hyper-diverse tropical bi
omes (Marselis et al., 2020; Almeida et al., 2019a; Valbuena et al., 
2020). 

Hyperspectral imaging (HSI) has a significant potential for esti
mating or measuring taxonomical and functional diversity of highly 
diverse tropical forests (Féret and Asner, 2014; Vaglio Laurin et al., 
2016; Durán et al. 2019). HSI measures reflected radiation from the 
forest canopy over hundreds of narrow spectral bands (or channels) 
within the visible- to short-wave infrared wavelength range (VSWIR, 
400–2500 nm). The rationale for using hyperspectral sensors to 
discriminate species-richness is that each species (or group of species) 
has specific combinations of spectral features. These include absorption 
by specific chemical constituents of leaves and non-photosynthetic ele
ments and scattering driven by vegetation structure at different scales, 
such as leaf anatomy, leaf area index, leaf angle distribution function 
(Ferreira et al., 2016). However, this combination of spectral traits does 
not necessarily result in a unique species-specific spectral identity (and 
thus perfect discrimination among species), as significant intraspecific 
variability in spectral traits was evidenced (Amaral et al., 2018; 
Camarretta et al., 2020). For example, a single species’ spectral char
acteristics can vary widely depending on environmental variables (e.g., 
water availability) or species and community attributes (e.g., leaf 
amount and leaf age) (Yan et al., 2018; Ferreira et al., 2019; Gonçalves 
et al., 2020). Another rationale is that the spectral heterogeneity is 
related to tree species diversity and composition (Rocchini et al., 2010; 
Féret and Asner, 2014; Asner et al., 2017; Laliberté et al., 2020). HSI also 
enables linking canopy reflectance to biophysical and chemical prop
erties using various approaches, including narrow-band vegetation 
indices, which are designed to be used as proxies for both structural (e. 
g., vegetation density) and physiological (e.g., leaf chemical composi
tion and water stress) properties (Zhao et al., 2018). 

Using HSI data to study species diversity or the retrieval of canopy 
chemical properties is still challenging, particularly in tropical ecosys
tems due to their high biodiversity and structural complexity (Feret and 
Asner, 2013). HSI data acquisition with airborne surveys is usually 
costly, planning intensive, and may be operationally prohibitive in 
places with poor infrastructure and resources, such as in some tropical 
forest regions. Conversely, restoration practitioners face the challenges 
of monitoring tree diversity in tropical forest regions (Crouzeilles et al., 
2019), given the difficulty of properly identifying hundreds of tree 
species and the reduced accessibility of restoration areas for forest in
ventories (Keil and Chase, 2019). As restoration programs are usually 
composed of several small to mid-size polygons scattered across large 
and heterogeneous areas, airborne surveys are less viable. 

Recent technological developments have allowed for manufacturing 
UAV-compatible HSI sensors, a promising approach to mainstreaming 
the common use of HSI in tropical forest restoration monitoring. UAVs 
are a technological frontier of remote sensing data acquisition and may 
constitute an alternative to high-cost airborne hyperspectral and lidar 
campaigns. The use of UAV-borne remote sensors, both lidar and HSI, 
nonetheless presents pros and cons. The main advantage is the higher 
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spatial resolution. Point cloud density from airborne lidar usually ranges 
between 0.4 and 30 points per m2 (ppm2), whereas UAV lidar acquisi
tions can reach 100–1000 ppm2 (d’Oliveira et al., 2020; Prata et al., 
2020). The high point density increases the accuracy of estimating 
structural parameters, such as vertical profiles of leaf area density 
(Almeida et al., 2019a). It can even allow the individualization of trees 
and measurement of stem volume in open-canopy forests such as euca
lyptus plantations (Dalla Corte et al., 2020) and temperate forests 
(Krůček et al., 2020). For UAV-HSI, the centimetric resolution of the 
pixels allows a better characterization of target objects, detecting 
vegetation-free patches, removing background contribution, and 
capturing the spectral variability within and among crowns. Conversely, 
flight instability of the UAV, changing view and illumination geometry 
and changing sky conditions make the use of these images challenging. 
HSI reflectance retrievals from UAVs require a matched incident radi
ance HSI sensor and non-trivial pre-processing steps, including correc
tions for bidirectional reflectance distribution function (BRDF) and 
atmospheric effects (Jia et al., 2020). 

To date, few investigations have assessed the potential of UAV-lidar- 
HSI systems in tropical forest monitoring. Sankey et al. (2017) and Lin 
et al. (2019) used UAV-lidar-HSI systems to monitor semi-arid and pine 
forests, respectively. Here, we explored the fusion of UAV-borne lidar 
and hyperspectral data to remotely access the structure and diversity of 
restored tropical forests. We developed a novel analytical approach for a 
mixed-species, 13-year-old restoration plantation experimentally 
established with 20, 60, and 120 native tree species in the Brazilian 
Atlantic Forest. Specifically, we assessed (1) the congruence of lidar and 
hyperspectral variables, (2) their usefulness to distinguish tree species 
richness levels, and (3) their ability to predict aboveground biomass. 
Our work goes well beyond traditional measurements based on sampling 
plots, providing high-accuracy and precision information for upscaling 
field variables to satellite-based hyperspectral and lidar observations, 
representing an effective strategy for large-scale forest restoration 
monitoring during the United Nations Decade on Ecosystem Restoration 
(2021−2030). 

2. Methods 

2.1. Experimental site and field data 

We used an experimental mixed-species restoration plantation with 
three diversity levels to explore the potential and limitations of fusing 
UAV-borne lidar and hyperspectral data to assess structure and di
versity. The experimental plots were established in May 2006 in 
Anhembi-SP, southeastern Brazil, in a completely randomized design 
with 20, 60, and 120 native tree species (hereafter sp.), each with four 
replicates, in 45 × 48 m plots (Fig. 1). The area was previously covered 
by pastures, with no regeneration of native tree species. Tree seedlings 
were randomly planted with 3 × 1.5 m spacing and ensuring a homo
geneous density across species. The species pool present in the treat
ments with the lowest richness was contained in the treatments with 
higher richness, i.e., species of the treatment of 20 species are contained 
in the treatment of 60 species, which are also contained in the treatment 
of 120 species. Extensive information on the study site and experiment is 
provided by Duarte et al. (2021). Due to the low coverage of HSI in one 
plot, the treatment of 120 species had only three replicates for the 
analysis using HSI data. Forest inventory field data were collected in 
November 2019, when the plantation was 13.5 years old. At this time, 
58 and 114 species had survived in the 60- and 120 species treatments, 
respectively. For all living stems, we identified the tree species in this 
inventory, measured diameter 30 cm above the ground and measured 
total height. We used the allometric equation developed by Ferez et al. 
(2015) for a neighboring restoration plantation to estimate aboveground 
woody biomass of each individual (Eq. (1)). Wood densities were ob
tained for all tree species based on wood discs (cross-sections from the 
stem) sampled in destructive plots established, using three individuals 
per species (see Ferez, 2012 for more details). 

ln(AGBw) = 6.039 + 0.945ln(SA) + 0.961ln(Ht) + 1.002 ln(ρ) (1)  

where: AGBw = Aboveground woody biomass (Mg/ha); SA: sectional 
area of the stem (m2); Ht: total height (m); ρ = wood density (g/cm3). 

Fig. 1. Study area and plot designs. Left) site location; upper right) sample design and lidar point cloud example of one plot; bottom right) hyperspectral image 
colored by a false RGB composition using the first components from the minimum noise fraction transformation. 
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2.2. UAV-borne lidar and hyperspectral data 

Data were collected using the GatorEye Unmanned Flying Labora
tory, consisting of a hardware system with custom algorithm workflows 
incorporating lidar, hyperspectral, thermal, and visual (RGB) sensors. 
The hardware and processing workflows are described in detail in the 
GatorEye overview manuscript (Broadbent et al., 2021) available at 
www.gatoreye.org. The data is also available under the section “2019 
Brazil Sao Paulo State August/082819”. 

The system uses a DJI Matrice 600 Pro hexacopter platform, with 
mission planning conducted using Universal Ground Control Station 
(UGCS) software. GNSS base station data are collected within 3 km of 
data collection areas, then post-processed online via the Trimble Cen
terPoint RTX platform, providing typically <2 cm 3D uncertainty within 
a 2-h collection period (and < 0.25 cm within 4+ hour collections). The 
computational sensor core is based on a Phoenix Ultra Scout, a Novatel 
STIM 300 IMU tactical grade and differential GNSS system. Integrated 
into this is a (a) Velodyne VLP-32c Ultra Puck LiDAR sensor, (b) Nano 
VNIR Hyperspectral Headwall sensor (640 pixels × 270 spectral bands 
in a 100-hertz line scan approach), (c) high-resolution RGB camera, (d) 
radiometric thermal camera, and (e) time-synchronized downwelling 
hyperspectral Ocean Optics Flame (upward viewing spectrometer, 400- 
1025 nm wavelength range, and 1.70 nm spectral resolution) (Fig. S1). 
See Broadbent et al. (2021) for more details. 

The Velodyne Ultra Puck sensor features 32 individuals 905 nm la
sers, situated to provide a 360◦ horizontal (cross-track) and 40◦ vertical 
(along-track) field of view. The Ultra Puck fires 600,000 times per sec
ond, recording for each pulse the strongest and the last (dual) return, for 
a theoretical points/s of 1,200,000 at a range of up to 200 m. The 
Headwall Photonics Nano VNIR 270 spectral band lab-calibrated radi
ance hyperspectral sensor acquires 1400 spectral bands from 400 to 
1000 nm every 0.5 s and allows conversion of radiance to reflectance by 
ratioing with the spectral bands most similar in wavelength from the 
upward-facing Ocean Optics Flame sensor (Broadbent et al., 2021). 

The GatorEye overflew the experimental area 27–30 Aug of 2019 at 
approximately solar noon at an aboveground mean altitude of 100 m. 
The local solar zenith angle was 32 degrees at solar noon (based on the 
date 28 Aug 2019, lat, long = −22.75, −48.11). Four flight lines were 
acquired to cover the majority of plots. The speed was 12–14 m/s, 
resulting in a forward pitch of approximately 12 degrees during flight. 
Acquisitions were performed under clear sky conditions with no atmo
spheric haze. The specific lidar and hyperspectral GatorEye deliverables 
used in this study were: (a) the Canopy Height Model (CHM), (b) the 
cleaned lidar point cloud, and (c) the ‘reflectance-calibrated hyper
spectral shade-filtered orthomosaic’ (e.g., HSI image). 

Lidar flight lines were processed to standard products using the 
GatorEye Multi-scalar Post-Processing workflow – using the software 
Lastools (Isenburg, 2020) and “lidR” R package (Roussel and Auty, 
2019). This procedure automatically merges flight lines, classifies 
ground points and removes noise – to generate the cleaned point clouds 
and the rasters DTM (digital terrain model), DSM (digital surface model) 
and CHM. More details are given in Almeida et al. (2019b, 2020a), 
Almeida et al. (2020b). The point density of the final lidar point cloud 
was 360 ± 137 (mean ± SD) ppm2, of which 80.4% were first returns. 

Hyperspectral data were processed in three steps. (1) The non- 
orthorectified time-synchronized lab-calibrated radiance data from the 
downward-facing boresighted Nano hyperspectral camera was projected 
onto the DSM from the lens using a ray-tracing algorithm. (2) The 
radiance bands were then converted to reflectance using the also time- 
synchronized and lab-calibrated upward-facing Flame hyperspectral 
irradiance sensor. (3) The shade was removed through a separate pro
cess where solar geometry was calculated and then applied, through a 
ray tracing algorithm (Broadbent et al., 2021), to map portions of the 
DSM to be either in full sunlight or in the shade at the moment of data 
acquisition. Shaded pixels were masked in the final hyperspectral 
reflectance orthomosaic. Hyperspectral images are orthorectified onto 

the lidar derived digital surface models using a custom ray tracing 
workflow (Broadbent et al., 2021). The spatial resolution of the final HSI 
image was 0.20 m. We performed additional filtering on the hyper
spectral data using a 0.20 m moving window filter across the CHM to 
remove pixels with a height below four meters. This filtering enabled us 
to restrict the spectral data to vegetation targets when estimating tree 
species compositional values versus being dominated by the ground 
level exposed soil spectra which greatly differ from vegetation. 

The bidirectional reflectance distribution function (BRDF) describes 
the variations in reflectance or radiance intensity measured by a sensor 
as a function of (1) the angle of separation of two vectors - view and 
illumination - and of (2) forward-scatter (viewing toward the sun) and 
backscatter (sun behind the viewer). In remotely sensed imagery, BRDF 
significantly impacts the retrieval of biophysical surface properties 
(Wanner et al., 1995). We corrected the HSI orthomosaic for BRDF ef
fects using a kernel-driven approach. More details can be found in the 
Supplementary Material. 

2.3. Data processing and analysis 

Post-deliverables data processing was performed in the R environ
ment (R Core Team, 2020). Three structural attributes were derived 
from lidar data: canopy height, leaf area index - LAI, and leaf area index 
in the understory - LAI.under. (Table 1). At the plot level, we calculated 
the mean canopy height and its heterogeneity (standard deviation). The 
canopy height was obtained directly from the CHM (0.20 m resolution). 
To calculate canopy height, the cloud pulse density was not filtered to a 
standard density, ensuring the highest accuracy. Nonetheless, Silva et al. 
(2017) have shown that the accuracy of canopy height estimate in 
Amazon forests stabilizes when pulse density reaches 4 ppm2. The LAI 
(1 m resolution) was calculated from the leaf area density (LAD) esti
mated using the lad.voxels function from the “leafR” package (Almeida 
et al., 2019c). The LAI is the sum of the entire LAD vertical profile, and 
the LAI understory is the sum of the LAD vertical profile between 1 and 
5 m in height. To improve the accuracy of the LAD estimates and remove 
lidar pulse density bias, the normalized lidar cloud was filtered to first 
returns only and then homogenized to 30 ppm2 before the LAD calcu
lation. Almeida et al. (2019a) found that higher pulse densities result in 
higher LAI estimates in tropical forests. While this bias is small when 
pulse densities exceed 20 ppm2, for all LAI and LAD estimates we elected 
to standardize to 30 ppm2 using a homogenizing filter. The method used 
to estimate the LAD uses the MacArthur-Horn equation (MacArthur and 
Horn, 1969) and is based on the Beer-Lambert law, i.e., the attenuation 
of the energy transmission rate (lidar pulses) between the canopy ver
tical strata. See Almeida et al. (2019a) for more details. 

A total of 18 variables derived from HSI data were calculated 
(Table 1): 15 vegetation indices (VIs), the first two components of the 
minimum noise fraction (MNF) transformation (related to spectral 
composition), and the spectral angle (related to spectral variability). VIs 
were divided into four categories: (i) Structural, (ii) Chlorophyll, (iii) 
Anthocyanin / Carotenoid, and (iv) Physiology. MNF is a linear trans
formation of the original HSI data that applies two cascaded PCA and 
maximizes the signal/noise ratio (Green et al., 1988). We performed 
MNF using ENVI software version 5.3. 

To assess if species diversity is related to canopy spectral diversity, 
we computed the spectral angle between all pairwise combinations of 
the pixels of each treatment. The spectral angle (θ) is a suitable measure 
of the spectral variability (Richter et al., 2016; Ferreira et al., 2018), and 
was computed as follows, according to Price (1994): 

θ = cos−1

⎛

⎝

∫ λb
λa

X(λ)Y(λ)dλ
[ ∫ λb

λa
X(λ)

2dλ
]1

2
[ ∫ λb

λa
Y(λ)

2dλ
]1

2
(2)  

where θ is the spectral angle, measured in radians, between the spectral 
reflectance of the pixel X and the pixel Y in the spectral interval λa to λb, 
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i.e., 400 to 1000 nm. The spectral angle was computed with sunlit 
foliated canopy pixels that were selected using NDVI >0.8 and canopy 
height > 4 m. We used sunlit foliated canopy pixels to avoid the influ
ence of non-photosynthetic canopy elements (e.g., branches) in the 
quantification of spectral diversity. Non-photosynthetic vegetation 
causes variations in the spectral amplitude, that is, brightness differ
ences that may increase the spectral variability even if the spectral 
shapes were the same. 

We used Spearman’s correlation diagram to assess the relationship 
between the VIs (HSI-derived) and the canopy structural variables 
(lidar-derived). This analysis was performed at the pixel level (0.20 m 
resolution). The variables AGB (field-derived) and spectral angle (HSI- 
derived) were evaluated at the plot level. For comparing the spectral 
angle, only the highest spectral angles of each plot (percentile 90%) 

were considered. This ensures that the test assesses the most significant 
differences within the plots. To determine the relationship of the vari
ables with the tree species richness levels (treatments), we performed 
ANOVA and post-hoc Tukey tests (plot-level analysis). For these ana
lyses, we considered the variables’ mean value and standard deviation 
within the plots, and the latter was used to describe the heterogeneity of 
each variable within plots. Finally, the predictive power of AGB from 
lidar and HSI variables was evaluated using simple and multiple ordi
nary least square regressions. To identify and eliminate outliers, we used 
t-tests based on studentized residuals implemented using the function 
outlier.test in R package “car” (Fox and Weisberg, 2019). The assess
ment of model accuracy was performed by a leave-one-out cross-vali
dation (LOOCV) procedure (Almeida et al., 2020a). The relationship 
between the observed and predicted (via LOOCV) values were evaluated 
by testing their 1:1 correspondence under the null hypothesis that their 
regression intercept and slope were 0 and 1, respectively (Valbuena 
et al., 2017). 

3. Results 

3.1. Variables derived from lidar and HSI 

Lidar-derived LAI was significantly correlated with almost all HSI- 
derived variables at the pixel level (Fig. 2). The structural VIs (HSI- 
derived) had the highest correlations with LAI (r > 0.50, p-values 
<0.05). In general, structural VIs increased between LAI values ranging 
from 0 to 2, but then saturated (Fig. 3). The canopy height attribute CH 
(lidar-derived) was significantly correlated with seven HSI-derived 
variables (Fig. 2), with EVI being the VI variable with the highest cor
relation (r = 0.22, p-value = 0.006). The EVI and the other structural VIs 
all showed a positive correlation with CH for values ranging from 5 to 
15 m, but they stabilized or decreased for CH values within 15–20 m 
(Fig. 3). The lidar-derived understory LAI (LAI.under) showed no sig
nificant correlation with any of the HSI-derived variables. 

3.2. Distinguishing tree species richness levels 

The 20 sp. treatment had lower field-derived AGB (mean ± SE, 69.5 
± 10.4 Mg/ha) than the 60 sp. treatment (94.3 ± 9.8 Mg/ha), whereas 
the 120 sp. treatment had intermediate (88.7 ± 15.6 Mg/ha) AGB and 
did not differ statistically from the other two treatments (Table 2). 
However, when changing the significance level to 0.1 (instead of 0.05), 
the two treatments with the highest species richness (60 and 120 sp.) 
showed higher AGB than the treatment with the lowest species richness 
(20 sp.). 

The CH (lidar-derived) was higher in the two species-richer treat
ments (60 and 120 sp.) (Table 2). However, the CH heterogeneity did 
not significantly differ between richness levels (Table S1, p-value =

0.59). The richest treatment had the highest LAI value, and when 
considering the significance level at 0.1, a significant increase in LAI was 
verified with the increase in species richness class. The LAI heteroge
neity was higher in the two richest treatments (Table S1, p-value 
<0.001). LAI.under showed no difference among richness levels 
(Table 2 and Fig. 5). The vertical distribution of the LAD was mono- 
modal, with a higher concentration of vegetation in the middle layer 
of the canopy for all three treatments (Fig. 4). 

For the HSI-derived VIs, the structural VIs (VARI, SR, NDVI, and EVI) 
increased with increasing richness (Table 2), and in some of them (VARI 
and NDVI), the heterogeneity was lower in the 120 sp. treatment (Table 
S1, p-values <0.05). For the VIs related to chlorophyll concentration, 
SIPI decreased with increasing richness (SIPI is inversely proportional to 
chlorophyll concentration), while CI.rededge and CI.green increased 
with increasing species richness. The CARI VI showed no significant 
difference among richness treatments. For the VIs related to the antho
cyanin concentration, the mARI has no significant difference, although 
its heterogeneity was greater in the richest treatment. ACI was lower in 

Table 1 
Variables and their respective descriptions and references. “ρ” indicates reflec
tance of a hyperspectral band, followed by its wavelength center in nanometers.  

Variable Description Reference 

Field-derived   
Aboveground biomass - 
AGB (Kg) 

Eq. (1) Ferez et al., 2015 

Canopy structural attribute 
(Lidar-derived)   
Canopy height - CH (m) Mean of canopy height 

model 
Almeida et al., 
2019b 

Leaf area index - LAI Sum of leaf area density 
profile 

Almeida et al., 
2019a 

LAI understory - LAI.under Sum of leaf area density 
profile (1–5 m) 

Almeida et al., 
2019b 

Structural VIs (HSI-derived)   
Vegetation 
Atmospherically Resistant 
Index (VARI) 

(ρ557 - ρ643) / (ρ557 +
ρ643 − ρ465) 

Gitelson et al., 
2002 

Simple Ratio (SR) ρ865 / ρ672 Jordan, 1969 
Normalized Difference 
Vegetation Index (NDVI) 

(ρ865 − ρ672) / (ρ865 +
ρ672) 

Rouse et al., 1974 

Enhanced Vegetation Index 
(EVI) 

2.5 × ((ρ865 − ρ672) / 
(ρ865 + 6 × ρ672–7.5 ×
ρ464 + 1)) 

Huete et al., 2002 

Chorophyll VIs (HSI-derived)   
Structurally Insensitive 
Pigment Index (SIPI) 

(ρ800 − ρ445) / (ρ800 +
ρ680) 

Peñuelas et al., 
1995 

Chlorophyll Absorption in 
Reflectance Index (CARI) 

(ρ700 − ρ670) − 0.2 ×
(ρ700 − ρ550) 

Kim (1994) 

Chlorophyll Red-Edge 
Index (CI.rededge) 

ρ851 / ρ730–1 Gitelson et al., 
2006 

Chlorophyll Green Index 
(CI.green) 

ρ730 / ρ531–1 Gitelson et al., 
2006 

Anthocyanin VIs (HSI-derived)   
Modified Anthocynanin 
Reflectance Index (mARI) 

(1 / ρ551) − (1 / ρ701) Gitelson et al., 
2006 

Anthocyanin Content Index 
(ACI) 

ρ531 / ρ941 van den Berg and 
Perkins, 2005 

Carotenoid VI (HSI-derived)   
Carotenoid Reflectance 
Index (CRI) 

(1 / ρ511) − (1 / ρ551) Gitelson et al., 
2007 

Physiology VIs (HSI-derived)   
Photochemical Reflectance 
Index (PRI) 

(ρ531 − ρ571) / (ρ531 +
ρ571)) 

Gamon et al., 1997 

Red-edge Vegetation Stress 
Index (RVSI) 

(ρ712 + ρ753) / 2 − ρ733) Merton and 
Huntington, 2021 

Red edge position (REP) Max first derivative: 
680–750 nm 

Horler et al., 1983 

Water Band index (WBI) ρ900 / ρX970) Peñuelas et al., 
1997 

Spectral composition (HSI- 
derived)   
MNF.1 First component of minimal 

noise fraction 
Green et al., 1988 

MNF.2 Second component of 
minimal noise fraction 

Green et al., 1988 

Spectral heterogeneity (HSI- 
derived)   
Spectral angle Eq. (2) Price, 1994  
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the lowest richness treatment. The VI related to carotenoid concentra
tion, CRI, was higher in the richest treatment (with a significant gradual 
increase at the 0.1 significance level). 

For the physiological VIs, RVSI decreased with the increase in rich
ness, while the REP showed a directly proportional relationship with the 
increase in richness. WBI presented no significant difference, and PRI 

did not show a clear relationship with richness levels. The composition 
variable MNF.1 increased its mean and heterogeneity proportionally 
with richness (Table 2 and Table S1). The MNF.2 did not show any 
significant difference between treatments. Spectral variation increases 
with increasing richness (Fig. 5). The spectral angle, a proxy for the 
spectral diversity, showed a significant difference with richness levels 

Fig. 2. Spearman’s correlation diagram 
among the lidar- and hyperspectral-derived 
variables. The correlation values are ranked 
using a color gradient from −1 to 1, where 
0 means no correlation, −1 a strong negative 
correlation (red color), and one a strong 
positive correlation (blue color). The p-value 
significance levels are “*” 0.05, “**” 0.01, 
and “***” 0.001. Acronyms of variables are 
described in Table 1. (For interpretation of 
the references to color in this figure legend, 
the reader is referred to the web version of 
this article.)   

Fig. 3. Standardized hyperspectral-derived structural vegetation indices (Vegetation Atmospherically Resistant Index - VARI, Simple Ratio - SR, Normalized Dif
ference Vegetation Index - NDVI, and Enhanced Vegetation Index - EVI) as a function of lidar-derived leaf area index (LAI) (left) and lidar-derived canopy height (CH) 
(right). Lines are the smoothed mean of the observations (pixels of 0.20 m resolution). 
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Table 2 
Statistical analysis (mean ± SE; ANOVA post hoc Tukey) of field, lidar, and hyperspectral (HSI) variables by plot comparing diversity 
level treatments (20, 60, and 120 sp.). Lidar and hyperspectral variables were summarized by the mean of the pixels (0.20 m resolution). 
The significant variables were colored green ranging from the lowest (light green) to the highest (dark green) values. 

Fig. 4. Mean leaf area density (LAD) profiles (left) and cumulative leaf area (LAI) (right) for the three tree diversity level treatments (20, 60, and 120 sp.). Lines are 
the plots’ mean, and the dashed polygons represent the standard error amplitude. 
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only when the significance of 0.1 was considered (p-value = 0.09). 

3.3. Predicting aboveground biomass 

The AGB were significantly correlated (p < 0.001) with one lidar- 
derived variable (CH, r = 0.81), and three HIS-derived VIs (RVSI, r =
0.78; EVI, r = 0.76; and CARI, r = 0.77) (Fig. S2). However, after 
eliminating an outlier observation, the best AGB predictors were CH (r2 

= 0.82, RMSE = 7.62, relative RMSE = 9.0%), followed by the RVSI (r2 

= 0.75, RMSE = 8.98, relative RMSE = 10.1%) (Fig. 6). Multiple 
regression models did not provide significant improvements. 

4. Discussion 

Our UAV-lidar-HSI system showed a strong potential to assess can
opy structure, AGB, and tree diversity in tropical forest restoration plots, 
combining lidar and the VIs derived from HSI. It also helped reveal a 
suite of canopy differences related to forest structure and ecosystem 

function over an experimental biodiversity gradient. This included both 
bulk properties like height and LAI (from lidar) and physiologically- 
linked community traits such as EVI ‘greeness’ (from hyperspectral), 
consistent with theories about the advantages of higher biodiversity in 
restoration. To our knowledge, this is the first study to use both lidar and 
HSI onboard a UAV to monitor tropical forest restoration (but see Vaglio 
Laurin et al., 2014 for a pioneer attempt in a mature tropical forest). 

4.1. Variables derived from lidar and HSI 

Almost all HSI variables were significantly correlated with the LAI. In 
general, VIs including information from the NIR domain (750–850 nm, a 
spectral region characterized by multiple scattering of foliar tissues) 
show sensitivity to LAI. However, the VIs tend to saturate for LAI values 
higher than 2. Only mARI and PRI (which do not use NIR information) 
did not correlate with LAI. VARI and CRI do not have NIR bands in their 
equation but nonetheless showed a saturating correlation with LAI. 
These VIs are related to the photosynthetically active leaf area, with 

Fig. 5. Mean (left) and standard deviation (SD) (right) of reflectance for the three tree richness level treatments (20, 60, and 120 sp.).  

Fig. 6. Aboveground biomass of plots as a function of (A) 
lidar-derived canopy height (CH); and (C) hyperspectral- 
derived RVSI. The “*” purple point is an outlier plot not 
included in these regressions. Numbers in parentheses are the 
standard errors for each coefficient. (B) and (D) are Leave-one- 
out cross-validations (LOOCV) of aboveground biomass as a 
function of CH and RVSI, respectively. The dashed line repre
sents a 1:1 correspondence, and the solid line is the linear 
regression fit between observed and leave-one-out predicted 
values (obsi = α + β⋅predi). The values of α and β showed no 
significant difference from 0 and 1, respectively, in both cases. 
Point color represents the treatments of 20, 60, and 120 species 
(green, blue and purple, respectively). (For interpretation of 
the references to color in this figure legend, the reader is 
referred to the web version of this article.)   
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VARI using the ratios between the green (~ 550 nm) and red (~ 650 nm) 
bands and the CRI using two different green bands (~ 500 nm) (Gitelson 
et al., 2002, 2007). VARI has been proposed as a substitute for NDVI to 
measure canopy structure using ordinary RGB images (Fuentes-Peailillo 
et al., 2018; Gitelson et al., 2002). Among the structural VIs, EVI is 
known to have lesser degree of saturation with increasing LAI due to its 
higher sensitivity to NIR reflectance (non-saturated) than red reflec
tance, making it more responsive to canopy structural variations than 
indices such as NDVI (e.g. Huete et al., 2002). However, in our study EVI 
showed saturation at LAI = 2.0. Our analysis was conducted on an un
precedented fine spatial scale, allowing a better understanding of the 
relationship between the LAI and the VIs derived from high-spatial- 
resolution optical sensors, without the confounding effects of leaf age 
or sub-pixel shade fraction. Nevertheless, relationships (including VIs 
saturation) may be dependent on season and spatial resolution, an 
important question for future UAV-based high-resolution analysis that 
must be answered to connect UAV observations to those from coarser 
grain airborne and orbital sensors. We also note that the lidar-derived 
LAI represents a proxy for the actual LAI (Almeida et al., 2019a) and 
includes surface area contributions from other canopy components such 
as branches. 

As expected, no HSI-derived variable was correlated to the under
story LAI since HSI data are limited to the canopy surface, as is usual for 
optical sensors. On the other hand, lidar can record understory vegeta
tion, providing information for forest restoration monitoring. The un
derstory LAI showed potential to distinguish forest succession stages and 
forest types (Almeida et al., 2019a; Almeida et al., 2020a). Almeida et al. 
(2020a, 2020b), using a UAV-lidar system, showed that forest age was 
negatively correlated with understory LAI. 

Some structural VIs were less spatially heterogeneous in the plots 
with higher LAI values (and higher richness levels). The saturation ef
fect, in those cases, decreased their spatial heterogeneity, limiting the 
effectiveness of methods based on the spatial variation of VIs for esti
mating tree species diversity or the separation of forest types. VIs are 
limited in distinguishing between secondary and primary growth for
ests. However, using multiangular, off-nadir viewing hyperspectral data 
can improve forest successional stage discrimination (Galvão et al., 
2009; Garcia Millan and Sanchez-Azofeifa, 2018). Combining temporal 
VIs analyses of land cover (vegetation or exposed soil) allows the 
determination of cover classes such as forest regeneration (including 
forest age) or short-term agricultural crop (Silva Junior et al., 2020). 

The restoration plantations that we studied have a more homogenous 
canopy structure when compared with sites under natural regeneration, 
likely related to the even-aged cohort that comprises the canopy layer. 
We expect heterogeneity to increase with time through stand develop
ment competitive thinning dynamics, enhanced potentially by the years- 
to-decades that some slow-growing tropical trees require to express their 
unique structural characteristics and profile in the canopy. We believe 
that the ability of lidar technology to differentiate tree diversity levels 
may improve along with the structural development of forest stands. 
Conversely, the HSI spatial patterns were relevant proxies for dis
tinguishing tree diversity levels even in 13-year-old restoration, high
lighting the potential of this technology to monitor broad-scale 
restoration programs. 

4.2. Distinguishing tree species richness levels 

Several lidar-derived variables were more sensitive to differences in 
diversity than AGB. While we detected differences in AGB only between 
the treatments with 20 and 60 sp., LAI differed among all three diversity 
treatments and increased with each increasing species richness level. For 
the same study site, Duarte et al. (2021) found that AGB saturated from 
60 sp. to 120 sp. while LAI and light interception (both derived from LAI- 
2200C equipment) were positively correlated to diversity even at very 
high richness levels. However, both our and Duarte et al. study evalu
ated only stem AGB and did not consider branches and leaves. Our 

results also showed that canopy height was positively associated with 
species richness. Previous studies have shown that enhanced light 
interception and LAI in diverse tropical forests result from enhanced 
complementarity among crowns in canopy space, promoted by a high 
diversity of crown shapes and heights among species and neighborhood- 
driven plasticity in crowns (Guillemot et al., 2020; Duarte et al., 2021; 
Williams et al., 2017). We showed that the diversity effects on stand 
structure and AGB were efficiently captured by lidar-derived variables, 
which open promising perspectives for the large-scale monitoring of 
hyper-diverse tropical forest functioning. Canopy height heterogeneity 
and the LAI under the canopy did not significantly vary among treat
ments, which may be explained by the forest’s low maturity and struc
tural homogeneity. Increasing diversity and associated LAI in the upper 
canopy do not appear to impact understory LAI. A potential explanation 
for this surprising result is that light use efficiency increases with 
diversity—an expectation of higher crown type diversity—such that 
understory light availability changes little over this diversity gradient. 

Structural VIs were positively associated with species richness. The 
capacity of VIs to discriminate among richness levels can be explained 
by the relatively low LAI compared with natural regeneration and 
mature forests (Almeida et al., 2019a). However, increasing LAI may 
result in saturation of the structural VIs and reduced ability to differ
entiate among richness levels. In general, the VIs that showed a signif
icant difference among the treatments also showed an association with 
the canopy structure (i.e., significant correlation with LAI). It is 
important to note that many of the biochemical VIs were developed from 
laboratory spectrometers characterized by a higher signal-to-noise ratio 
(Meneses et al., 2019). The aerial collection of hyperspectral images (e. 
g. from drones) is subject to interference from the conditions of acqui
sition (atmospheric properties, geometry of acquisition) and canopy 
structure. However, some studies have shown promising results from VIs 
for tropical tree species classification (Ferreira et al., 2016). 

One of the most interesting results concerning HSI data was that 
spectral diversity appeared to increase with richness treatments. The 
spectral angle was significantly different across categorical classes of 
species richness at p < 0.1 (Tukey test) and at p < 0.05 when species 
richness was treated as a continuous predictor in a simple linear 
regression (Table S2). The hyperspectral composition variable (MNF.1) 
differed among treatments in both mean and variance, and the spectral 
response showed higher variability in treatments with greater diversity 
(Fig. 5). By computing the spectral angle among the treatments, we 
showed that the spectral variability increased with diversity, which 
broadly agrees with the spectral variation hypothesis (Palmer et al., 
2002). This hypothesis states that the spectral heterogeneity is induced 
by variations in habitat and has been used to assess forest canopy di
versity with hyperspectral data (Féret and Asner, 2014). Our results 
suggested that tree diversity itself impacts spectral heterogeneity. 

4.3. Predicting aboveground biomass 

Some lidar and HSI variables demonstrated a remarkable capacity to 
estimate AGB accurately. This prediction represents a well-known po
tential of lidar structural data but is a less-universal finding for HSI 
variables. While VIs are known to saturate at high biomass and LAI 
values, the low plot-level density of vegetation (LAI ~ 2) in our study 
maintained VIs in an unsaturated range, where there is a strong corre
lation with AGB. This non-saturated stage behavior was also found in 
another study focusing on young, low diversity plantations established 
in a temperate forest ecosystem (Williams et al., 2021). The RVSI (Red- 
edge Vegetation Stress Index) was the most accurate predictor for 
biomass, which can be explained by the high positive correlation be
tween the red-edge region (680–750 nm), the chlorophyll content, and 
the canopy LAI (Filella & Penuelas, 1994). The increase in the chloro
phyll content tends to move the red-edge position to longer wave
lengths, while the increase in LAI increases the difference between NIR 
and red reflectance. As the RVSI uses bands near the end of the red edge 

D.R.A. Almeida et al.                                                                                                                                                                                                                          



Remote Sensing of Environment 264 (2021) 112582

10

(>730 nm), it may be sensitive to AGB variations induced by LAI and 
chlorophyll content. 

The AGB predictions performed by the structural attribute derived 
from lidar (canopy height) did better than that of HSI-derived VIs. Lidar 
sensors have been shown to be the best tool for AGB estimates, especially 
in dense tropical rainforests (Wulder et al., 2012). Adding more vari
ables to the model (multiple regression models) did not improve the 
prediction, probably due to the low structural complexity and low age of 
the vegetation. In a previous study performed in the same region but 
based on a greater number of forest types and more structurally complex 
forests, the addition of more variables improved AGB models (Almeida 
et al., 2019a). The utility of fusing lidar and hyperspectral data for AGB 
prediction per se remains an unresolved problem in the literature. Some 
studies have shown slight improvement with the addition of hyper
spectral metrics in the AGB estimation models when they already have 
included lidar metrics (e.g. Clark et al., 2011; Fassnacht et al., 2014), 
while others have found better performance mixing lidar and HSI vari
ables (e.g. Almeida et al., 2019b; Vaglio Laurin et al., 2014). 

The use of lidar data as an intermediary layer between field and 
spectral satellite data (“upscaling” technique) is critical to generate large 
samples of AGB with high accuracy and thus generate more robust maps 
using satellite images for more extensive areas. Csillik et al. (2019) 
combined lidar and high-resolution satellite images to generate a 
biomass map for the entire country of Peru. New orbital lidar sensors are 
expected to generate more accurate maps of tropical forest AGB and 
stand structure attributes. One of them is the “Global Ecosystem Dy
namics Investigation” (GEDI) orbital lidar sensor; however, its infor
mation is not spatially continuous and has much lower precision and 
accuracy compared with lidar sensors onboard aircraft and UAVs 
(Dubayah et al., 2020). 

4.4. Monitoring tropical forest restoration 

Given the high cost of field inventories, restoration programs have 
often used an insufficient number of plots, which have ultimately 
compromised the reliability of restoration field assessments (Viani et al., 
2018). Upscaling restoration monitoring requires more than the repli
cation over space of traditional forest inventory approaches because of 
the costs and scales involved (Brancalion and van Melis, 2017). At the 
other extreme, satellite images and novel analytical approaches are still 
incapable of measuring restoration quality (Rosa et al., 2021). A suc
cessful monitoring program must consider the gap between detailed and 
costly information from field plots and the million hectares of infor
mation generated by satellites with low capacity to detect restoration 
success. 

We believe that the novel UAV-borne lidar and hyperspectral system 
described here can fill this technological gap, offering data streams that 
can be connected with plot-based monitoring and broad-scale remote 
sensing alike to improve upscaling and forest restoration monitoring. 
Particularly by blending lidar and HSI data, it is possible to assess 
biomass structural, functional, and diversity linked restoration out
comes simultaneously, a great advantage over methods based solely on 
either lidar or HSI. Further, it may represent a revolution in tracking 
restoration success globally. The development of new remote sensing 
approaches and their application to a restoration context would help 
expand our capacity to assess restoration over unprecedented spatial 
and temporal scales (White et al., 2019). Lidar-HSI upscaling has 
recently become possible due to the new generation of orbital sensors. In 
addition to the abovementioned spaceborne GEDI lidar mission, the 
DESIS (Krutz et al., 2019) and PRISMA (Vangi et al., 2021) hyperspectral 
sensors provide data with fine sampling using narrow bands (lower than 
10 nm) and 30 m of spatial resolution. Together GEDI and DESIS or 
PRISMA data can provide unprecedented results on the structure and 
diversity of forest restoration at broader spatial scales. UAV-lidar-HSI 
systems are still relatively expensive and potentially unaffordable by 
some decision-making organizations such as governments, NGOs, small 

landowners, and companies. 
In addition to acquisition costs, a high level of technical knowledge is 

required to operate drone-based systems and process and analyze the 
data. Thus, their use is still constrained to a minority of research groups. 
In tropical countries, particularly, the use of these systems is consider
ably limited due to high import tariffs and a lack of local technical 
assistance. However, these initial constraints are precisely the same 
faced by other technological innovations of the past, which are now 
broadly present in modern societies worldwide. Despite the constraints, 
efficient and relatively inexpensive UAV-lidar systems have been 
developed (Hu et al., 2020), which may facilitate their broader use in 
diverse sectors, particularly in forest restoration. Institutions in tropical 
countries should encourage the development of these technologies 
through investing in research, eliminating import taxes, encouraging 
open hardware development (Tsanni, 2020) and facilitating the arrival 
of specialized companies. 

There are many benefits that UAV-lidar-HSI systems bring to forest 
restoration monitoring, including the potential to monitor small areas 
with very high accuracy, reduced field sampling effort (de Papa et al., 
2020), and the increase of remote sampling for upscaling and generation 
of global models. Standardized monitoring protocols would help to 
evaluate restoration strategies’ efficacy and compare results across 
projects to learn from the past and inform future restoration efforts 
(Viani et al., 2018). The unprecedented scale of global forest restoration 
targets will need to be accompanied by the evolution of restoration 
monitoring approaches and delivering, at much-reduced costs and 
higher spatial and temporal scales, critical information for tracking 
restoration success and guiding adaptive management. This constitutes 
an enormous scientific and technological challenge that has just started 
to be addressed by a joint effort of restoration, policymakers, and remote 
sensing experts. The positive results obtained by the UAV-lidar-HSI 
system described here are very encouraging and may hopefully foster 
the ongoing development and application of remote sensing innovations 
in ecosystem restoration. 
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