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Abstract—State estimators are crucial components of
anomaly detectors that are used to monitor cyber-physical
systems. Many frequently-used state estimators are sus-
ceptible to model risk as they rely critically on the avail-
ability of an accurate state-space model. Modeling errors
make it more difficult to distinguish whether deviations
from expected behavior are due to anomalies or sim-
ply a lack of knowledge about the system dynamics. In
this letter, we account for model uncertainty through a
multiplicative noise framework. Specifically, we propose to
use the multiplicative noise LQG based compensator in
this setting to hedge against the model uncertainty risk.
The size of the residual from the estimator can then be
compared against a threshold to detect anomalies. Finally,
the proposed detector is validated using numerical sim-
ulations. Extension of state-of-the-art anomaly detection
in cyber-physical systems to handle model uncertainty
represents the main novel contribution of the present work.

Index Terms—Anomaly detection, multiplicative noise,
coupled riccatti, LQG, vulnerable CPS.

I. INTRODUCTION

CYBER-PHYSICAL Systems (CPS) are physical
processes that are tightly integrated with computation

and communication systems for monitoring and control.
Though advances in CPS design has equipped them with
adaptability, resiliency, safety, and security features that
exceed the simple embedded systems of the past, it often
leaves open several points for attackers to strike. CPS security
problems have attracted the attention of researchers worldwide
recently; some state-of-the-art anomaly detection algorithms
can be found in [1]–[3].
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A common practice is to model a CPS as either a deter-
ministic system or a stochastic system with additive Gaussian
uncertainties. Motivated by the recent developments in dis-
tributionally robust optimization (DRO) techniques [4]–[6],
authors in [7]–[9] have developed DRO anomaly detectors
that remove assumptions on specific functional forms of the
uncertainties in the stochastic CPS model. On the other hand,
it is a common practice to assume that the true CPS dynam-
ics are known exactly. Unfortunately, modeling and sampling
errors are inherent and significant in working with real systems
due to nonlinearities, learned (system identification, machine
learning) models, adaptive models, or simply due to chang-
ing environmental conditions or aging. A multiplicative noise
framework for capturing model uncertainty offers several com-
pelling advantages over additive noise models. It provides a
statistical description of the uncertainty that depends on the
control input and state [10]–[12]. Using a multiplicative noise
model, however, requires new tools to build and tune anomaly
detectors that accommodate the more general functional form
of the model.

State estimation is a crucial component in any model-based
anomaly detector design, which depends on a state-space model
for the system dynamics. This dependency causes limitations
on the usage of the classical Kalman filter as it critically relies
on the availability of an accurate state-space model, making it
susceptible to model risk. Robust Kalman filtering with additive
uncertainties was explored in [13], where the uncertain joint
distribution of the states and outputs was accounted for. Another
robust Kalman filter design was developed using a τ -divergence
based family of distributions in [14]. In [15], a Wasserstein
distributionally robust Kalman filter (W-DR-KF) was developed
to account for distributional uncertainty. However, a procedure
for jointly computing a pair of state estimator and feedback
gain to guarantee stability in this setting remains unexplored.

Although stochastic modeling of CPS with additive uncer-
tainty is well studied, there are no works to the best of
our knowledge which have considered both multiplicative
and additive noises together in the CPS security literature.
The evolution of non-Gaussian state distributions under the
effect of multiplicative noise invalidates use of the standard
Kalman filter, as the separation principle available in linear
quadratic Gaussian (LQG) setting in [16] no longer holds.
Though [10] considered both multiplicative and additive noises
in an optimal control setting, a restrictive Gaussian assump-
tion was imposed on the uncertainties. The approach in this
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letter builds on the foundation established by [17], where
the multiplicative noise-driven LQG (MLQG) problem was
solved by posing a set of coupled algebraic Riccati equations,
from which the optimal linear output feedback controller and
estimator gains were jointly computed.

Contributions: This letter is part of our ongoing
work [7], [8] to leverage powerful results in control theory and
distributionally robust optimization to design robust anomaly
detectors. Specifically, the detector threshold corresponding to
a desired false alarm rate in the setting considered in this
letter was computed through the moment-based approaches
explained [7]. In prior work we addressed detectors robust to
non-Gaussian additive noise. In this letter,

1) We design an anomaly detector for stochastic linear
cyber-physical systems that is robust to modeling errors.
To our knowledge, this is the first paper to consider tun-
ing an anomaly detector for a system model that incor-
porates model uncertainty. We propose a multiplicative
noise framework and integrate the MLQG compensator
to compute the residual.

2) We demonstrate our proposed approach using numerical
simulations and show that multiplicative noises result
in greater anomaly detector thresholds as long as mean
square compensatability conditions are satisfied.

The rest of the letter is organized as follows. In Section II, the
problem of monitoring an uncertain CPS with model uncer-
tainty is formulated. Then, the multiplicative noise driven
LQG compensator is discussed in Section III. Subsequently,
the anomaly detector design is presented in Section IV. The
proposed idea is then demonstrated using a numerical simu-
lation in Section V. Finally, the letter is closed in Section VI
along with directions for future research.

NOTATIONS & PRELIMINARIES

The set of real numbers, integers are denoted by R,Z. The
subset of real numbers greater than a ∈ R is denoted by
R>a. The set of integers between two values a, b ∈ Z with
a < b is denoted by [a : b]. We denote by S

n the set of
symmetric matrices in R

n×n and the cone of positive defi-
nite (semi-definite) matrices on S

n as S
n++(Sn+). An identity

matrix in dimension n is denoted by In. The Kronecker prod-
uct of two matrices A ∈ R

m×n, B ∈ R
p×q is denoted by A ⊗ B

and the vectorization of a matrix A ∈ R
m×n is denoted by

vec(A) ∈ R
mn and the matricization of vector x ∈ R

p is
denoted by mat(x, n, m) ∈ R

n×m where n×m = p. The trace of
a matrix A ∈ R

n×n is denoted by Tr(A). A probability distri-
bution with mean μ and covariance � is denoted by P(μ,�),
and specifically Nd(μ,�) if the distribution is normal in R

d.
Given a matrix A ∈ R

n×n and a vector valued random variable
z ∈ R

p, p ≥ 1 with E[z] = μ,E[(z − μ)(z − μ)�] = �, then
E[z�Az] = Tr(A�) + μ�Aμ.

II. PROBLEM FORMULATION

A. Uncertain CPS Model

We model an uncertain CPS for time k ∈ N using a
stochastic discrete-time linear time varying (LTV) system:

xk+1 = Akxk + Bkuk + wk, (1)

yk = Ckxk + vk. (2)

Here, xk ∈ R
n, uk ∈ R

m, and yk ∈ R
p are the system state,

control input, and output at time k. The next-state xk+1 ∈ R
n

is a random linear combination of the current state and process
noise wk, which is a zero-mean white noise process. Similarly,
the output yk ∈ R

p is a random linear combination of the states
and the sensor noise vk, which is a zero-mean white noise pro-
cess. The initial state is a random variable x0 ∼ Px0(0, �x0).
The system matrices are decomposed as

Ak =
(

Ā + Âk

)
, Bk =

(
B̄ + B̂k

)
, Ck =

(
C̄ + Ĉk

)
,

Âk =
na∑

i=1

γkiAi, B̂k =
nb∑

j=1

δkjBj, Ĉk =
nc∑

l=1

κklCl. (3)

where Ā, B̄, C̄ denote the nominal dynamics, control, and
output matrices respectively. Given the constants, na, nb, nc ∈
Z>0, the multiplicative noise terms are modeled by the i.i.d.
across time (white), zero-mean, mutually independent scalar
random variables γki, δkj, κkl, which have variances σ 2

a,i, σ 2
b,j,

σ 2
c,l for i ∈ [1 : na], j ∈ [1 : nb], l ∈ [1 : nc] respec-

tively. The pattern matrices Ai ∈ R
n×n, Bj ∈ R

n×m, and
Cl ∈ R

p×n specify how each scalar noise term affects the
system matrices. It is then evident from (1) and (2) that
Âk, B̂k, and Ĉk quantify uncertainty about the nominal system
matrices Ā, B̄, and C̄ respectively. The distributions of all the
scalar multiplicative noise random variables are assumed to be
known. The covariance of the additive noises1 (�w, �v) are
assumed to be known; they may be estimated from collected
data via, e.g., bootstrap sample averaging. For simplicity,
we assume that x0 and all the additive, multiplicative noises
wk, vk, {γki}na

i=1, {δkj}nb
j=1, {κkl}nc

l=1 are mutually independent of
each other. We denote the first moment, second moment, and
covariance of the state at time k as μxk = E[xk], Vk = E[xkx�

k ],
and �xk = E[(xk − μxk)(xk − μxk)

�], respectively. Likewise,
we denote the first moment, second moment, and covariance
of the output at time k as μyk = E[yk], Yk = E[yky�

k ], and
�yk = E[(yk − μyk)(yk − μyk)

�], respectively.

B. Review of Concepts

Here, we re-state some definitions from [17] on the mean
squared versions of stabilizability, detectability and the result-
ing compensatability of systems given by (1) and (2).

Definition 1: The system in (1) is mean-square stable if
∀x0 ∈ R

n, ∃V∞ ∈ S
n+ such that

lim
k→∞ Vk = lim

k→∞E

[
xkx�

k

]
→ V∞.

Definition 2: The system in (1) is mean-square stabilizable
if there exists a control gain matrix K ∈ R

m×n such that using
controls uk = Kxk makes (1) mean-square stable.

Definition 3: The system in (1) and (2) is mean-square
compensatable if there exist control and filter gain matrices
K ∈ R

m×n and L ∈ R
n×p such that the system[

xk+1
x̂k+1

]
=

[
Ak BkK

LCk Ā + B̄K − LC̄

][
xk
x̂k

]

1Even when the primitive random variables wk, vk, x0 are assumed to be
Gaussian, the resulting Pxk at any time step k > 0 will be non-Gaussian due
to the multiplicative noise.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on March 20,2022 at 15:52:11 UTC from IEEE Xplore.  Restrictions apply. 



RENGANATHAN et al.: ANOMALY DETECTION UNDER MULTIPLICATIVE NOISE MODEL UNCERTAINTY 1875

is mean-square stable.
Assumptions:
1) The system given by (1) and (2) is mean-square com-

pensatable.
2) The optimal state estimator at any time k given (1)

and (2) is an affine2 function of the output yk.
Problem 1: Under the above assumptions for a given

stochastic CPS model specified by (1), (2), obtain residual
data from an appropriate state estimator module that accounts
for both multiplicative and additive noises, and subsequently
design an anomaly detector threshold such that the worst case
false alarm rate does not exceed a desired value.

III. RESIDUALS VIA MULTIPLICATIVE NOISE LQG

Due to the multiplicative noises in (1) and (2), the state
distribution will be non-Gaussian even when all primitive
noise distributions are Gaussian. Further, the classical sepa-
ration principle from the additive noise setting does not hold
in presence of multiplicative noises [17]. This necessitates
a framework where the optimal controller and the estimator
gains are computed jointly. Here, we elaborate on obtaining
the residual from CPS using the multiplicative noise-driven
LQG and show that the residual covariance is a function of
both additive and multiplicative noise covariance matrices.

A. Designing Multiplicative Noise-Driven LQG

Under both multiplicative and additive noises in the system,
the optimal linear output feedback controller can be exactly
computed through the combination of a multiplicative noise
KF with a multiplicative noise LQR as described in [10],
[17], [18]. We consider the multiplicative noise-driven linear-
quadratic Gaussian (MLQG) optimal control problem, which
requires finding an output feedback controller uk = πk(y0 : k)

for a system given by (1) and (2):

minimize
πk∈	k

lim
T→∞

1

T
EEk

[
T−1∑
k=0

x�
k Qxk + u�

k Ruk

]
,

subject to (1), (2), (4)

where Ek = {x0, {Âk}, {B̂k}, {Ĉk}, {wk}, {vk}}, Q � 0, R 
 0.
Then, the optimal linear compensator gain matrices can
be computed by solving the following coupled nonlin-
ear matrix Riccati equations in symmetric matrix variables
P1, P2, P3, P4 ∈ S

n+:

P1 = Q + Ā�P1Ā +
na∑

i=1

σ 2
a,iA�

i P1Ai − K�KαK

+
na∑

i=1

σ 2
a,iA�

i P2Ai +
nc∑

i=1

σ 2
c,iC�

i L�P2LCi, (5)

P2 = (Ā − LC̄)�P2(Ā − LC̄) + K�KαK, (6)

P3 = �w + ĀP3Ā� − LLαL� +
na∑

i=1

σ 2
a,iAiP3A�

i

+
na∑

i=1

σ 2
a,iAiP4A�

i +
nb∑

i=1

σ 2
b,iBiKP4K�B�

i , (7)

2It is possible to design a nonlinear state estimator to outperform a given
affine estimator in this setting. However, it is out of the scope of this letter.

P4 = (Ā + B̄K)P4(Ā + B̄K)� + LLαL�, (8)

where for notation simplicity, we denote

Kα = R + B̄�P1B̄ +
nb∑

j=1

σ 2
b,jB�

j P1Bj +
nb∑

j=1

σ 2
b,jB�

j P2Bj (9)

Lα = �v + C̄P3C̄� +
nc∑

j=1

σ 2
c,jCjP3C�

j +
nc∑

j=1

σ 2
c,jCjP4C�

j . (10)

Then, the associated optimal controller and estimator gains
(K, L) are given by

K = −K−1
α B̄�P1Ā, (11)

L = ĀP3C̄�L−1
α . (12)

Finally, the optimal linear compensator is

uk = Kx̂k, and (13)

x̂k+1 = (Ā + B̄K)x̂k + L(yk − C̄x̂k),

= (Ā + B̄K − LC̄)x̂k + LCkxk + Lvk (14)

It is necessary to account for the multiplicative noise to achieve
the minimum quadratic cost; furthermore, it is straightforward
to find systems in (1) and (2) which are mean-square unsta-
ble when controlled by (multiplicative-noise-ignorant) LQG,
meaning that it is necessary to account for multiplicative noise
to achieve mean-square stability.

B. Residual From Multiplicative Noise LQG

We define the estimation error as ek = xk − x̂k. Then the
estimation error evolves as follows

ek+1 = (Ā − B̂kK − LC̄)ek + (Âk + B̂kK − LĈk)xk + wk − Lvk. (15)

It is evident from above that estimation error is a function of
the multiplicative noise terms. We now elaborate how to obtain
the residual signal required for anomaly detection. Define the
residual rk ∈ R

p as

rk = yk − C̄x̂k = C̄ek + Ĉkxk + vk and (16)

E[rk] = E[C̄ek + Ĉkxk + vk] = C̄E[ek]. (17)

Then, rk is not necessarily Gaussian due to the multiplicative
noise and has mean E[rk] = C̄E[ek] (it becomes zero mean
∀k ≥ 0 if e0 = 0) with raw second moment matrix whose
vectorized form is given by

Rk = (
C̄ ⊗ C̄

)
Ek + E

[
Ĉk ⊗ Ĉk

]
Xk + vec(�v). (18)

To compute the steady state raw second moments of the
residual rk, we define

Ek = vec
(
E[eke�

k ]
)
, Xk = vec

(
E[xkx�

k ]
)
,

X̃k = vec
(
E

[
xkx̂�

k

])
, X̆k = vec

(
E

[
x̂kx�

k

])
,

X̂k = vec
(
E

[
x̂kx̂�

k

])
, Rk = vec

(
E[rkr�

k ]
)

Xk := [
X�

k X̃�
k X̆�

k X̂�
k

]�
, V :=

[
vec(�w)

vec(�v)

]
,

�′
A = E

[
Âk ⊗ Âk

]
=

na∑
i=1

σ 2
a,i(Ai ⊗ Ai),
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Fig. 1. The Matrix H in (19) with terms containing the second moments of entries of the vector Xk .

�′
B = E

[
B̂k ⊗ B̂k

]
=

nb∑
j=1

σ 2
b,j(Bj ⊗ Bj),

�′
C = E

[
Ĉk ⊗ Ĉk

]
=

nc∑
l=1

σ 2
c,l(Cl ⊗ Cl).

Then, it is straight forward to see that Xk evolves as follows

Xk+1 = HXk +

⎡
⎢⎢⎣

In ⊗ In 0n2×1
0n2×n2 0n2×1
0n2×n2 0n2×1
0n2×n2 L ⊗ L

⎤
⎥⎥⎦

︸ ︷︷ ︸
:=�

V, (19)

where the matrix H in (19) gathers all the resulting coefficients
obtained while expanding the entries of the vector Xk. The
algebra resulting in the following expression of H is available
in the Appendix of [19]. Since the optimal gain matrices K, L
achieve mean-square compensation of the system (1) and (2),
the covariance of the estimation error will have a steady state
value. Since by assumption, Ā−LC̄ is Schur stable, we see that
E[ek] → 0 as k → ∞ regardless of the initial state-residual
e0 which in turn results in E[rk] → 0 as k → ∞. That is,
E[e∞] = 0 =⇒ E[r∞] = 0 and subsequently in steady state,

X∞ = HX∞ + �V . (20)

⇐⇒ X∞ = (I4n2 − H)−1�V . (21)

This amounts to solving a (generalized) Lyapunov equation.
Such an equation can be solved more efficiently by specialized
solvers which do not require the inverse to be computed explic-
itly; for simplicity we present the equation and its solution in
this form. However, the Schur stability of the matrix H sub-
ject to the mean-square compensation achieved by the matrices
(K, L) determines whether the resulting X∞ (which exists
no matter whatever approach is used to compute it) can be
employed to compute the steady state residual moments. For
instance, in a strong multiplicative noise setting, the matrix H
defined using (K, L) matrices that do not achieve mean-square
compensation will not be Schur stable and the resulting X∞
cannot be used meaning that steady state �r does not exist.
Having obtained a valid X∞, the steady state second moments
of the state- and output-residuals can then be computed as

E∞ = X∞ − X̃∞ − X̆∞ + X̂∞, and (22)

R∞ = (C̄ ⊗ C̄)E∞ + �′
CX∞ + vec(�v). (23)

Finally, using the matrix reshaping operator mat(·), we retrieve
the steady state �r as follows

�x∞ = mat(E∞, n, n), and (24)

�r = mat(R∞, p, p). (25)

IV. ANOMALY DETECTOR DESIGN WITH RESIDUAL

FROM MLQG COMPENSATION

We now present how to analyze the residual obtained from
the MLQG compensator and elaborate the procedure to con-
struct the corresponding anomaly detector threshold in this
section. Note that the covariance of the residual computed
through (18) is a function of covariance matrices of both the
additive and multiplicative noises. This is in sharp contrast to
the case in [7], [8] where the residual covariance was just a
function of the additive noise covariance. Further, to account
for the changes in the covariance of the residual, we form a
quadratic distance measure as

qk = r�
k �−1

r rk. (26)

It is then straightforward to see that

E[qk] = E[r�
k �−1

r rk]

= Tr(�−1
r �r) + (C̄E[ek])��−1

r (C̄E[ek])

= p + (E[ek])�C̄��−1
r C̄E[ek]. (27)

This implies that (27) is applicable only when mean-square
compensation is achieved through properly designed (K, L)

matrix pair as the steady state �r is guaranteed to exist in that
case. Then, for a given qk from (26) and a threshold α ∈ R>0
corresponding to a desired false alarm rate F , the anomaly
detector can be designed such that alarm time(s) k� ∈ N are
produced according to the following rules

{
qk ≤ α, no alarm,

qk > α, alarm: k� = k.
(28)

If Prk was Gaussian, then qk would follow the chi-squared
distribution, meaning that for a given tail probability defined
using F , the chi-squared detector described as in [2] can be
used to obtain the required detector threshold. However, in our
setting due to the multiplicative noises, Prk is non-Gaussian
and thereby the chi-squared detector is not appropriate. We
instead utilize a moment-based approach for constructing the
threshold. We propose to use the higher-order moment based
anomaly detector design proposed in [7] to design the detector
threshold in this setting. The residual qk is collected for a
sufficiently long period of time to form the s-moments based
ambiguity set Ps

q := {Pq | E[qs
k] = Ms

q}. The optimal threshold
α�

q,s
3 satisfying

sup
Pq∈Ps

q

Pq

[
qk > α�

q,s

]
≤ F , (29)

can then be obtained by directly invoking [7, Th. 4] corre-
sponding to a given desired false alarm rate F .

3The two subscripts q, s in α�
q,s denote the random variable and the number

of moments considered respectively.
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V. NUMERICAL RESULTS

We consider an inverted pendulum with a torque-producing
actuator whose dynamics have been linearized about the verti-
cal equilibrium. That is, the pendulum of mass m is suspended
by a mass-less rod of length l and the angle θ is measured from
the downward vertical with positive counter clockwise direc-
tion. The corresponding nonlinear differential equation of the
pendulum mass is

θ̈ = mc sin(θ) + τ, (30)

where mc = − g
l denotes the uncertain mass constant. Let us

denote the state vector by x = [
x1 x2

] = [
θ θ̇

]
and the

torque input by u = τ . Then, the corresponding discrete time
dynamics obtained through the forward Euler discretization of
the linearized dynamics of (30) around the equilibrium point
x̃ = (π, 0) with step size �t is

xk+1 =
[

1 �t
mc�t 1

]
xk +

[
0
�t

]
uk + wk. (31)

Uncertainty on the mass constant mc corresponds to uncer-
tainty on the matrix A. We consider an example where the
true mass constant is mc = 10, but the nominal model under-
estimates it as mc = 5. We take a step size �t = 0.1. At
discrete time instances, the sensor returns a noisy measurement
of the angular position of pendulum. Hence the corresponding
linearized noisy output model is,

y = θ + vk = [
1 0

]
xk + vk. (32)

Both wk and vk are sampled from the multivariate Laplacian
(which has heavier tails than Gaussian with same mean
and covariance) with zero-mean and covariance �w = 2In,
�v = 2Ip respectively. The state and control penalty matri-
ces are Q = In, R = Im respectively. The multiplicative
noise was considered to exist both in the A and C matri-

ces, with the direction matrices being A1 =
[

0 0
1 0

]
and

C1 = [
0.1 0

]
with the multiplicative noise variances γk,1 ∼

N (0, σ 2
a,1), κk,1 ∼ N (0, σ 2

c,1) respectively. The non-Gaussian
additive primitive noises wk, vk along with these multiplicative
noises render the traditional chi-squared detector to be inef-
fective as the system states will evolve to be non-Gaussian
for all t > 0. Through simulation, we collected the quadratic
distance measure qk data for T = 107 time steps for the
above system with multiplicative noises under two different
settings namely, 1) using the standard LQG, and 2) using
multiplicative noise-driven LQG compensators. The qk data
was then used to tune the anomaly detector for a desired
false alarm rate of F = 5% using [7, Th. 4] with s = 4
moments in (29) and along with a bisection tolerance of
ε = 10−4. The resulting moment bound problem was solved
using the SOSToolbox on MATLAB with the SeDuMi solver.
The code is made publicly available at https://github.com/
TSummersLab/AnomalyDetectionMultiplicativeNoise

A. LQG & MLQG With Low Multiplicative Noises

When the system was simulated with low multiplicative
noise variances σ 2

a,1 = σ 2
c,1 ≤ 0.10, the resulting (K, L) matrix

pair from both the LQG and the MLQG compensators had sim-
ilar values and the anomaly detectors from both compensators

Fig. 2. Detector Threshold With Multiplicative Noise: The his-
tograms of the qk using the MLQG and LQG estimators with σ2

a,1 =
σ2

c,1 = 0.06 are shown in red and cyan colors respectively. The moment
based polynomial g(q) shown in blue and red curves bound their indica-
tor functions in shaded blue and red respectively. Though both MLQG
and LQG achieve mean-square compensation, the MLQG results in a
tighter threshold than the LQG.

TABLE I
EFFECT OF VARYING THE LOW MULTIPLICATIVE NOISE VARIANCES

(σ2
a,1 = σ2

c,1) ON THE RESULTING λmax(H ) CORRESPONDING TO LQG
AND MLQG COMPENSATORS ARE SHOWN HERE

had similar good performances. However, the performance of
MLQG started getting better with σ 2

a,1 = σ 2
c,1 > 0.10 and

the results with σ 2
a,1 = σ 2

c,1 = 0.06 are shown in Figure 2.
The histograms of the qk data using the MLQG and LQG
estimators are shown in red and cyan colors respectively. The
mean-square compensation of the MLQG compensator was
verified via the convergence of the coupled Riccati equa-
tions and subsequently the corresponding collected qk data
resulted in an optimal detector threshold α�

q,4 = 8.247 with
false alarm rate being 0.89%. Similarly, when the qk data
collected from the standard LQG was evaluated against a sim-
ilarly computed threshold α�

q,4 = 8.422, it resulted in 0.86%
false alarms. Though both MLQG and LQG achieve mean-
square compensation at a lower noise setting, the MLQG
results in a tighter threshold than the LQG. Further, the result-
ing H matrix from LQG compensator ceased to be Schur
stable for σ 2

a,1 = σ 2
c,1 > 0.11 agreeing with results in Table I.

Supposedly, if we used the unstable H matrix in the LQG case,
it resulted in Ê[qk] → ∞ when the variances became stronger
and thereby restricted us from using even the simplest Markov
bound in this case to obtain the detector threshold.

B. Effect of Multiplicative Noise Variance on the Worst
Case False Alarm Rate

Here, we show how the variances σ 2
a,1, σ

2
c,1 of the

multiplicative noises γk,1, κk,1 respectively affect the result-
ing anomaly detector’s worst case false alarm rate. Starting
from σ 2

a,1 = σ 2
c,1 = 0.15, we simulated the system by

increasing the variances and the results are in Table II. It
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TABLE II
EFFECT OF VARYING THE MULTIPLICATIVE NOISE VARIANCES
(σ2

a,1 = σ2
c,1) ON THE RESULTING λmax(H), STEADY STATE �r ,

OPTIMAL THRESHOLD α�
q,4, SAMPLE BASED MEAN Ê[qk ] AND THE

WORST CASE FALSE ALARM RATES Fworse FROM THE MLQG
COMPENSATOR ARE SHOWN HERE. IT IS EVIDENT THAT THE MLQG IS

CAPABLE OF MEAN-SQUARE COMPENSATING THE SYSTEM EVEN
WITH INCREASING MULTIPLICATIVE NOISE VARIANCES UP TO A LIMIT

is evident that MLQG compensator was capable of mean-
square compensate the system with increasing covariances
by resulting in finite mean (equal to 1 and thereby agree-
ing with (27)). Starting from σ 2

a,1 = σ 2
c,1 ≥ 0.45, numerical

issues started accompanying the threshold calculations due to
exploding values of the moments (can be addressed using
orthogonal basis such as the Legendre polynomial basis to pro-
vide numerical stability). Specifically, when the variances were
increased beyond σ 2

a,1 = σ 2
c,1 ≥ 3.77, the coupled Riccatti

equations corresponding to the MLQG stopped converging as
mean-square compensation was lost for such higher variance
multiplicative noises. The effect of increasing variance also
affected the resulting false alarm rates when the residuals from
the MLQG compensator was compared against its respective
threshold. The resulting optimal threshold α�

q,4 increased when
the multiplicative noise variances increased. For this reason, in
this problem setting the false alarm rate of MLQG happened
to decrease with increased multiplicative noise variance; there
is a nontrivial relation between the multiplicative noise vari-
ances and the threshold designed by the detection scheme,
which depends, e.g., on the coupled Riccati equation solution.
As shown in Table II, the MLQG with finite set of s = 4 empir-
ical moments starting from Ê[qk] guaranteed that the resulting
worst case false alarm rate are always upper bounded by the
desired value of F = 5%.

VI. CONCLUSION

An extension of the state-of-the-art anomaly detec-
tion algorithms for CPS with modeling errors via the
multiplicative noise framework was discussed in this letter.
The multiplicative noise-driven LQG being a robust state esti-
mator was used to hedge against the model risk to construct the
state estimate. The proposed method was demonstrated using a
numerical simulation. Future work seeks to investigate the set-
ting where the multiplicative noise distributions are unknown

and to obtain online estimates of the system dynamics through
system identification technique combined with the above com-
pensator for implementing data-driven distributionally robust
anomaly detection for vulnerable CPS.
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