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Abstract— We propose a two-phase risk-averse architecture
for controlling stochastic nonlinear robotic systems. We present
Risk-Averse Nonlinear Steering RRT* (RANS-RRT*) as an
RRT#* variant that incorporates nonlinear dynamics by solving
a nonlinear program (NLP) and accounts for risk by approxi-
mating the state distribution and performing a distributionally
robust (DR) collision check to promote safe planning. The
generated plan is used as a reference for a low-level tracking
controller. We demonstrate three controllers: finite horizon lin-
ear quadratic regulator (LQR) with linearized dynamics around
the reference trajectory, LQR with robustness-promoting mul-
tiplicative noise terms, and a nonlinear model predictive control
law (NMPC). We demonstrate the effectiveness of our algorithm
using unicycle dynamics under heavy-tailed Laplace process
noise in a cluttered environment.

I. INTRODUCTION

Safe deployment of mobile robots in uncertain dynamic
environments, such as urban streets and crowded airspaces,
requires a systematic accounting of various risks, both within
and across layers in an autonomy stack. These autonomy
stacks are naturally partitioned into a hierarchy of i) a high-
level planner which generates a reference trajectory (often)
offline before system operation, and ii) a low-level controller
whose purpose is to track the reference trajectory in an online
fashion and incorporate feedback to mitigate the effect of
disturbances. The survey [12] examines several approaches
for motion planning and control of autonomous ground
vehicles and suggests two additional upper layers in the
hierarchy, namely route planning and behavioral decision-
making. In this paper, we assume such route plans and
behavioral decisions are encapsulated by the motion planning
and control problems.

Many motion planning algorithms have been developed
under deterministic settings and assume linear robot dynam-
ics in order to simplify their analysis and design. However,
in practice, robotic systems are inherently both nonlinear
and stochastic in nature due to external disturbances and
noisy onboard sensors. In the presence of model uncertainty
or process noise, the resulting trajectory is only a nominal
reference and there are no guarantees of its safety. To account
for the stochastic components and to provide probabilistic
guarantees, motion planning under uncertainty has been
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considered in several lines of recent research [2], [18].
Specifically, risk-aware motion planning algorithms for linear
robot dynamics were developed recently using CVaR- [6] and
Wasserstein metric- [8] based formulations.

A chance-constrained version of RRT and RRT* respec-
tively were proposed in [9], [10], where chance constraints
were used to encode the risk of constraint violation to
provide probabilistic feasibility guarantees for robots with
linear dynamics under additive uncertainties. On the other
hand, these approaches made questionable assumptions of
Gaussianity for system uncertainties ostensibly to maintain
computational tractability. It was shown in [16] that such
assumptions can lead to significant miscalculations of risk,
and hence moment-based ambiguity sets were formulated
to propose a distributionally robust variant of RRT called
DR-RRT. This approach was extended in [13] to design an
asymptotically optimal RRT* using output feedback with
linear quadratic regulator and Kalman filter-based state es-
timation. Here we take a first step towards designing risk-
aware nonlinear steering-based motion plans for nonlinear
robotic systems. This is closely aligned with the problem
addressed by authors in [7].

A low-level tracking controller is implemented to suc-
cessfully track a given reference trajectory in the presence
of uncertain process disturbances. In this work, we assume
perfect state estimates are available and consider full-state
feedback controllers. The linear-quadratic regulator (LQR)
controller being the most common can be obtained through
dynamic programming where a quadratic cost involving state
deviation and control effort is minimized. The LQR con-
troller can further be generalized to achieve robust stability
under parametric model uncertainties by designing it to
mean-square stabilize the system with the inclusion of multi-
plicative noises as described in [5] (LQRm). However, both
LQR controllers cannot handle state and input constraints.
On the other hand, NMPC explicitly considers both state and
input constraints [11]. The authors in [4] used the nonlinear
model-predictive control (NMPC) to track the LQR-RRT*
trajectory to make up for linearization error. By contrast, we
use NMPC to track a risk-averse RRT* trajectory generated
by a nonlinear program (NLP)-based steering function which
much more closely resembles the low-level NMPC controller.

Contributions:

1) We present RANS-RRT*, a new sampling-based motion
planner for nonlinear robotic systems which constructs
dynamically feasible trajectories that satisfy distribu-
tionally robust state constraints to promote safety.

2) We demonstrate our proposed approach on unicycle
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dynamics under heavy-tailed Laplace process noise in
a cluttered environment. We provide a comparative
study of the collision-avoidance rate, state deviation and
control costs, and computational expense of three low-
level reference tracking controllers i) LQR, ii) LQRm
and iii) NMPC, across a range of disturbance strengths,
through Monte Carlo simulations.

The rest of the paper is organized as follows. The notation,
preliminaries and problem formulations are presented in §I.
The proposed nonlinear dynamics-based high level motion
planner is elucidated in §II. Low-level tracking controllers
are described in §III. Simulation results are reported and
analyzed in §IV. Finally, the paper is closed in §V along
with directions for future research.

NOTATIONS, PRELIMINARIES & PROBLEM FORMULATION

The set of real numbers and natural numbers are denoted
by R, N respectively. The subset of natural numbers between
a,b € N with a < b is denoted by [a : b]. The operator \
denotes set subtraction and | C | denotes the cardinality of
the set C. An identity matrix in dimension n is denoted by
I,. The operator (-)¢ denotes the set complement.

A. Environment and Obstacles Specification

Consider a robot in an environment X C R” with static
obstacles. It is expected to navigate the environment X while
safely avoiding obstacles at all times. We denote the set
of all obstacles by B with |B| = F > 0. The environment
and obstacles (assumed disjoint) are convex polytopes and
hence can each be represented as a conjunction of halfspace
constraints. The space occupied by the i obstacle in B is
denoted O;. The union of the space occupied by all obstacles
is C:= Uf: 10;. Hence the free space in the environment is
given by X free := X\C =X\ UL, O; where

X= {x ‘ Aepx < benv}, 0;= {x | Aabix < bobi}voi € B.
For a given deterministic state s € R", the condition for
collision avoidance with all obstacles is s  C < AL, (s € O;)

where each individual obstacle avoidance constraint can be
expressed as

Nob;
sZ0; & (Aob,-s < bobs,-) ~ \/j:1 (a(.l;b,-,js > bob,-,j) >

and the condition for collision avoidance with the environ-
ment bounds is

sEX & Aew ((IT s < benv,j) s

j=1 env,j

where n,),, are the number of constraints for obstacle O;
and n.,, are those of the environment. The total number of
constraints is denoted 7,4 = Heny +):f:1 Rop; -
B. Robot System Dynamics

For all time instances k € N, we model the robot as a
discrete-time nonlinear dynamical system given by:

xlk+1] = f(xlk], ulk]) +wlk],  x[0] =x0, (1)

where x,w € R*, u € R™ are the system state, additive
disturbance, and control input, respectively, at the time step

indexed in the brackets, xo € R" is the initial state, and
f:R"xR™ — R” is the robot dynamics that represents the
nonlinear transformation. The disturbances wlk] are assumed
independent and identically distributed according to some
prescribed distribution P} ~ (0,X}).

C. Unscented Transformation and Moment Estimation

The unscented transformation (UT) can be used to esti-
mate the statistics of a random variable which undergoes
a nonlinear transformation. An ensemble of 27+ 1 samples
called sigma points are generated deterministically [17] and
propagated individually through the nonlinear transformation
to yield an ensemble of transformed sigma points. The
weighted statistics of the transformed sigma points approx-
imate the statistics of the transformed random variable.
Though parameters that generate the sigma points can be
tailored for specific distributions, there is no pre-defined set
of rules that work in general for all distributions. For a
discrete-time nonlinear robot system as in (1), we can use
the UT to estimate the mean and covariance of the next state
given the current one. To do so, the ensemble of 2n+1 sigma
points are obtained as follows

k-1, i=0,
yilk] = { =1+ (VO DEE=T]) . i=[1:n]
)?[kfl]f(«/(nJr)L)EX[kfl});, i=[n+1:2n]
where (\/(n+A)Zk—1]); is the i* row or column of
the matrix \/(n—+A)Xc[k— 1] obtained through Cholesky

decomposition. Then, the weights below are used to scale
xilk] in the estimation of the mean and covariance

m _ A (0 _ A a2 A
WO 711-1-},’ 0 1 (04 +ﬁ> (2)

Cn+A
W —w© = A o)
! ! 2(n+A)’ Y
A = &%(n+x) —n is a scaling parameter where &, B,k are
used to tune the unscented transformation. Usually B =21s
a good choice for Gaussian uncertainties, Kk =3 —n is a good
choice for k, and 0 < & <1 is an appropriate choice for &,
where a larger value for & spreads the sigma points further
from the mean. Using the above-obtained sigma points and
the weights defined in (2), the estimated mean and covariance
of the random variable x[k] under the dynamics (1), assuming
Gaussian noise w, are computed as follows.

Silkl = f (ilk, wilk = 1), i =1[0:2n],

2n
2K =~ Y Wk,
i=0

2n
£k ~ gwf‘)(éﬂk] — 2K (&K — £[k])T + 2.

D. Moment-Based Ambiguity Set for The State Distribution

The state x[k] Vk € N5 is a random vector. The state
x[k —1], under input u[k — 1] and the noise w[k — 1], evolves
to x[k]. Due to the difficulty in estimating the distribution
of a random variable under a nonlinear transformation,
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we will assume that a state x[k] belongs to an unknown
distribution IP;. Since we can estimate its first two moments,
we can consider a moment-based ambiguity set &7 with
the estimated moments. This will guarantee robustness to
errors in propagating the state distribution due to the non-
linear dynamics. It can also provide robustness to moment
estimation errors. The mean and covariance we consider for
the ambiguity set are the ones we estimate through the UT
and thus we get the following estimate for the ambiguity set:

Py =Py [E[x[K] = 2[K],
E|(x[k] — 2[K]) (x[K] — 2[K])T] = £4[k]}

For Gaussian inputs, the above moment estimates from UT
are accurate up to the third-order approximation and for the
case of non-Gaussian, the approximations are accurate to at
least the second-order as described in [17].

E. Nonlinear Motion Planning Problem

The planning problem provides a high-level solution that
can then be used by low-level tracking controllers. This plan
can be computed offline and requires finding an optimal
reference trajectory that satisfies the robot dynamics, state
and input constraints, and risk constraints. In this work, we
consider the following planning problem.

Definition 1 (Optimal Risk-Based Path Planning Problem).
Given an initial state x[0] € X and a set of final goal loca-
tions X0,y C X, find a measurable state-and-input-history-
dependent control policy 7 = [r[0],... [T — 1]] with ulk] =
m[k](x[0 : k],u[0 : kK —1]) that minimizes the finite-horizon
additive cost function subject to constraints:
T-1
Jy=min Y g [k] ( [x[k]] ,u[k])) + gu[T] (E[{T]]) 3)
k=0

s.t. (1)
wik] ~ B )
ulk] € UK, )
]P’ilél,;]fpi (X[k] S xfree) Z 1- (07 (6)
E[x[T]] € Xgoar. (7)

Here, g |k] Yk € [1:T] is a stage cost function, (5) is the
inputs constraint, (6) is the states risk constraint that ensures
that the state, under the worst-case distribution, is in the free
space with high probability specified through the stage risk
bound oy, € (0,0.5], and (7) is the goal constraint requiring
the final state to be in the goal region.

Remark 1. The risk constraint (6) is infinite dimensional and
generally non-convex which makes this problem challenging.

To understand the stage risk constraints (6) in the context
of trajectory safety, let PS denote the event that plan P
succeeds and PF be the complementary event (i.e. fail-
ure). Consider the plan succeeding with high probabil-
ity P(PS) > 1— B, B €[0,0.5] or equivalently it failing
with low probability P(PF) < . Failure requires at least
one stage risk constraints to be violated. Using the fact

that infpre oox P (x[k] € Xfree) > 1 — 04 is equivalent to
SUDpre gox P{ (x[k] & X free) < 04 and Boole’s law, the proba-
bility of the success event can be lower bounded as follows:

P(PS)=1-P(P")=1-P (LTJXV‘} 7 xf)

k=0

>1— sup P |Jx[k] €Xpree
Prevk  \x0o

T T

>1-Y sup P (a[k] & Xpree) 21— Y =1
k=0Pre 7 k=0

k] ~ W)

If the stage risks Vk € [0: T] are equal, meaning oy = .,
then B = (T + 1)o. Furthermore, if the stage risk oy = ¢t is
equally distributed over all ny,, constraints, then, the risk
bound for a single constraint is & /n;y, and the risk bound
for a single obstacle O; (or the environment X) is 0tn,p, /Ntoral
(or anenv/ntotal)-

Remark 2. In general, T may not be known ahead of time.
For sampling-based planners, T depends on the random
nodes sampled. In such cases, an upper bound can be used
Tnax > T. The choices of Tyay, the risk bound on the plan’s
failure B, and the risk budget allocation across time steps
and constraints are design parameters. Alternatively, it is
also possible to build up the risk bounds from the individual
constraints into a risk bound on the whole plan [15].

F. Nonlinear Reference Trajectory Tracking Problem

Given a reference trajectory X[k] for k € [0: T] generated
by the high-level motion planner, the reference tracking
problem involves minimizing deviations of the state x[k] from
the reference state X[k] subject to the nonlinear dynamics
and realizations of all system uncertainties. This problem is
formally presented below.

Definition 2 (Optimal reference trajectory tracking problem).
Given reference trajectory X[k] for k € [0 : T|] such that
%[0] = x[0] and X[T] € Xgou, find a measurable state-and-
input-history-dependent control policy 7 = [7[0],... [T —1]]
with u[k] = [k](x[0: k],u[0 : k— 1]) that minimizes the finite-
horizon additive cost function subject to constraints:

T-1
Ju=min E kZ(gu[k](f[khx[k],u[k]))+gu[T](f[T],X[TD
=0
st (1),(4),(5)

where g [k]Vk € [1:T] is a stage cost function that penalizes
the control effort and deviations of the robot state from those
of the reference trajectory at each time step.

II. HIGH LEVEL PLANNER: RANS-RRT*

The high-level planner finds an optimal (or approximately
optimal) plan for the low-level controller to execute. If the
plan gets close to obstacles, tracking might fail due to process
noise. By incorporating uncertainty in the high-level planner,
a more conservative, but safe, trajectory is designed. In this
work, we present an approximate solution to the problem
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in Definition | using rapidly exploring random trees. We
propose RANS-RRT*: a Risk-Averse, Nonlinear Steering
RRT* planner. Below, we discuss: 1) the NLP problem used
to steer between tree nodes, 2) the mean and covariance
propagation along such a trajectory segment, 3) the treatment
of uncertainty and risk, and 4) the RANS-RRT* algorithm.

A. NLP Steering

Our RANS-RRT* algorithm employs a nonlinear steering
law to compute a trajectory 7 of length N consisting of
state and input pairs .7 = {(so,uo),...,(sn,un)} that drive
an initial state s;,; to a final one s;,5. The first state belongs
to the RANS-RRT* tree T and the other is either a sampled
state or another tree state. NLP steering is defined below.

Definition 3 (NLP Steering). Given an initial state s,
a desired state sg., and a steering horizon N, the NLP
steering solution is the set of states {so,...,sy} and controls

{uo,...,un—1} to the following deterministic optimization
problem without any risk constraints.
N—1
Jup = min k:ZO g RKJuy (8)
St S0 = Sinit, SN = Sdes, S[k+ 1] = f(s[k],ulk]).

B. Mean and Covariance Propagation

NLP  steering returns the trajectory I =
{(s0,u0),---,(sN—1,un—1),(sn)}. To use this in the RANS-
RRT* tree 7, as a trajectory between two nodes, we need the
mean state, covariance of the state, and control law. Since
the dynamics are nonlinear and the NMPC control policy is
the solution of a constrained optimization problem without
an explicit form as a function of the state, it is extremely
challenging to incorporate the NMPC feedback law into the
RANS-RRT#* trajectories. As such, we use the open-loop
controls of the NLP trajectory 7. As a byproduct, we
also require the mean states in the RANS-RRT* trajectory
to match the states of the NLP trajectory 7. With the
mean states and inputs fixed according to .7, we only need
to estimate the covariance at the mean states. To do so,
we use the UT with the NLP controls and match the UT
mean states with the NLP states. This returns covariances
associated with every state that are used in enforcing
risk bounds. Thus, for every computed NLP trajectory .7
we obtain a RANS-RRT* trajectory of the form traj, =
{ (R[NK],E[NK],u[NK]),...,(£[N(k+ 1)],£[N(k+1)])} where
X[Nk+i] =s; and u[NK +i] = u; for all i.

C. Risk Treatment

Consider a mean state and covariance pair in the RANS-
RRT* trajectories (£[k],X[k]). The risk constraint associate
with this time step has the form infpsc gr P} (x[k] eX f,ee) >

1 — o < supprc o Py (x[k] € GUXC) < . Since C is a
union of the obstac}ie sets, we use Boole’s law to get:
F

Z sup P (x[k] € ;)
i=1PreZy

sup Py (x[k] € CUXS) <
Prey

We allocate the risk bound equally among the constraints by
setting the risk bound for being in O; to oy, /Mo and
that of not being in the environment to Q7eny /Ryorqr- Thus:

F
Y, sup Px(x[k] €0;)+ sup P} (x[k] € X°)
i=1P{e Pre 7}

F
< Z aknob;/ntotal + aknenv/ntotal = O,

and hence, the desired risk constraint is enforced. Now we
turn our attention to satisfying:

sup Py (x[k] € X°) < neny /Myorai )
PrePt
sup P]ﬁ (x[k] € Ol) < aknobi/nmtal (10)
Pesy
Since x[k] € X¢ < Agpyx[k] > beny < A;’””l al,, : XK > bem j,
we can apply Boole’s inequality to (9) and get
Neny
Z sup ]Pi (a-grnv,jx[k} > benv,j) < aknenv/ntotal~
J=1PEZy
This bound is satisfied if suppsc or Py (aenv k] > ben, j> <

04 /Nsorar Vj € [1: nepy]. As for (l()) we have the following:

(10) < _inf P (x[k] & O;) > 1 — Onop, /Norar
Bie P}

. Mob; 1
@Pilé{;ipz (\/jzlaobi’jx > bob[,j) > 1 — 0o, /Myotal

. Nob;
and leg;xp; (Vj:laob x> bab,,J)
k
>leg;xmjaxﬁ”x< x>b,,;,l]> (11

> i T ;
= Pilg;])épi (aabi,]x > b"bh/)

where (11) follows from the Fréchet-Boole lower bound.
If infpre poe P (al, x[K] > bop, j) > 1— /Mo ¥j then,
1anP”‘€§’>X ( [k g 0; ) > 1 - ak/ntoml > 1~ aknab,-/ntotal
Wthh holds as nyp; > 1. Thus, (6) is satisfied if

sup P§ (a;w’ X[K] > beny, j) < O /Mygrar V'

Pre; '

_inf B} (a;,,h k] > by, ,-) > 1 — oy /orar Vi, j
k k

Using [3, Theorem 3.1] these are equivalent to:

N [1— /Mol
“va,jx[k} <b env,j — o /nmt:l <
1— ak/nt()lal
k| > b \—F—

Obl j [ } ()b”] ak/ntotal

Sk o,

’2 (12)

13)

£k 2aon,
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D. Algorithm

RANS-RRT* is presented in Algorithm 1. The free space
is first sampled and the tree is initialized with the initial state
(the root of the tree) and the initial covariance of zero (lines
1-2). Then the sampled states Xy pies are traversed. For every
state S € Xgumples» the nearest node in the tree Speqresr € T
is found (line 4). If the distance between S and S,cqesr 1S
larger than some threshold, a closer state Sy, is returned
along the same direction (line 5). In line 6, NLP steering is
performed to find a trajectory from Syeqresr t0 Sy, Within the
steering horizon N. If steering fails, the sample is skipped.
Else, a RANS-RRT* trajectory (mean states, covariances,
and inputs) is returned. In line 9, the trajectory is checked
for collisions. A collision is detected if any of the risk-
tightened constraints are violated at any of the mean states,
in which case the sample is skipped. If safe, the trajectory
may be added to the tree after checking nearby nodes for a
more optimal trajectory as done in RRT* (line 12). Then, the
trajectory is added to the tree (line 13) and T is rewired (line
14). Note that the rewire step also uses the same steering and
collision check functions described before. When an optimal
trajectory is queried, the trajectory with the smallest total
NLP steering cost (output cost of Definition 3) is returned.

Algorithm 1: RANS-RRT* - Tree Expansion
Result: RANS-RRT* Tree T

1 Ssamples = Sample(xfree);

2 T = [(XA(),E() = 0)];

3 for S € Xsumpies do

Shearest = nearestNode(S,T);

Siim = limitDistance(S, Spearest);

(success, traj) = steer(Snearest» Stim)

if not success then

| Continue;

collision = checkDRCollision(tra);

10 if collision then

11 ‘ Continue;

12 traj = connectViaMinCostPath(traj, 7);

13 J.addTrajNode(trayj);

14 T.rewire();

o e N S A

Remark 3. RANS-RRT* only approximately solves the prob-
lem in Definition | because 1) the risk treatment step approx-
imately solves the infinite-dimensional constraint (6), 2) the
covariance estimation step using UT is imperfect for non-
Gaussian distributions, and 3) the covariance propagation
assumes the estimated means and NLP means coincide,
which is used to keep the problem tractable. Hence, we do
not make any formal risk-bound guarantees. Nonetheless, as
we will see in the experimental results section, the padding
added to obstacles through the DR collision check step makes
the algorithm significantly robust to disturbances.

III. TRACKING CONTROLLERS

In all low-level controllers we use identical cost functions.
This facilitates a fair comparison between controllers, as the

same objective is approximately optimized. We use stage
costs which are quadratic in the state deviation and input:

gulk] (x[k], x[k], ulk]) = &[k]T Q[K] &[k] + ulk]T Ruk]
ulTI(X[T],x[T]) = &[T]TQIT]&[T]
where Oy[k] = x[k] —X[k] and the penalty matrices Q[k] and
R[k] are symmetric positive definite for all k.
A. Robot dynamics

We consider the problem of navigating a robot with
unicycle dynamics from an initial state to a final set of states.
The discrete-time unicycle nonlinear dynamics obtained
through forward-Euler discretization of the corresponding
continuous-time dynamics are given by:

Dxlk+ 1] = py[k] + cos(O[k]) v[k] At + wy k] At
pylk+ 1] = pylk] + sin(O[K]) VKA +wy[k]Ar  (14)
Ok +1] = O[k] + w[k|At +wg [k| At

where py[k], py[k] € R are the horizontal and vertical po-
sitions of the robot, 6[k] € R is the heading of the robot
relative to the x-axis of an assigned world frame, V[k], 0[k] €
R are the linear and angular velocity control inputs, and
wylk], wy[k],wg[k] are the disturbances affecting each state,
all expressed at timestamp k. The quantity Az is the sampling
time in seconds between any two timestamps k,k+ 1. With
short-hand notations, x[k] = [px[k] py[k] O[k]]T,ulk] =
(VK] o[k]]T, wik] = [wik] wy[k] wg[k]]", the dynamics
in (14) and corresponding Jacobians can be written in the
compact form as

x[k+1] = f(x[k],ulk]) + w[k]

10 cos(6) O

? =10 1 wvcos()Ar ,? = |sin(6) 0

X 1Xx,i 0 0 1 U \x,u 0 Al‘
B. LOR

Finite-horizon linear-quadratic regulation (LQR) about a
reference trajectory is a standard optimal control approach
wherein the system dynamics are linearized about the refer-
ence trajectory at each time k

af
Alk] = = B
1] Ox |x{k] ulk]’ K]
and thereby yielding the LQR problem

_9f

= Ou XKk

minimize Jy

subject to  Oc[k+ 1] = A[k] S [k] + B[k] Oy [K].

The solution is time-varying affine state-feedback char-
acterized by a sequence of gain matrices and vectors
{KI[k],L[k],e[k]}{ -, which are pre-computed before running
the system using linear-algebraic operations according to
dynamic programming relations. For brevity, we defer the
details to the supplementary report [14]. At runtime, the
control inputs are computed as

[K]

MH:KM&M+MH{W

(NERall

]+4H+uw,
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which is the summation of a closed-loop feedback term of
the state-deviation and an open-loop feedforward term.

C. Robust LOR

We seek to promote robustness against errors in the state-
space matrices due to linearization about states other than
the reference trajectory, which occurs due to the process
disturbance. Observing the Jacobians, only mis-specifications
in heading 0 change the entries. We assume that the heading
deviation from reference is uniformly upper bounded as

10k] — 6, k]| < 86max < /2.

For the unicycle model, it is straightforward to construct
appropriate 2D bounding boxes in the space of A and B
matrices that fully contain every possible Jacobian. Consider
the 1,1- and 2, 1-entries of the B matrix

b Bii| _ [cos(0)
o 321 o Sin(e) ’
Through trigonometric relations depicted by Figure [, we
obtain the robustness regions

ALK € {4 A=Ak +pua, (6416 + pay (€14 K]}
BIK € {B: B =B+ s, KB K] + 15, [K]B2 K]}

determined by directions

0 0 —sk 00 —ck
A=10 0 ¢kl |, Ak=l0 0 —sK],

00 0 00 0

[—s[k] O [c[k] 0
Bi[k] = | c[k] O], By[k] = |s[k] O

0 0 0 0

where c[k] = cos(0k]), s[k] = sin(O[k]) and where the scales
are bounded as

|:uAi [k” < Oy [k}v “J‘Bi [kH < Op; [k]
where

04, [k] = V[k]Atsin(8Omax ),
0, [k] = sin(0Omax),

04, [k}

= v[k]Ar [1 — cos(66max)],
OB, [k} =1

—c08(06max)

Note that the robustness region is conservative as it extends
in the A, and B, directions twice as far as strictly necessary.
This is done merely as a matter of convenience so that
the center of the robustness region remains at (A[k], Blk])
regardless of &6y.x. It has been proved in [5] that, in
the infinite-horizon time-invariant setting, the inclusion of
(fictitious) multiplicative noise in the control design induces
robustness to static model perturbations in the same direc-
tions as the multiplicative noise. This inspires the inclusion
of such multiplicative noises with variance and directions
related to the desired robustness region over which we desire
to minimize quadratic cost. Please refer to the supplementary
report [14] for details on how the multiplicative noise is
incorporated into the LQR problem. We include the robust
LQR in our comparison to demonstrate the benefit of our
NMPC controller over a simpler robust control method.

0.0

1
1
1
1
1
1
1
0.0 0.5 1.

Fig. 1. Geometry of B matrices under linearization about various states.
The thick circular arc segment is the locus of all possible B when 6 is
interval bounded. The shaded box represents the set of B on which the
controller is designed to achieve low cost.

D. NMPC

NMPC can be used to approximate the nonlinear optimal
trajectory tracking problem. NMPC accomplishes that by
reducing the problem into a sequence of open-loop optimiza-
tion problems over a horizon N;; where after solving an NLP
to track a reference trajectory, only the first input is applied
and the horizon is shifted back. The NMPC tracking NLP is
given below.

Definition 4 (NMPC Tracking NLP). Given an reference
trajectory X[k] for k € [0: T] and a planning horizon Ny,
find a control sequence at time step ¢ that minimizes the
Nj;-horizon additive cost function subject to constraints:

1+Ny—1
kZ:, gulk] (x[k], x[k], u[k]) + gu[T](X[T], x[T])

(5), x[k] € X, xlk+1] = f (x[k], ulK])

After solving this problem at step #, only the first input u/t]
is applied and the horizon is shifted to 4 1 for the problem
to be solved again. The final set of control inputs is thus
MB:T—] = [M[O]v e M[T - 1”

min
u[t:T+N”71]

IV. NUMERICAL RESULTS

RANS-RRT* plans were generated on a machine with
an Intel Core i7 6700K CPU and 16 of RAM. The low-
level Monte Carlo simulations were performed on a machine
with a Ryzen 7 2700X and 64GB of RAM. The NLP is
modeled with CasADi Opti and solved with TPOPT [1].
The environment consisted of a root node (white triangle),
a goal area (dashed green rectangle), a 10 x 10 environment
with 4 rectangular obstacles for its sides (black boundary),
and 5 rectangular obstacles (black rectangles). The robot is
assumed to occupy a single point. Its controls bounds are
+0.5 units/sec for linear velocity and +xrad/sec for angular
velocity. The RANS-RRT* steering horizon is N = 30 and
the NMPC planning horizon is Nj; = 10. The discrete time
step was 8¢ = 0.2sec. The planner control cost matrix was
R[k] = diag([1,1]). The tracking (LQR, robust LQR, and
NMPC) cost matrices were Q[k] = diag([100,100,10]) and
R[k] = diag([1,1]) for all k=1[0:T — 1], and Q[T] = 10Q[0].
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We used a high-level plan risk bound of 8 =0.1 divided
equally across the time steps T,qc = 1000 and among the
obstacle constraints. The process noise distribution [P}’ was
taken as a multivariate Laplace distribution with zero mean
and covariance X" = 621, where the variance 62 :=5-10""
is referred to as the noise level. In the tracking step, we
evaluated performance under different (greater) noise levels.

A. RANS-RRT* Results

Constructing the RANS-RRT* tree in Figure 2a took about
28 minutes. The tree started with 2000 randomly sampled
nodes but only 865 nodes were deemed feasible and safe and
added to the tree. The RANS-RRT* trajectories were safe in
the sense that they avoided getting too close to obstacles.
Small gaps, such as to the right of the goal, were implicitly
deemed too risky and avoided. On the other hand, a tree
grown using the standard RRT* in the same environment
in Figure 2b discovered such gaps and thereby returned an
unsafe (risky) trajectory.

(a) RANS-RRT* tree with 942 Nodes.

(b) RRT* tree with 1284 Nodes.

Fig. 2. Trees grown by our proposed RANS-RRT* algorithm and standard
RRT#* are demonstrated in Figures 2a and 2b respectively. The DR collision
checks are represented by circles. The tree root is indicated by the white
triangle and the goal region is the green rectangle with a dashed edge.
Obstacles, including environment bounds are the black rectangles.

B. Low-Level Tracking Results

We used open-loop control and three low-level closed-loop
controllers 1) LQR, 2) robust LQR, and 3) NMPC, to track
a high-level trajectory in the environment shown in Figure
2a under realization of the Laplace noise. For each noise
level, 1000 Monte Carlo simulations were performed. The
resulting trajectories are plotted in Figure 3. As expected, the
noise level assumed for the high-level plan Gv% =5-10"7 was
insignificant: even open-loop control succeeded. However, as
the noise level increased, open-loop control began to fail.
At around 62 = 0.001, the open-loop control almost always
failed, while the other controllers almost always succeeded.
From there, the feedback controllers began failing more
frequently. Robust LQR did slightly better than LQR with
fewer collisions for each noise level. Both were outperformed
by NMPC which was better able to reject the more aggressive
noise, leading to notably fewer collisions. The largest noise
levels tested for which the plan failure risk bound of 10
percent was satisfied were 0.003 for LQR and robust LQR
and 0.0035 for NMPC.

1000
E’ -~ Open-loop
.2 800 LQR
v —*— Robust LQR
8 600 —— NMPC
% Bound (10%)
« 400
]
el
€ 200
3 N

o] mm—u-
10°° 107> 1074 1073 1072 1071
o
Fig. 3. Number of failures for each controller across a range of noise

covariance levels. 1000 Monte Carlo trials are run for each noise value.

In Figure 4 the realized trajectories obtained through the
Monte Carlo simulations are plotted for 62 = 0.0035. The
performance metrics for 62 = 0.0000005 and o2 = 0.0035
are tabulated in Tables I and II respectively. We use the fol-
lowing metrics to evaluate the effectiveness of each tracking
controller:

1) The number of collisions: the number of Monte Carlo
trials in which the realized trajectory collided with an
obstacle.

2) The average O, and u costs: the realized state-
deviation cost Y.!_8,[k]TQ[k]8[k] and control cost
Y/, ulk]TRulk], conditionally averaged across all
collision-free trajectories.

3) The average run time: the time taken to run the entire
Monte Carlo trial, conditionally averaged across all
collision-free trajectories, which is necessary as sim-
ulations terminate immediately upon collision.

With Gv%, = 0.0000005, the trajectory was short enough so
that collisions did not occur even with purely open-loop
control, although the trajectories began to diverge from
the reference. The closed-loop controllers exhibited minimal
state deviations, as reflected in the significantly lower average
0, cost. The difference in 6, and u costs between each closed-
loop controller was insignificant; since the state remained
extremely close to the reference, the inputs generated by each
controller were very similar.

However with O'v% = 0.0035 as shown in Figure 4, the
following observations were made. Almost all open-loop
trajectories ended with collisions as shown in Figure 4a.
Compared to the standard LQR, robust LQR led to a lower
number of collisions and state-deviation cost as shown in
Figures 4b, 4c but both were significantly outperformed by
NMPC. NMPC trajectories generally remained closer to the
reference than LQR or robust LQR along with lower number
of collision as the robot moved through the corridor as shown
in Figure 4d. However, NMPC’s closer reference tracking
and collision-avoidance came at a price, as it used more
control effort than LQR and robust LQR. Likewise, the more
sophisticated computations involved in solving the NLPs in
NMPC led to a longer average run time. It is evident that
under both the noise settings, the NMPC outperforms other
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controllers in tracking the given reference trajectory to reach ~ We
the goal with low failure rate and a better cost.

(a) Open-loop

(c) LQRm

(b) LQR

(d) NMPC

showed that the despite the usage of very small noise

level assumptions in the high-level planner, the low-level
controllers performed well under moderate and aggressive
disturbance realizations. Future research involves considering
a full nonlinear sensor model while incorporating the exact
DR risk constraints in the optimization problems of both the
levels of autonomy stack for accurate risk assessment. We
will also seek to decrease the computation time of NMPC
through the usage of code generation tools.

[1]

Fig. 4. The results of 1000 independent Monte Carlo trials with different
low-level reference tracking controllers. The reference trajectory is shown
as a dashed line. The start and goal locations are marked by triangle and star (7]
icons respectively. The goal area is a green rectangular area whose border
is marked by a dashed line. The terminal state of failed and successful
trajectories are shown by ‘X’ and ‘O’ markers respectively. Obstacles and (8]
the free space are represented by solid black and white regions, respectively.
The disturbance variance was 62 = 0.0035.

[9]
[ Controller [ Num. collisions [ 8, cost [ u cost | Run time (s) |
Open-loop 0 30.869 | 54.989 0.0103 (10]
LQR 0 3.403 | 43.267 0.1867
LQRm 0 2911 44.351 0.2833
NMPC 0 3522 | 43240 5.6234 (1]
TABLE 1. Performance metrics for all controllers from Monte Carlo
simulation with (7“2, = 0.0000005. [12]
[ Controller | Num. collisions | 8, cost [ u cost | Run time (s) | [13]
Open-loop 999 5103.148 54.989 0.0018
LQR 160 827.949 110.016 0.1751
LQRm 138 820.916 114.646 0.2946
NMPC 75 732.646 131.059 6.9159 [14]

TABLE 1II. Performance metrics for all controllers from Monte Carlo

simulation with 62 = 0.0035.

V. CONCLUSION AND FUTURE WORK

[15]

We proposed a risk-averse control architecture tailored [16]
for safely controlling stochastic nonlinear robotic systems,
which combines a novel nonlinear steering-based variant of (17]
RRT#* called RANS-RRT* that accounts for risk by perform-
ing DR collision checks with low-level reference tracking
controllers. We performed thorough numerical experiments (18]
using unicycle dynamics, compared three controllers, and
observed better performance from NMPC than LQR variants.
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