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ABSTRACT: As more global satellite-derived precipitation products become available, it is imperative to evaluate them
more carefully for providing guidance as to how well precipitation space—time features are captured for use in hydrologic
modeling, climate studies, and other applications. Here we propose a space—time Fourier spectral analysis and define a suite
of metrics that evaluate the spatial organization of storm systems, the propagation speed and direction of precipitation
features, and the space-time scales at which a satellite product reproduces the variability of a reference ““ground-truth”
product (“‘effective resolution’’). We demonstrate how the methodology relates to our physical intuition using the case study
of a storm system with rich space-time structure. We then evaluate five high-resolution multisatellite products (CMORPH,
GSMaP, IMERG-Early, IMERG-Final, and PERSIANN-CCS) over a period of 2 years over the southeastern United
States. All five satellite products show generally consistent space—time power spectral density when compared to a reference
ground gauge-radar dataset (GV-MRMS), revealing agreement in terms of average morphology and dynamics of pre-
cipitation systems. However, a deficit of spectral power at wavelengths shorter than 200 km and periods shorter than 4 h
reveals that all satellite products are excessively ‘‘smooth.” The products also show low levels of spectral coherence with the
gauge-radar reference at these fine scales, revealing discrepancies in capturing the location and timing of precipitation
features. From the space—time spectral coherence, the IMERG-Final product shows superior ability in resolving the space—
time dynamics of precipitation down to 200-km and 4-h scales compared to the other products.

SIGNIFICANCE STATEMENT: Precipitation estimation products are essential for understanding water cycle dy-
namics and climate change, and for decision support in regions lacking ground observations. Several global products
exist from multiple satellites orbiting Earth, but the challenge remains that of evaluating these products for accuracy and
for improving the retrieval algorithms. Here we posit that the classical *“pixel-to-pixel”” comparison is not adequate and
propose an approach that focuses on comparing space-time dynamics through a Fourier spectral analysis, which pro-
vides information about the size, shape, and orientation of precipitation systems, as well as their motion speed and
direction. We evaluate five state-of-the-art multisatellite products and identify shortcomings, in particular in their ability
to capture the submesoscale variability of precipitation.

KEYWORDS: Precipitation; Error analysis; Remote sensing; Satellite observations; Radars/Radar observations; Fourier
analysis; Spectral analysis/models/distribution

1. Introduction

Denotes content that is immediately available upon publica- Satellite-derived quantitative precipitation estimation (QPE)
tion as open access. products have been around for several decades and are now

commonly used in climate studies (Mehta and Yang 2008; Roca
et al. 2014; Kerns and Chen 2020), hydrologic modeling and
prediction (Casse and Gosset 2015), and various other applica-
tions (Kirschbaum et al. 2017), including vegetation monitoring
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(Kirschbaum and Stanley 2018), health risk management
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evaluating and validating satellite products (e.g., Sapiano and
Arkin 2009; Derin et al. 2016; Beck et al. 2019). In all of these
evaluation or validation efforts, the satellite products must be
compared with a “truth,” typically a ground reference measure-
ment, such as from rain gauges or ground precipitation radars.

Precipitation exhibits spatial and temporal variability across a
wide range of scales ranging from the microscale (subkilometric,
subhourly) to the synoptic and multidecadal scales. This vari-
ability includes specific spatiotemporal modes corresponding to
regular features which may be periodic such as the diurnal cycle,
seasonal cycle, intraseasonal cycles (e.g., due to the Madden—Julian
oscillation), interannual cycles (e.g., due to El Nifio-Southern
Oscillation), or potentially long-term trends (e.g., effects of an-
thropogenic aerosols and greenhouse gas emissions). These
regular modes of precipitation variability coexist and interact
with less predictable chaotic variability, resulting in complex
regional and local patterns of precipitation. An important
question about satellite QPEs is how well the space-time dy-
namics of precipitation are captured across a range of scales
relevant for hydrologic applications and decision support.

The classical approach for comparing a QPE to a reference
measurement is to gather a set of coincident samples, i.e., in-
dividual estimates, each one corresponding to a given time and
location, and compute sample statistics such as correlations,
mean squared differences, detection rate, false alarm rate, etc.
With this approach, which focuses on point or ““pixel’’ statistics,
each sample is considered independently and the fact that
precipitation is a spatially and temporally correlated variable is
ignored. As such, the classical scoring metrics do not inform us
on the ability of QPE products to accurately capture the spatial
and temporal patterns of precipitation. The interpretation of
point or pixel sample statistics is always ambiguous for spatially
and temporally correlated variables and the analysis of the
sample statistics gives little insight about the nature of the re-
trieval errors, which could be additive or multiplicative ran-
dom noise, but also systematic or random errors on the location
and timing of the precipitation features, spatial and temporal dis-
tortion of the precipitation features, etc. Finally, from sample sta-
tistics computed at one given scale only, one cannot infer the
performance of a precipitation product at any other scale. An al-
ternative evaluation approach is object-based analysis, where a
continuous precipitation area (above a given threshold) is defined
as an object (e.g., Ebert and McBride 2000; Demaria et al. 2011,
Tapiador et al. 2019; Li et al. 2020; Ayat et al. 2021). This approach
allows to partially circumvent the abovementioned limitations.
However, these types of methods are generally parametric (one
important parameter being the intensity threshold chosen to define
an object), and the results may be highly sensitive to the definition
of the objects. As such, these methods are not easily applicable to
large datasets without human supervision, and the results of studies
performed with different parametric and methodological choices
are not easily comparable. Additionally, complex mechanisms
such as object splitting and merging over time may make the
object-related statistics delicate to interpret.

Spectral representations such as the Fourier transform or
wavelet transform are designated tools to analyze the dy-
namics of spatiotemporal variables (Yiou et al. 1996; Kyriakidis
and Journel 1999; Oreopoulos et al. 2000; Harris et al. 2001;
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Ghil et al. 2002). In particular, using a multidimensional space—
time spectral analysis allows one to consider jointly spatial and
temporal dynamics. Unlike the sample statistics, the space-time
Fourier spectral analysis provides information on the size and
lifetime of the precipitation systems/features; the potential spatial
anisotropy of precipitation fields, including propagation effects
with preferred directionality and propagation speed; and statistics
on the dynamical modes of variability of precipitation, such as the
diurnal and seasonal cycles or the response to atmospheric pres-
sure waves (from small-scale internal gravity waves to synoptic
Kelvin and Rossby waves). Fourier space-time spectral analysis
has been used in climate science for several decades to identify
modes of variability and evaluate model dynamics (Kao and
Wendell 1970; Hayashi1982; Wheeler and Kiladis 1999; Céron and
Guérémy 1999; Orbe et al. 2020). It has also been used to inves-
tigate dynamical scaling in precipitation (Rysman et al. 2013) and
sometimes to parameterize stochastic representations of rainfall
(Kundu and Bell 2003; De Michele and Bernardara 2005).
However, it has rarely been used to evaluate and compare ob-
servational datasets. The evaluation of the dynamical aspects
of precipitation is particularly relevant to multisatellite QPEs
as the spatiotemporal sampling allowed by a constellation of
satellites on different orbits is itself highly dynamical, and the
interpolation methods used to estimate precipitation between
the observations often rely on dynamical constraints.

In the present study, five satellite QPEs, namely, CMORPH,
GSMaP, IMERG-Early, IMERG-Final, and PERSIANN-CCS
(see section 2 for detailed information and acronyms) are eval-
uated against NOAA'’s gauge-radar Ground Validation Multi-
Radar Multi-Sensor (GV-MRMS) product over the southeastern
United States at scales down to 10km and 1h through (cross-)
spectral space—time analysis relying on a three-dimensional fast
Fourier transform (FFT). The three dimensions of the analysis
are the two spatial dimensions (north-south and east-west
directions) and the temporal dimension. The marginal (single
variable) and joint distributions of the spectral power of the
precipitation signal as a function of temporal frequency and
spatial wavenumbers, revealed by the power spectral density
(PSD), allows us to verify the scales at which the products
have realistic spatiotemporal dynamics. Additionally, the spec-
tral coherence between the satellite QPEs and the ground ref-
erence allows us to determine the scales at which the satellite
can accurately reproduce the space—time dynamics of precipi-
tation, as observed by the gauge-radar network, with concordant
timing and location of the precipitation features. In Guilloteau
et al. (2017) and Guilloteau and Foufoula-Georgiou (2020) the
concept of spatial “‘effective resolution” of a product was intro-
duced based on the spatial wavelet coherence between the
evaluated product and reference gauge-radar fields. Here, this
concept is extended to the spatial and temporal dimensions
simultaneously.

The article is organized as follows. Section 2 presents the
datasets and the study area and briefly introduces the spectral
analysis method. Section 3 presents a case study of spectral
analysis applied to a storm system to gain insight on the in-
terpretation of the proposed metrics. Section 4 presents the
results from the analysis of all data over a 2-yr period as a
comparison of the spectral properties of the GV-MRMS
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reference dataset with those of the satellite QPEs. In section 5
the spectral performance of an idealized gauge network is pre-
sented to quantify the gauge density necessary to achieve per-
formance similar to the satellite retrievals and thus assess the
“equivalent gauge value” of the satellite products. Section 6
presents a discussion on the effect of different retrieval methods
and algorithms on the spectral properties of the retrieved pre-
cipitation fields. The dilemma of preserving the true space—time
power spectrum of precipitation versus minimizing the mean
squared retrieval error is discussed in this section. Section 7
presents the concluding remarks.

2. Data and methods
a. GV-MRMS gauge-radar data

The half-hourly gauge-radar QPE from the Ground Validation
Multi-Radar Multi-Sensor (GV-MRMS; Petersen et al. 2020)
suite of products is used in this study as a high-quality reference to
evaluate the satellite QPEs. GV-MRMS builds on the MRMS
QPE that is derived from 176 WSR-88D radars and more than
18000 automatic hourly rain gauges over the contiguous United
States and Canada (Zhang et al. 2016). Advanced data integration
techniques are used to create 3D reflectivity mosaic grids and
quantitative precipitation estimates blending radar and gauge
data at the necessary resolution for the evaluation of satellite
QPEs. Less trustworthy GV-MRMS estimates are filtered using a
radar quality index and gauge-based quality control. These pro-
cedures are necessary to obtain a high-quality and standardized
reference across the study domain for satellite evaluation pur-
poses (Kirstetter et al. 2012, 2020). The half-hourly precipitation
estimates are produced on a regular grid with 0.01° latitude and
longitude increments. The southeastern part of the United States
between the latitudes 30° and 41°N and between longitudes 81°
and 102°W (Fig. 1), over which the radar coverage is excellent (49
radars cover this 2.3 million km? area), as well as excellent gauge
coverage, is selected as a benchmark area for evaluating the sat-
ellite QPEs. We consider here that the errors of the GV-MRMS
estimation at the 10-km hourly resolution at which our analysis is
performed are negligible compared to the errors in the satellite
QPEs. The ability of the gauge-radar product to capture the fine-
scale variability of precipitation is trusted in particular because of
the high instrumental resolution and sampling frequency of the
radars. The GV-MRMS dataset provides the spatial and temporal
continuity required to study the spatiotemporal structure of
precipitation fields.

b. Multisatellite precipitation products

Five multisatellite precipitation products are evaluated in the
present study. All of them are quasi-global products, covering all
longitudes and the latitudes between 60°N and 60°S. All five
products offer an hourly or higher temporal sampling and pro-
vide precipitation estimates on a grid with a latitude/longitude
increment equal to or finer than 0.1°. They are all publicly
available for research purposes.

The PERSIANN-CCS (Precipitation Estimation from Remotely
Sensed Information using Artificial Neural Networks—Cloud
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FIG. 1. Map of the lower 10th percentile of MRMS radar quality
index over the contiguous United States. The blue rectangle cor-
responds to the study area. The quality index takes into account the
distance to the closest radar, the altitude of the freezing level, and
beam blockage by the relief [see Zhang et al. (2016) for precise
definition]. We show here the lower 10th percentile, meaning that
the quality index is higher than the shown value 90% of the time.

Classification System; Hong et al. 2004), derives precipitation
estimates from the longwave thermal infrared channel (wave-
length between 10 and 12.5 um) of imagers on geostationary
orbits. The area considered in this study was monitored by the
Advanced Baseline Imager (ABI) on board the GOES-16 sat-
ellite during the 2018-20 study period. The algorithm first
performs a cloud classification based on texture parameters. A
relation between the infrared brightness temperature and the
precipitation intensity, specific to each cloud class, is then used to
estimate half-hourly accumulated precipitation. PERSIANN-
CCS is produced by the Center for Hydrometeorology and
Remote Sensing of the University of California, Irvine.
GSMaP-MVK (Global Satellite Mapping of Precipitation—
Moving Vector with Kalman filter; Ushio et al. 2009) has been
developed by the Japan Aerospace Exploration Agency (JAXA)
as part of the Tropical Rainfall Measuring Mission (TRMM,;
Kummerow et al. 2000) and Global Precipitation Measurement
(GPM) mission (Hou et al. 2014) international programs. It relies
on the estimation of precipitation rates from about a dozen
multispectral microwave imagers and sounders on low-Earth
orbits. To fill the gaps between the satellite overpasses, a dynamic
interpolation is performed relying on cloud motion vectors de-
rived from geostationary infrared (Geo-IR) imagery and Kalman
filtering. Version 7 of the product is used in the present study.
The CPC morphing technique (CMORPH; Joyce et al. 2004;
Joyce and Xie 2011; Xie et al. 2017) produced by the U.S.
National Oceanic and Atmospheric Administration (NOAA)
Climate Prediction Center, is similar in concept to GSMaP. It
relies on a similar constellation of microwave imagers and
sounders (most of them being common with those used for
the GSMaP algorithm), and also implements a Kalman filter
interpolation approach with Geo-IR-derived cloud motion
vectors. CMORPH and GSMaP differ by the microwave re-
trieval schemes used for estimating precipitation rates and
the parameterization of the Kalman filter. For version 1.0 of
the CMORPH product, used in the present study, the quan-
titative biases of CMORPH over land are corrected locally
with correction parameters estimated from the climatology of
the CPC gauge analysis product over 30-calendar-day periods.
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The Integrated Multisatellite Retrievals for GPM (IMERG;
Huffman et al. 2019) product has been developed by the U.S.
National Aeronautics and Space Administration (NASA) as
part of the GPM international program. It relies on the GPM
international constellation of low-Earth-orbit microwave im-
agers and sounders (Hou et al. 2014) and on Geo-IR. It
implements a CMORPH-like motion vector method to dy-
namically interpolate the microwave-derived precipitation
rates, though in Version 06, used in the present study, the
motion vectors are computed from the total precipitable water
vapor field of numerical models instead of Geo-IR (Tan et al.
2019). IMERG additionally assimilates the infrared precipi-
tation rates from the PERSIANN-CCS algorithm as part of the
Kalman filtering process. Three different IMERG products are
made available with different latency: the “Early” product
(IMERG-E) is available 4h after observation times, the
“Late” (IMERG-L) is available 14 h after observation and the
“Final” product (IMERG-F) is available 4 months later.
IMERG-E implements a one-way Kalman filter approach
while IMERG-L and IMERG-F rely on a two-way Kalman
smoother (i.e., dynamical interpolation from both “past” and
“future”” observations at estimation time). The Late and Final
products also assimilate a higher number of microwave ob-
servations than the Early product as all microwave observa-
tions are not always available with the 4-h latency. The
“uncalibrated” precipitation estimates that do not include
gauge adjustment from IMERG-E and IMERG-F products
are used in the present study.

The January 2018-April 2020 period is selected for the
evaluation of the satellite products. The March 2018 and
March 2019 months are excluded from the analysis because
of a high rate of missing MRMS data (or data not meeting the
high GV quality standard) for this period. As the Fourier
transform does not accommodate discontinuous data in space
and time, all gaps in the data must be interpolated; in the
present article a linear temporal interpolation is used for
missing data when the gap is shorter than 2h. The native
space—time grid sampling of CMORPH, GSMaP, IMERG,
and PERSIANN-CCS are, respectively, 0.08° X 0.08° X
30 min, 0.1° X 0.1° X 60 min, 0.1° X 0.1° X 30 min, and 0.04° X
0.04° X 60 min.

c¢. Space—time Fourier spectral analysis

Our space-time spectral analysis relies on a three-dimensional
Fourier transform. If g(x, y, ) is a function of space and time, for
example, an estimate of precipitation intensity, its Fourier trans-
form is defined as

+oo
é'(kx,ky,f)=”J g,y 1y e 2RI de dy e (1)

with k. and k, the spatial wavenumbers and f the temporal
frequency. The Fourier power spectral density (PSD) of g(x, y,
t) is defined as

Pk, ke ) = 8k Ky, ) X 85k, K f), @)

with the operator * denoting the complex conjugate. The
Fourier power cross-spectral density (PCSD) between two

Brought to you by UNIVERSITY OF CALIFORNIA Irvine | Unauthenticated | Downloaded 03/20/22 05:09 PM UTC

JOURNAL OF HYDROMETEOROLOGY

VOLUME 22

functions g(x, y, ) and A(x, y, t), for example, two different
estimates of precipitation intensity, is defined as

Pk k. [) = &k, k. )*(k . K, ). €)

In practice, for finite-length datasets, a discrete FFT is used
and local averaging in the Fourier frequency-wavenumber
domain is necessary to obtain robust estimates of the PSD and
PCSD (Proakis and Manolakis 2001). The PSD reveals how the
analyzed signal can be decomposed as a sum of oscillations
(waves) and how much energy is associated with these waves
as a function of the wavenumber (number of oscillations per
unit of space) and the frequency (number of oscillations per
unit of time). The PCSD indicates whether the oscillations
contained in two different signals synchronize or not and how
much common energy they have. We use here the term
“energy’’ in the statistical sense, meaning the integral value
over space and time of the square of a variable (here pre-
cipitation rate); it is not directly related to the physical energy
(in the thermodynamics sense) of the atmospheric systems.
Power is defined as energy per unit of time/space. The space—
time PSD and PCSD are uniquely related to the space—time
autocorrelation and cross-correlation functions through the
Wiener-Khinchin theorem (Cohen 1998).

The Fourier spectral coherence between g(x, y, t) and
h(x,y, t)is defined as

P, (k. k,.f)
\/Pg(kx,ky,f) X P, (k,.k,.f)

4)

Cgh(kx, kyvf) =

The spectral coherence is a complex number with a modulus
between 0 and 1. It can be interpreted as the complex correlation
of the Fourier coefficients within narrow frequency/wavenumber
bands. The phase (argument) of the spectral coherence gives
the average phase shift between the two variables in each
frequency/wavenumber band. A null spectral coherence indicates
unsynchronized oscillations with a randomly varying instanta-
neous phase shift between the two signals at the corresponding
periods and wavelengths. A spectral coherence with a unit
modulus indicates identical oscillating signals (up to a multipli-
cative constant and a constant phase shift) at the corresponding
period and wavelength.

The PSD and the spectral coherence being quadratic mea-
sures, they are strongly influenced by the extreme values in the
signal. One can analyze the space—time dynamics of precipita-
tion with regard to a specific precipitation intensity value (or a
specific quantile) by thresholding the precipitation fields in order
to obtain a binary variable before performing the spectral
analysis (not done here). Alternatively, one could perform the
spectral analysis on the quantile fields, i.e., on the intensity
values mapped to a uniform distribution. The classical sample
statistics, mean squared difference (MSD), and Pearson corre-
lation coefficient (CC) can be derived from the power spectral
and cross-spectral densities:

o ptoo

MsD,, = [[[ 1, + P, ~2Re(t )1 dk, ak a5
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FIG. 2. A case study storm system, as retrieved on 2-4 May 2018 by GV-MRMS, IMERG-F, and PERSIANN-CCS over the south-
eastern United States. The images correspond to discontinuous snapshots of hourly accumulated precipitation. An animated version of
this figure is provided in the online supplemental material. The estimates of the area-averaged cumulated precipitations for this storm are
19, 29, and 33 mm for MRMS, IMERG-F, and PERSIANN-CCS, respectively.

+oo
cC,, = ”Jw Re(P,,) dk, dk, df

X < J”:Pg dk dk df X ”J:Ph dk, dk, df>—1/z
(6)

where Re(Py;) is the real part of P,

Because of the difficulty in visually representing functions of
three variables, in the present article, we show the marginal
PSDs as well the joint PSDs along two of the three dimensions.
The marginal PSD along one dimension is obtained by inte-
grating the three-dimensional PSD along the other two dimen-
sions. Similarly, the joint PSD along two dimensions is obtained
by integrating the three-dimensional PSD along the third di-
mension. In the following, spectral quantities are interpreted as
functions of temporal period and spatial wavelengths rather than
frequency and wavenumbers; wavelength and period are the
inverse of wavenumber and frequency respectively.

Before applying the Fourier transform, the GV-MRMS and
satellite QPEs are projected (and interpolated when neces-
sary) on acommon 0.1° X 0.1° X 30 min latitude/longitude/time
grid. The 30-min temporal sampling is used for better spectral
resolution but the temporal periods shorter than 2h are ex-
cluded from the analysis after the Fourier transform to avoid
penalizing GSMaP and PERSIANN-CCS, which have an
hourly native sampling. The spatial wavelengths are shown in
kilometers, which is converted from degrees latitude/longitude
using the following conversion ratio for the study region: 1°
latitude corresponds to approximately 110 km while 1° longi-
tude corresponds to approximately 90 km.

3. A case study for the interpretation of spectral
quantities for storm diagnostics

In this section we demonstrate the methodology on a specific
storm system to gain physical insight on the results (before
applying it to an ensemble of storms over a period of 2 years in
the next section). Specifically, through the comparison of the
satellite and gauge-radar space-time PSDs as well as the
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analysis of their relative spectral coherence, we evaluate how
well satellite-derived products reproduce precipitation fea-
tures across space—time scales, such as: 1) the morphology and
orientation of the storm system, 2) the dynamics and propa-
gative features (speed and direction), and 3) consistency of
precipitation features’ location and timing.

Since the analysis is performed over a range of scales, we can
assess the space-time scales at which precipitation variability is
adequately represented in the products (“‘effective space—time
resolution”). In this case study, we perform the space-time
spectral analysis of GV-MRMS, IMERG-F and PERSIANN-
CSS precipitation fields over the study area for a 2-day period
(1900 UTC 2 May 2018-0800 UTC 4 May 2018) during
which a frontal mesoscale convective storm system with
several squall lines propagated from west to east (see the
evolution of the system as captured by GV-MRMS, IMERG-
F, and PERSIANN-CCS on Fig. 2 and in the animation
provided as online supplemental material).

The PSDs resulting from the three-dimensional Fourier
transform are shown on Fig. 3. We first analyze the joint PSDs
along the two spatial dimensions (Fig. 3, left column). Passing
into the polar coordinate system through the change of vari-
able k=, /k2 + k? and 6 = atan(k,/k,), we can assess the de-
pendence of the PSD on the azimuthal direction 0. Here, 6 is
defined as the angle clockwise from the north, following the
traditional compass convention. For the GV-MRMS and the
two satellite products, the two-dimensional spatial PSD
exhibits a preferred directionality, revealing the anisotropy of
the precipitation fields. Specifically, the PSD is higher in the
directions between 290° and 330° than in the other directions;
this direction is the direction of the strongest gradients in the
precipitation, i.e., the direction orthogonal to the squall lines.
The anisotropy is particularly pronounced for GV-MRMS,
for which it affects all wavelengths down to the 20-km
wavelength. For IMERG-F the anisotropy is strong at long
wavelengths but fades progressively at wavelengths shorter
than 100km, revealing that IMERG-F only shows pro-
nounced directionality for the precipitation features of di-
mension larger than ~100km. For PERSIANN-CCS the
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FIG. 3. Morphology and dynamics of the storm system in Fig. 2 as revealed by the PSD. (left) Joint PSDs of
GV-MRMS,IMERG, and PERSIANN-CCS computed over the southeastern United States from 1900 UTC
2 May 2018 to 0800 UTC 4 May 2018 along the east-west and north-south spatial dimensions, and (right) along
the east—west spatial dimension and the temporal dimension. In the left panels, higher spectral power is found in
the 290° to 330° direction (northwest), which is the direction of the strongest gradients. In the right panels, most
of the spectral power is associated with negative wavelengths (eastward propagation); the spectral power is
concentrated along the lines corresponding to 40-90 km h™! velocity. In all panels, smoothed isocontours are
added at 10°, 107, 1072, 1073, and 10~ * for enhanced visualization.

anisotropy is only salient at wavelengths longer than 200 km.
These differences in the PSD are related to the different
morphology of the storm across the three products (Fig. 2).
GV-MRMS shows a well-defined frontal system with a
narrow convective front forming thin lines in the southwest—
northeast direction. While IMERG-F captures well the gen-
eral shape and orientation of the frontal storm system, the
convective areas in the IMERG-F fields are thicker and less
elongated than in the GV-MRMS fields. The general shape of
the system is less elongated in the PERSIANN-CSS product
which tends to produce elliptic precipitation areas with rel-
atively low eccentricity.

The joint space—time PSDs are only shown for the east-west
direction (Fig. 3, right column). Two-dimensional space—time
PSDs are commonly used in climate and Earth science to an-
alyze the propagation of atmospheric and oceanic waves along
longitudes (Wheeler and Kiladis 1999; Lin et al. 2006; Orbe
et al. 2020). The left half of the PSD (negative wavelengths)
corresponds to eastward propagating waves and the right half

Brought to you by UNIVERSITY OF CALIFORNIA Irvine | Unauthenticated | Downloaded 03/20/22 05:09 PM UTC

(positive wavelengths) corresponds to westward propagating
waves. The two-dimensional space—time PSD shows the energy
of the eastward and westward propagating waves as a function
of their spatial wavelength and temporal period. The ratio
between wavelength and period defines the phase propagation
velocity of the waves. A linear relationship between wave-
length and period indicates nondispersive wave propagation
(i.e., a phase velocity independent of the wavelength). For the
present case study, the eastward propagation of the storm
system appears neatly in the PSD, with most of the spectral
power associated with the negative wavelengths. The propa-
gation speed of the system is also revealed by the space-time
PSD, with the spectral power concentrated along the lines
corresponding to 40-90kmh™! velocity. GV-MRMS shows
more spectral power than IMERG-F and PERSIANN-CCS at
temporal periods shorter than 4h and wavelengths shorter
than 200 km.

The spectral coherence (modulus) between GV-MRMS and
the satellite products (Fig. 4) allows us to evaluate the ability of



NOVEMBER 2021 GUILLOTEAU ET AL. 2811

o
o
€
-t —_
< £o
e [+]
2 3
@ = 1
© o 0
= o
© o =
s £ 038
® =
= ]
€ 06 E
S
o £
3 ~ 04 5
o 5]
£
= —_ 02
£3 =8
2 3
< 2 0.0
B @
> o =
£8 g
@ =
=z : 5
= ! ] | T G AN
=33 -50 -100 inf. 100 50 33 -50 -100 inf. 50
Eastward Westward

E-W wavelength (km)

propagation E-W wavelength (km) propagation

FIG. 4. Consistency between GV-MRMS and the satellite products in terms of timing and location of the
precipitation features as functions of spatial wavelengths and temporal period revealed by the spectral coherence
for the storm system in Fig. 2. Spectral coherence (modulus) between GV-MRMS and IMERG and between
GV-MRMS and PERSIANN-CCS computed over the southeastern United States from 1900 UTC 2 May 2018 to
0800 UTC 4 May 2018, (left) as a function of east-west and north-south spatial wavelengths and (right) as a
function of the east-west spatial wavelength and of the temporal period. IMERG-F accurately captures the
gradients in the directions between 290° and 320° down to the 50-km wavelength and the features propagating
with a velocity around 60 kmh ™! down to the 2-h time period. PERSIANN-CCS only accurately captures the
spatial dynamics down to the 100-km wavelength and down to the 4h time period. In all panels, smoothed
isocontours are added at 0.1, 0.2, ..., and 0.9 for enhanced visualization.

IMERG-F and PERSIANN-CCS to capture precipitation
features with the right timing and location as functions of
spatial wavenumber (wavelength), temporal frequency (pe-
riod), directionality of the spatial gradients, propagation speed
and propagation direction of the features. In this case study, it
appears that PERSIANN-CCS only captures accurately the
spatial gradients down to the 100-km wavelength and the
temporal dynamics down to the 4-h time period, at finer space—
time scales, the coherence with GV-MRMS is not statistically
significant (at the 0.01 level). IMERG-F captures accurately
the gradients down to the 50-km wavelength and the temporal
dynamics down to the 2-h time period. The dominant features
propagating eastward with a 40-90kmh™"' velocity are the
ones for which the spectral coherence with GV-MRMS is the
highest for both IMERG-F and PERSIANN-CCS, revealing
that the satellite products capture well the dominant propa-
gative features, but not so well the secondary or local propa-
gative patterns.

We note that the total precipitation associated with the
storm system presented in this case study is overestimated by a
factor of 1.5 in IMERG-F and by a factor of 1.8 in PERSIANN-
CCS compared to the GV-MRMS reference estimate, with
area-averaged cumulated precipitations of 19, 29, and 33 mm
for MRMS, IMERG-F, and PERSIANN-CCS respectively.
However, one should note that constant multiplicative biases
do not affect the spectral coherence or the shape of the PSD
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function. In the present article, all PSDs shown are normalized
by the PSDs at the zero frequency and zero wavenumbers, i.e.,
the power associated with the mean value of the signal (the
DC, or “direct current,” component in signal processing
terminology).

4. Comparison of five multisatellite products from
2 years of data

The performance evaluation consists of the comparison of
the PSD of the satellite QPEs with the PSD of GV-MRMS and
the analysis of the spectral coherence between the satellite
QPEs and GV-MRMS as functions of spatial wavenumber
(wavelength), temporal frequency (period), directionality of
the spatial gradients, propagation speed and propagation di-
rection of the features. One advantage of the spectral ap-
proach, as compared for example to object-based approaches,
is that one can compute spectra over a long time period and a
large area and extract the average characteristics of storm
systems without having to identify each storm individually.

a. Marginal PSDs: Spatial and temporal variability
assessed independently

Figure 5 (top) shows the marginal PSDs along time and the
two spatial dimensions. All products show a peak corre-
sponding to the diurnal cycle of precipitation at the one-day
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FIG. 5. Temporal and spatial dynamics of precipitation over the southeastern United States as revealed by the marginal PSDs and
consistency of the satellite products with GV-MRMS as revealed by the spectral coherence. (top) Marginal (left) temporal and (cen-
ter),(right) spatial longitudinal and latitudinal PSDs of GV-MRMS and satellite precipitation fields from 2018 to 2020. (bottom) Spectral
coherence (modulus) between the GV-MRMS and satellite precipitation fields as functions of (left) temporal period and (center),(right)
spatial wavelengths. The PSD increasing with longer periods/wavelengths indicates spatially and temporally correlated features with
correlation decreasing with time delay and distance. In the left panels, the peak at the 1-day period corresponds to the diurnal cycle.

IMERG-F show the highest temporal coherence at all frequencies and highest spatial coherence at wavelengths greater than 70 km.

period and the 0.5 days harmonic (indicating that the diurnal
cycle is not perfectly sinusoidal) is also visible in the
PERSIANN-CCS spectrum. While the shape and timing of
the diurnal cycle varies across the study region, the PERSIANN
family products generally have a pronounced diurnal cycle
with a narrow single peak in the afternoon (Dai et al. 2007;
Nguyen et al. 2020). Beside this peak for the diurnal cycle all
spectra show decreasing PSD with shorter periods and wave-
lengths, reflecting the well-known fact that precipitation is a
spatially and temporally correlated variable with correlation
decreasing at longer distances and greater temporal delays
(Zawadzki 1973; Waymire and Gupta 1981). It is, however,
worth noting that neither the temporal power spectra nor the
spatial spectra appear linear in the log-log scale. The ap-
proximation of the temporal or spatial marginal PSD by a
power law of the form P(f) = af?, or respectively P(k) = akP,
(i.e., as a “warm color” power spectrum when 8 < 0), which is
often found in the literature for climate variables (Gilman
et al. 1963; Lovejoy and Schertzer 1986; Harris et al. 2001;
Tustison et al. 2001), would therefore be a poor approxima-
tion of the empirical PSDs in the present case. The GV-
MRMS reference spectrum is the one showing the strongest
deviation from log-log linearity for both temporal and spatial
spectra.

For the temporal spectra, GV-MRMS and the satellite
products show similar distributions of spectral power at periods
ranging from 0.5 to 20 days. For time periods shorter than
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0.5 days the satellite products show a significantly faster decay
of the PSD with shorter periods than GV-MRMS. This means
that the satellite products are temporally smoother, i.e., have
higher short-term temporal correlation of the precipitation
rates than GV-MRMS. For all products, the spatial spectra in
the east—west and north—south directions are nearly identical.
All satellite products significantly underestimate the spatial
variability at wavelengths shorter than 300 km in both direc-
tions when compared to GV-MRMS, indicating excessive
short-range spatial correlation in satellite precipitation. We
note that the IMERG-E and IMERG-F spatial spectra are
nearly identical while their temporal spectra diverge signifi-
cantly at periods shorter than 6h (IMERG-F showing lower
PSD than IMERGE-E at these high temporal frequencies).

In terms of spectral coherence between the satellite QPEs
and GV-MRMS (Fig. 5, bottom), all products show a decrease
of coherence with shorter periods and wavelengths, with the
exception of the peak at the 1-day period. At all temporal
periods and at wavelengths longer than 60 km, IMERG-F
shows the highest coherence with GV-MRMS, implying that
this product is the most consistent with GV-MRMS in terms of
coincident spatial and temporal patterns. PERSIANN-CCS
shows significantly lower coherence with GV-MRMS than the
other satellite products at periods greater than 4h and at
wavelengths longer than 200 km. We note that for wavelengths
longer than 50 km CMORPH and IMERG-E show very similar
coherence with GV-MRMS. For all satellite products and at all



NOVEMBER 2021

N-S wavelength (km)
N-S wavelength (km)

-50 -100 inf.

100 50
E-W wavelength (km)

GSMAP
i

25

N-S wavelength (km)
100 50 33
N-S wavelength (km)

inf.

! i . ; ¥ |
25 -50 100 50 25 E -50

=100 inf.
E-W wavelength (km)

=100 inf.

GUILLOTEAU ET AL.

IMERG-E
5° .- [ y

E-W wavelength (km)

CMORPH
7.5°. .

2813

IMERG-F
5. i
E
be'd
= 10°
100 50 S0 -100 100 50 10!
E-W wavelength (km)
102 3
PERSIANN-CCS &
aaz.._s_-- t?' .. 225 103
10*

N-S wavelength (km)

100 50

-50 -100 inf.
E-W wavelength (km)

100 50
E-W wavelength (km)

FIG. 6. Average morphology and orientation of precipitation systems over the southeastern United States as revealed by the 2D spatial
PSD. Joint spatial PSDs of the GV-MRMS and satellite precipitation fields in the north—south and east-west directions. Higher spectral
power is found around the 320° direction (approximately northwest), which is the direction of the strongest precipitation gradients. In all
panels, smoothed isocontours are added at 10°,107%, 1072, 10>, and 10~ * for enhanced visualization.

wavelengths, the coherence with GV-MRMS in the north-
south and east-west directions is also very similar.

b. Joint east-west and north—south spatial PSDs:
Directional morphology of precipitation systems

We now analyze the PSD as a function of the two east-west
and north-south spatial dimensions (Fig. 6). The first notice-
able characteristic is the circular asymmetry of the PSDs, with
higher power density in the 320° azimuthal direction (approx-
imately northwest-southeast). This reveals the spatial anisot-
ropy of the precipitation fields; the strongest spatial gradients
are found around the 320° direction while lower variability
(higher spatial correlation) is found in the orthogonal direction
(50°, approximately southwest-northeast). This is consistent
with the fact that most of the linear precipitation features
such as squall lines are approximately oriented along the
southwest-northeast direction in the southeastern United
States (Newton 1950). It is worth noting that, because the
preferred direction is neither north-south nor east-west but
rather the ‘“‘diagonal” direction, the anisotropy was not ap-
parent from the marginal north-south and east-west PSDs
(Fig. 5). This shows that computing the unidimensional spatial
PSD (or variogram/autocovariance function) in only two or-
thogonal directions is generally not sufficient to detect an-
isotropy. We note that the small increase of the PSDs in the 0°,
90°, and 270° directions is an artifact caused by the fact that the
pixels are 0.1° X 0.1° squares. All the satellite QPEs reproduce
the spatial anisotropy shown by GV-MRMS; we note however
that the anisotropy appears less pronounced for PERSIANN-
CCS than for the other products. We compute the average PSD
as a function of the spatial direction by integrating the two-
dimensional spatial PSD between wavelengths 20 and 300 km
for each azimuthal angle 6 (Fig. 8, left panel). From this
function PSD(#) we compute the anisotropy factor, which we
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define as the ratio between the maximum and the minimum of
PSD(6). The anisotropy factors for GV-MRMS and each of the
satellite products are listed in Table 1. PERSIANN-CCS has a
lower anisotropy factor (2.1) than GV-MRMS (2.5) and the
other satellite products (2.4-2.5). Another quantitative metric
shown in Table 1 is the submeso power fraction. We also derive
this metric from the two-dimensional spatial PSD; it is defined
the fraction of the spectral power explained by the wavelengths
shorter than 300 km. The submeso power fraction is found
significantly lower for all the satellite products (45%-51%)
than for GV-MRMS (62%), confirming the fact that the
gauge-radar product shows higher fine-scale variability than
the satellite products.

Comparing the five satellite products to GV-MRMS to as-
sess how well they reproduce the precipitation spatial organi-
zation, with accurate localization of the spatial features, Fig. 7
shows the spectral coherence between GV-MRMS and the
satellite QPEs as a function of the spatial north-south and
east-west wavelengths. Figure 8 (right panel) shows the inte-
grated coherence for wavelengths between 20 and 300km as a
function of the azimuthal angle. We note that the direction of
maximal PSD is also the direction of maximal coherence for all
the satellite products, except for PERSIANN-CCS, for which
the maximum coherence with GV-MRMS is found in the north
(0°) direction. Simple signal to noise ratio considerations can
explain the fact that the stronger gradients in the southeast—
northwest direction are better captured by the satellites: the
higher magnitude of precipitation variability in this direction is
expected to cause a higher-magnitude signal in the measured
radiances in the same direction; in contrast, the magnitude of
the noise in the measured radiances is expected to be the same
in all directions. Higher signal to noise ratio, leading to better
retrieved precipitation signal, is therefore expected in the di-
rection of the stronger precipitation gradients. One shall note
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that, for the retrieval of precipitation from passive instruments
in orbit, the “noise” is not only instrumental noise, but also
variability in the measured radiances coming from physical
phenomena concurrent with precipitation (e.g., variations in
the surface temperature and emissivity).

c¢. Joint space-time PSDs: Dynamics and
propagative features

Moving into the assessment of precipitation space—time dy-
namics, the joint PSDs along the temporal dimension and first
the east-west, then the north—south spatial directions are ex-
amined. Figure 9 shows the joint PSDs along the temporal di-
mension and the east-west spatial dimension. One immediately
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notices the asymmetry, with most of the spectral power associ-
ated with negative wavelengths, revealing the dominant east-
ward propagation of the precipitation features as already found
for the case study in Fig. 3. For GV-MRMS, the spectral power is
concentrated around the line corresponding to a ~60kmh™!
velocity. For CMORPH and GSMaP the spectral energy is
concentrated around the 40-60kmh™" velocity, while for
IMERG-E, IMERG-F, and PERSIANN-CCS the spectral
power appears slightly shifted toward the higher velocities
(60-90 km h™!). From the space—time PSD, we compute the
eastward over westward (E/W) power ratio as the ratio be-
tween the average spectral power for the negative and posi-
tive wavenumbers (Table 1). We exclude the wavelengths

o
=] J
g
o ]
5 ©
]
[%2] -
e}
=
o~
8 s MRMS
c — IMERG-E
o || — mMERG-F
o — GSMAP
‘8 CMORPH
8 o || — rersiannces
o

T
315 0 45 90
azimuth (deg.)

F1G. 8. Spatial variability of precipitation and consistency with GV-MRMS as a function of the azimuthal di-
rection for the five satellite products. (left) PSDs of GV-MRMS and satellite precipitation fields averaged between
wavelengths of 20 and 300 km as a function of the azimuthal direction. (right) Spectral coherence (modulus) be-
tween the GV-MRMS and satellite precipitation fields integrated between wavelengths of 20 and 300 km as a

function of the azimuthal direction.
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TABLE 1. Storm morphology and space—time dynamics spectral statistics for MRMS and the five satellite products over the southeastern
United States for the 2018-20 period. The anisotropy factor is defined as the ratio of the maximum over the minimum of the PSD(0)
function, where 6 is the azimuthal direction (see Fig. 8). The submeso power fraction is defined as the fraction of spectral power associated
with wavelengths shorter than 300 km. The eastward over westward and northward over southward power ratios are derived from the joint
space—time PSDs (Figs. 9 and S1) by integrating the PSDs over the negative and positive wavenumbers respectively (between the absolute
wavelengths 20 and 500 km) and computing their ratio.

Product Anisotropy factor Submeso power fraction E/W power ratio N/S power ratio
MRMS 2.5 62% 2.5 1.5
IMERG-E 2.5 47% 2.7 1.1
IMERG-F 2.4 47% 2.9 1.0
GSMaP 2.4 51% 22 14
CMORPH 2.5 45% 31 12
PERSIANN-CCS 2.1 45% 1.5 1.2

longer than 500 km from the computation of the E/W power
ratio because of the relatively poor spectral resolution at low
wavenumbers. The E/W power ratio is a simple metric that
compares the total energy of the eastward-propagating waves
to the total energy of the westward-propagating waves. All
products have an E/W power ratio higher than one, con-
firming the dominant eastward propagation. GV-MRMS has
an E/W power ratio of 2.5, PERSIANN-CCS has an E/W power
ratio of 1.5, and other satellite products have an E/W power ratio
between 2.2 and 3.1. A possible partial explanation for these dif-
ferences across the products in terms of propagation velocity and
in terms of E/W power ratio is the difference in the way they
integrate information from infrared cloud top temperature. The
dynamics of cloud top temperature do not perfectly reflect the
dynamics of precipitation. For example, the cloud top tempera-
ture is affected by atmospheric pressure waves which may prop-
agate in a different direction and with a different phase velocity

than the motion of the clouds. These pressure waves may prop-
agate upwind or downwind or be stationary; they are also gen-
erally dispersive (with a phase velocity changing with wavelength
and frequency). Unlike the cloud top temperature, precip-
itation generally has a weak response to the short-length
atmospheric waves. Among the other elements potentially
affecting the space-time PSD of satellite products are
nonpropagating artifacts generated by the microwave sam-
pling scheme or the infrared cloud classification scheme for
PERSIANN-CCS and IMERG.

From Fig. 10, one can see again that the frequencies and
wavenumbers at which the spectral coherence between GV-
MRMS and the satellite QPEs is the highest correspond to the
frequencies and wavenumbers of maximal PSD. It is worth noting
that the PSDs and coherences computed from 2 years of data
provide results consistent with the case study presented in
section 3, showing that this case study was in fact representative of
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FIG. 9. Dynamics and longitudinal propagation of precipitation over the southeastern United States as revealed by the east-west space—
time PSD. Joint spatiotemporal PSDs of the GV-MRMS and satellite precipitation fields in the east-west direction. Negative wavelengths
correspond to eastward-propagating features and positive wavelengths to westward-propagating features. Most of the spectral power is
associated with negative wavelengths (eastward propagation). The dotted lines correspond to nondispersive eastward propagation with
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Brought to you by UNIVERSITY OF CALIFORNIA Irvine | Unauthenticated | Downloaded 03/20/22 05:09 PM UTC



2816 JOURNAL OF HYDROMETEOROLOGY VOLUME 22
MRMS vs IMERG-E MRMS vs IMERG-F
o~ [ o~ 9 1.0
o o~
=2 s o 08
5o 5 )
2 .- o
T o 3 5 06 £
e @ < v
E E [
- o - e 04 -g
- o ©
€ — € B > 0.2
- -100 inf. 100 - -100 inf. 100
E-W wavelength (km) E-W wavelength (km) 0.0

MRMS vs GSMAP MRMS vs CMORPH

MRMS vs PERSIANN-CCS

2.2
22
22

e 2 ! =2
= m = m =0
° ° ]
o o <]
= = =
) s @ 2
o T o T o ¥
E £ E
< o e
o o o
E " - E 1 E -
-50 -100 inf. 100 50 -50 -100 inf. 100 50 -50 -100 inf. 100 50

E-W wavelength (km)

E-W wavelength (km)

E-W wavelength (km)
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and satellite precipitation fields as a function of the spatial wavenumber in the east-west direction and of the temporal frequency. The
highest coherence corresponds to the dominant eastward propagating features. The dotted lines correspond to nondispersive eastward
propagation with velocity of 30, 40, 60, and 90 km h™, from left to right, respectively. In all panels, smoothed isocontours are added at 0.1,

0.2, ..., and 0.9 for enhanced visualization.

the general topology and dynamics of the storm systems in the
study area. The joint PSDs along the temporal dimension and the
north-south spatial dimension are shown as Fig. S1 in the
supplemental material. The asymmetry is not as pronounced as
for the east-west direction, but one can still notice more power
associated with northward-propagating features than with
southward propagating features. The northward over south-
ward (N/S) power ratio is found between 1 and 1.4 for the
satellite products and 1.5 for GV-MRMS (Table 1). As for the
east-west propagation (Fig. 10), the dominant propagating
features for the north-south propagation are the ones for
which the spectral coherence is the highest (Fig. S2). The ar-
gument of the spectral coherence (i.e., the phase shift) is not
shown in the figures because it is not found to be significantly
different from zero for any of the products at any wavenumber
and any frequency. This indicates that the temporal delays or
spatial shifts found between GV-MRMS and the satellite
products are random, instead of being systematic.

Figure 11 (top) shows the omnidirectional space—time PSD
of the GV-MRMS precipitation fields, obtained by performing
circular integrals of the three-dimensional PSD in the k.k,
plane (the omnidirectional spatial wavenumber being defined
as k=, /k2 + k2). Other panels of Fig. 11 show the ratio of the
satellite omnidirectional space-time PSDs over the omnidi-
rectional space-time PSD of GV-MRMS. Independently of
the temporal period, all the satellite products have a deficit of
spectral power for wavelengths shorter than 100 or 200 km,
consistent with what was shown by the spatial marginal PSD
(Fig. 5). This deficit of spectral power is particularly pronounced
at wavelengths shorter than 200 km and periods shorter than 4 h
for GSMaP and PERSIANN-CCS. IMERG-E and IMERG-F
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omnidirectional space—time PSDs appear highly similar down to
the 6-h time period. IMERG-E shows an excess of spectral
power relative to GV-MRMS at periods shorter than 6h and
wavelengths longer than 200 km. This indicates the IMERG-E
shows excessively rapid changes in large-scale features. This
unrealistic statistical property (large-scale features are normally
expected to have a high temporal persistence) is likely to reflect
retrieval artifacts. GSMaP, and to a lesser extent CMORPH and
PERSIANN-CCS, also show this excess of spectral power at
periods shorter than 6 h and wavelengths longer than 200 km.
PERSIANN-CCS also shows an excess of spectral power at
wavelengths shorter than 30 km, which reflects the existence of
sharp transitions (“jumps”) in precipitation intensity between
two adjacent pixels. This is likely an artifact coming from the
PERSIANN-CCS cloud segmentation and classification scheme.
This effect is also visible in a lesser degree in the IMERG products
(which assimilate the PERSIANN-CCS estimates).

Figure 12 shows the spectral coherence of the satellite QPEs
with GV-MRMS as a function of temporal period and omni-
directional spatial wavelength. For periods longer than 6 h the
spectral coherence increases with increasing wavelength. At
periods shorter than 6h, the coherence is maximum for
wavelengths between 150 and 300 km. Of all satellite products,
IMERG-F appears to have the highest coherence with GV-
MRMS at all wavelengths and periods. By setting a criterion of
coherence with GV-MRMS higher than 0.7 (=+v/1/2, corre-
sponding to 50% common variance and to a signal to noise
ratio of 1:1 or 0dB in log scale at the corresponding frequency
and wavenumber), we assessed that the best performing mul-
tisatellite product, IMERG-F, resolves well the space-time
dynamics of precipitation at spatial wavelengths down to
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FIG. 11. Comparison of satellite products to GV-MRMS in terms of the distribution of spectral power across space—time scales. The top
left panel shows the omnidirectional joint space—time PSD of GV-MRMS precipitation fields. The remaining panels show the ratio of the
PSD of the satellite products over the PSD of GV-MRMS. Deficit of spectral power in satellite products at short wavelengths (shorter than
100 or 200 km) indicates spatially smooth retrieved precipitation fields, i.e., with high spatial correlation at short distances.

250 km and time periods down to 4 h, which corresponds to the
transition between the mesoscale and the submesoscale. We
note that, with the GPM constellation, for the study area and
period, the average interval between two microwave obser-
vations is ~3 h, which in theory allows one to resolve temporal
periods down to ~6h at best (from the Nyquist-Shannon
sampling theorem). The ability to resolve finer temporal pe-
riods must be attributed to the information provided by the
motion vectors and the Geo-IR data.

We note that, for all satellite products, the spectral statistics
(both the satellite over gauge-radar PSD ratio in Fig. 11 and
the spectral coherence with GV-MRMS in Fig. 12) do not vary
much with the time period within the range from 12 h to 20 days.
This indicates that the spatial patterns of precipitation are not
better retrieved at the 10 days aggregated time scale than at the
6h aggregated time scale (while they are significantly better
retrieved at the 6-h time scale than at the 1-h time scale).

5. Satellite spectral performances compared to a
theoretical gauge network

An interesting question to ask is, “How many rain gauges
is a satellite product worth?” i.e., what is the ability of the
multisatellite products to capture the space-time dynamics of
precipitation as compared to the ability of a gauge network? To
provide insight into this question, we simulated the spatial
sampling of a theoretical gauge network by subsampling the 1-km
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half-hourly GV-MRMS precipitation fields and then interpolated
the sparse samples. That is, we created fields of “virtual gauges”
distributed on an isometric grid with desired gauge spacing. We
used block kriging as the interpolation method with 10-km target
resolution. We know a priori from the Nyquist-Shannon sampling
theorem that a gauge spacing shorter than L/2 is necessary to
resolve the L wavelength. However, because the variability of
precipitation at wavelengths shorter than L generates aliasing and
sampling noise, this condition is generally not sufficient, and, de-
pending on the rate of decrease of the PSD of precipitation with
increasing wavelength, higher sampling rate may be necessary to
achieve desired signal to noise ratio at wavelength L. We simu-
lated several gauge networks and found that with an 80-km gauge
spacing we obtain simulated retrieval performance similar to the
actual performance of the satellite products.

The result of the spectral comparison of the interpolated vir-
tual gauges with 80-km gauge spacing to the original GV-MRMS
fields is shown on Fig. 13. Because kriging is a smooth interpo-
lation, the interpolated fields show a deficit of spectral power at
wavelengths shorter than 100 or 300km, depending on the
temporal period; the spectral coherence with GV-MRMS is also
low at these scales. We notice an excess of spectral power at
periods shorter than 6 h and wavelengths longer than 150 km in
the interpolated precipitation compared to GV-MRMS. This
additive signal at large spatial scales and high temporal fre-
quencies corresponds to the sampling noise. The transition be-
tween the well-resolved periods and wavelengths (coherence
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FI1G. 12. Consistency between GV-MRMS and the satellite products in terms of the timing and location of the precipitation features as a function
of the spatial wavelength and temporal period revealed by the omnidirectional spectral coherence. Spectral coherence (modulus) between the GV-
MRMS and satellite precipitation fields as a function of the omnidirectional spatial wavelength and of the temporal period. For all products, the
coherence is below 0.7 at wavelengths shorter than 250 km and periods shorter than 4 h. We consider these fine scales to be unresolved.

higher than 0.7) and the unresolved ones (coherence close to 0)
is found to be sharper for the simulated gauge networks than
for the satellite QPEs, presumably because of the regular
spatial sampling of the simulated gauge network. In terms of
spectral coherence with GV-MRMS, this idealized gauge net-
work with 80-km gauge spacings show performance comparable
with the best performing satellite QPE, IMERG-F. In other
words, assuming that the results obtained here from 2 years of
data over the southeastern United States are reasonable reflec-
tions of the products’ global performances, over land, IMERG-F
is equivalent to a global network of rain gauges spaced 80 km
apart. We note that this simple setup only accounts for the effect
of spatial sampling and ignores all other sources of error in gauge
measurements, such as temporal sampling of tipping gauges,
shot noise coming from the discrete occurrence of raindrops,
wind effects, etc. (Habib et al. 2001; Kostinski et al. 2006;
Kochendorfer et al. 2017). The subkilometer variability of pre-
cipitation is also ignored.

6. Discussion: Spectral bias, MSE reduction, and insights
for retrieval algorithms

The results presented above show that all of the satellite
QPE:s evaluated have a deficit of spectral power at wavelengths
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shorter than 200 km, revealing that they are spatially smooth
precipitation estimates with excessive short-range spatial cor-
relation. This “‘spectral bias” can be partially explained by the
fact that the products rely on “smooth” mathematical opera-
tors designed to minimize the mean squared error (MSE) or to
provide the most likely estimate given the observations.
Among the smooth estimation methods are parametric re-
gression and machine learning algorithms with quadratic cost
functions, as well as Bayesian minimum MSE, maximum
likelihood, or maximum a posteriori estimators. These types of
methods generally produce spatially and temporally smooth
estimates with reduced variance and reduction in extreme
values (a simple manifestation of this phenomenon is for ex-
ample the regression dilution in linear regression, (Spearman
1904). Of the satellite QPEs evaluated in the present article,
the CMORPH, GSMaP, and IMERG algorithms implement a
Kalman filter procedure, which is also a method prone to
smoothing. The microwave radiative scheme used in the IMERG
algorithm is a Bayesian minimum MSE algorithm (Randel et al.
2020). Smoothing effects also affect multisource merged estimates
when the information provided by the different sources is not
consistent. The kriging spatial interpolation method used in this
article is also a minimum MSE method, hence the smoothness of
the precipitation fields interpolated from the virtual gauges.
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FIG. 13. Spectral performance of an idealized gauge network for
comparison with the satellite products. (top) Ratio of the PSD of
the interpolated ‘‘virtual rain gauges” network with 80-km gauge
spacing over the PSD of GV-MRMS. (bottom) Spectral coherence
(modulus) between the GV-MRMS and the interpolated virtual
rain gauges as a function of the omnidirectional spatial wavelength
and of the temporal period. By comparison with Fig. 12, it appears
that IMERG-F shows spectral performance similar to this theo-
retical gauge network with 80-km gauge spacing.

The spectral unbiasing of the satellite products can be
achieved by applying a multiplicative correction factor as a
function of temporal frequency and spatial wavenumbers in
the Fourier domain (to match the PSD of the radar fields). This
unbiasing, as it is a linear filtering procedure, would not affect
the spectral coherence between the satellite QPEs and the
radar reference; however, it would affect the MSE, potentially
increasing it, as discussed below. The spectral unbiasing of
precipitation in global climate models has been proposed by
Pierce et al. (2015), however only for the unidimensional
temporal Fourier spectrum. One shall note that independently
correcting the marginal spatial and temporal PSDs would not
guarantee getting the right spatiotemporal PSD.

Histogram matching, also referred to in the literature as
probability density function (PDF) matching, quantile matching,
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or frequency matching, is a popular method for statistically
correcting precipitation QPEs. It consists in applying a mono-
tonic correction function to the precipitation rates to impose a
PDF. This method allows one to compensate for the lack of
variance and underrepresentation of extreme values in smooth
QPEs. However, the histogram matching method only con-
strains the PDF at the “pixel” level; the effect of histogram
matching on space-time correlation and PSD is a priori un-
known. In contrast, constraining the space-time PSD allows one
to constrain the second-order moment of the PDF (variance) at
every spatiotemporal scale. More advanced spectral methods
can constrain the multiscale higher-order moments (Harris
et al. 2001).

Rather than performing the spectral unbiasing of the satel-
lite QPEs to match the space-time PSD of the radar, one can
perform optimal space-time filtering of the satellite QPEs to
further minimize the mean squared difference with the radar
(Turner et al. 2004; Guilloteau et al. 2018). The effect of the
optimal filter is to suppress or reduce the variability in the
satellite QPEs at the frequencies and wavenumbers at which
the spectral coherence with the radar is low (and if necessary,
at the frequencies and wavenumbers at which the PSD is
overestimated by the satellites). As a linear filter, the optimal
filter does not affect the spectral coherence with the radar. The
PSD of the optimally filtered field is

P (ko k.f) = |Clk, K, )PP (k. Kk .f) @

with C(k,, k,, f) the spectral coherence between the radar and
the satellite QPE, and Py,q(ky, ky, ) the PSD of the radar field.
One shall note that zero spectral bias, i.e., Py (ks, k), f) =
Pyaa(ky, ky, f), and minimization of the MSE through space—
time filtering cannot be achieved together when the coherence
is different from 1. Indeed, when the coherence is lower than 1,
the optimally filtered field is necessarily smoother (with lower
PSD) than the radar reference. As already mentioned, the
smoothness in QPEs is generally a side effect of quadratic or
maximum likelihood optimization procedures. Therefore, spec-
tral unbiasing and histogram matching generally have a deterio-
rating effect on the MSE and the correlation coefficient when
comparing to a reference dataset, as they partially “undo” the
work of the optimal operators. For example, with the satellite
QPEs used in the present article, spectral unbiasing would amplify
QPE’s variability at the high frequencies and wavenumbers, at
which the spectral coherence with the radar is found to be low, and
therefore lead to higher mean squared difference with the radar.
This can be related to the concept of “double penalty,” which is
that, in terms of MSE or correlation with a reference dataset, it is
more unfavorable to retrieve a feature with the wrong timing/
location than to not retrieve the feature at all (Rossa et al. 2008).

This raises an important question for precipitation estima-
tion: when is minimizing the MSE more important than pre-
serving the statistical properties of precipitation fields (in
particular the PDF of precipitation rates and the space—time
PSD or autocorrelation), and vice versa? A more technical
formulation of this question is: what cost function should be
minimized by optimization procedures and machine-learning
algorithms for precipitation estimation (Ning et al. 2014;
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Ebtehaj et al. 2014, 2015; Wang et al. 2020; Li et al. 2021)?
Obviously, the answer mostly depends on the application.
However, because MSE and correlation with a reference
product are the most commonly used metrics when QPEs are
validated and evaluated, product makers may be inclined to
favor these over other aspects. Additionally, the reference
datasets against which the products are evaluated may
themselves also rely on smooth quadratic or maximum like-
lihood operators (e.g., kriging or other smooth interpolation
methods). In that case, similarly smooth precipitation estimates
show more favorable statistics when compared to these refer-
ences. Indeed, the frequency/wavelength dependent biases and
the intensity dependent biases (conditional biases, Ciach et al.
2000; Kirstetter et al. 2013) introduced by the optimization
procedures in the retrieval algorithms can cause estimates de-
rived from totally independent sources to have mutually corre-
lated errors. A potential solution to achieve simultaneously both
objectives of preserving the true PSD of precipitation and
minimizing the MSE is to embrace the satellite QPEs’ uncer-
tainty through a multiscale probabilistic/ensemble approach,
where each individual realization of the ensemble has a realistic
space—time PSD and the ensemble mean constitutes the minimal
MSE estimate (Bellerby and Sun 2005; Guilloteau et al. 2018).
This approach, which consists in generating ensembles con-
strained by the observations with an underlying stochastic pre-
cipitation model, has also been proposed to derive precipitation
fields from gauge and radar measurements (Haberlandt and
Gattke 2004; Vischel et al. 2009; AghaKouchak et al. 2010).

7. Concluding remarks

The space-time Fourier spectral analysis of five satellite
QPEs and of the GV-MRMS gauge-radar product over the
southeastern United States reveals high consistency between the
GV-MRMS gauge-radar product and the GSMaP, CMORPH,
and IMERG multisatellite products, which all rely partially on
microwave satellite measurements, down to the 250-km spatial
wavelength and the 4-h temporal period. At these relatively
coarse scales, the consistency between the PSDs of the satellite
and gauge-radar fields indicates statistically similar spatio-
temporal dynamics; additionally, the high spectral coherence
(>0.7) between the satellite products and GV-MRMS indi-
cates agreement in terms of location and timing of the pre-
cipitation features. IMERG-F is the product showing the
highest spectral coherence with GV-MRMS at all frequencies
and wavenumbers. At shorter periods and wavelengths, all
satellite products show a deficit of spectral power (i.e., ex-
cessive smoothness) and a low spectral coherence with GV-
MRMS. However, consistent patterns in the joint space—time
PSDs reveals that they properly characterize the average
spatial anisotropy and the dominant propagative features in
terms of speed and direction at all scales for the area and
period of the study.

Concerning the Early and Final versions of the IMERG
product, the differences between the two lie essentially in a
higher level of noise at large spatial wavelengths and high
temporal frequency in IMERG-E. We note that in terms of its
spectral characteristics, this noise is somewhat similar to the
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sampling noise in spatially interpolated precipitation from
point measurements. In the end, we find that the better per-
formance of IMERG-F compared to the other products lies
essentially in a better ability to resolve spatial wavelengths
greater than 200 km. Resolving the submesoscale dynamics of
precipitation from passive satellite instruments and the exist-
ing constellation of satellites remains an ongoing challenge.

The performance metrics given in the present article are
bulk statistics computed from more than 2 years of data and
over more than 2 million km? area in the southeastern United
States. In general, the retrieval performances of satellite
products are expected to vary with time and location. For ex-
ample, retrieval performances are known to be dependent on
the type of precipitation system (such as convective and
stratiform precipitation). However, the multiscale nature of
the present analysis does not allow us to separate precipitation
types, since, at any scale, every observed scene contains a
mixture of different precipitation types. Another factor of
performance variability for satellite products relying on several
low-orbit instruments is the instantaneous configuration of the
constellation. Indeed, the scenes directly sampled by one or
several microwave imagers are likely better resolved than the
scenes for which the estimates rely on dynamical interpolation
and motion vectors. Recent studies (Tan et al. 2021; Rajagopal
etal.2021) have identified in IMERG data a dependence of the
precipitation statistics on the delay between the retrieval time
and the actual time of the closest microwave observation at
given point. One should note that the orbits of the different mi-
crowave radiometers of the constellation on which the CMORPH,
GSMaP, and IMERG products rely are not synchronized, and
therefore the temporal sampling at a given point is irregular. The
Kalman filters in CMORPH, GSMaP, and IMERG are expected
to cause more pronounced space-time smoothing when few mi-
crowave observations are available within a given time frame.
Ongoing developments for future versions of the IMERG algo-
rithm include the SHARPEN method (Scheme for Histogram
Adjustment with Ranked Precipitation Estimates in the
Neighborhood; Tan et al. 2021), designed to compensate for
the statistical smoothing resulting from the Kalman filtering
through a local histogram matching approach.

The elements mentioned in the discussion about the spectral
bias, which reflects the statistical smoothness of precipitation
estimates, and its relation to the algorithmic optimization
procedures (section 6) are valid for any retrieved spatiotem-
poral variable. However, the relatively large uncertainties that
exist in the measurement and prediction of precipitation at the
submesoscale, and the importance of precipitation extreme
statistics in hydrology, climate science and risk management
make them particularly relevant in the case of precipitation.
Space-time filtering as postprocessing to enhance fine-scale
variability is a potential solution to correct for the smoothness
of satellite precipitation products.
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