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ARTICLE INFO ABSTRACT

Keywords: Multi-Unmanned Aerial Vehicle (UAV) systems with high-resolution cameras have been found
Edge/Fog Computation Offloading useful for operations such as smart city and disaster management. These systems feature Flying
Drone Video Analytics Ad-Hoc Networks (FANETS) that connect the computation edge with UAVs and a Ground Con-
Mobile Edge Computing trol Station (GCS) through air-to-ground wireless network links. Leveraging the edge/fog com-
Learning-based Scheme putation resources effectively with energy-latency-awareness, and handling intermittent failures
Data processing in Fog Computing of FANETS are the major challenges in supporting video processing applications. In this pa-

per, we propose a novel “DroneCOCoNet” framework for drone video analytics that coordinates
intelligent processing of large video datasets using edge computation offloading and performs
network protocol selection based on resource-awareness. We present two edge computation of-
floading approaches, i.e., heuristic-based and reinforcement learning-based approaches. These
approaches provide intelligent task sharing and co-ordination for dynamic offloading decision-
making among UAVs. Our scheme handles the problem of computation offloading tasks in two
separate ways: (i) heuristic decision-making process, and (ii) Markov decision process; wherein
we aim to minimize the total computation costs as well as latency in the edge/fog resources while
minimizing video processing times to meet application requirements. Our experimental results
show that our heuristic-based offloading decision-making scheme enables lower scheduling time
and energy consumption for low drone-to-ground server ratios. In comparison, our dynamic re-
inforcement learning-based decision-making approach increases the accuracy and saves overall
time periodically. Notably, these results also hold in various other multi-UAV scenarios involv-
ing largely different numbers of detected objects in e.g., smart farming, transportation traffic
flow monitoring and disaster response.

1. Introduction

In the last few decades, Unmanned Aerial Vehicles (UAVs), also known as drones, have been extensively used in
different scenarios in urban and rural area control such as disaster response, surveillance of smart city, crime fight-
ing and smart farming. Most commercially used drones are equipped with high-resolution cameras that are used to
visualize and monitor target status, e.g., object recognition, counting and tracking purposes.

State-of-the-art video analytics applications are increasingly using drone video data collection/processing that re-
quires high-performance computing resources and real-time network communications. The problems of insufficient
computing resources and network bandwidth at the edge can be addressed by using computation offloading to a Ground
Control Station (GCS). As shown in Figure 1, we consider an experimental setup comprising of a fleet of drones
connected via the Flying Ad hoc Networks (FANETS) [1]. A multi-UAV system can operate in a centralized or de-
centralized manner. In a decentralized system, the UAVs need to explicitly cooperate at different levels to exchange
information, share tasks and make collective decisions in order to achieve the system goals under limited edge/fog
resources. Under this setting, even if the connection from one of the drones to the GCS is interrupted, inter-drone
communication is still possible, as outlined in [14].

However, edge computation offloading cannot always be used due to the dynamic nature of wireless channels and
the energy consumption constraints on the drones for processing high-resolution images. In edge networks, a variety
of environmental conditions may affect the video streaming from drones to the GCS. This can in turn jeopardize the
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Figure 1: Search and Intelligence application scenario using multiple drones with diverse video cameras and sensing capabilities.

performance of video analytics with increased end-to-end delay, frame blurring, stalling and distortion rates. Network
performance orchestration and drone-edge computation offloading strategies are always considered together to make
sure the video analytics application performs in a stable and integrated manner to meet application requirements.
Selection of a suitable network protocol is a key feature for resource orchestration along with an appropriate location
selection for the computation tasks offloading in a multi-drone-edge network. However, based on our literature survey
and observations from [17] and [27], there is a clear lack of mechanisms to efficiently coordinate the networking
protocols selection in conjunction with drone control orchestration and edge/fog computation offloading during drone
video analytics.

In this paper, we present a novel learning-based dynamic computation offloading, control networking scheme viz.,
“DroneCOCoNet”, which accomplishes: a) intelligent reinforcement learning-based processing in edge computation
offloading strategies, and b) resource-aware network protocol selections based on application requirements. The in-
telligent processing considers the trade-offs in processing time vs. tracking/accuracy rate using a Function Centric
Computing (FCC) architecture [5]. With the use of the FCC architecture, a given drone video analytics pipeline can be
decomposed into separate functions for distributed processing at the edge GCS or on-board the drones using a suitable
resource allocation scheme. The resource-aware scheme selection for a given drone video analytics application setting
is primarily based on a set of options involving a combination of video compression and video streaming protocols.
We summarize the two major novel contributions in our DroneCOCoNet work as follows:

CO: Learning-based Edge Computation Offloading. We implemented a learning-based offloading scheduler
based on data collected in the field to predict computational energy consumption on the drones. Supervised learn-
ing approaches, such as Kernel-Ridge regression, support vector machine, Gaussian process regression, and random
forest regression, are used to predict energy consumption, processing time and transmission latency within a multi-
UAV system. We measure the performance of these approaches on predicting the energy consumption and latency
in real multi-UAV environments, and test various FANET setups with three mobility models, i.e., random way point,
Gauss-Markov and Mission-plan based model [7]. In addition to supervised learning, we design a dynamic solution
to determine how and when drones should offload tasks to improve accuracy while minimizing the cost in cloud com-
munication. We formulate offloading decisions within a set of sequential decision making algorithms, and propose a
novel solution using reinforcement learning (RL).

CoNet: Control Networking Decision Making. To solve the initial problems in providing high/optimal system
performance in various wireless video streaming scenarios, we propose a resource-aware protocol selection algorithm,
which chooses the most suitable protocol combination at the beginning of drone video streaming and analytics pro-
cesses. We investigate the features of various candidate protocol combinations on video data transmission and com-
pression codec strategies, given details on how users may use the algorithm to make decisions when setting up their
drone data processing applications. To facilitate the transferring of data for parallel execution, we implement a novel
client/server application named QUICer. QUICer operates using HTTP/3 over the popular QUIC transport protocol
[31], which allows faster data transfer and is used in many emerging web applications. QUICer consists of servers and
clients, both of which support multiple workers.

The rest of the paper is organized as follows: In Section 2, we discuss related works. In Section 3, we give an
overview of the DroneCOCoNet system. Section 4 presents CO on using supervised learning for heuristic computation
offloading decisions and its extension that involves reinforcement learning. Section 5 introduce the CoNet contributions
that include QUICer and its integration in an advanced drone video analytics application. Section 6 discusses the
performance evaluation of the DroneCoCONet system. Section 7 concludes the paper.
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2. Related Work

FANET Management. Unmanned Aerial Vehicle Networks [15] are autonomous networks formed by self-organizing
aerial vehicles like drones or other aircraft. The UAV network is known as FANET (Flying Ad-Hoc Networks), and
is a subset of the MANET (Mobile Ad-Hoc Network) [7]. Research on these networks has steadily increased over the
recent years, especially in next-generation civil applications like consumer product delivery, autonomous and mobile
environmental monitoring, search, rescue, and disaster management. FANETS support distributed wireless networks,
which solve the problem of communication range restriction by allowing communication among the UAVs without
the need for an infrastructure [1]. There is no doubt that with the proper collaboration and coordination of multiple
UAVS in the FANET, the system would far exceed the capacity and capabilities of single UAV systems. Although there
are several advantages of using FANETS over the single UAV-to-Ground Control Station (GCS) system architectures,
several challenges emerge when implementing FANETSs. Notable challenges particularly rise in systems with different
requirements, such as total processing time, energy consumption, efficient communication and coordination between
UAVs-UAVs and UAVs-GCSs based on mobility [23]. However, the challenges that accompany many emerging UAV
applications cannot be solved alone by static optimization models, especially if they are applied in complex and adverse
environments [24]. Our proposed DroneCOCoNet overcomes these challenges by selecting the best suitable schemes
for computation and communication among various UAV networks, allowing saving on network bandwidth, energy
consumption, and edge/fog computation resources during the execution.
Edge Computation Offloading in Multi-UAV Systems. Computation Offloading is the act of transferring compu-
tationally intensive tasks or functions to other platforms. In our previous work, we implemented Function-Centric
Computing (FCC) and computation offloading policies in drone video analytics. The FCC paradigm involves decom-
posing applications into microservices that can be individually deployed onto edge resources [5]. Advantages of this
architecture are that specific functions in a larger application that are computation-intensive and would cause high
energy consumption can be offloaded. In our proposed system, the drones have the option to transfer tasks to another
drone or the GCS. Low power devices trying to execute computation-intensive tasks will often deplete energy faster
than what is expected by the user. Energy-awareness is especially important for drones since the development of battery
capacity has stagnated, and we want to have the drones flying in the air for as long as possible for data collection [8].
Computation offloading overcomes such limitations of low-power devices such as drones [22]. With computation
offloading, energy consumption of the drones can be minimized as shown in our prior work [36], without compromis-
ing the user experience quality at the application level. In our proposed scheme, we leverage this framework in the
scheduling of the tasks in the multi-drone scenarios that we have considered for use of function-centric computing.
Specifically, the novelty of our approach can be seen in the method used for the functions to be offloaded from the
drones to the edge as a way to minimize energy consumption of the drones as long as the delay constraint is met. In
addition, our method allows drones to offload functions to other drones to evenly distribute the energy consumption.
It is important to figure out how and when drones as well as other IoT devices should offload sensing tasks, es-
pecially if they are uncertain, to improve accuracy while minimizing the cost in cloud communication [27]. Many
computation offloading strategies have been proposed for multi-access edge computation in terms of network pack-
ets transmission and system responsiveness through dynamic task partitioning between cloud data centers and edge
devices [16]. In [6], the authors formulate offloading as a sequential decision making problem in the context of IoT
devices, and propose a solution using deep reinforcement learning. Algorithms for deployment optimization of multi-
drones in a FANET were developed in [33] by focusing on the amount and location of the drones. Assignment of tasks
among local or edge devices while minimizing energy consumption and latency is also a trending problem in joint
computation offloading and resource allocation. Authors in [8] formulate the problem as a new online Reinforcement
Learning problem while considering both delay and device computation constraints. They also proposed a new strat-
egy based on a Q-Learning algorithm, named QL-Joint Task Assignment and Resource Allocation (QL-JTAR) as a
solution. This work is particularly relevant because we consider it as a baseline approach in the performance compar-
ison of our heuristic solution. Besides these two approaches, authors in [35] also used various reinforcement learning
approaches on dynamic decision making. Authors in [32] summarize and compare advantages/disadvantages of re-
inforcement learning-based mechanisms, supervised learning-based mechanisms, and unsupervised learning-based
mechanisms in computation offloading methods. They considered the essential features such as performance metrics,
case studies, utilized techniques, and evaluation tools in their comparison studies. Other solution strategies can be
seen in [21], where the authors use a game theory approach to deal with delay sensitive applications in MEC. The
novelty of our work in comparison to these prior works is in the use of reinforcement learning for making decisions

Chengyi Qu et al.: Preprint submitted to Elsevier Page 3 of 20



DroneCOCoNet Video Analytics

with various reward conditions. We query the edge cloud server status during decision making for improving analytics
accuracy, while also handling the constraints such as latency and power. We also test our proposed reinforcement
learning strategy in real experiment testbeds.

Networking Protocol Selection in FANETs. The recognition of imagery taken from over-the-head cameras poses
many challenging tasks compared with imagery taken by a fixed ground level camera because of low or high resolution
imagery patterns [3, 4]. Herein, a major challenging task involves handling the large intra-class variation in activities
including variations in resolution scale, target (e.g., visual appearance, speed of motion) and environment (e.g., light-
ing condition, occlusion) [34]. The meaningful structures in a video are extracted through unsupervised learning of
temporal clusters and are associated with the metadata. A flexible dual TCP-UDP streaming protocol (FDSP) is used
for high-quality video streaming [12, 11]. This FDSP approach results in lower packet loss compared to UDP-based
streaming. The FDSP is particularly relevant to our work because it features a flexible dual TCP-UDP streaming pro-
tocol that requires application awareness of the critical video streaming content. The application awareness is used
during the streaming for the TCP protocol configuration. However, FDSP may not fully satisfy our requirements in
the video analytics procedure, which is the reason we do not use FDSP as a comparison method (See Section 6.4 for
detail.) Similarly, we also consider application awareness in the hierarchical FANET environment for a different case
i.e., to select the QUICer protocol configuration.

The performance of QUIC vs. TCP for achieving a better performance in video streaming was studied in [31]. Un-
like the conclusions in [31], we have not found a case for limited bitrate conditions during our whole flight experiments.
Specifically, we have not faced the situation where QUIC performance drops below the necessary frames per second
(FPS) for the video analytics pipeline we use in our application. In our experiments, we assume that the GCS can
handle the distance of drone flight paths that do not significantly degrade signal conditions and can also address low
battery situations, and hence we are able to avoid drone connectivity issues that involve low bitrate transmission cases.
Our approach involves transport protocol experiments involving changes in video resolution in order to avoid video
impairments. In our proposed scheme, we specifically use HTTP/3 and QUIC protocols to generate a video transport
pipeline and corresponding network monitoring to help with development of machine learning based prediction meth-
ods. We also use a reinforcement learning approach for dynamic decision-making to enhance the performance in the
context of network speed prediction.

Despite several advances in recent years, FANET networks still have limitations that need to be overcome for their
successful operation and wide adoption. The main limitation is energy consumption [18, 19, 25] because it limits the
flight time of the drones. Other limitations include the speed of connection and the range of the signal transmission
due to the mobility of drones, and their limited storage capacity.

3. DroneCOCoNet Framework

In this section, we first describe the vision of the DroneCOCoNet framework and discuss the key challenges that we
address in a system deployment. Following this, we list the various modules in our system and explain the interactions
among them, and present various use case scenarios of our system. Lastly, we discuss practical considerations for the
deployment of the DroneCOCoNet in a multi-drone edge/fog computing environment.

3.1. Framework Overview for Drone Video Analytics

Figure 2 illustrates a detailed view to integrate our DroneCOCoNet system in a multi-drone-edge-server scenario,
which involves communication and computation offloading between drone and the GCS connected to the edge server.
A hierarchical FANET with both low capability search drones and high capability intelligence gathering drones is
considered in our multi-drone communication setup. To make sure the drone video analytics application performs
in a stable and reliable manner, we considered both the problems of network protocol selection as well as the drone-
edge computation task offloading. In the other words, our overall methodology aims to solve two salient aspects of
system resource orchestration: computation offloading (CO), and control networking (CoNet). Three main logical
modules are included in our hierarchical FANET system: (i) the application data collection module, (ii) the resource-
aware protocol selection module, and (iii) the learning-based offloading module. The first two modules represent the
control networking part of the system (described briefly in Section 3.2 and detailed in Section 5), and the last module
represents the edge computation offloading part (introduced first in Section 3.3 and detailed later in Section 4). The
control networking part provides an environment for data transfers corresponding to various multi-drone-edge-server
scenarios. After setting up the essential hardware, software, and network connections, we use a novel learning-based
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Figure 2: DroneCOCoNet system architecture showing the integration of data collection and processing through integration of two
salient aspects of system resource orchestration involving a learning-based computation offloading and network protocol selection.

computation offloading algorithm module that we developed in this work to enhance the resource usage and system
performance, such as e.g., energy consumption, analytics time and data processing accuracy.

3.2. Computation Offloading (CO)

To enhance system performance in the drone application, we use edge computation offloading to release the com-
putation workload on drone and speed-up the video analytics. In real scenarios, in the case of uncertain wireless
environments, it is difficult to predict the network conditions to give a precise decision on ‘where’ and ‘when’ to of-
fload the computation-intensive jobs. However, using a machine learning approach, we could learn from previous
flight traces with the network settings and video transmission properties to label the status and categorize the con-
ditions. Moreover, a static condition may not be ideal for the entire flight due to the complex changes occuring in
a dynamic field environment. Thus, we prefer to use a more dynamic approach for making decisions i.e., we use a
reinforcement learning approach for learning from the dynamically changing environments by issuing certain rewards.
In addition, integrating multi-thread capability could also enhance the processing speed of large data sets by running
multiple independent tasks at the same time.

3.3. Control Networking (CoNet)

Considering various use cases of a multi-drone system, we select a few scenarios for using video-camera embedded
drones as intermediate or front-end devices in applications such as e.g., traffic management, disaster management, and
smart farming. In most of these scenarios, multi-drones cooperate together by recording and processing videos locally.
However, drones mostly have low computational resources on-board to avoid large payload that limits the flight time.
To cope with this limitation, they offload video data to the edge computing resources through the GCS. There can be
several options for video transmission through the wireless channel. We could choose from different transport layer
protocols and application layer protocols to enhance the speed and accuracy in video transmission. For instance in live
streaming, we can choose from UDP, TCP, or QUIC as a transport layer protocol, and from RTP, HTTP/1, HTTP/2 and
HTTP/3 as the application layer protocol. In addition, due to the limitation on the bandwidth of the wireless channel
at the network edge, a compression of the drone videos is highly desirable before data transmissions. Although a
more advanced video encoding/decoding algorithm could provide higher quality and/or save storage space, such an
algorithm could be a bottleneck for supporting time-sensitive applications due to its longer encoding/decoding time.
Thus, a control scheme to select network protocols and configure video data compression algorithms is essential for
setting up environment variables before running the multi-drone-edge-server system applications.

4. Computation Offloading in Drone Video Analytics

In this section, we discuss computation offloading by using machine learning based prediction and task scheduling.
We present two learning based approaches, i.e., (i) the supervised learning based algorithm, and (ii) the reinforcement
learning based algorithm and detail the implementation of these approaches.

4.1. Supervised Learning Based Job Scheduling
4.1.1. Problem Background

We designed experiments (See Section 6) to acquire flight traces with various network setting and video transmis-
sion properties. Table 1 shows the features that were collected during our experiments. These features are divided
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Table 1
Collected features from our drone experiments dataset.

Transmission Dataset Processing Dataset

Analytics Layer Attributes:
Video Resolution (width x height)  Video Resolution (width x height)

System Layer Attributes:

Wireless Data Rate (Mb/s) CPU Cloud Speed (MHz)
Number of Spatial Streams RAM (GB)

Code rate (Mb/s) Free Memory (MB)
Number of bits per symbol Hard Drive Capacity (MB)

Mobility Models:
Gauss-Markov, Random Way Point, Mission Plan based

Result Parameters:
Transmission Energy (J) Processing Energy (J)

Table 2
Machine Learning model average training time (= RMSE) based on transmission and procesing dataset.

Model Type | Transmission (time) | Processing (time)

KRR 0.120+0.00362 0.004+0.00272
SVR-RBF 0.099+0.01620 0.068+0.00252
GPR 2.170+0.00100 1.962+0.00000
RFR 0.205+0.05400 0.156+0.05400

into three categories: (i) analytics layer attributes, (ii) system layer attributes and (iii) mobility models. In addition,
we obtained the transmission energy results based on the calculations given in [8] and calculated the consumed energy
during processing the data set using the given hardware settings.

With the collected data sets, we used machine learning to predict the time needed to complete each of the jobs.
The reason why we compare the prediction time to complete each job is because we found that: (i) the ML models
provide at least 95% accuracy on prediction given a time series of measurements and thus can be used in computation
offloading decisions, and (ii) we run an on-line learning procedure on a given multi-drone scenario to ensure that the
finish time (that is one of the most important features) is minimum to not disrupt the drone flight tasks. Four machine
learning models from the Sci-Kit Learn Tool [26] were used: (i) Kernel-Ridge Regression (KRR), (ii) SVR-RBF
(Radial Basis Function kernel SVM), (iii) Gaussian-Process Regression (GPR), and (iv) Random Forest Regression
(RFR). The choice of selection of the supervised ML tools is motivated by the following reasons: First, in real-world
scenarios, due to the uncertain wireless environment conditions, it is difficult to predict the network performance to
give a precise decision on ‘where’ and ‘when’ to offload the computation-intensive jobs. However, using a machine
learning approach (i.e., supervised learning), we could learn from previous flight traces with the network settings and
video transmission properties to label the status and categorize the conditions. Second, the different machine learning
methods are chosen based on the regression methods in machine learning approaches. We have chosen to focus on
regression since most of the previous works (e.g., [27, 32]) involve measuring the performance of models using metrics
such as the transmission time or processing time or the energy consumption. In these machine learning models, we
were primarily concerned about the training time and RMSE (Root Mean Square Error) metrics, as shown in Table 2.
For transmission time, we found that the machine learning model that had the shortest training time was the SVR-
RBF model. For the processing time, the best performance was seen in the Kernel-Ridge Regression. Leveraging the
predicted information from the machine learning models, we can obtain information on energy consumption by each
job, network condition on each time-step, and use such information to allocate the resources from drones and edge
servers.

Regarding to the model training, validation and testing procedure, we assume above that all of these activities will
happen only on the GCS. The model training as part of the computation offloading algorithms is occurring in two
different solutions: (i) the heuristic based on the machine learning results, and (ii) on-time reinforcement learning
algorithm. In addition, we do consider the case where the UAV does not have enough battery in prediction. In such
a case, we assume that the GCS will detect such a situation and not assign any computation offloading tasks for that
UAV. In the event of a condition when UAV runs out of battery power during the flight, we assume that the UAV will
be made to ground itself to be recharged before it is added back to the hierarchical FANET setup.

In the following sub-section, we introduce a heuristic algorithm, which uses a job-shop scheduling method based
on our prior work [36] to allocate computation resources from drones and edge servers.
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4.1.2. Heuristic Job Scheduling Algorithm

The results of supervised learning were used to predict the network conditions, with the aim to allocate the resources
from drones and servers. With regards to ‘where’ to execute the jobs, we use this scheduling algorithm to allocate the
jobs and minimize the final energy consumption. For this purpose, we designed a heuristic solution, with which we
always choose the best place (i.e., ‘where’) to execute the job, and allows parallel execution as soon as there is no
conflicts between any parallel jobs. After the heuristic algorithm, each job gets the location and order of execution.
With regards to ‘when’ to execute the job, it is the same as the job-shop scheduling problem. There are many ways to
solve the job-shop scheduling problem. In this work, we used existing tools [10] to calculate the scheduling sequence
and the final execution time, as shown in Algorithm 1.

In this heuristic approach, we introduce a threshold for helping the system determine where to offload the jobs based
on the remaining ideal flight time and the remaining battery life of the drone fleets. This algorithm’s result is used to
compare among the Local Only, Random, and Offload Only approaches; detailed evaluation results and observations
are provided in Section 6.2. The basic logic of the algorithm is: when the total execution energy reaches the threshold
value, it is not necessary to run the job-shop scheduling algorithm again in the next period. In this case, we choose
a more advanced approach i.e., the learning based approach as detailed in Section 4.2.2. The algorithm used in the
heuristic decision making approach with supervised learning based computation offloading is detailed in Algorithm 1.

Algorithm 1: Heuristic Algorithm with Supervised Learning based Computation Offloading

Input: [jobSet]:= total set of jobs and energy properties on a multi-drone analytics application; [env.Set]:= set of all essential properties on drone system
(battery, camera, and etc); T E:= predicted transmission energy of a job; P E:= predicted processing energy of a job
Output: [COlocations]:= a set of locations on which job running on where, [fotal Energy]:= total energy spend on an application
1 Function Main([jobSet],[envSet]):

2 while remainT ime(envSet.battery)! = 0 do

3 foreach job € [jobSet] do

4 COlocations.job = Heuristic (job,[envSet])
5 remainTime(envSet.battery) — —

6 end

7 end

8 [total Energy] == JopShopAlgorithm([jobSet],[COlocations])
9 return
10 Function Heuristic (job,[envSet]):

1 if job.energy < min(remainEnergy(envSet.battery), remainEnergy(envSet.flightTime)) then
12 if job.TE >= job.PE then

13 ‘ COlocations.job.position == GCS

14 end

15 else

16 ‘ COlocations.job.position == Drone

17 end
18 end
19 else

20 ‘ COlocations.job.position == Drone
21 end
22 return COlocations.job

4.2. Reinforcement Learning based Job Scheduling
4.2.1. Problem Background

Since the heuristic approach is fixed during the entire flight of drones, it does not perform better than real-time
decision making algorithms. Here we provide a problem statement to abstract the computation offloading problem as
a Markov-decision process. The optimization problem is defined as: find the optimal offloading control approach that
maximizes expected cumulative rewards R. Since in last subsection we already considered energy, which influences
computation offloading, the Reward function for this subsection will only include accuracy and latency.

To overcome the disadvantage of the heuristic approach, we define the edge computation offloading problem as a
finite-time Markov decision process (MDP) with regards to the total drone flight process.

M offload = (Soﬁ‘load ’ Ao}j‘load P offload> Roﬁ‘load ,T) (D

where M, @, 18 the state space, Aoﬁ‘load is the action space, P,#,,,4 is the probability function that indicates the

probability that action a in state s at time ¢ will lead to state s” at time #+1. Roﬁ‘load is a reward function, and T is the
problem horizon.
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We consider the offloading decision problem to choose amongst options based on prediction to use for downstream
tasks at time ¢. The offloading system action can either choose to use past predictions to avoid performing computation
on the new input, or incur the computation or network cost to use either the on-device computation model or the cloud
computation model. Three discrete actions of the offloading system (as shown in the Aoﬁ‘load in the MDP problem)
that we consider are listed in the following equation:

N — t
0, ykeep_the_same_state - fp"e”il’us (x")

At _ .

alOﬁCZOad =40 ydrone_prediction = farone(x) -
At _ .
2 Yeloud_prediction ~ Setoua(X')

We define the state in the offload MDP to include the information needed to choose between the actions. The choice
depends on the current sensory input, the stored previous predictions, and the remaining query budget. The state in
the offloading MDP is displayed in the following equation:

) d) (xt) ’f (derone), f (xrcloud)
Sojj‘load: —_— —— —— 3)

features Past drone  past cloud

The input is high-dimensional, and could yield an extremely large state-space. The specific choice is dependent on
the expense associated with utilizing the chosen features, as well as the standard encodings or feature mappings.

Our objective using the MDP is to achieve a higher prediction accuracy compared to heuristic solutions, while
minimizing both drone computation and network utilization. We can naturally express the goal of high prediction
accuracy by adding a penalty proportional to the loss function, under which the cloud computing and drone computing
models are evaluated. To model the cost of network utilization and computation, we add specific action costs. The
reward function is given by adding two different constraints, model error and compute latency. Those two constraints
are described inside the heuristic algorithm approach text portions. a and f add up as 1, which will control and balance
the weights of each of these constraints. The weights in our experiments are set to 0.5 each to simplify the evaluation
results. This ultimately gives us the reward function:

R foads" @) = ~aceuracy 10.3) = Poost (cos1(a)) “
model error compute latency

In addition, since the MDP problem can be applied during the whole system operation, we also considered adding
the total energy consumption as a third metric. The reason we did not consider energy in the heuristic algorithm is
because of the work in [2], where the power of rotating rotors is considered to be 20 times the power of computing.
Hence, in the context of the time for prediction, the transmission and processing are important on the heuristic side.
However, considering the whole system, we can use energy as an additional metric to upgrade the system performance
and improve the decision making accuracy. Similar to the first reward function, the updated reward function is given
as follows:

T af t t
~Qaccuracy l(y >y ) - ﬂcost (COSt(a )) - €energy (€(€ )) (5)
—— —— ——
model error compute latency energy

4.2.2. RL-based Job Scheduling Algorithm

Having formally defined the drone offloading scenario as an MDP, we can quantify the performance of an offloading
approach in terms of the expected total reward it obtains. The problem can be expressed as in the following:

Given a drone computation model f;,,,., cloud computation model f,,,s> @ budget of over a finite horizon of T’
steps, and an offloading MDP M, ¢ /,,4, find optimal offloading control approach Toffload Soﬁ‘load = Ayt fload
that maximizes expected cumulative reward Roﬁ‘load:

Toffload € argmaxk (Z RofoadSoffload> Goffload)) (©6)
T

Although we framed this problem as an MDP, it’s not easy to apply conventional tools, such as dynamic program-
ming for solving the MDP. This is because, many of the aspects of this problem are hard to analytically characterize,
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Table 3
A subset of candidate schemes for prerequisites on various scenarios
Requirements Application | Transport Video Video Description
Scheme Protocol Protocol Codec Resolution escriptio
H1 TCP H264 720P HTTP/1.1 TCP H.264 720p Slow, lossless video quality. Good for small analytics tasks.
H2 TCP H264 720P HTTP/2 TCcp MPEG-4 720p Fast scheme, high security. !_ossy video quality.
— — — Good for everyday survillance system.
Very high security and fast scheme, lossless video quality.
H3_QC_H264_1080P HTTP/3 QuIC H.264 1080p Good for crime detection and tracing.
RTP UDP MP4 1080P RTP UDP MPEG-4 1080p Low security, very fast sc_:heme, lossy video quality.
— — — Good for traffic management.
H3 QC H264 2K HTTP/3 QuIC H.264 oK Very high security, Iossle_ss video quality and high resolution.
— = — Good for disaster scene response.
HI TCP MP4 2K HTTP/1.1 TCP MPEG-4 oK Slow, low security scheme bl_Jt with high \_/ldeo quality.
— — — Good for smart agriculture/farming.

notably the dynamics of the sensory input stream. This motivates our investigation of approximate solution techniques
such as the model-free reinforcement learning [13] approach. There are several advantages for using reinforcement
learning. First, model-free policy search methods such as RL avoid the need to model the dynamics of the system, es-
pecially the complex evolution of the drone’s incoming sensory inputs. The model-free approach is capable of learning
optimal offloading policies based solely on the features included in the state, and avoids the need to predict incom-
ing images. Moreover, the use of a recurrent policy allows better estimation of latent variables defining the possible
non-Markovian context of the incoming images. In addition, RL enables simple methods to handle stochastic rewards,
which may arise in offloading due to various costs associated with network conditions or load on cloud compute servers.
Finally, an RL approach allows inexpensive evaluation of the policy, as it is not necessary to evaluate dynamics and
perform optimization-based action selection as seen in, e.g., model predictive control.

In our solution, we use the Q-Learning reinforcement learning algorithm, in order to learn a policy and guide
the drones on actions to take to minimize energy consumption and system latency. Since this algorithm does not
require a model, it can handle problems with stochastic transitions and rewards without requiring adaptations. Detailed
implementation of the RL approach can be found in the GitHub repository [29].

5. Control Networking in Drone Video Analytics

As previously stated, achieving optimal system performance in multi-drone applications in the wireless video
streaming scenario requires high bandwidth and low transmission delay. This is a challenging task considering wire-
less transmission factors such as low bandwidth in lossy wireless channels, delay, lack of coverage and congested
networks. Our hierarchical FANET setup can overcome those challenges by supposing that the search drones will act
as a sensor network that communicates with the GCS. Upon detection, drones with higher capability will be used to
survey the area. These intelligence gathering drones therafter are supposed to capture high quality video in a stable
network connection environment. In the following, we describe a reliable and seamless connection and load-balanced
decision making scheme in drone video analytics.

5.1. Protocols Background

For choosing amongst the various transmission protocols and video codec types at the beginning of the application,
our approach considers various options to switch configurations based on the application context and requirements. The
candidate choices represent one option in each of the four categories, including: (i) Application-layer Protocol (choice
between HTTP/1.1, HTTP/2, and HTTP/3), (ii) Transport-layer Protocol (choice between TCP, UDP and QUIC), (iii)
Video Codec (choice between H.265 HEVC and H.264 AVC), and (iv) Video Resolution (choice between 720p, 1080p
and 2K). Through combination, the possible candidate protocol choices for the requirement schemes can be a large set.
Table 3 shows a subset of the candidate schemes and provides a brief description for these schemes. The motivation
of the choice for each category is given as follows:

Application-layer Protocol. The protocol selection allows a choice between HTTP and RTP. The difference in per-
formance and bandwidth requirements of various application-layer protocols can get noticeably high when considering
the impact of the ideal encryption, video quality and authentication schemes. Instead of web-based video data trans-
missions, other wireless video streaming protocols such as RTP are also widely used in Multi-access Edge Computing
focusing on accessing player buffer status and relevant video content information, such as frames priorities and coding
dependencies.

Transport-layer protocol. The protocol selection allows a choice between TCP, UDP and QUIC. Delivery of packets
in the same order is guaranteed with the TCP protocol. Due to the secured connection, stalling is witnessed in the
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video streaming from the source (i.e., drone) to the destination (i.e., the GCS). In contrast, UDP is a connection-less
and unreliable protocol. During the transmission of video by UDP, image or video blurring is observed due to the loss
of data packets/information. Compared to TCP and UDP, the QUIC protocol delivers data in a reliable, secure and
fast manner. Our objective is to analyze the performance differences among the QUIC, UDP,and TCP protocols and
create an application that meets the necessary frame rate requirement in drone video analytics. More discussion on the
transport protocol selection is provided in Section 6.4.

Video Codecs. Video compression is also an important consideration to reduce the capacity of video content
transmission in a wireless network setting. A variety of video compression formats can be implemented on IoT devices,
including drones. In our experiments, we consider two categories of video codecs - lossless and lossy. In general, a
lossless video codec will take large amounts of space for storage and could easily fill up the channel bandwidth. On
the contrary, a lossy video codec will save space but may loose some information, which may not be acceptable in
application scenarios, e.g., smart agriculture. We prefer to use H.265 HEVC lossless codec and use H.264 AVC lossy
codec as the main choices in our experiments.

Video Resolution. Lastly, the choice of video resolution is important to ensure integrity of the data being sent from
the source (i.e., drone) to the destination (i.e., the GCS). The available options are 720p, 1080p and 2K, which are the
commonly used video resolutions in recent times in applications. The reason why we did not prefer to use 4K is that
- currently not all video cameras on commercial drones support 4K video capture. Overall, through permutation and
combination, the possible choices for the satisfying requirements can be a large collection of scheme options. Table 3
shows a subset of candidate schemes along with a brief application related description for each of those schemes.

5.2. Use Cases for Network Protocol Selection

Recall that our scheme allows choosing of the network transmission protocols and video codecs as per the users’
requirements. However, in a real-world application, the decision-making process is quite difficult. This can be at-
tributed to the the fact that users might not be familiar with the encryption algorithms, and the inherent advantages or
disadvantages in choosing amongst the various network protocols. We suppose that the drone application users lack
of the knowledge to choose from the optimal network properties and video properties. Hence, we provide a subjec-
tive use case requirement table and provide discrete levels for them to choose from. The dataset of the network and
video properties selection is based on the drone flight traces we generate from drone flight experiments in our previous
work [28]. Consequently, users need to be presented with relevant information of suitable candidate options to choose
the best option. To assist with this process, we propose a “Resource-aware Protocol Selection Algorithm” as one of our
DroneCOCoNet components. We identified 90 possible scheme choices, from which the Resource-aware Protocol
Selection Algorithm will choose when setting-up a protocol configuration for a given Drone-GCS application. After
the user provides the choice of the application requirements, we run the ML algorithm to select the network and video
properties choice in the application configuration.

As part of the solution approach, we use both single thread and multi-thread programs to categorize and simplify
the real-world drone video analytics applications. The number of threads is determined based on the ratio of drones
and the GCS nodes available in the field. We categorize the drone to GCS ratio in three modes: one-to-one, one-to-
many and many-to-one. In our case, if on average an application has more drones than GCS nodes, it is considered as a
many-to-one mode, and vice versa. Both of these situations are used in the context multi-thread programs and involve
parallel execution. Surprisingly, if the drone itself is programmable, we could also provide a multi-thread program
solution on the one-to-one mode. In general, a single thread program approach is simpler and easier to design and
setup. In our QUICer (see Section 5.4), we will mainly focus on multi-thread program solutions.

For our system to choose from the available options, it is essential to collect a user’s requirement for the various
parameters in the system. Table 4 shows the parameters used for client benchmark analysis in our scheme, which
we categorize into three different layers, i.e., (i) the analytics layer, (ii) the system layer, and (iii) the energy layer;
each of these layers contains multiple parameters. The values of these parameters represent the user’s desired level
for a given feature, with a higher level meaning that the user prefers to have the feature, and a lower level signifies
that a particular feature is not necessary. The 7 metrics under the ‘Parameter’ column in Table 4 can be used to form
the cluster of devices. By calculating the mean values of each variable for each cluster, we can classify them into
intermediate categories. In other words, for each desired requests from users, we will have one solution for them,
which is categorized by the rate generated during our experiments and learning results. The detailed categorized
selection and decision making results can be seen in our prior work in [28]. We use ML models to process real-world
drone traces that include various mobility models, geospatial link information and on-time network status obtained
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Table 4
User Provided Parameter Values and Description
Category Parameter Values | Description
1 No Real-time Analytics Needed
Analytics P1 Real-Time Analytics 3 Accept Slightly Response Delay
Layer 5 Fast Response, High Real-time Needed
1 Survillance Used Low Quality Video
P2 Video Quality 3 Entertainment Level Used Video
5 High Quality Scientific Used Video
System P3 Parallel Level 1,3,5 Drone to Server Ratio: One-to-One, Many-to- One, One-to-Many
. [OMbps - 50Mbps), [50Mbps - 100Mbps), [L00Mbps - 500Mbps),
Layer P4 | Bandwidth Usage 1-5 [500Mbps - 2Gbps), [2Gbps+)
. [OMHz - 75 MHz), [75MHz - 250 MHz), [250MHz - 750MHz),
P5 | On-Flight CPU Level 1-5 [750MHz - 1.5GHz), [1.5GHz+)
Energy Total Battery Capacity Actual Number
Layer Ideal Flight Time Actual Number

from real-world data-gathering efforts. We remark that the learning results details are explained later in Section 6.4.

5.3. Resource-aware Protocol Selection Algorithm

Once user requirements are collected, the protocol selection algorithm shown in Algorithm 2 is invoked to choose
a scheme from the candidate scheme catalog. Three major threshold variables have been set up to help make decisions,
mapped on a scale of 1 to 5. The threshold value to decide whether the application requires real-time analytics can be
set using the variable real_time_threshold. For instance, a threshold of Level 3 implies that this specific application
requires a drone with video analytics computing resources to transmit videos and receive instructions asynchronously.
Similarly, video_quality_threshold is used to identify the video codec and video resolution so that the combination
could satisfy the user’s accuracy requirement accuracy_threshold. All the decisions and threshold variables are created
based on the analytics layer requests/settings.

Algorithm 2: Resource-aware Protocol Selection Algorithm

Input: Video:= video data to be packaged; [systemSet]:= set of system layer properties, with weight; [analyzSet]:= set of analytics layer properties, with
weight; [envSet]:= set of all essential properties on drone system (battery, camera, and etc)
Output: P:= protocol to be used for transmission; ¥ C:=video codec to be used for compression;V R:= video capture resolution(default setting)
1 Function Main (Video, [systemSet],[analyzSet]):

2 Data < Video

3 if systemSet[parallel Level] >= 3 then

4 T hread()

5 VideoDecision([analyzSet])

6 P.trans == QU IC && P.app == HTT P3

7 end

8 else

9 VideoDecision([analyzSet])

10 if analyzSet.real_time <= real_time_threshold then
11 P.trans ==TCP

12 P.app == [envSet].auth == true?(HTT P2 : HTTP1)
13 else if envSet.scenario <= accuracy_threshold then
14 ‘ P.trans == UDP&&P.app == RT P

15 else

16 ‘ P.trans == QUIC&&P.app == HTT P3

17 end

18 end

19 exe(Video)
20 return
21 Function VideoDecision([analyzSet]):

22 if analyzSet.videoQuality <= video_quality_threshold then
23 VC == H.264

24 V' R == envSet.camera < 1080P?(720p : 1080P)

25 end

26 else

27 ‘ VC == H.265&&V R == 2K

28 end

29 return VC,V R

As shown in Algorithm 2, the inputs include: video data to be encoded and transferred, Video, the system layer
variables, [systemSet], the analytics layer variables, [analyzSet], and the environment properties of drone systems,
[envSet]. [systemSet] and [analyzSet] are given as system settings and user requirements for a specific application
scenario. [envSet] is given by the drone system and the application context. In our case, [env.Set] includes the camera
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Figure 3: Visual object tracking pipeline that includes the modules integrated with QUICer for high-performance object tracking.

information, battery information and scenario description. We may not get the exact accuracy requirements from the
[envSet], since it is dependent on the video analytics algorithm. However, we could get a preliminary decision on
which a transmission protocol can be used to avoid the transmission being a bottleneck during the video analytics
pipeline execution. The output of the algorithm provides the specific application and transport layer protocols to be
used for drone video transmission, video codec selection, and the recommended video resolution.

5.4. QUICer: Application Pipeline Data Movement Acceleration

In this section, we introduce QUICer, a new video transmission tool that we developed to integrate HTTP/3 and
QUIC protocols with a multi-thread program capability. To show application integration ability of QUICer, we also
present an advanced video analytics application pipeline that uses the QUICer tool for video data transmission.

5.4.1. QUICer Implementation

In most cases, simply making decisions on video properties and networking protocols cannot ensure optimized
system performance. One solution is to use a multi-thread program to exponentially speed up the video analytics
process. To achieve parallelism in data transmission within a drone video analytics pipeline, we propose a novel
python-based tool viz., QUICer that builds upon the popular QUIC transport protocol. QUICer operates by using
HTTP/3 over QUIC, thus enabling faster transfer rates, and consists of a client/server program, which support multiple
workers to allow multi-threading capability in data transmission over a network path between the drones and GCS.

5.4.2. Application Pipeline Integration

We integrate QUICer into a visual object tracking pipeline, which consists of 3 application modules to detect and
return the location of a specified class of objects (e.g., cars) in a video data source. Each module includes HTTP3/QUIC
client/server processes that accept data from upstream processes and direct output to downstream processes.

Video Source. The video source for our pipeline is a video feed from a multi-drone client. This video is simultane-
ously copied to all other devices for processing. To achieve a better result, we used the H.265 codec to compress the
video source and set the video resolution at 2K that is commonly used in drone video systems.

Motion Module. The motion module performs image-based motion detection on the input video. For each frame in
the video, we established a local 3D spatial-temporal volume and computed the information about temporal gradient
changes, which can be used to distinguish between moving and stationary regions. Subsequently, a binary mask
showing the moving objects was generated and sent to the Fusion & Tracking module. Motion detection can greatly
improve object tracking performance especially for the hover mode of UAVs where the video is stabilized.

Detection Module. In this module, we employed YOLO [30], a deep learning-based object detector using a con-
volutional neural network, for object detection to enhance the tracking performance. We used the weights that were
pre-trained on ImageNet [9]. Note that in the practice of our drone video analytics experiments, we use VisDrone [37]
dataset as our object detection testing dataset. This is because the VisDrone dataset provides bird-view images that
are different from the multi-angle images in the ImageNet dataset. The detection module can increase the tracking
accuracy by refining the object bounding box. We also use the detection module to restart the tracking process when
the tracker loses the target.

Fusion & Tracking Module. In this module, we operate the visual object tracking on a selected target. We used
the CSRT [20] as a single object tracker that relies on distinctive object appearance for tracking. CSRT is able to
handle challenging scenarios such as object deformation, fast camera motion, low video frame rate, and occlusion. We
utilize the information provided by both motion module and detection module to assist the tracker. We have developed
a rule-based fusion model that can effectively fuse the motion, detection, and appearance cues and produce optimal
tracking results.
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Table 5
Extended metrics related to the real-flight experiment dataset.

Name Content

Mainly includes the navigation information including location, speed, attitude, angular speed, etc.
and sensors information including accelerators, gyroscope, magnetometer, barometer, etc.

Mainly includes the flight status information of the drone, such as GPS signal strength, flight status,
and Return to Home status, etc.

Mainly includes the remote controller's information, such as flight mode,

and controller stick's movements, etc.

Mainly includes the battery's information, including voltage, current, temperature, capacity, etc.
Only consider battery cost on computing

Mainly includes the Obstacle Avoidance information of the vision sensors,

ultrasonic sensors and infrared sensors.

Attitude Data

0OSD Data

Remote Controller Data

Battery Data

Obstacle Avoidance Data

6. Performance Evaluation

In this section, we first introduce the evaluation setup and data sets collected from a real drone use case scenario.
Then we discuss the heuristic based scheduling results on edge computation offloading. In addition, we present the
RL approach results compared to the heuristic solution, and provide a comprehensive solution by considering together
the accuracy, latency and energy metrics. Lastly, we present the control networking experiments, where we compare
QUICer with TCP and UDP connections and show the advantages of using our QUICer approach.

6.1. Evaluation Setup

For evaluation of our DroneCOCoNet framework, we built a hierarchical FANET environment, where we consider
various mobility models and increased drone to GCS server ratios. To simplify our experiments, we collected 20 video
clips with 40 seconds and 25 FPS. 10 of the video clips are with low density of objects, and the other 10 video clips are
with high density of objects. For each of the 10 video clips, we use 70% of the frames for testing and 30% of the frames
for training, with 10 fold validations. Those videos are collected from 3 various version of drones (DJI Phantom 3,
DJI Mavic 2 and Parrot Drone), each with 1000 image frames as the same settings in VisDrone dataset [37]. These 20
video clips represent 3 mobility models, i.e., random way point, Gauss-Markov and mission plan based, with different
setups shown in Table 3. In addition to using the parameters collected in Section 4, we also query cost and mean
classification loss during the flight for calculating the reward function in the MDP problem. For the energy evaluation,
we measure the total flight time when using a battery, and calculate the energy consumption per second.

We have noted that the energy consumption in the flight is significantly larger in comparison to the energy consump-
tion for the prediction. Consequently, the main factor in the decision to ground a UAV is based on the flight pattern
and related battery charge necessary to complete a computation task. Further, in the evaluation section (Section 6.3),
we use energy consumption as an add-on to our updated reward function, and assume that the energy consumption is
not a major factor in the drone video analytics side but it is a significant factor on the environment side.

The real drone flying path was tested using three mobility models to predict the network environment, transmission
time and energy viz., Random Mobility model, Gauss-Markov Mobility model and Mission-Based Mobility model.
The flight time, flight mode, GPS satellites number, speed, battery consumption percentage and voltage were recorded.
A realistic drone based data collection and associated formats are shown in Table 5.

In terms of the benchmarks for comparison purposes related to computation offloading, we considered a baseline
and other state-of-the-art approaches. First, we consider three simple solutions offloading decisions are made on
either a random basis, offload only basis or a drone-only basis. In addition, for comparison of our heuristic based
scheduling results, we select a state-of-the-art approach viz., QL-JTAR as a side-by-side comparison method. Further,
for comparison of our RL approach, we select an Oracle baseline as an ideal upper limit. More details on the RL
approach related baselines are provided in Section 6.3.

6.2. Heuristic based Scheduling Results
Figure 4 shows the evaluation results with our heuristic solution in a real multi-UAV environment. Based on the
results data, we conclude the following observations:
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Observation 1: Our heuristic-based offloading scheme outperformed local-execution and Q-learning based QL-
JTAR solution on scheduling time for low drone-to-ground-server ratios. As shown in Figure 4a, our approach follows
a similar trajectory as the Offload Only, which offloads all of the tasks to the ground (i.e., the GCS connected to the
edge server). We found that our heuristic-based offloading scheme resulted in up to 15% better scheduling make-span
than the offload-only scheme. Random offloading is sporadic with no definable correlation and contains a far greater
degree of variance compared to the other offloading schemes. The optimal scheduling time is very consistent when
processing is performed only on the drone locally, even when the drone to ground server ratio changes. This is because
of the parallel execution of the tasks done on the drones, with each drone processing its own video stream without
ever offloading to the ground. Consequently, there will be no build up of the queue on the ground. In addition, as we
can observe from the QL-JTAR solution results, QL-JTAR solution takes ~800 seconds in all experiments, which is
not efficient enough for the low ratio situation. When we consider significantly more drone flight paths on the area,
QL-JTAR may perform better than our approach. However, the difficulty on operational drones will exponentially
increase when the ratio reaches 10. Hence in our experiments, we only considered low drone-to-ground-server ratio
cases.

Observation 2: Our heuristic-based offloading scheme outperformed Random offloading and Local Only execution
on energy consumption, and provides reasonable energy savings compared to the QL-JTAR solution. From Figure 4b,
we can see that the energy consumption rate grows at a very fast rate as the air to ground server ratio increases in the
Local Only and Random schemes. However, our approach consumed energy consistently at a lower rate than the Local
Only and random offloading schemes. However the energy consumption was slightly higher than the Offload Only
scheme. This is reasonable because the energy consumed by the Offload Only scheme involves just the transmission
energy, but not the energy used for video processing. In addition, this difference in energy consumption between our
approach and the Offload Only scheme is fairly marginal. Considering that our approach performs up to 15% better
than the Offload Only scheme in terms of scheduling time, we conclude that our approach overall performs better when
both time and energy are considered.

From both the above observations, we can see that our approach consistently outperformed the Local Only scheme
and the QL-JTAR approach until the drone-to-ground server ratio reached =~ 17 : 1. This is because, as more drones
are connected to the server with each recording a live stream, more tasks will naturally be offloaded to the ground
GCS. For large drone to ground ratios, the queue on the ground will grow very large, meaning that it will take a long
time for all tasks in the queue to be completed. Thus, we designed a dynamic computation offloading approach based
on reinforcement learning, which we introduced in Section 4.2 and whose performance evaluation is presented in the
following section.

6.3. Reinforcement Learning based Scheduling Results

Similar to the comparison methods introduced in the context of the heuristic algorithm evaluation, we again use the
random, drone-only and offload-only approaches as our baseline methods. As we can observe from Equation 2, during
the procedure for making action decisions on MDP, those three baseline approaches can be achieved by selecting a pre-
defined action a' without learning procedures. In addition, besides those three baseline approaches and the heuristic
itself, we also introduce an oracle approach as a upper limit bound which provides a standard for our learning-based
algorithm. Consequently, we compare our RL-based approach against the following baselines:
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Figure 5: Experiment results under different baselines: random, drone-only, cloud-only, heuristic and oracle showing comparison in
terms of metrics: mean episode reward, mean model query cost and mean classification loss.

Random Baseline n(’;j’%";" ge This simple benchmark chooses a random action at offload 0,1,2 when the cloud

query budget is not saturated and thereafter chooses randomly from actions O - 2.

Drone-only Baseline ﬂg}jglnoea d The Drone-only baseline chooses at offload = 1 at every time-step to query the

drone computation model and can optionally use past drone predictions at offload = 0 in between.

Cloud-only Baseline ﬂ(‘;;‘l‘ga d The cloud-only baseline chooses at offload = 2 uniformly uses the past cloud

predictions at offload = 1 in between.
Heuristic Baseline ﬂg]?%zzlt;‘ This baseline uses previous approach on applying supervised learning results on

decision making at the beginning of the experiment. It will choose a heuristic for selecting the most optimal solution
at the beginning of each flight without changing the decision through the flight. Depending upon the characteristics of
each trace in the traces dataset, the heuristic solution on model error could achieve different results.

Oracle, Human-selected Baseline n;’);ﬁ’)z d This baseline uses human-selected approach, which achieves 100%

accuracy on object/pedestrian recognition and registration, and is used only for comparison purposes. Here, we ignore
the calculation time on reinforcement learning decision making and always use the ideal location for computation. On
the other hand, oracle baseline cannot be achieved in the real-world experiments since the location of the object and
the registration are given in advance. In general, the results will vary for a given trace dataset in terms of model error.

To summarize, offload-only and drone-only approaches consider the lower bound of metrics such as e.g., compute
latency and model error. Whereas, the oracle considers an upper bound of the algorithm, which results in an ideal
solution, where the performance is known in advance and the selection is given manually by the users.

Observation 1: Our heuristic-based offloading scheme Pareto-optimizes the trade-offs compared with drone-only
execution and offload-only execution in terms of computation latency and performance in the video analytics applica-
tion. Figure 5 shows the comparison of baseline approaches with heuristic approach only by calculating their overall
rewards generated during the whole flight period in the testing trace dataset. For example, Figure 5a represents the
mean episode reward R with the components of compute latency (represented as query cost in y-axis in Figure 5b) and
model error (represented as classification loss in Figure 5c). In Figure 5a, the heuristic baseline performed slightly
greater than the cloud-only and the drone-only baseline. This is because the heuristic approach predicted the envi-
ronment in advance and scheduled the jobs to save the resource to the maximum extent. However, as a trade-off, the
heuristic approach has lower performance compared to the drone-only baseline with regards to the query cost (see
Figure 5b) and the cloud-only baseline in accuracy (see Figure 5c). This is because of its scheduling time performance
and the presence of a fixed job queue, regardless of the long waiting time involved with complex jobs.

To summarize, without the learning procedure, our heuristic baseline Pareto-optimizes the trade-offs between com-
putation cost and video analytics performance compared with drone-only, cloud-only baselines. To achieve better re-
sults, we run experiments using our RL approach, which provides better performance than all the other lower bound
comparison methods.

We evaluated the performance of the RL approach against the above baselines on 10 diverse traces in the testing set.
In each of the traces, the number of objects and their locations were distinct from the traces in the training set. To test
an offloader’s ability to adapt to various network bandwidth constraints, we evaluated each trace with 5 various network
condition settings, which map to the P4 values range in Table 4. Given that we use different traces, the heuristic and
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Figure 6: Experiment results on testing traces using different baselines: random, drone-only, cloud-only, heuristic, oracle and our
proposed RL approach. Comparisons are made for mean model query cost and mean classification loss without energy concern.
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Figure 7: Experiment results using different baselines: random, drone-only, cloud-only, heuristic, oracle and our proposed RL

approach. Comparisons are made for mean episode reward, mean model query cost and mean classification loss with energy concern.

oracle solutions could get different model errors. However, the other three baselines (Random, cloud-only, drone-only)
performance can be seen to be nearly the same since each of them uses the same underlying decision making strategy.
In addition, comparing Figures 5b and 6a, we noticed that the heuristic algorithm provides unstable results (i.e., it
produces less query cost than training the database). Moreover, we found that the oracle could provide similar results
in the low range with regards to the query cost metric.

Observation 2: In the case without energy concerns, our RL approach Pareto-optimizes the trade-offs between
computation cost and video analytics performance during the application procedure. In the case with energy con-
cerns, our RL approach outperformed all other non-oracle baseline approaches considering all features in terms of
computation cost and video analytics performance during the application procedure. Figure 6 shows test results for
our RL approach based on the MDP problem setting in Section 4.2.1. When concerned about both application accu-
racy and mean offloading cost, our RL approach Pareto-optimizes the trade-offs between performance vs. computation
offloading cost during real-time drone video analytics. Note that we only consider the latency when performing image
processing, instead of considering the overall latency for both transmission and processing. As we can observe from
Figure 6a, in the case without energy concerns, RL approach cannot outperform on compute latency although a notable
improvement on model error is obtained. This is because, in the case without energy concerns, RL approach will put
all the efforts on getting the video analytics accuracy which will in turn lead to overall higher energy consumption.

To balance the performance in terms of compute latency, model error as well as the overall energy consumption,
we introduce one more feature i.e., energy consumption to balance the reward function in MDP. We can infer that - the
higher the weight on energy consumption, the lower the chance that the RL approach will query for offloading, and
lower will be the query cost.

Figure 7a shows the distribution of rewards obtained by the different offloading approaches using the new reward
function (Eq. 5), where our RL approach is depicted in the orange boxplot. The mean episode reward is calculated
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Table 6
Policy-based estimate (baseline) and machine learning prediction results comparison.
Protocol Video Property
Model Type 95% CI 95% CI PSNR
KRR (0.652, 0.928) (0.803,0.927) | (39.86, 46.93)
SVR-RBF (0.779, 0.833) | (0.9034,0.952) | (33.59, 46.93)
GPR (0.813,0.882) (0.7523,0.8) | (32.26, 39.86)
RFR (0.9124,0.96) (0.9032,0.97) | (32.26, 49.37)

by the reward function in Equation 4. We also break down the mean episode reward into its two components, i.e., (i)
prediction accuracy represented by the Mean Classification Loss, and (ii) latency represented by the Mean Offloading
Cost. We show the mean performance over all testing clips for each approach in Figure 7b.

Observation 3: Our results show that our RL approach has at least 240% higher median episode reward than
other offloading schemes, and is comparable with the lower bound of the oracle solution. Compared to the heuristic
solution, RL approach is 1.9x higher on total rewards (see Figure 7a). This is because, the RL approach evaluates the
cost dynamically on ‘where’ to execute the job at each time step by comparing trade-offs on accuracy, latency as well as
energy. By comparing Figure 6b and Figure 7b, we can see that when considering the energy parameter, RL approach
achieves better results on mean offloading cost. This is because, there is less opportunity on changing executing
position in a stable environment. Essentially, the RL approach learns to judiciously query the remote server when
the drone model is highly uncertain. This allows it to improve the overall system accuracy and minimize prediction
loss. However, the RL approach has lower offloading cost since the bandwidth limits cause the drone-only baseline to
periodically, but sparsely, sample the prediction time period. On the contrary, the RL approach has better prediction
accuracy than the cloud scheme. This is because, the past prediction can keep the previous result for reference, which
consequently keeps the object tracking and recognition to be more accurate and increases the overall processing speed.

To summarize, the experimental results show that our heuristic-based offloading decision-making scheme enables
lower scheduling time and energy consumption for low drone-to-ground server ratios. In addition, our dynamic rein-
forcement learning-based decision-making approach increases the accuracy and saves overall time periodically, as well
as provides energy efficiency. We remark that these results can also hold in various multi-UAV scenarios with different
numbers of detected objects in e.g., smart farming, transportation traffic flow monitoring and disaster response.

6.4. QUICer Based Control Networking Results

Before we introduce QUICer as a communication strategy, we investigate how machine learning methods ! could
help us categorize the user requirements and provide an appropriate transport protocol choice (choose between TCP
and UDP), and video property choice (category of video resolution and video codec). Table 6 provides the machine
learning model results on networking protocol and video properties selection. We compared results with real-world
experiments for each model and also calculated the 95% CI of accuracy for each model. We firstly conclude that - RFR
gives more accuracy on networking protocol and video property selection, however the decision performance is in the
unstable range of PSNR within the transmitted video. Secondly, we conclude that the KRR can generate better results
with a stable range of PSNR, although the performance is lower than other machine learning models. There exists
an advanced protocol which could dynamically decide either to use TCP or UDP during the application execution
viz., FDSP. However, our multi-drone video analytics application scenarios do not benefit from the use of FDSP as
a communication protocol strategy. There are primarily two reasons: (i) we cannot distinguish (in real-time) the
critical part to assign the TCP protocol during the drone video streaming, and (ii) in the case of the limited bitrate
condition, during our whole flight experiments, we did not face the situation where QUIC performs with less FPS in
the video analytics pipeline than in case of FDSP. To elaborate on the second reason, the only situation where the
limited bitrate performance is lower than expected is when the drone flies out of range, which is an undesired situation
in our experiments.

QUICer’s performance is significantly improved by using multiple connections between the client and server.
QUICer supports asymmetric setups, e.g., having 4 server workers and 8 client workers, granting it the ability to
adapt to the application. In our current implementation, QUICer requires the client and server to know the number of

IKRR: Kernel-Ridge Regression; SVR-RBF: Radial Basis Function SVM; GPR: Gaussian-Process Regression; RFR: Random Forest Regression
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Figure 8: Frame rates CDF achieved by QUICer when using a varying number of simultaneous connections between server and
client, compared with frame rate achieved with TCP and UDP performance.

connections prior to launching. However future versions could utilize a brokering endpoint on the server, allowing the
client to dynamically adapt to the needs of the server. We remark that QUICer can be used to improve the processing
speed of an object pipeline in terms of the communication level. Thus, any video processing pipeline which leverages
function centric computing like we do in this work, can utilize QUICer to speed-up the processing tasks.

As shown in the Figure 8, we tested different levels of simultaneous connection between multi-drone and GCS
system using our multi-thread program that is part of our QUICer implementation. QUICer L1, L2 and L3 represents
1 connections, 4 connection and 8 connections, respectively. Compared with traditional transport protocols such as
TCP and UDP, the QUICer could achieve 12x to 140X improvement in video data transmission. This is primarily
due to two reasons: (i) Owing to the one-time hand-shake feature of the QUIC protocol, the video streaming and data
transmission experience a speed-up in comparison with TCP connections, and (ii) QUIC with HTTP/3 connection is
fault tolerant on data packets, which ensures higher video processing speed and accuracy. Although QUICer is stable,
has high-speed and supports package lossless connections, the underlying QUIC with HTTP/3 may not be an ideal
solution. Taking QUICer L1 as an example: with a single QUICer connection, we could only get about 12X speed
up compared to TCP and UDP protocols. However, if we introduce a multi-thread program implementation, we can
easily get up to 140x speed-up with 8 threads, or even higher speed up with more threads. Since a multi-thread program
solution is often limited by resources on the edge device, most of our tests have been performed by using at most 8
threads to collect the performance results presented in Figure 8.

To summarize, if device settings on the drone permit QUIC protocol selection, by utilizing our QUICer as a multi-
threaded communication strategy, the multi-UAV video analytics can achieve notable speed-up on video transmission
in drone to ground transmissions. However, if no parallel execution is considered for transmission or if there are other
limitations of device settings on the drone, our approach provides other methods. Specifically, we can provide features
of various candidate protocol combinations on video data transmission and compression codec strategies in specific
cases e.g., in the case where we know how users will utilize the drone video analytics to make decisions when setting
up their drone data processing applications.

7. Conclusion

In this work, we presented DroneCOCoNet, a framework to realize learning-based computation offloading and
control networking strategies during drone video analytics. We detailed two general mathematical formulas for the
drone computation offloading problem, one that adopts a heuristic algorithm, and another that uses a reinforcement
learning algorithm. Our approach to formulate the edge computation offloading problem as a Markov Decision Problem
is both general and powerful compared to supervised learning methods. We demonstrated that reinforcement learning
can be used in the DroneCOCoNet framework effectively, which outperforms common heuristic approaches as well
as other approaches. We also designed and detailed our design of QUICer, a novel application to maximize data
transmission using parallel execution within a given drone video analytics pipeline. Our evaluation using real-world
experiments showed that our QUICer approach significantly increased the system performance compared to traditional
network protocols such as TCP and UDP. We also obtained insights that indicate that our RL approach is an effective
way to optimize edge computation offloading under constrained resources while supporting applications such as border
security, disaster response, smart farming and smart city surveillance.

Our future work includes evaluating the DroneCOCoNet using simulators in addition to real experiments to intro-
duce more parameters, generate more comprehensive data for various drone scenarios. Such work can help further
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evaluate both computation offloading and networking solution approaches as a global optimization problem in the
orchestration of MEC resources. Our QUICer configurations can be replaced with TCP configurations dynamically
when faced with low bitrate conditions that can be caused by e.g., drones flying over longer distance paths that cause
significant degradation of signal conditions. On the evaluation side, we supposed that a real world experiment in a
small testbed would further strengthen our validation experiments. However, our methods used in the simulation ex-
periments are realistic and are intended to be used as part of large real-world testbeds that are challenging i.e., they are
time consuming and expensive to build in practice and are also limited by current government regulations on drone
flights for recreational or research purposes.
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