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Abstract—Unmanned aerial vehicles or drones provide new

capabilities for disaster response management (DRM). In a DRM

scenario, multiple heterogeneous drones collaboratively work

together forming a flying ad-hoc network (FANET) instantiated

by a ground control station. However, FANET air-to-air and air-

to-ground links that serve critical application expectations can be

impacted by: (i) environmental obstacles, and (ii) limited battery

capacities. In this paper, we present a novel obstacle-aware and

energy-efficient multi-drone coordination and networking scheme

that features a Reinforcement Learning (RL) based location

prediction algorithm coupled with a packet forwarding algo-

rithm for drone-to-ground network establishment. We specifically

present two novel drone location-based solutions (i.e., heuristic

greedy, and learning-based) in our packet forwarding approach

to support heterogeneous drone operation as per application

requirements. These requirements involve improving connectivity

(i.e., optimize packet delivery ratio and end-to-end delay) despite

environmental obstacles, and improving efficiency (i.e., by lower

energy use and time consumption) despite energy constraints.

We evaluate our scheme by comparing it with state-of-the-art

networking algorithms in a trace-based DRM FANET simulation

testbed. Results show that our strategy overcomes obstacles and

can achieve between 81-90% of network connectivity perfor-

mance observed under no obstacle conditions. With obstacles,

our scheme improves network connectivity performance by 14-

38% while also providing 23-54% of energy savings.

Index Terms—drone mobility management, disaster response,

reliable network construction, learning-based scheduling

I. INTRODUCTION

Recently, unmanned aerial vehicles (UAVs) or drones have
gained attention from both government and industry com-
munities for a plethora of civil applications such as smart
agriculture [1], traffic management [2], parcel delivery [3], and
disaster response [4]. In these application scenarios, multiple
drones with specific capabilities can execute complex and crit-
ical tasks, such as: spreading pesticides over crops, regulating
the traffic in smart cities, delivering small parcels to customers,
and saving lives in search and rescue operations. Either
homogeneous or heterogeneous drones are connected together
forming a flying ad-hoc network (FANET) instantiated by a
ground control station (GCS), which orchestrates the whole
fleet of drones by sending commands to drones, and getting
fresh information to decision makers on the ground.

This material is based upon work supported by the National Science
Foundation under Award Number: CNS-1647182. Any opinions, findings, and
conclusions or recommendations expressed in this publication are those of
the author(s) and do not necessarily reflect the views of the National Science
Foundation.

In a FANET, drones are flying nodes of a network in which
the GCS is in the main stationary node. Drones can typically
fly almost everywhere and execute challenging tasks in a
cooperative fashion [5] in order to e.g., deliver first-aid and
relief goods to first responders, capture images and videos
above affected areas of interest, and update maps of disaster
scenes. However, drones are energy-constrained vehicles and
can only operate, on average, for no more than a few tens
of minutes. Depending on the geometry, nodes belonging to
a FANET can form different topologies, such as star, mesh,
or cluster-based. Accordingly, the connectivity of a FANET
is guaranteed via a multi-hop paradigm, i.e., any two nodes
can directly or indirectly communicate. In fact, a source node
can establish a link with a destination node with the help of
intermediate nodes that act as relay nodes.

A major challenge in the mobility management of drones
occurs due to possible obstacles (e.g., trees, buildings) that
can obstruct the radio signals and impact FANET opera-
tion/efficiency in terms of connectivity, throughput, and la-
tency. Obstacles influence the air-to-air (A2A) and the air-to-
ground (A2G) network communications between drones and
the GCS, respectively [6]. In a DRM scenario, it is common
to have a heterogeneous drone setup to handle different tasks.
Drones spend energy not only to fly, but also to complete
their assigned tasks and use residual energy for network
establishment by acting as intermediate nodes to forward
packets. To the best of our knowledge, there is a dearth of
works that address networking problems of using heteroge-
neous drones that cooperatively work in a DRM scene with
obstacle awareness. Particularly, there is a pent-up need for
works on improving drones’ geographical obstacles avoidance
and efficient energy usage, while maintaining desired FANET
connection performance in DRM scenarios.

In this paper, we present a novel obstacle-aware and energy-
efficient multi-drone coordination and networking scheme that
features a location-aided prediction algorithm coupled with
a packet forwarding algorithm for drone-to-ground network
establishment. Our novelty is in the approach of using Re-
inforcement Learning (RL) to estimate future drones’ trajec-
tories based on their coordination status and their on-board
sensors information. Specifically, once the intermediate drone
accurately predicts the position of the destination drone, then
a list of preliminary decisions on where to forward packets
is made. We consider various drone mobility models such as



Gaussian Markov Model (GMM), Mission-Based Plan Model
(MBPM), and Random Way Point Model (RWPM) within our
prediction technique to address the DRM application require-
ments. Our packet forwarding algorithm features two drone
location-based solutions i.e., heuristic greedy and learning-
based that can support heterogeneous drone operation re-
quirements under DRM scenarios. The operation requirements
involve improving A2A and A2G network connectivity (i.e.,
optimized packet delivery ratio and reduced end-to-end delay)
despite environmental obstacles, and improving efficiency (i.e.,
by lowering energy use and time consumption) despite battery
capacity limitations in re-establishing network connectivity.

We evaluate our proposed scheme by comparing it with
state-of-the-art multi-drone networking algorithms in a trace-
based DRM FANET simulation testbed [7]. We analyze the
performance by evaluating network (i.e., packet delivery ratio,
end-to-end delay) and energy (i.e., energy usage proportion
for communication) metrics in several experimental settings
in terms of different transmission range, amount of drones,
and obstacle density. Lastly, we present results to show how
our strategy overcomes obstacles and can achieve better net-
work connectivity performance observed under obstacle-free
conditions. Similarly, we present results that show how our
scheme outperforms state-of-the-art algorithms in the presence
of obstacles in terms of improving network connectivity per-
formance while also providing energy savings.

The rest of the paper is organized as follows: Section II
presents related work. Section III provides an overview of
our DRM coordination and networking problem along with
the solution approach. Section IV introduces our location
prediction model. Section V details our heuristic-based and
learning-based algorithms. Section VI presents our perfor-
mance evaluation results. Section VII concludes the paper.

II. RELATED WORK

Handling of DRM involves, e.g., search and rescue oper-
ations that must be managed as promptly and efficiently as
possible to save human lives. In this regard, the major problem
is the lack of technologies that can provide the necessary
situational awareness for the incident commanders making
decisions to deploy first responder resources [8]. Drones,
compared with ground-based solutions such as robots or cars,
provide unique advantages such as the ability to observe
devastated areas from the sky, flying above possible ruins and
avalanches. Additionally, drones can provide monitoring and
logistic services to address handling of DRM scenarios in
the absence of traditional communication infrastructure [9],
[10]. Our proposed networking scheme can be used in works
such as [11], [12] and help with achieving drones’ monitoring
function in order to provide situational awareness for rapid
and effective decision making to handle DRM. Although re-
liable communication architectures have been studied in [13],
[14], [15] in the context of drones, they do not address the
underlying multi-drone coordination and networking aspects
that are necessary to deploy DRM applications.

To achieve reliable communication between drones and
GCS in a DRM, a suitable packet forwarding algorithm needs
to be employed. In [16], authors proposed a strategy that sal-

vages packets in the presence of void nodes, providing a low-
complexity and low-overhead recovery for Greedy Geographic
Forwarding (GGF) failure. In a DRM, it is crucial to consider a
location-based packet forwarding protocol that can be used in
ad hoc network deployments. The geographic/position-based
routing protocol, Greedy Perimeter Stateless Routing (GPSR)
protocol was proposed in [17], which utilizes GPS information
to assist the packet forwarding procedure. Our work is highly
related to studies in [18], [19], wherein authors described how
a packet forwarding strategy is used inside these protocols
for large density drones network deployments, through ex-
periments in multi-drone settings. Based on results in prior
works, the packet forwarding algorithm described in GPSR
outperforms other state-of-the-art packet forwarding strategies
described in either proactive or reactive-based protocols.

Our approach is motivated by the work in [20], in which
a suitable packet forwarding algorithm for DRM operations
is studied. They proposed a Location-Aided Delay-Tolerant
Routing protocol (LADTR), a study that employs location-
aided forwarding combined with a Store-Carry-Forward (SCF)
method. The goal of the proposed strategy in this routing
protocol is to guarantee the connection rate between drone
nodes and enable a high packet delivery ratio.

In contrast to these prior works, our proposed approach
considers environmental awareness in terms of energy con-
sumption as well as the presence of obstacles in drone path
computations at the GCS for A2A and A2G links. To enhance
our packet forwarding algorithm by considering both energy
efficiency and obstacles awareness, we build upon the recent
prior work in [21] as well. In this work, authors studied
energy consumption issues for mobile devices management
in the context of a mobile edge computing paradigm; note
that drone use cases were not addressed in this prior work.
Their goal was to consider human mobility while handling
user requirements of energy conservation over low-latency or
vice versa in visual edge-based application data processing.
Specifically, they presented the SPIDER algorithm, which was
built upon recent advances in the geographic routing area [22].
This study presented a novel AI-augmented geographic routing
approach (AGRA) that uses physical obstacle information
obtained from satellite imagery by applying deep learning at a
network-edge site. The SPIDER algorithm is shown to perform
better as a packet forwarding strategy than other stateless
geographic packet forwarding solutions, as well as, stateful
reactive mesh routing in terms of packet delivery success ratio
and path stretch. Our work builds on the SPIDER algorithm,
and is suitable for high-density drones network deployments
and considers environmental awareness in terms of energy
consumption and obstacle avoidance in DRM scenarios.

III. DRM COORDINATION AND NETWORKING

In this section, we present the multi-drone coordination and
networking problem for DRM, describing the essential system
components, related requirements, and inherent assumptions.
Following this, we present our solution overview.
A. Multi-Drone Networking System

We consider a DRM scenario that involves multiple critical
tasks (e.g., search and rescue after an earthquake, providing



relief goods to people, or simply monitoring people in a crowd)
being executed by heterogeneous drones on a given FANET
topology. Figure 1 illustrates the system setup including a GCS
and three different types of drones i.e., delivery drones, moni-
toring drones, and map drones. The delivery drones carry first
aid and relief goods to people with necessities, the monitoring
drones have embedded cameras used for searching for objects
and finding missing people, and finally the map drones are in
charge of keeping the rescue area map up-to-date. The GCS
sends requests to drones for executing specific tasks on certain
locations (e.g., video recording above ruins). Furthermore, the
drones will send back to the GCS the retrieved situational
awareness information.
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Fig. 1. Coordination of drones in the proposed DRM scenario. Delivery drones carry
first aid and relief goods, monitoring drones search for missing people or objects, and
map drones keep the rescue area map up-to-date.

B. System Requirements and Assumptions
The fundamental requirement that needs to be guaranteed

is the establishment of reliable communication links between
the drones and GCS. In general, the communication radius is
not sufficiently large for allowing single-hop links, due to the
fact that the topology can be arbitrary, and also the presence of
obstacles can make the links unstable or even blocked. Hence,
communication links should be built according to a multi-
hop paradigm. In our DRM scenario, high-throughput links
are required only when data transmission is in process. To
save energy, delivery drones could individually deliver goods
without further notice to the GCS [23], monitoring drones can
perform pre-processing functions on-board without guidance
from the GCS, and map drones can cache the image/video
data inside the embedded storage until the queue is full.

In our scenario, the GCS is not an energy-constrained
device and also its computational performance outperforms
that of the drones. We assume our system to be comprised of
heterogeneous drones with knowledge of their global positions
because they are enabled with GPS capability. Delivery drones
have pre-computed routes for carrying goods to locations and
move with respect to the MBPM [24]. They have sufficient
energy for executing delivery tasks and flying safely back to
the ground. They can act as forwarding drones for generating
connection links only if they have residual energy. Moreover,
they can lose the connectivity with GCS due to network
bandwidth and flying range constraints. Monitoring drones
initially move according to the RWPM [25] flying through
many pre-determined points of interest (PoIs). Once they
discover objects or people on the ground, they change their
mobility model following the GMM when executing tasks
on specified target areas, as explored in [26]. Map drones
fly at higher altitudes and over longer distances than the

other ones, having more computation resources for executing
pre-stage map generation and image mosaicing tasks [27].
However, it is not required by them to constantly transmit
back the captured data to the GCS, because severe and adverse
weather conditions or other unexpected events may result
in task failure. Thus, we propose a periodic communication
scheme between map drones and the GCS for transferring
the stored data on drones to the GCS according to a suitable
queuing mechanism for the data (see details in Section VI-A).
Similarly, since the purpose of map drones is to cover the
whole area in a short amount of time, a GMM or a MBPM
is used to achieve the related task. We assume the delivery
and monitoring drones’ height to be 100m, while the same
for map drones is 200m. In addition, we consider the average
obstacles’ height to be 100m.

C. Obstacle-Awareness in Communication
In our proposed scenario, monitoring drones and map drones

have to request re-establishment of the packet forwarding path
in order to maintain the connection to the GCS. Once this re-
quest is initiated, a packet forwarding procedure is performed.
Let us consider a node n that forwards a packet p towards a
destination d for re-establishing A2A and A2G communication
links. The node n has to decide which neighbor must receive
the packet p to progress towards d. Such a decision needs to
also balance between the neighbor’s residual energy and the
total throughput of p, and should minimize the following:

f(n, d, ✓) = ✓ · ⌧(n, d) + (1� ✓) · ✏ (1)

where, ⌧(n, d) is the normalized updated shortest path approx-
imation time [22] with respect to the obstacle blockage, ✏ is
the average residual energy at node n, and ✓ 2 [0, 1] is the
balancing parameter. The purpose is to find the best ✓ value
which gives the minimum energy consumption from node n,
and keeps the network connection continuous and stable by
calculating the path. Once n is aware of its propagation Fresnel
zone radius and the i

th obstacle’s center Ci, it computes
⌧(n, d) as follows:

⌧(n, d) =
MX

i=1

Oi � 1/ �
p
kn� dk

kn� Cik�
(2)

where k · k represents the Euclidean distance, � is the attenua-
tion order of obstacles’ potential field [22], M is the number
of obstacles, and Oi is the intensity of i

th obstacle induced
by the destination node d, calculated as follows:

Oi =
F

�
i

�(kd� Cik+ Fi)2
(3)

where Fi represents the i
th Fresnel zone in 3D. We suppose

that two devices can communicate if the blockage, due to the
presence of obstacles, is up to 20% of the Fresnel zone [28],
otherwise, the communication is obstructed.

D. Solution Overview
As shown in Figure 2, our multi-drone coordination and net-

work strategy consists of two main stages i.e., data collection
(shown left) and data transmission (shown right). The DRM



application starts with either one map drone (e.g., generating
and storing data) or monitoring drone (e.g., flying for PoIs)
acting as a target drone. When it requires to communicate with
the GCS, a request for establishing a connection is created. At
this point, if the GCS is in range, the target drone will finish
the packet forwarding and the link is established; otherwise, a
list of candidate drones in the neighborhood is generated. From
this list, the target drone can use a simple packet forwarding
algorithm (SPF algorithm, Section V-A) to establish links.
Alternatively, a more accurate packet forwarding algorithm
(HGPF algorithm, Section V-B) is used to optimally balance
the connection link quality and energy consumption. Finally,
if there is no restricted task execution time requirement on
the target drone, an integrated RL based packet forwarding
algorithm (IRLPF algorithm, Section V-C) is applied. In this
case, the system not only achieves the balance on network
connection quality and energy consumption, but also schedules
task execution such that the optional forwarding drone for the
neighbor drone candidate list will appear in the right position
when the target drone makes a request.
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Fig. 2. Obstacle-aware and energy-efficient multi-drone coordination and
networking solution steps overview.

IV. APPROACH FOR LOCATION PREDICTION

As discussed earlier, we assume that all the drones are
connected forming a FANET. By this, they communicate the
mapping and monitoring information over the same network
to the delivery drones in order to carry out a delivery task.
Consequently, the network topology of the multi-drone system
keeps on changing based on the mobility of the drones.^ &
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Fig. 3. Multi-drone distribution in the environment state space.

A. The Position Estimation of Drones
The position estimation of the drones must be performed in

very short intervals of time using the new coordinates being
updated rapidly within the FANET. Each drone in the FANET
is considered to have a GPS module and an Inertial Mea-
surement Unit to record its current location. This information
is broadcast to the FANET so that the other drones in the

vicinity are recognized for packet or information transfers
when needed. In prior works such as [29], the Extended
Kalman Filter was considered as the best algorithm choice
to predict the location coordinates of a drone. However, the
location information of the drones can be misleading if the
sensors malfunction or the accuracy of the information gets
compromised. Therefore, we have developed a novel multi-
agent deep RL approach that predicts the drones’ coordinates
in the FANET for effective communication and packet transfer.

We allot a hexagonal area as in [30] of side C for each
drone as shown in Figure 3, in order to maneuver inside
them and change their heading to any direction to efficiently
cover a surveillance area and discover PoIs. For initiating a
packet transfer between the drones in the environment, we
consider the location of them as Pn = (xn, yn, hn), where xn,
yn are the location coordinates, and hn denotes the altitude.
Moreover, Dij is the distance among any two drones i 6= j.
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Fig. 4. Location prediction using multi-agent A3C network.

Due to the potential uncertainties in the environment that
affect the drones’ localization and orientation, the location
prediction of the drones can be formulated as a Partially-
Observable Markov Decision Process (POMDP) defined by
the tuple [S,A, P, Z,O,R], where S, A, P , Z, O, and R

denote the states, actions, probability of transition, probability
distribution function for observing states, observations, and
rewards, respectively. The environment states are defined as
st = (Pi, �i, Pj , �j , Dij) where Pi and Pj are the positions,
while �i and �j are the headings of the packet transferring and
receiving drones. The actions performed by the drones (agents)
are defined as a set of 7 flight operations at, i.e., hover,
forward, backward, up, down, yaw-left, and yaw-right. More-
over, the rewards Rt are defined as follows: +100: successful
packet transfer; +10: every drone action; �50: going out of
Hexagonal cell; and �100: collision with obstacles/drones;

Let T be the episode in which the agent performs action
in the state space. The agent does not track the exact states
st 2 S, but uses the observations o 2 O in any given episode
T . Therefore, it has to rely on the history of actions and
observations St = (at, ot; at�1, ot�1; . . . ; a0, o0) to perform
intelligent actions that allow higher rewards. However, this
history St exponentially grows with every action taken and
every state observed. The agent rather chooses to utilize the
belief states b which are single valued and represent the
probability distribution Z = p(ot|st, at) over all possible
states st in a given episode. These belief states are a sufficient
measure of history, and given the current belief state bt, the



POMDP aims to find an optimal policy ⇡
⇤ that maximizes a

value function V
⇡ while following a sequence of actions and

observations. The value function V
⇡ is thus given by:

V
⇡(b) = E[

1X

i=0

�
i�t

Ri|b, ⇡]. (4)

Our approach, aims to solve the POMDP problem using
a multi-agent Asynchronous Advantage Actor Critic (A3C)
Network such that the best possible actions are chosen in given
states, and the cumulative reward Gt (i.e., the accumulated
discounted return) gets maximized, as follows:

Gt = E[
1X

t=0

�
t
R(bt, at)] (5)

where � is the discount factor. Finally, the action value
function is given by:

Q⇡(bt, at) = E[
1X

n=0

�
n
R(bt, at)|bt, at] (6)

B. A3C based solution
Compared to other deep RL approaches, an A3C network

allows multiple agents to interact in a parallel fashion with the
environment in order to generate individual policies that are
the outputs. Each episode in the A3C network stochastically
progresses, and each corresponding action is probabilistically
sampled. The actor and related critic networks within the
A3C network are deep neural networks (DNNs) and have
target networks. In the following, we detail the proposed A3C
network functioning. A master network has an actor network
that generates a policy ⇡(at|bt; ✓a) = P (at|bt; ✓a) and a critic
network that generates the state value function to test the
expected return under belief state V⇡(bt; ✓v), where, bt is the
belief state of an episode, ✓a denotes weights of actor network,
and ✓v denotes the weight of critic network. The weights in
these cases are updated using back-propagation. Each copy of
the Master Network is sent to the agents as shown in Figure 4.
The actor network is trained with the loss function:

L(✓a) =
1

Nbatch

nX

i=1

[�Q(bt(i), ⇡b(i); ✓a)]
2 (7)

where, Nbatch is the batch size and the critic network is
trained with the loss function given by:

L(✓v) =
1

Nbatch

nX

i=1

[yt(i)�Q(bt(i), at(i); ✓v)]
2 (8)

where yt(i) = Rt + � ·Q0
(bt+1, ⇡

0
(bt+1; ✓

0

a)|✓
0

v) and ⇡
0
(b|✓0

a)
and Q

0
(b, a|✓0

v) are target networks of actor and critic net-
works. Due to the fact that gradient methods are used to
optimize the network weights, there are chances of high
variance occurrence in the critic network. Therefore, we em-
ploy an advantage function ⌦(bt, at) = Q(b, a) � V

⇡(bt, ✓v)
to overcome this high variance problem. Upon solving the
POMDP using the proposed A3C network, we get a policy
⇡ : b ! a that maps the actions to belief states b. The optimal
policy obtained from the actor and critic network operations
is given by:

⇡
⇤(b) = argmax

b
V

⇡(b) (9)

V. PACKET FORWARDING SOLUTION APPROACH

In this section, we initially describe a simple technique
called Simple Packet Forwarding (SPF), and two novel al-
gorithms called Heuristic Greedy Packet Forwarding (HGPF)
and Integrated RL-based Packet Forwarding (IRLPF).

A. The SPF Algorithm
To address the trade-off in energy-efficiency versus contin-

uous connection, there is a need for flexible packet forwarding
algorithms among the drones and GCS. A choice among
stateful and stateless packet forwarding design has to be care-
fully determined based on the cost of maintaining forwarding
paths or infinite loops in paths [21]. Consequently, we rely
on a stateless instead of stateful design, and we consider on-
demand communications when requested. By design of SPF,
if any drone is within the transmission range of a target drone,
then it will be selected as a candidate forwarding drone for
forwarding packets. If there are no candidate drones, the target
drone will hover and wait in the current position, thus pausing
the task. As a second attempt, if no forwarding drone candidate
is within the transmission range, the target drone forwards
the data to the farthest drone in range. Note that any drone
can act as an intermediate or forwarding drone. The data will
be transferred through multi-hop drones to the GCS. Since
SPF does not use any predicted drones’ positions, it can be
implemented in any drone.

TABLE I
SPF ALGORITHM PERFORMANCE COMPARISON

Throughput (Mbps) Energy (J)
GPSR AODV HWMP Our GPSR Our

lo
w 2.48±1.7 1.94±1.8 0.84±0.2 2.18±0.6 522±46 519±42

2.35±0.9 0.87±0.3 0.77±0.2 2.26±0.6 515±13 506±18

hi
gh 2.06±1.8 1.26±1.5 0.77±0.3 2.05±1.1 497±47 498±40

1.95±0.8 0.62±0.4 0.72±0.2 2.32±0.5 499±16 495±40

Despite its simplicity, it outperforms in terms of energy
consumption and network throughput, other existing stateless
algorithms which do not rely on predictions. As a baseline, we
have chosen Greedy Perimeter Stateless Routing (GPSR) [31],
Ad-Hoc On Demand Distance Vector (AODV) [32], and the
Hybrid Wireless Mesh Network (HWMP) [33]. Table I shows
the average throughput and energy consumption on target
drone for link establishment with different density of obstacles
(10%: low, 60%: high) and number of drones (10, 30) with
the simulation settings described in Section VI. Since each
protocol follows different path forwarding strategies (e.g.,
AODV and HWMP do not consider energy constraints), it is
hard to compare side-by-side performance with each of these
approaches. Hence, in this comparison, some part of the results
are omitted. However, if we do not consider predicting the
future positions of drones, both SPF and GPSR are Pareto-
optimal, i.e., they have no alternative solutions. In order to
have improvements, more features need to be considered with
additional information as detailed in the following algorithms.

B. The HGPF Algorithm
As we can observe from SPF, if the prediction of the future

position of the drones is not used, the target drone may have
a lesser chance to find the potential candidate forwarding



drone when it flies beyond the GCS’s transmission range.
Consequently, in HGPF design we use the RL-based location
prediction A3C method to enhance the packet forwarding
performance in the presence of environmental obstacles, while
using the residual energy from the forwarding drone candi-
dates. Based on the drone position prediction information, we
can obtain the local relative distance between the drones in
advance. Thus, to increase the accuracy of the drone path com-
putation procedure, we use HGPF that proactively performs a
greedy calculation of the local-optimal path solutions.

To simplify our algorithm and save time in real-world exper-
iments, we periodically run the RL location prediction every
10 seconds according to state-of-the-art drone position model
evaluation metrics [34]. For every 10 seconds, we found that
the corresponding time is within acceptable range (2.20±0.05
s), and the estimation error of the model is relatively small
(0.43 meters). Therefore, for each time slot, we can estimate
the f(n, d, ✓) results given ✓ 2 {0, 0.2, 0.5, 0.8, 1} values.
Corresponding to these results, we select the minimum value
f with the related ✓ value to guide the next 10 seconds flight.
Thus, by such a greedy finding of the discrete local minimum
value, we enhance the overall performance in terms of the total
residual energy and overall throughput.

The main purpose of HGPF is to utilize the drone position
model for predicting the relative position of drones. The time
period t in the algorithm is by default set to 10 seconds. For
each time period, all ✓ values are calculated for each alternate
neighbor node. Following this, we calculate the performance
gain on the drone (i.e., throughput gain by processed energy)
of each ✓, and perform a greedy select of the highest perfor-
mance gain. In addition, we will use this ✓ until the next time
period t, when HGPF is invoked again. Consequently, HGPF
will always select the local optimal choice, which however
may not be the overall best for the entire system.

C. The IRLPF Algorithm

Since HGPF provides the local optimal choice by time
period, it may lack information on the global optimal perfor-
mance gain over the entire system. However, during DRM, the
position of the geographical obstacle may change frequently.
In this case, it is not reasonable to obtain predictions of exact
positions of obstacles that may block the connection. Thus, we
propose an alternative way to indirectly provide forwarding
drone candidates to target drone positions by scheduling
the take-off time for different tasks. For example, once a
monitoring drone takes off and starts the task, it will require
a connection when PoIs are in sight. If we plan to take-off a
delivery drone in the monitoring drone’s transmission range,
the monitoring drone will have a higher chance to search and
find the delivery drone and select it as a forwarding drone.
To achieve this, we abstract the multi-drone multi-task packet
forwarding procedure as a Markov-decision process (MDP),
which can provide a mechanism to evaluate and learn the
potential take-off time and the ✓ value by using rewards. Thus,
the optimization problem can be redefined as: find the optimal
task schedule which minimizes the global performance gain for
the packet forwarding link generation. This finite-time MDP
problem can be expressed as M = (S,A, P,R, T ) where S

is the state space, A is the action space, P is the probability
function that indicates the probability of action a 2 A in state
s 2 S at time t � 0 will lead to state s

0 2 S at time t + 1,
R is a reward function, and T represents the last acceptable
time when the drone has to take-off and process the task.

To ensure that the near optimal ✓ can be chosen at every
step, we consider the dynamic decision-making problem to
be used for downstream tasks at time t. The situation will
turn to an energy-oriented case, when action goes to �1. At
the same time, the situation will turn to a throughput-oriented
case, when action goes to 1 in terms of the chosen step size
� value. In the case where the � value is small, the system
will take more resources (i.e., energy and time) to calculate
the optimal value, and each action change may only produce
small reward gains. Thus, we require the � value selected to
be at most 0.5, and greater than 0.15 to prevent the void and
eliminate redundant calculations.

Specifically, we obtain the state s in the MDP problem using
information about the actions a with a given time period t. The
state s thus contains the stored previous prediction f results,
and the remaining query budget on both energy-oriented as
well as throughput-oriented cases. The state will also record
the time when the potential forwarding drone takes-off and
starts the task. Thus, the state s for a given time period t can
be formalized as follows:

s
t = [✓t, fprevious, f(✓��,✓+�), T � t] (10)

The reward function is given to minimize the cost of drone-
based flight energy ✏ and obstacle-awareness recovery time ⌧

given in Equation (1). Consequently, we considered the reward
function to be the same as in Equation (1), with respect to
the energy consumption on a single drone and considering
theoretical guarantees on packet delivery in obstacle situations.
Thus, we can ultimately define the reward function as follows:

R
t(st, at) = �↵ · ✏(f t

, f̂
t)| {z }

residual energy

�� · ⌧(cost(at))| {z }
obstacle

(11)

Having defined the obstacle-aware drone delivery scenario
as an MDP, we can evaluate the overall performance by
minimizing the expected total reward the system achieves.
In this context, we can state: Given the choice of optimized
✓ values for highest gains of f , a finite horizon of T time
slot, and an MDP problem M , find the optimal routing policy
⇡ : s ! a that maximizes the expected cumulative reward R:

⇡ 2 argmaxE
⇣X

T

R(s, a)
⌘

(12)

Although we framed this problem as an MDP, it is not easy
to apply conventional techniques such as dynamic program-
ming for solving the problem. This is because, many of the
aspects of this problem are hard to analytically characterize,
especially the dynamics of the sensory input stream (e.g.,
GPS, obstacle, energy). This motivates our integration of a
soft optimal solution that uses a model-free RL technique. The
reason to use such a technique is as follows: it is capable of
learning optimal discrete policies based solely on the features
included in the state, and avoids the need to predict the future
states (as considered in HGPF). Specifically, we use the state-
of-the-art Q-learning algorithm [35], which is easy to deploy,



efficient to evaluate in terms of dynamics, and is amenable to
effectively perform optimization-based action selection.

VI. PERFORMANCE EVALUATION

In this section, we first discuss our experiments setup, and
provide details of environment settings, evaluation metrics, and
relevant parameters used in the experiments. Following this,
we discuss the baseline approaches used for comparison. Fi-
nally, we present the detailed performance results and discuss
the benefits of our approach.

A. Experiment Setup
To evaluate our packet forwarding algorithms, we initialized

a simulated urban environment using 3D building models in
the ns-3 simulator based on a urban road map. The simulation
script randomly generates task locations (e.g., delivery points,
rescue areas) in the range of the simulated DRM. The simula-
tor scripts can change the density of the buildings to simulate
various DRM scenarios, i.e., from urban areas to metropolitan
areas, with different building obstacle densities. Table II shows
the basic setting of the simulations, including various appli-
cation and network settings. The flying altitudes vary from
100m for delivery drones and monitoring drones, and 200m
for map drones. To run the experiments in a reproducible
and reliable testbed, we leverage a trace-based drone-edge
simulation platform on top of ns-3 [7]. This platform integrates
simulation of both drones and networks for DRM scenarios,
and provides flexibility in adding plugins, e.g., changing the
mobility model of the drones, adding multi-sensor simulations,
and applying realistic map interfaces. For each setting, we run
the experiments in: (i) 5 different transmission settings ranging
from 50-250m, (ii) various number of drones ranging from 10-
30, and (iii) various density percentages of obstacles in DRM
ranging from 0-60%. Settings are summarized in Table II.

TABLE II
ENVIRONMENT SETTINGS USED IN THE SIMULATION EXPERIMENTS

Application Settings Network Settings

Number of drones: 10-30 Transport protocol: RUDP
Disaster area: 10-15 miles Application Bit rate: 6 Mbps
Obstacle size: 60*30*95 m Tx power: 32-48 dBm
Transmission range: 50-250 m Tx/Rx gain: 3 dB
Simulation time: 1000-3000 s WIFI protocol 802.11 n/ac
Avg. drone speed: 10 - 35 mph Modulation: OFDM
Prop. Model: TWO RAY Data rate: 65 Mbps

To evaluate the performance of HGPF and IRLPF al-
gorithms, we compared them with state-of-the-art energy-
aware or location-aware packet forwarding algorithms. In this
context, we used the following performance metrics in our
simulation environment:
Packet Delivery Ratio: Packet delivery ratio is defined by the
ratio of the packets that are successfully delivered to the target
location (e.g., GCS). A higher packet delivery ratio means a
more reliable network connection.
End-to-end Delay: The packet forwarding end-to-end delay
is calculated as the sum of the link re-establishment duration
when a drone carries its generated data, and the data trans-
mission time to the GCS. A lower end-to-end delay implies
better performance on network links.
Energy Usage Proportion: For the energy measurement,
we check the distribution of the average residual energy

percentage used for the networking procedure of all drones in
the DRM scenario. Given that the total energy usage varies for
each kind of drone, we calculate the energy usage proportion
in order to normalize the metrics. A lower energy usage
proportion means the drone could use more energy for its own
task (e.g., monitoring, search and rescue, mapping or delivery).

B. Baseline Solution Approaches
To design a better packet forwarding approach for the

multi-drone coordination problem, we compare both HGPF
and IRLPF algorithms with several existing state-of-the-art
algorithms. All experiments use the same settings previously
detailed. We used three different baselines (BLs) approaches
detailed below based on their different perspectives:
BL 1 – GPSR [31]: Given how we considered GPSR with SPF
in Section V, we employ GPSR as a baseline for comparing
our location-aided packet forwarding approaches. Although
GPSR does not use any predictions based on mobility, it
provides location awareness information for packet forwarding
that can be used as a reference from the location awareness
perspective. GPSR is considered as a widely used baseline
method in multi-drone communication system design [36].
BL 2 – SPIDER [21]: This algorithm solves the packet
forwarding problem by considering edge devices’ energy
consumption as well as presence of obstacles, in a manner
that is very close to our system formulation. However, in
terms of obstacle awareness, our approach considers three
dimensional obstacles with consideration of the Fresnel Zone
on communication blockage, which is not involved in the
design of the SPIDER algorithm.
BL 3 – LADTR [20]: It consists of a location-aided drone
packet forwarding algorithm design. One difference between
LADTR and our location prediction model is that LADTR
only considers GMM, while ours considers various drone mo-
bility models and uses RL to enhance the location prediction
precision. In addition, LADTR does not consider obstacles that
may block the communication, whereas we consider obstacles
in our DRM packet forwarding solutions.

C. Performance Results
In this section, we evaluate the performances under two

metrics, i.e., network quality and energy usage.
Network Quality: Figure 5 shows the results on the network
performance for all 5 packet forwarding algorithms.

Considering various transmission ranges of the nodes (Fig-
ures 5a and 5d), we can see that all the algorithms perform
better in larger range cases. This is because a large range
provides more contact opportunities for creating transmission
links, which will in turn increase the packet delivery ratio
and decrease the delay. HGPF and IRLPF outperform GPSR
and SPIDER under all transmission settings. LADTR performs
better than other state-of-the-art strategies due to its use of
ferrying drones that use up all of their energy on networking
procedures instead of focusing on their own tasks. On the con-
trary, IRLPF which only uses residual energy on transmission,
achieves ⇡ 90% of the performance of LADTR. This result
shows that the performance of IRLPF is comparable to the
LADTR, which although it has a better performance, has the
problem of energy wastage in drone ferrying.
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Fig. 5. Performance metrics on packet delivery ratio (a,b,c) and average end-to-end delay (d,e,f) in terms of varying: 1) transmission range, 2) amount of
drones, and 3) percentage of obstacles in a realistic DRM scenario.
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Fig. 6. Energy usage proportion for communication in 40% of obstacles with four different experiments with varying transmission range and drone amounts
for the cases: a) 50m, 10 drones; b) 50m, 30 drones; c) 250m, 10 drones, and d) 250m, 30 drones

From Figure 5b it is possible to observe that when the num-
ber of drones increases, SPIDER and GPSR do not provide
better results due to the unpredictable drone positions and un-
planned forwarding node selection. By combining Figures 5d
and 5e together, we can state that LADTR’s results do not
provide lower end-to-end delay when the transmission range
increases or when more drones are added. This is because
LADTR follows a stateful setting rather than a stateless one,
which is used in other approaches. Thereby, the forwarding
node for transmission will not change once selected, and
the delay for LADTR remains unchanged once a network
connection is established.

Both the above experiments do not consider any obstacles
in the DRM application scenario. However, if we consider
obstacle blockage of the connections, both HGPF and IRLPF
outperform the other baseline approaches. Figures 5f and 5c
depict the network performance with the increase in the
percentage of obstacles in the DRM scenario. It is obvious
that the network quality will decrease with more obstacles for
all approaches. Given that we considered algorithms that can
deal with obstacles, other solutions without obstacle awareness
(e.g., LADTR and GPSR) experience poor performance than
HGPF or IRLPF. Although LADTR can achieve similar end-
to-end delay under low obstacle settings, this condition is not
always promising in complex metropolitan DRM scenarios
with high building obstacle densities.

To conclude, without considering obstacles, LADTR could
achieve better network performance due to the stateful connec-
tion settings, and our solutions can achieve ⇡ 81-90% of the
LADTR performance. However, LADTR is not robust consid-
ering that obstacle blockage is common in DRM scenarios,
and in such situations, an average of ⇡ 14-38% promotion is
obtained by using our baseline approaches.
Energy Usage: Violin distribution diagrams shown in Figure 6
depict results from four experiments with varying transmission

ranges (50m, 250m), 40% of obstacle settings, and varying
number of drones (10 drones, 30 drones). We can observe from
all four experiments that both HGPF and IRLPF save ⇡ 23-
54% of energy. This is because: (i) establishment of network
connectivity is not performed if there are no transmission
tasks, and (ii) only residual energy is used to establish network
links for generating forwarding drone candidates. Moreover,
as we can observe from Figures 6b and 6d, HGPF saves
more energy in larger drone number situations. Due to the
fact that IRLPF presents more forwarding drone candidates by
intelligently scheduling the task execution in presence of more
and more drones, an increased energy consumption occurs
while simultaneously providing guarantees on better network
connection quality in comparison with HGPF.
Discussion of Results: Herein, we discuss the choice for
the most appropriate packet forwarding algorithm in realistic
DRM scenarios. First, if drones have no restrictions on take-
off time, IRLPF is the most suitable because it will find
the optimal task schedule. Consequently, it provides better
network performance compared to HGPF, while also saving
energy. Second, if drones need to be scheduled in advance for
accomplishing specific tasks in accordance with a restricted
time table while saving energy, HGPF is preferred. This is
because HGPF can provide acceptable network quality perfor-
mance with considerable energy savings. Third, as the number
of drones increases, both HGPF or IRLPF are acceptable in
terms of conserving energy usage, irrespective of the number
of drones. Consequently, they can provide a pertinent solution
for DRM application operations involving large number of
drones in the presence of obstacles. Lastly, in DRM scenarios
where there are no obstacle blockages and energy consumption
is not an issue, LADTR will be the best one in terms
of network performance. However, the links generated by
LADTR are unstable and unreliable when they are blocked due
to obstacles. Thus, in cases where the environmental condition



of a DRM scenario is unknown, HGPF or IRLPF algorithm
are more pertinent for DRM application operations.

VII. CONCLUSION

In this paper, we proposed a novel obstacle-aware packet
forwarding scheme for multi-drone cooperation in various
applications related to disaster response management (DRM).
Our contributions advance current knowledge on the de-
sign and development of location-aided packet forwarding
for FANETs with consideration of geographical obstacles
blockage, and energy efficiency for coordinated drone flights
in DRM application scenarios. Specifically, we devised an
accurate drone location position prediction method using the
deep RL to suit multi-drone DRM application scenarios. We
also proposed two different algorithms, i.e., HGPF and IRLPF
algorithms that utilized the drone location predictions for im-
proving the network connectivity, while also providing better
energy efficiency compared to state-of-the-art approaches such
as GPSR, SPIDER, and LADTR. Specifically, our proposed
schemes outperformed the state-of-the-art approaches in terms
of network connectivity performance (e.g., packet delivery
ratio, end-to-end delay) and energy usage (i.e., energy usage
proportion for communication) in experiments with a trace-
based drone-edge simulation platform featuring different trans-
mission ranges, amount of drones, and obstacle density.

Future work can consider dynamics of wind conditions to
be integrated via a wind model into the obstacles formulation.
Our solution can also be extended to DRM applications that
require sustained video throughput in A2G links, while also
avoiding disruptions in A2A and A2G connectivity.
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