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Abstract

The phase segregation behavior of three key refractory high entropy alloys
(NbTiVZr, HINbTaTiZr, and AIHINbTaTiZr) is studied using first-principles
calculations. Several linear and non-linear methods are utilized to generate sur-
rogate models for three key refractory high entropy alloys (NbTiVZr, HfNbTa-~
TiZr, and AIHfNbTaTiZr) via the cluster expansion formalism. The character-
istics of each of the generated models is explored and the regression methods
are compared. Finally, these surrogate models are utilized to generate Monte
Carlo trajectories in order to explore the link between phase segregation and
previously documented mechanical degradation in these materials.

Phase segregation and intermetallic phases documented in the experimental
literature are reproduced in all three high entropy alloys. NbTiVZr forms vana-
dium and zirconium clusters at lower temperatures (250 K) which disperse into
the single-phase matrix by 1000 K. HINbTaTiZr forms HfZr, NbTa, and possibly
TiZr intermetallic phases at lower temperatures (250 K). Unlike the other HEAs
studied here, HINbTaTiZr does not lose short-range ordering in the solid state
until around 3500 K, which is above its melting temperature. AIHfNbTaTiZr
forms NbTa and AIH{TiZr phases at lower temperatures (250 K), which are not
observed at higher temperatures (1000 K).
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1. Introduction

Designing high entropy alloys (HEAs) and understanding their structure-property
relationships are active topics of research [1, 15]. They are characterized by high
numbers of elements, all at roughly equal atomic percentages. In particular, re-
fractory high entropy alloys (such as those explored in this work — NbTiVZr,
HfNbTaTiZr, and AIHfNbTaTiZr) are especially promising for a wide variety
of reasons. Compared to some of the original HEAs, such as TaNbWMo and
TaNbWMoV, these alloys are far less dense and more ductile while maintaining
many of the superior high-temperature properties which make HEAs attractive
candidates for use in the aerospace industry [23, 22, 24, 25].

Two important characteristics of any material are its mechanical properties,
such as the stress-strain response and ductility, and its phase diagram. Under-
standing how the existence and stability of phases in a given material affect its
mechanical properties is vital for engineering stronger, tougher materials. Anal-
ysis of phase stability in HEAs assumes particular importance because many
physical properties of HEAs are affected by the presence of precipitates [13]. In
addition, it is interesting to explore the length scales associated with short-range
order (if any) present in the HEAs that do not form precipitates, as these length
scales can impact the work strengthening or softening behavior [27]. Recent ex-
periments suggest that the formation, the structure, and the composition of the
precipitates are sensitive to the annealing temperature [33] and annealing time
[32]. Thus, systematic analysis of the stable and metastable phases in the HEA
systems using experiments is expensive and time consuming because the con-
vergence towards thermodynamic equilibrium can be hindered by slow kinetics.
Therefore, in this work we use atomistic simulations to analyze the stability of
the solid solution phase in three important refractory HEAs.

In order to investigate how local chemistry impacts phase stability and mechani-
cal properties from a computational standpoint, first principles (ab-initio density
functional theory) calculations are most suitable. Since DFT scales quite poorly
with respect to the system size, many scientists turn to training surrogate mod-
els in order to calculate thermodynamic quantities and properties of interest far
more efficiently than is possible with brute-force DFT. The surrogate model of
choice for crystalline alloys is the cluster expansion approach [4, 21], which ex-
presses the energy of a structure in terms of pairwise, triplet, and higher-order
interactions. The cluster expansion can then be used together with Monte Carlo
(MC) methods to explore the impact of phase stability at a far lower compu-
tational cost than DET+MC (calculating the energy of the candidate structure
using DFT rather than a surrogate model) while simultaneously enabling the
use of larger supercells to avoid finite-size artifacts in the predicted equilibrium
structures. Therefore, Monte Carlo simulations using cluster expansion models
are uniquely poised to tackle problems related to phase stability and analysis of
compositions of (meta)stable phases because the different stable and metastable
phases can be explored at very low computational cost. In addition, since these
systems are being actively explored by experimentalists, this offers numerous



opportunities for mutual validation.

There are two fundamental questions that must be answered when constructing
a cluster expansion. The first is the nature of the interactions considered, as
modeled by the geometry of the clusters included and parametrized by the
spatial extent of the cluster and the number of included atomic sites. The
second is how much each cluster contributes to the total energy, as indicated by
the so-called effective cluster interaction (ECI) coefficient of each cluster. This
poses a challenging optimization problem, as each additional type of cluster
adds computational time — both to the construction of the cluster expansion
and to its use, e.g. in MC simulations. Thus, adding additional clusters when
they do not meaningfully improve the accuracy of the cluster expansion should
be avoided.

The chemical complexity of most HEAs presents significant challenges to the
fitting of an accurate cluster expansion model, because the number of possible
clusters (and thus the minimum number of structures required for a good fit)
increases greatly as the number of elements is increased. Additionally, if the
atomic sizes of the constituent elements vary drastically, significant distortion
of the lattice complicates the cluster expansion model generation. In light of
the unique nature of these challenges, it is instructive to consider several meth-
ods for fitting cluster expansion models for refractory high entropy alloys. In
this work, various linear and non-linear algorithms are considered, including
automated methods, a higher-order cluster augmentation method built on the
automated method results, and alternative linear and non-linear solution meth-
ods. Further, the question of whether this type of surrogate model is effective in
predicting stable or metastable phases is investigated. We also demonstrate that
the resulting surrogate models can be used to probe the relationship between
changes in phase stability and the degradation of mechanical properties.

In the next section, the methods used in this work are laid out, starting with
the cluster expansion formalism, proceeding to the various linear and non-
linear methods used, and ending with a description of the Monte Carlo method
and short-range order parameters utilized in this work. The following section
presents the results of each fitting method when applied to the various high en-
tropy alloys mentioned earlier before exploring the nature of phase segregation
in each of those alloys. Finally, some concluding thoughts on what this means
for the use of these alloys in practice.

2. Methods

An overview of the cluster expansion formalism and a summary of the various
linear and non-linear regression methods is given in the following subsections.
Additionally, an overview is given of various error measures that are used to
measure the quality of a given regression. Finally, a brief discussion of the
Monte Carlo method utilized here and the definition of the short-range order
parameters considered here conclude this section.



2.1. Cluster Expansion Formalism

The cluster expansion is a model which expands the energy of a crystal structure
as a series of interactions between different clusters of atoms. Consider a crystal
structure with n sites where each site ¢ can be filled by one of M; species. The
configuration vector o of this structure is a vector of length n with occupation
variables ¢; indicating which type of atom sits at that lattice site and o; can
range from 0 to M; — 1. Even though the state of the system is represented by
an ideal lattice, the energies associated with those states will account for the
elastic contributions associated with relaxations away from ideal lattice sites.
The generalized, multicomponent, multisublattice cluster expansion formulation
is given in Eq. (1) [30].

E(U) = ZmaJa <H Yo, M; (Uz)> (1)

e « is a cluster that is described by a vector of cluster variables «; which
each can take values from 0 to M; — 1, reflecting either omission from
the cluster (0) or various functional dependencies between the energy of
a certain cluster and the occupation variable o;.

e The sum is taken over all symmetrically distinct clusters «, while the
average of the occupation variables is taken over all clusters o which are
symmetrically equivalent to a.

e m, is the multiplicity of a particular cluster and the term between () is
defined as the correlation of the structure with cluster «.

e J, is the effective cluster interaction (ECI) coefficient.

* 7ar,m; (0:) satisfies the properties defined in Egs. (2) and (3), namely that
~ for the null cluster and any combination of occupation variables is 1 and
the v functions are orthogonal.

Yo,u; (07) =1 (2)
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The functions 7,/ a7, can be any functions which satisfy the given properties.
However, in this work, all calculations utilize the correlations output from
ATAT, which uses the functions in Eq. (4).
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2.2. Structure Generation and Cluster Expansion Fitting

Structures are generated using ATAT’s mmaps code, which utilizes a variance
reduction scheme to determine which structures to generate (possibly subject
to a restricted concentration range for each species) [29, 30]. In the case of the
high-entropy alloys studied here, no concentration limits are placed on any of
the constituent elements. These structures are then relaxed with the Vienna Ab
initio Simulation Package (VASP) [10, 11, 8, 9] and their energies are calculated.
The cluster expansion model is fitted to formation energies computed relative
to the bulk energies of the constituent elements. Since the cluster expansion
formulation parametrizes the configuration dependence of the energy for a given
lattice, structures which are excessively distorted must be excluded, as they
would more appropriately belong to the cluster expansion for a different lattice.
The change in the atomic structure following relaxation can be quantified by
calculating the amount of distortion. If {¢,t2,¢3} are the lattice vectors of the
original cell and {#,t5, ¢4} are the lattice vectors of the relaxed cell, a measure
of the amount of distortion is given by Eq. (6), where T contains the lattice
vectors of the original cell as row vectors, T' contains the lattice vectors of the
relaxed cell as row vectors, |T”| is the determinant of T”, and sym calculates
the symmetric part of the tensor: symT = % (T + TT).

—1
T T
0T = sym -1 5

Y <¢/|T|> T ®)

€ = Z (STZ‘J‘(STij (6)
\/ 3

If T" = T, then 6T = 0 and € = 0 as expected. The exact threshold for what
constitutes “too much” relaxation tends to be system-dependent and the exact
values used for the systems at hand are listed in Section 3.

A wide variety of methods is used to obtain cluster expansion models for each
given system. This section will simply provide an overview of these methods;
more details can be found in the appendix (Sections A and B).

Three linear regression methods are explored in this work: ATAT’s automated
method, a higher-order cluster augmentation method, and a method utilizing
the least angle regression. The automated algorithm used by ATAT’s mmaps
program first constructs a minimal (non-colinear) basis from the matrix of cor-
relations before generating a least-squares fit. Additionally, it utilizes a physics-
based algorithm to iterate hierarchically through the cluster choices by only
including a cluster if all of its subclusters have been included and all clusters
with the same number of points with a smaller diameter have been included
[28], where the diameter of a cluster is the largest distance between two points
in the cluster. The higher-order cluster augmentation method is built on



top of ATAT’s automated method in order to test if the quality of the fit can
be improved by deviating from mmaps’ hierarchical rules. Starting from the au-
tomated fit, the next valid set of clusters is included and a two-step selection
process is used to pick the most important clusters. Both of the previous meth-
ods use the Leave-One-Out Cross-Validation (LOOCV) score as the measure of
error. The least angle regression method, proposed by Efron et al. in a sem-
inal paper in 2004 [5], is an iterative and parsimonious alternative to the least
squares-based fits described in the previous two methods. Unlike the previous
methods, the coefficient of determination (the R? score) is used as the measure
of error by setting aside a validation data set.

In addition to the aforementioned linear regression methods, several linear and
non-linear regression methods are combined with Principal Component Anal-
ysis to explore non-linear features. Principal Component Analysis (PCA) is a
linear transformation used to select a more compact set of features and decrease
collinearity. The three regression methods examined here are ridge regression,
kernel ridge regression, and Gaussian process regression. Ridge regression
[6, 7, 18], also known as Tikhonov regularization, introduces a regularization
matrix which often takes the form of a multiple of the identity matrix. The
coefficient, the regularization parameter, functions as a constraint on the mag-
nitude of the coefficients. The two other methods, kernel ridge regression and
Gaussian process regression [20, 17], are kernel-based regression methods.
The kernel ridge regression uses a Gaussian kernel and the hyperparameters
are selected by optimizing the Ly cost function using the Nelder-Mead method
[16], while the coefficients are optimized by calculating the R? score using the
three-way hold-out method (three data points are set aside as the validation data
set instead of only one as in the LOOCV). By contrast, the Gaussian process
regression assumes that the coefficients are normally distributed conditional
on the data. Like in the previous case, a Gaussian kernel function is used and
hyperparameters and coefficients are optimized as before.

2.83. Monte Carlo Simulations and Multicomponent Short-Range Order Param-
eters

Once the effective cluster interactions have been determined from one of the
above methods, one can determine the thermodynamic equilibrium through
canonical ensemble Monte Carlo simulations. The Metropolis Monte Carlo
method, as implemented by the memc2 utility from ATAT [30], is utilized here
for generating trajectories of equilibrated structures. To this end, first, 5-6
starting structures are generated by randomly distributing elements throughout
the structure. A Monte Carlo trajectory is launched from each of these struc-
tures and after equilibration, a set of 20 structures is saved. For the analysis of
clustering and phase stability, 20 independent MC trajectories are launched and
another set of 200-250 is saved per trajectory, leading to a total of 4000-5000
structures per starting structure per temperature.

In order to examine the phase stability of the high entropy alloys as a func-
tion of temperature, the same cluster expansion models are used to run Grand



Canonical Monte Carlo simulations. Due to the complexity of the alloys, the
full chemical potential space is not examined in this work. Instead, the chemical
potential of each species is varied individually while the other chemical poten-
tials are kept fixed. Each chemical potential range is divided into 21 points
(including both endpoints), which provides enough resolution to discern phase
transitions.

Short-range order parameters are a class of descriptors which enables the quan-
tification of the amount of order or disorder (in elemental distribution) in a
crystalline material. The multicomponent generalization of the Warren-Cowley
short-range order parameters [3], given in Egs. (7) and (8), is utilized in this
work. In these equations, Pj; is the probability of finding an atom of species
1 within a specified cut-off radius of species j, ¢; is the average concentration
of species 7, and the second equation is utilized only if 7 is different from j.
When the short-range order parameter, o;j, is 0, P;; = ¢;, meaning that the
probability of finding an atom of species j is equal to the average concentration
of species j in the system. In the case of clustering, the probability of finding
species j in the neighborhood of species i is more than the overall concentration
of species j: P;; > ¢; = a;; < 0. On the other hand, when two species repel
each other, P;; =0 = oy = 1.

o (p) = TP )
oy (p) =1~ P ®) ®)

3. Fitting Cluster Expansion Models

3.1. Structure Generation and Selection

Table 1 details the number of structures generated for each alloy, while Fig. 1
shows the distribution of strain across the whole dataset. The atomic size mis-
match introduces local atomic distortion in the HEAs. Since the cluster expan-
sion formalism (Section 2.1) assumes a fixed lattice, highly distorted structures
must be excluded from the set of structures used to fit the cluster expansion.
Notably, the atomic size mismatch is more pronounced in the case of AIHfNbTa-
TiZr. Thus, a large number of structures have strains far greater than 0.1 and
are thus excluded from all fitting procedures. For additional tables and graphs
showing the strain distribution in each batch of structures as well as the distri-
bution of the number of atoms in the structures, please see Section S.2.

3.2. Linear Fitting Methods

As mentioned earlier, all of the regressions here and in Section 3.3 fit per-atom
formation energies calculated relative to the bulk energies of the constituent
elements. Figure 2 shows the best fits obtained using the mmaps program, part of



HEA Number of
generated structures

NbTiVZr 2984
HfNbTaTiZr 1970
AIHfNbTaTiZr 4000

Table 1: The number of structures generated for each alloy. All structures are relaxed with
the VASP parameters detailed in Section S.1 and then divided into bins based on their strain
measures (see Eq. (6)).
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(a) NbTiVZr (b) HINbTaTiZr (c) AIHfNbTaTiZr

Figure 1: Distribution of strain (i.e. € in Eq. (6)) over all generated structures for each HEA.
The strain measure used is defined in Section 2.2. Because the cluster expansion formalism
used here assumes a fixed lattice, highly distorted structures must be excluded from the set of
structures used for fitting the cluster expansion. Compared to the NbTiVZr and HfNbTaTiZr
systems, a far greater proportion of structures generated for AIHfNbTaTiZr have high strain
and thus must be excluded from all fitting procedures.

the Alloy Theoretic Automated Toolkit (ATAT) [30]. It is noteworthy that none
of the resulting cluster expansions include 4-body interactions; instead, large 2-
body correlations seem to be used to describe those interactions. Additionally,
the bulk of the clusters used seems to be 2-body correlations.

Starting from these cluster expansions, additional sizes of three-body clusters
and, when possible, four-body clusters are added according to the higher-order
cluster augmentation method described in Section 2.2. The cluster distributions
of the resulting fits are shown in Fig. 3. Notably, attempting to add four-body
clusters to the AIHfNbTaTiZr cluster expansion leads to an increase in the
LOOCYV and a worse fit. It is also interesting to note that a significant number
of 4-body clusters with length 5.4 A are included in the NbTiVZr case, while very
few 4-body clusters are included at all in the HINbTaTiZr case. In all of these
materials, however, manually adding additional clusters (beyond those included
by mmaps) improves the fit. The hierarchical rules used by mmaps enforce that
clusters be included in groups of clusters of the same diameter and number of
points. We find that allowing for some deviations from these rules can sometime
results in a more predictive cluster expansion.

Moving from least-squares-based regressions to the least angle regression (LAR),
expected trends in R? score over 3- and 4-body clusters are only obtained for
NbTiVZr as LAR seems to generally require more structures for fitting than



some of the other methods. The change in R? score as a function of the size
of validation data and the radii of clusters included is given in Table la in
Section S.4. Looking at the table, it’s clear that there is a saturation in the R?
score as larger sizes of clusters are added, particularly 2-body clusters. The first
size of 4-body clusters consistently doesn’t seem to add much to the predictive
power of the cluster expansion. However, the second size of 4-body clusters
greatly increases the R? score in cases where the 2-body clusters are capped
to a small size; this effect tapers off as the maximum size of 2-body clusters is
increased. The distribution of included clusters at the point of R? saturation is
given in Fig. 4a.

In the HINbTaTiZr and AIHINbTaTiZr cases, this same analysis is attempted
(see Tables 1b and lc in Section S.4). In these cases, the expected trend in
R? score only occurs when excluding 4-body clusters altogether, which suggests
that more data might be required; as the number of clusters increases, the
amount of data necessary for a good fit also increases. For HfNbTaTiZr, the
R? score saturates when 2-body clusters up to 8.5 A and 3-body clusters up to
5.4 A are included. In the AIHfNbTaTiZr case, the R? score saturates when
2-body clusters up to 9.3 A and 3-body clusters up to 5.4 A are included. The
distribution of included clusters at the point of R? saturation for both materials
is given in Figs. 4b and 4c.

Table 2 compares the best model obtained using each of the linear regression
methods (automated fit, higher-order cluster augmentation, and least angle re-
gression) for each high-entropy alloy. As is clear from this table, for the purposes
of this comparison, 1485 structures are used to fit models for NbTiVZr, 810
structures are used to fit models for HINbTaTiZr, and 2035 structures are used
to fit models for AIHINbTaTiZr. From these results, it is clear that the model
obtained through least angle regression tends to have a higher LOOCYV score
than models obtained using the other fitting methods. mmaps systematically
attempts all possible cluster choices as long as the total number of clusters is
less than the number of input structures. In some cases, especially when the size
of the input dataset is large, this procedure can be sped up by not attempting
all available cluster choices and artificially limiting the maximum size of 3- or
4-body clusters, and the result can yield acceptable results while cutting the
total computation time.

It is also interesting to investigate the general trends in the ECIs as a function
of the regression method for each HEA. In the NbTiVZr case (see Figs. 2a, 3a
and 4a in Section S.4), the manual cluster selection method seems to increase
the spread of ECIs for the 3-body clusters, while both the automated method
and LAR favor fits with smaller 3-body ECIs. As shown in Figs. 2b, 2¢, 3b, 3c,
4b and 4c in Section S.4, the automated, manual, and LAR methods all seem
to give similar ECI results for HINbTaTiZr for 2- and 3-body clusters, while
the LAR method selects a cluster expansion with a far wider range of ECIs for
AIHfNbTaTiZr, as shown by the difference between the maximum and minimum
ECI values for a given fit, than either the automated or manual methods.



Alloy Method Strain Number LOOCV 2b  3b  4b  |emax]
cutoff  of structures
ATAT 0.03 1485 0.0098 102 172 0  0.0665
NbTiVZr Manual  0.03 1485 0.0094 102 190 O 0.0674
LAR 0.03 1485 0.0109 56 139 17  0.0699
ATAT 0.05 810 0.0085 80 140 0  0.0263
HfNbTaTiZr Manual  0.05 810 0.0075 80 147 3 0.0248
LAR 0.05 810 0.0100 79 139 0  0.0226
ATAT 0.08 2035 0.0171 120 260 O 0.1060
AlHfNbTaTiZr | Manual 0.08 2035 0.0138 120 442 0 0.1001
LAR 0.08 2035 — 195 735 0  0.0872

Table 2: Comparison of the best regressions obtained by the three different linear methods for
each high-entropy alloy in question. “2b”, “3b”, and “4b” stand for the number of included
2-body, 3-body, and 4-body clusters, respectively. |emax| is the maximum absolute error
per atom for the regression in question. No LOOCYV score is obtained for the LAR fit for
AIHfNbTaTiZr due to numerical issues — the matrix in the denominator of Eq. (9) (see
Appendix) becomes ill-conditioned. The LAR fit tends to include fewer clusters, which most
likely contributes to a higher LOOCV score.
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Figure 2: Histograms of the different types of clusters included in the automated fit for
each HEA as described in Section 2.2. These models include many longer-range 2-body
interactions and some 3-body interactions. However, none of them include 4-body interactions.
Additionally, very few 3-body clusters are included in the AIHfNbTaTiZr case, most likely due
to a dearth of structures.
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Figure 3: Histograms of the different types of clusters present in the models obtained from
the higher-order cluster augmentation method described in Section 2.2. In the AIHfNbTaTiZr
case, adding 4-body clusters leads to an increase in the LOOCYV score and a worse fit, which is
not the case for NbTiVZr or HINbTaTiZr. In all cases, the LOOCYV score is improved by the
inclusion of the additional clusters; quite notably, the LOOCYV score of the AIHfNbTaTiZr fit
is almost cut in half.
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Figure 4: Histograms of the different types of clusters included in the LAR fit for each HEA.
No LOOCYV score is obtained for the AIHfNbTaTiZr case due to numerical issues. In the
HINbTaTiZr and AIHfNbTaTiZr cases, the absence of 4-body clusters in the fits obtained by
using the LAR method is likely due to the limited size of the training data set.

3.8. Nonlinear Fitting Methods

The nonlinear fitting methods explored in this work use the full set of Al-
HfNbTaTiZr structures with a strain cutoff of 0.08. This yields a dataset of
2035 structures. For all ridge- and kernel-based regression methods, the data
set is randomly shuffled and the first 600 samples are utilized for training and
validation—400 for training and 200 for validation—using the three-way hold-
out validation method, while the rest of the data is used as the test (unseen)
dataset.

Given the large number of potential many-body correlations (1730) included in
the original linear system, it is useful to reduce the dimensionality of the feature
space to guarantee the applicability and quality of the method. As mentioned in
Section 2.2, principal component analysis (PCA), a linear transformation which
projects the features in the direction of largest variance, is used to reach this
goal. PCA is useful because it adapts the fitting process to the distribution of
the given pre-generated data.

Figure 5 shows the convergence of the coefficient of determination (R? score)
for regressions fitting the total energy of each structure plotted against the
number of features after applying PCA. In addition to plotting the curves for
ridge regression, kernel ridge regression, and Gaussian process regression, it also
shows two horizontal lines delineating the ideal R? score of 1.0 (implying that
the variance in the data is fully explained by the model) and the R? score of the
ridge regression fitted using all of the original 1730 many-body correlations. It
is found that between 300 and 400 features (that is, between 17% and 23% of
the original feature space) are selected as the principal components. It is also
important to note that with only 400 features, the model is able to capture about
96% of the variance in the data and the differences between the three models
are 1% or less after using only 300 features. The trend shows that selecting
more than 300 features does not meaningfully alter the predictive power of the
fit, which is to be expected as 400 samples are used to train the models and
they are thus close to reaching the maximum of their learning capacity.

PCA projects the original features into a new subspace and selects the relevant
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features in a robust and almost automatic way. In this way, it eliminates the
collinearity between features and simplifies the fitting process. However, this
projection makes a direct physical interpretation of these new orthogonal fea-
tures difficult. The contribution of each of the new features can then be explored
using linear ridge regression, kernel ridge regression, and Gaussian process re-
gression.

Observing Fig. 6, which shows the predicted per-atom formation enthalpy plot-
ted against the DFT-calculated per-atom formation enthalpy, it is clear that
the models capture much of the variance in the data, with an R? score of over
0.99, using just 300 features. Table 3 shows different statistical indicators: the
R? score, the Root Mean Square Error, and the Mean Absolute Error of the
formation enthalpy per atom of each structure in the testing set. Table 4 shows
other indicators of statistical error such as the mean error, maximum positive
error, and maximum negative error, which again shows much similarity in pre-
dictive performance in statistical terms. The small differences in the statistical
indicators in Tables 3 and 4 suggest that the additional degrees of freedom af-
forded by a non-linear model do not enhance the performance. This means that
a linear combination of features is sufficient to capture the complexity of the
energy landscape of these multicomponent alloys. However, following Occam’s
Razor, it is preferable to use the simplest model — in this case, the linear ridge
regression with PCA.

It is hard to directly compare the methods described here with those of Sec-
tion 3.2 due to the application of PCA. With the linear methods in Section 3.2,
there is an easy and intuitive physical understanding that emerges from the
preservation of the clusters as the features of interest. Once PCA is performed,
that physical intuition is lost, although the automatic reduction in the number
of coefficients is useful. As discussed above, introducing non-linearity into the
model itself does not lead to significantly better results, so using any of the
methods in Section 3.2 or this section should yield similar results.

RR KRR  GPR

R? 0.9951 0.9949 0.9942
RMSE 0.0205 0.0209 0.0222
MAE  0.0118 0.0120 0.0130

Table 3: Comparison of error metrics for the various non-linear fitting methods: ridge regres-
sion (RR), kernel ridge regression (KRR), and Gaussian process regression (GPR). When the
various regression methods are compared on all three metrics — the coefficient of determi-
nation score (see Section 2.2), the root-mean-square error (RMSE), and the mean absolute
error (MAE) — it is clear that they all perform comparably. All errors are in units of eV/atom.
Indeed, comparing the various plots of predicted energy versus actual energy (Fig. 6), the
plots appear nearly identical, suggesting that the principal components selected through PCA
largely account for the impact of structural variations on the energy.

12



1.05

1L
) U N
0.95 | o8 ]
S
AD- e
0.9 r A :' 8/ -
AA 7
o)
0.85 | | ©%
|
. RR - ©-
L KRR --A-- |
0-8 1 GPR
I Ideal R2 score
o Reference R2 score — =
075 ! ! ! ! ! ! !
0 50 100 150 200 250 300 350 400

Figure 5: Convergence of the coefficient of determination (R? score) of the total energy of
each structure against the number of new features obtained from the PCA projection. The
regressions shown here are: linear ridge regression (RR), kernel ridge regression (KRR), and
Gaussian process regression (GPR). The solid horizontal line denotes the ideal R? score of 1
(the model captures all of the variance in the data), while the thick dashed horizontal line is
the R? score (0.9671) when fitting a model using the original 1730 features with linear ridge
regression.
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(a) Ridge regression with 300 (b) Kernel ridge regression with (c) Gaussian process regression
principal components 300 principal components with 400 principal components

Figure 6: Plots of predicted versus actual energies for various linear and non-linear fitting
methods. Unlike the linear methods mentioned earlier, several of these nonlinear methods
involve a transformation into the principal component space, which prevents a similar analysis
to Figs. 2 to 4. Thus, a plot of predicted energies versus actual energies, along with the R>
score, is used as a measure of the quality of the fit.
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RR KRR GPR

Mean absolute error  0.0012  0.0016  0.0018
Max negative error ~ -0.1428 -0.1529 -0.1939
Max positive error 0.1557  0.1551  0.1674

Table 4: Comparison of additional error metrics for the various non-linear fitting methods:
ridge regression (RR), kernel ridge regression (KRR), and Gaussian process regression (GPR).
All errors are in units of €V/atom. As in Table 3, the fits all perform comparably, suggesting
that the features in the PCA space contribute linearly to the energy calculation.

4. Evidence of Phase Separation

Analysis of phase stability assumes importance because many physical proper-
ties of HEAs are affected by the presence of precipitates. For example, all of the
high entropy alloys examined here experience a drastic reduction in mechanical
strength around 1000 K [22, 24, 25], shown in Fig. 7. Specifically, the stress-
strain response is drastically different at 1073 K when compared to the behavior
at 296 K298 K. In addition, it is interesting to explore the length scales asso-
ciated with short-range order, if any, present in the HEAs that do not form
precipitates. For example, typical supercells used in DFT calculations contain
100-300 atoms. So, if the length scale associated with the decay in the SRO
parameter (obtained from cluster expansion + Monte Carlo) is a few nanome-
ters, then these results cannot easily be reproduced using such DFT supercells.
On the other hand, if the SRO decays very quickly, then a random distribution
of alloying elements can be used to model these complex alloys.

The cluster expansion models described in the previous sections are used to
analyze phase stability and clustering in the three HEAs. LAR fits are used for
NbTiVZr and AIHINbTaTiZr, while a fit generated using the higher-order clus-
ter augmentation method is used for HINbTaTiZr. To study the phase stability
of these alloys, Monte Carlo trajectories are obtained at various temperatures
from 250 K to the melting point. Representative simulation cells are provided in
Figs. 8 to 10 between 250 K and 1000 K for all high entropy alloy systems stud-
ied here. Visual evidence of phase segregation is corroborated by examining the
multicomponent Warren-Cowley binary short-range order parameters described
in Section 2.3 (see Section S.6 for the relevant figures). In this analysis, atoms
in the first coordination shell are used to generate the SRO parameters.

4.1. Analysis of Phase Segregation in NbTiVZr

Figure 8 shows snapshots of representative equilibrium structures of NbTiVZr
obtained from canonical Monte Carlo simulations. The clustering of vanadium
atoms (shown in red) clearly shows that V atoms like to form clusters at low
temperatures. In fact, at 250 K (Fig. 8a), almost all vanadium atoms in the
material are present in the form of a cluster. The vanadium atoms gradually dis-
perse into the rest of the material as the temperature is increased to 1000 K. This
evolution is further corroborated by the trajectory of the V-V SRO parameter
(see Fig. 11 in Section S.6), which begins close to -2 at 250 K and rises to ~ —0.5
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around 1000 K, where the segregation disappears. Concurrently, there is visual
evidence in Fig. 8 of a first-order phase transition of a zirconium-rich phase
between 500 K and 625 K. As in the vanadium-rich phase, almost all zirconium
atoms in the material segregate into a separate (zirconium) cluster. However,
unlike the phase transition of the vanadium-rich phase, in which the equilibrium
concentrations of the precipitate and matrix change slowly with temperature,
the zirconium-rich phase undergoes a sudden transition. This is reflected in the
values of the Zr-Zr SRO parameter (see Fig. 11 in Section S.6), which decreases
from near-zero at 250K to ~ —1 at 500 K. The SRO parameter then exhibits
a kink and increases towards a value of 0 at slightly above 1000 K. Finally, the
positive Nb-V SRO and negative Nb-Nb SRO at low temperatures suggests that
Nb does not want to form clusters with V.

The results from grand canonical ensemble Monte Carlo simulations at 1000 K,
1500 K, 2000 K, and 2500 K are shown in Fig. 11. These graphs are ternary
projections of the full tetrahedral phase diagram with Ti, V, and Zr at the cor-
ners. That is, in a regular Cartesian coordinate system, Ti is at the coordinate

(0,0,0), V is at the coordinate (1,0,0), Zr is at the coordinate (%,?,0), and Nb

is at the coordinate (%,@, %) Thus, the Nb “dimension” is flattened in these
diagrams. In this set of simulations, a 1¢V/atom interval is scanned in each di-
rection around the chemical potential values that stabilize the equiatomic phase

at 2500 K.

At 2500 K (Fig. 11d), the equiatomic phase is stable and there is a clear miscibil-
ity gap towards higher concentrations of Nb and Zr, as indicated by the lack of
structures in that area of the phase diagram. This miscibility gap extends to all
studied temperatures. At lower temperatures (Fig. 11a), there seem to be very
quick transitions to extreme ends of the phase diagram even for minute changes
in chemical potential, showing a marked contrast with diagrams at higher tem-
peratures. For example, it can be seen in Fig. 11a that there are transitions
from a Zr-rich phase to Zrg.75Vp.25 to a V-rich phase along the right edge of
the ternary projection. Given that the equiatomic phase occurs at the center of
the ternary diagram (for all four ternary projections), it becomes clear that the
equiatomic phase is stable at 2500 K and quite likely unstable at 1000 K.

Previous research [24] has shown that there is a large difference in the stress-
strain behavior of this material between 298 K and 1073 K. Figure 7 reports the
prior finding that NbTiVZr has very high ductility and yield strength at 298 K,
but the yield strength drastically decreases at 1073 K. Given the change in the
distribution of alloying elements in this HEA (i.e. the presence of V and Zr
rich phases seen in Fig. 8), we conjecture that this degradation in mechanical
properties is closely related to the changes observed as a function of temperature
in the V- and Zr-rich phases. These phase changes, and the resulting changes
in local chemistry, possibly play a role in the drastic reduction of strength of
this material at higher temperatures.

In their work [24], Senkov et. al. found 3 phases — a Nb-rich untransformed
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BCC matrix, a Zr-rich transformed BCC matrix, and V-rich precipitates. In
experiments, they found Nb segregation, V segregation, and Zr segregation,
and these segregations are more pronounced at 1273 K than at 298 K. In an
experiment, phase transformation and chemical segregation is governed by sev-
eral factors, including local distortion, local transformation strain, diffusion,
configurational and vibrational entropy contributions, change in enthalpy, and
free energy barriers. The cluster expansion model used here accounts for local
distortions, configurational entropy, and changes in enthalpy. It does not take
kinetics (diffusion, energy barriers, etc) into account, but that is not needed to
detect a phase transition. Taking these qualifications into account, we believe
that the evidence shown in Figs. 8 and 11 suggests that the V, Zr, and Nb
clusters seen in this work could be early precursors of the phases observed by
Senkov et al. Figures isolating the V and Zr atoms can be seen in Figs. 5 and 6
in Section S.5.

4.2. Analysis of Phase Segregation in HfNbTaTiZr

The phases in the case of HINbTaTiZr are slightly harder to discern visually by
looking at the snapshots of the simulation cells in Fig. 9, although the SROs
(Fig. 12 in Section S.6) paint a clearer picture. Previous studies have observed a
TaNb BCC phase and a HfZr HCP phase at low temperatures in this material [2,
31] (see Table 5). Given that the classic cluster expansion formalism cannot take
multiple lattices into account, the HfZr phase cannot be seen here. However,
the negative Hf-Zr SRO parameter is a manifestation of the presence of a local
minimum on the energy surface and consequently points to the existence of this
HfZr phase. The fact that the BCC cluster expansion constructed here could
indicate the presence of an HCP phase is also plausible because the two lattices
are closely related through the Burgers path. The BCC TaNb phase is also
clearly seen through the negative Ta-Nb SRO parameter (=~ —0.5) and highly
negative Nb-Nb SRO parameter (less than -1), and the similar magnitude of
the Ti-Zr and Hf-Zr SRO parameters suggests the existence of a TiZr phase,
although the exact lattice system of this phase cannot be discerned here. There
is also a possibility that Hf, Ti, and Zr form the FCC HfTiZr phases noted
at higher temperatures (see Table 5 and [31]). The increase in these SRO
parameters at higher temperatures suggests that, in corroboration with previous
research, the dominant phase at higher temperatures is the disordered single-
phase “matrix”. As in the case of NbTiVZr, there is a correlation between these
phase transformations and the change in stress-strain behavior of this material
as seen in Fig. 7. The changes in local chemistry induced as a result of the
disordering of the HfZr, TaNb, and TiZr phases at higher temperatures most
likely play a role in the drastic reduction of the strength of this material.

The results from grand canonical Monte Carlo simulations at 1000 K and 4000 K
are shown in Fig. 12. It is relevant to note here that 4000 K is higher than the
melting temperature in this material and is not physically accessible. How-
ever, using such temperatures allows us to better observe the limiting high-
temperature behavior of the material. In this set of simulations, a 1¢V/atom
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interval is scanned in each direction around the chemical potential values that
stabilize the equiatomic phase at 4000 K. In Figs. 12a to 12c, it’s clear that there
is a transition from Hf 5 Tig 5 to Hfy.95Tig.2%r( 55 as the chemical potential of Hf
is varied. Further, at 1000 K, Nb does not appear in any of the scanned chemi-
cal potential region (Fig. 12a), while Fig. 12d shows significant {ractions of Nb
at different concentrations (from =~ 0.1 to =~ 0.6, depending on the part of the
chemical potential space) at 4000 K. In addition, at 1000 K, there is a transition
from Hfy 5Tig.5 to Hfy 45Tag 53Tig.02 as the chemical potential of Ta is varied, a
transition from Hfy 5Tag 5 to Hfy 5Tip 5 as the chemical potential of Ti is varied,
and a transition from Hfq 5 Tig 5 to Hfg 05Tig.2Zr0.55 as the chemical potential of
Zr is varied (Figs. 12a to 12¢). Comparing Figs. 12a to 12¢ with Figs. 12d to 12f,
the lack of jumps in concentration around the equiatomic phase at 4000 K shows
that the equiatomic HINbTaTiZr is stable at 4000 K and unstable at 1000 K.
Indeed, at least in this chemical potential range, the equiatomic phase does
not appear at 1000 K, although further verification is needed. Calculations at
intermediate temperatures are provided in the supplementary materials.

Interestingly, the behavior of the SRO parameters in this system contrast sharply
with those of both NbTiVZr and AIHfNbTaTiZr. Many of the SRO parameters
remain significantly different from zero even at the melting point, indicating
short-range ordering. This concords with the HfTiZr phases noted at higher
temperatures [31]. This suggests that, contrary to NbTiVZr and AIHfNbTa-~
TiZr, the mechanical properties of this material may depend more strongly on
other factors than on the local chemistry and state of disorder.

4.8. Analysis of Phase Segregation in AIHfNbTaTiZr

At low temperatures, AIHfNbTaTiZr (Fig. 10) develops a highly ordered phase
and undergoes a phase transformation between 500 K and 600 K. Ta and Nb
segregate to one side of the crystal, while Al, Hf, Ti, and Zr segregate to the
other (this can clearly be seen visually when isolating groups of species as in
Figs. 7 and 8 in Section S.5).! This is also apparent in the SRO parameters (see
Fig. 13 in Section S.6), where the Al-Zr, Hf-Zr, Al-Ti, and Nb-Ta parameters are
less than -1, reflecting a segregation tendency. Interestingly, unlike HINbTaTiZr,
the Zr-Ti, Hf-Ti and Zr-Hf SROs do not show any tendency to segregate.

Senkov et al. [25] reported that the Al containing HEA with a composition of
Aly 4Hfy ¢NbTaTiZr contains a HCP phase (with a volume fraction of ~ 13% at
973 K) that is rich in Al and Zr. Zr and Hf lie in the same column in the periodic
table (iso-electronic). In addition, Zr, Ti and Hf are HCP metals even though
their atomic radii differ slightly. If the Al-Zr clustering observed by Senkov et
al. corresponds to the Al-Zr clusters in our simulations, then we conjecture
based on the SRO profiles that the HCP phase in Aly 4Hfy sNbTaTiZr is also
rich in Hf and Ti.

11t should be noted here that MC simulations that do not include vibrations could overes-
timate the transition temperature.
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Additionally, the kink in the Al-Hf, Al-Ti, Al-Zr, Hf-Zr, Hf-Hf, Hf-Nb, Nb-Nb,
Nb-Ta, Nb-Zr, Ta-Ta, Ta-Ti, Ti-Ti, and Ti-Zr SRO parameters between 500 K
and 600K (see Fig. 13 in Section S.6) suggests a phase transition which is,
indeed, reflected visually in Fig. 10. Above those temperatures, the segregation
largely disappears and the only phase present is the disordered single-phase
“matrix”. As with the other alloys, this segregation at low temperature and the
phase transition described here may play a crucial role in explaining the decline
in strength seen in Fig. 7.

The segregation of Ta and Nb observed in our simulations (Figs. 7, 8 and 10)
and also quantitatively shown in the SRO plots (Fig. 13 in Section S.6) is in
line with the observations made by Lin et al. [12]. Lin et al. conjectured that
Nb and Ta have higher melting points than the other alloying elements and
hence form Ta and Nb rich dendrites as the melt is cooled. Our results suggest
that apart from their high melting points, there is also an underlying energetic
driving force, in the solid state, for the observed segregation.

The results from grand canonical ensemble Monte Carlo simulations at 1000 K
and 2500 K are shown in Fig. 13. In these simulations, a 1¢V/atom interval is
scanned in each direction around the chemical potential values that stabilize
the equiatomic phase at 2500 K. There is a phase transition from a roughly
equiatomic alloy phase to a Ta-rich phase at 1000 K as the chemical potential
of Ta is changed, which can be seen in the jumps in the “Ta” curve in Figs. 13a
to 13c. Similarly, still at 1000 K, there is a jump from a Nb-Ta rich phase to
a Al-Hf-Nb-Ti-Zr rich phase as the chemical potential of Al is changed and a
jump in the opposite direction as the chemical potential of Nb is changed. In
contrast, the target phase is stable at 2500 K, as can be seen by the smooth
curves in Figs. 13d to 13f. Comparing Figs. 13a to 13c and Figs. 13d to 13f,
it is clear that the equiatomic phase of interest is stable at a broader range of
compositions at 2500 K than at 1000 K due to the lack of jumps in composition
around that phase.

Senkov et al. in 2014 [25] found that at temperatures below ~ 1300K, the
aluminum containing HEA, Aly 4Hfy ¢NbTaTiZr, contains three phases: a Ta
and Nb rich BCC phase, a Ti and Zr rich and Nb, Ta depleted BCC phase and
a Al and Hf rich HCP phase. While the true energy landscape of this alloy can
be very complicated due to the differences in chemistry and atomic radii, the
kinetics of such a system can also be very complicated. Our results correspond
to metastable or stable phases, but cannot account for strain or multiple lattice
systems. Nevertheless, the fact that the Nb-Ta SRO is less than 0 suggests some
sort of BCC or HCP precipitate can be present in this alloy.
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Figure 7: Stress-Strain curves showing a drastic decrease in mechanical strength at 1073 K

for all HEAs studied here. WebPlotDigitizer [19] is utilized to extract the stress-strain curves
plotted in Fig. 7 from the plots in [22, 24, 25].

(a) Representative sim- (b) Representative sim- (¢) Representative sim- (d) Representative sim-
ulation cell at 250 K ulation cell at 500 K ulation cell at 750 K ulation cell at 1000 K

Figure 8: Representative NbTiVZr simulation cells at several temperatures between 250 K
and 1000 K. At 250 K, vanadium atoms form a cluster that gradually decreases in size with
an increase in temperature. Key: Nb, 11, V, Zr.

(a) Representative sim- (b) Representative sim- (c) Representative sim- (d) Representative sim-
ulation cell at 200 K ulation cell at 400 K ulation cell at 800 K ulation cell at 1000 K

Figure 9: Representative HINbTaTiZr simulation cells at several temperatures between 200 K
1000 K. At lower temperatures, several intermetallic phases (H(Zr, TaNb, and TiZr) form.
These slowly disperse into the matrix as the temperature is increased. However, other inter-
metallic phases form at higher temperatures (FCC I{11Zr). Key: HI, Nb, Ta, 11, Zr.
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(a) Representative sim- (b) Representative sim- (¢) Representative sim- (d) Representative sim-
ulation cell at 250 K ulation cell at 500 K ulation cell at 750 K ulation cell at 1000 K

Figure 10: Representative AIHfNbTaTiZr simulation cells at several temperatures between
250 K and 1000 K. At 250 K, there is clear segregation of Al, Hf, Ti, and Zr from Nb and Ta,
forming two distinct phases. The alloy slowly becomes more disordered as the temperature is
increased. Key: Al, I1f; Nb, Ta, 11, Zr.

Temperature (°C)

Phases

550
700

900
1000

1450

As-homogenized

TaNb BCC + minor matrix BCC + HfZr HCP

TaNb BCC + HfZr HCP + Matrix BCC

TaNb: (5.39%, 34.56%, 40.76%, 14.98%, 4.30%)

HfZr: (36.21%, 0.69%, 4.69%, 15.65%, 42.77%)

Matrix: (20.97%, 17.23%, 20.82%, 21.10%, 19.89%)
Minor TaNb BCC + matrix BCC

HfZr HCP + Matrix BCC

HfZr: (37.37%, 2.96%, 3.81%, 10.38%, 45.48%)

Matrix: (20.06%, 19.09%, 19.78%, 21.82%, 19.23%)
Two HfTiZr FCC + Matrix BCC

HITiZr FCC1: (36.53%, 0.94%, 0.49%, 23.31%, 38.74%)
HfTiZr FCC2: (39.28%, 0.78%, 0.19%, 14.17%, 45.58%)
Matrix BCC

Table 5: Phase composition of HfNbTaTiZr at various temperatures. Most relevant to this
work is the existence of a BCC TaNb phase and a HCP HfZr phase at lower temperatures
and the two FCC HfTiZr phases at higher temperatures. Extracted from [2, 31].
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(c) Ti-V-Zr ternary projection at 2000 K (d) Ti-V-Zr ternary projection at 2500 K

Figure 11: Results from Grand Canonical Monte Carlo simulations at 1000 K, 1500 K, 2000 K,
and 2500 K for NbTiVZr. These diagrams are ternary projections of the full tetrahedral phase
diagram and the Nb “dimension” is flattened. It is apparent from these simulations that
there is a miscibility gap at increased concentrations of V and Zr that persists at all of these
temperatures. Further, at lower temperatures (Fig. 11a), there are quick phase transitions
to the extreme ends of the phase diagram over small changes in chemical potential. For
example, at the right edge of the triangle in Fig. 11la, there is a transition from a Zr-rich
phase to Zrg.75Vo.25 to a V-rich phase. The equiatomic phase occurs at the center of the
phase diagram, and from these ternary projections, it is clear that the equiatomic phase is
stable at 2500 K and likely unstable at 1000 K.
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(d) HfNbTaTiZr at 4000 K, Hf (e) HfNbTaTiZr at 4000K, Ta (f) HfNbTaTiZr at 4000K, Ti
versus Nb versus Ti versus Zr

Figure 12: Results from Grand Canonical Monte Carlo simulations at 1000 K (Figs. 12a
to 12¢) and 4000 K (Figs. 12d to 12f) for HINbTaTiZr. Each curve tracks how concentrations
of the various elements vary as the chemical potential of that species is varied. Jumps in
concentrations signify a phase transition. For example, in Fig. 12a, it is apparent that there
is no significant fraction of Nb in the scanned chemical potential region (although this is
not the case at higher temperatures). Further, in Figs. 12a to 12c, it’s clear that there is a
transition from Hfy 5Tig.5 to Hfp.25Tig.2Zro.55 as the chemical potential of Hf is varied. There
is also a phase transition from Hfp 5Tig.5 to Hfp 45Tag.53Ti0.02 as the chemical potential of
Ta is varied and a transition from Hfy 5Tip.5 to Hfp 5Tag.5 as the chemical potential of Ti
is varied. Finally, there is a phase transition from Hfy 5Tig.5 to Hfp o5Tip.2%ro.55 as the
chemical potential of Zr is varied. At 4000 K, the equiatomic phase is stable, as shown in
Figs. 12d to 12f — all composition curves are smooth, indicating a lack of phase transitions
at this temperature. Further calculations at intermediate temperatures are provided in the
supplementary materials.
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Figure 13: Results from Grand Canonical Monte Carlo simulations at 1000 K (Figs. 13a to 13c)
and 2500 K (Figs. 13d to 13f) for AIHfNbTaTiZr. Each curve tracks how concentrations
of the various elements vary as the chemical potential of that species is varied. Jumps in
concentrations signify a phase transition. At 1000 K, there is a sudden jump from a phase rich
in all 6 elements (slightly favouring Al and Zr) to a Ta-rich phase as the chemical potential of
Ta is changed. There is similarly a jump from a Nb-Ta rich phase to a Al-Hf-Nb-Ti-Zr rich
phase as the chemical potential of Al is changed and a jump in the opposite direction as the
chemical potential of Nb is changed. At 2500 K, the equiatomic phase is stable, as shown in
Figs. 13d to 13f — all composition curves are smooth, indicating a lack of phase transitions
at this temperature. Further calculations at intermediate temperatures are provided in the
supplementary materials.
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5. Conclusion

Several linear and non-linear cluster expansion models are used to study phase
stability and elemental segregation effects in high entropy alloys. However, it is
shown here that generating a cluster expansion (CE) model for high entropy al-
loys is a challenging task; due to the increase in the number of alloying elements,
the number of possible clusters (i.e. many-body correlations) increases expo-
nentially. Correspondingly, the number of structures required to generate the
CE model also increases. Even generating a suitable database becomes tricky
— while the alloying elements in a HEA are present in nearly equal atomic
proportions, the database required to generate the CE model must include a
sufficiently diverse set of structures to capture possible phase segregation and
precipitation effects. Such a diverse database can often contain structures that
undergo large distortions and hence have to be removed from the database.
An additional challenge is that, apart from local lattice distortions, the lattice
structure itself may change during relaxation; due to the fixed-lattice nature of
the cluster expansion formalism used here, these structures must be discarded
as well. These issues are most clearly evident for AIHfNbTaTiZr.

It is clear from these results that 2-body and 3-body interactions are necessary
to generate a predictive model. As shown in Table 2, the number of 3-body
interactions utilized in the fit is nearly twice the number of 2-body clusters
used. This stands in sharp contrast to simpler binary and ternary alloys, where
2-body clusters are the dominant type of cluster necessary (e.g. the cluster ex-
pansions generated for NigAl with dopants by Sun et al. in [26]). Additionally,
as demonstrated by the higher-order cluster augmentation method (see Sec-
tion 3.2), adding 4-body clusters and larger 3-body clusters can often improve
the predictive power of the fit. Further, alternatives like the least angle regres-
sion can be utilized in parallel with least-squares-based methods such as ATAT’s
automated method and the higher-order cluster augmentation method in cases
where the need for a larger dataset makes the latter methods computationally
demanding.

The cluster expansion formalism for alloys is a widely used method with a
solid mathematical foundation, and the features it uses are intuitive, physically-
motivated clusters. The fact that the cluster expansion has been successful,
especially in the field of alloy theory, shows that these intuition-based features
are very good at capturing the complexity of the underlying energy landscape.
When these features are transformed into a different space using Principal Com-
ponent Analysis, a set of orthogonal features is obtained at the cost of losing the
physical intuition underlying the original features. Interestingly, the number of
orthogonal features required to generate a cluster expansion model with simi-
lar predictive power (i.e. R2 score > 0.99) drastically decreases compared to
the number of intuition-based, physically-motivated clusters shown in Table 2.
Moreover, as in the case of the original cluster expansion formalism, these or-
thogonal features also contribute linearly towards the energy. This is evident
from the fact that there is no statistical difference between the ridge regression,
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kernel ridge regression, and Gaussian process regression results (Section 3.3).
Therefore, a linear regression-based fitting process is sufficient to capture the
complexities of the energy surface.

Cluster expansion models for each alloys are used to reproduce various inter-
metallic phases observed in experiments utilizing Monte Carlo methods and
a connection is drawn between these phases and the sudden drop in material
strength around 1000 K in all of these high entropy alloys (Section 4). NbTiVZr
forms vanadium and zirconium clusters at lower temperatures (250 K) which
disperse into the single-phase matrix by 1000 K. This is seen both through ex-
amining the structures visually and looking at the numerical values of the short-
range order parameters and is most likely related to the intermetallic phases and
precipitates seen in Senkov et al.’s work [24].

HfNbTaTiZr forms NbTa and HfZr intermetallic phases at 250 K, in addition to a
possible TiZr intermetallic phase. The HfZr intermetallic phase may correspond
to the HCP HfZr intermetallic phase seen in [31]. Additionally, the possible
TiZr intermetallic phase seen here may actually correspond to the HfTiZr FCC
phase noted at higher temperatures in previous work [31]. Furthermore, in
contrast with NbTiVZr and AIHfNbTaTiZr, HINbTaTiZr does not lose short-
range ordering until well above the melting temperature (= 3500 K).

Finally, in AIHfNbTaTiZr, Nb-Ta and Al-Hf-Ti-Zr phase segregate at lower
temperatures, while the solid solution phase emerges at higher temperatures.
The Al-Hf-Ti-Zr phase seen here may be related to the experimentally-observed
Al-Zr phase reported in the literature, though further verification is needed.
The phase transitions described above most likely play a role in the sudden
decline in mechanical strength seen at higher temperatures in all of these alloys,
especially in the cases of NbTiVZr and AIHfNbTaTiZr.
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Appendices

Appendix A Linear Regression Methods

Three linear regression methods are explored in this work: ATAT’s automated
method, a higher-order cluster augmentation method, and a method utilizing
the least angle regression. An overview of all three methods is given below. In
all of the discussions below, A is the matrix containing the correlations of n
structures with m clusters, y is the vector of n DFT-calculated energies, and g
is the vector of n energies predicted by the model. Indexing notation convention
denotes that e.g. y; is the energy of structure 7, 1 < i < n.

The automated algorithm utilized by ATAT’s mmaps program first constructs
a minimal (non-colinear) basis from the matrix of correlations before generating
a least-squares fit. Additionally, it utilizes a physics-based algorithm to iterate
hierarchically through the cluster choices by only including a cluster if all of its
subclusters have been included and all clusters with the same number of points
with a smaller diameter have been included [28], where the diameter of a cluster
is the largest distance between two points in the cluster. Model selection is done
using the leave-one-out cross-validation score, which is a way of measuring the
predictive power of a fit. In the general case, it is calculated as follows:

1. Remove one datapoint from the system (y;)

2. Find the best fit for the n — 1 datapoints still in the system
3. Predict the value of the omitted datapoint (g;)

4. Repeat for each datapoint in the system

Finding the squared norm of the difference between the two vectors y and ¢ and
dividing by n yields the LOOCYV score. In the specific case of a least-squares fit,
Eq. (9) provides a more efficient method of calculating the LOOCYV score which
only requires calculating the full least-squares regression (the division here is
element-wise) [28]:

Y-y
CV score = — 9)
V(|1 — diag (A(ATA)’IAT>

The mmaps code uses the LOOCYV score as a metric to assess the quality of the
fit and prevent over-fitting.

The higher-order cluster augmentation method is built on top of the au-
tomated method described above in order to test if the quality of the fit can be
improved by deviating from mmaps’ hierarchical rules. The method proceeds as
follows:
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1. Start with the results from the method outlined above. This fit will include
ng 2-body clusters with maximum cluster diameter ds, n3 3-body clusters
with maximum cluster diameter ds, and n4 4-body clusters with maximum
cluster diameter ds. These fulfill the condition that dy > d3 > dj.

2. Increase ds such that it includes one more size of 3-body clusters (this
could include different types of clusters, but they all have the same diam-
eter).

3. Forn=1,2,...,n4, — 1, pick the first n clusters out of the clusters just
included and generate a fit using the method above. Out of these, pick the
fit with the lowest LOOCYV score. This determines the number of clusters
to use from the clusters just included (call this number n*).

4. Now, pick min ((Z‘?),C) different combinations of n* clusters from the
clusters just included. Select the one with the lowest LOOCYV score and
remove all of the other clusters of this size from future fits.

5. Repeat this procedure until ds = ds. Then, repeat the procedure with dy
instead of dz until dy = d3 = d>.

In this work, C' = 500. As is shown in Section 3, manually augmenting the
automated results obtained from the mmaps code with additional clusters, par-
ticularly larger 3-body clusters and some 4-body clusters, often improves the fit
up to a point. The key issue encountered with this method is that as ds and d4
are increased, the number of clusters grows exponentially. Since the LOOCV
is a statistical estimator of the true predictive power, increasing the number
of trial cluster choices increases the risk of finding a lower LOOCV purely by
chance, even if the true predictive power of the corresponding cluster expansion
is not truly better.

The least angle regression method, proposed by Efron et al. in a seminal
paper in 2004 [5], is an alternative to the least squares-based fits described in
the previous two methods. Unlike the least squares fit, the least angle regression
method is iterative and introduces sparsity into the model — that is, it has the
ability to set some of the coefficients in the solution vector to 0. Unlike other,
similarly parsimonious methods, the iterative approach eliminates the need for
a regularization parameter. The method starts by setting the coefficient vector
(the vector of ECIs) equal to zero. Then, the correlations é are calculated from
é= AT (y —9§), where A is the correlation matrix from the cluster expansion
formalism, ¢ is the vector of predicted energies given by Ax (where @ is the
vector of ECIs), and y is the vector of actual energies being fitted. The set of
clusters with the maximum absolute correlation is then defined as the “active
set” and the ECIs are updated such that in the next iteration of the algorithm,
one more cluster enters the active set. This procedure is repeated, including
one more cluster in the active set at each iteration, until all of the clusters have
been included in the active set (which corresponds to the ordinary least-squares
fit). Hence, the least angle regression method obtains a trajectory of fits ranging
from no clusters included in the active set (initial state) to all clusters included
in the active set (the full least-squares fit).
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Before fitting with LAR, the full dataset is split into a training dataset and a
validation dataset. During model selection (described below), all calculations
happen on the training dataset. To measure the predictive power of the dataset,
the selected model is then used to predict the energies of the structures in the
validation dataset.

Following the procedure used by Efron et al. in [5], Mallows’ C), criterion [14]
is utilized here to select the best fit from the trajectory of fits returned by
LAR. For the least angle regression, the equation for the C), criterion reduces
to Eq. (10) [5], where &o.5 is the least-squares solution and k is the number of
non-zero elements of &. As noted above, the C), criterion is calculated based on
the predicted energies of the structures in the training dataset.

OLS)

C, (&,k)=n (”y_y("”)”: — 1) + 2k (10)
1y — G (Zows)|

The 2k term in Eq. (10) avoids overfitting by increasing the score when the
number of non-zero ECIs is increased.

Once the model has been selected, the coefficient of determination (Eq. (11)), or
RZ score for short, is calculated based on the predicted energies of the structures
in the validation dataset to assess the predictive capability of the fit. In Eq. (11),
Y, is the vector of energies from DFT for the validation dataset, g, is the vector
of energies predicted by the cluster expansion for the validation set, ¥, is the
mean of y,, and 1 is a vector of 1s with the same length as y,.

~ 112
Hyv _yv]-”

Appendix B Non-Linear Regression Methods

In addition to the aforementioned linear regression methods, several linear and
non-linear regression methods are combined with Principal Component Analysis
to explore non-linear features. The three methods examined here are ridge
regression, kernel ridge regression, and Gaussian process regression.

Before utilizing the aforementioned regression methods, Principal Component
Analysis (PCA) is used to select a more compact set of features and decrease
collinearity. The basic idea of PCA is that the highest variance directions pro-
vide the most information, so the directions with smallest variance can be ne-
glected. If A is the correlation matrix (of size n x m) containing the correlations
of n structures with m clusters, the goal is to find a representation A of size
n X k, with k& < m orthogonal features. This is done by means of an orthog-
onal linear transformation, obtained with the diagonalization of the covariance
matrix 3:
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1
X=—-ATA (12)
n

A matrix U is then formed by arranging the eigenvalues of the covariance ma-
trix 3 such that the corresponding eigenvalues are in descending order. Since
the magnitude of the eigenvalue corresponds to the magnitude of the variance,
a larger eigenvalue corresponds to a larger variance of the corresponding eigen-
vector. Then, to reduce the number of features, the first £ column vectors are
selected from this matrix U and the original correlations are projected into this
space:

A=AU (13)

How many principal components are chosen depends on how much variance
those components capture. To analyze this, each eigenvalue is normalized by
the sum of the eigenvalues and the k eigenvectors are selected such that the
sum of the corresponding normalized eigenvalues is greater than 0.9. These k
features are then used in the regression methods described below.

Ridge regression [6, 7, 18], also known as Tikhonov regularization, is a method
of regularizing a least-squares problem by introducing a regularization matrix
I' and solving the modified minimization problem ming ||Ax — y||§ + Herg
Often, the matrix T" takes the form of a multiple, A, of the identity matrix. The
regularization parameter A functions as a constraint on the magnitude of the
coefficients, @, which can be calculated as:

z=(ATA+A) ATy (14)

The two other methods, kernel ridge regression and Gaussian process
regression [20, 17], are kernel-based regression methods. In the kernel ridge
regression, the energy of a structure with feature vector p is given by 4 (p) =
Zfil ;¢ (P, pi), where p1, pa, -+, py are feature vectors such that p; corre-
sponds to the correlations of structure i projected onto the principal component
space. The kernel ¢ (p;,p;) = K;; measures the similarity between two struc-
tures ¢ and j with feature vectors p; and p;. The coeflicients a; are given
by a = argming ||§ —y||> + A||g]|°>. Here, § = Ka is the vector contain-
ing the values of the function at all the training points, « is a vector that
contains all the coefficients, \ is a regularization parameter and ||g|| is the
norm of the function in the feature space. This cost function is equivalent to
o = argmin, ||[Ka —y||° + \yT Ky = a = (K + AI)"'y. In our analysis, a
Gaussian kernel is used: K;; = Kj; = (b(pi,pj) = y2exp (—%), where
the hyper-parameters v and o determine the smoothness of the fit and the
length that scales the distance between two feature vectors, respectively. The
parameters 7, o, and \ are selected by optimizing the Ly cost function using the
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Nelder-Mead method [16], while the coefficients « are optimized by calculating
the R? score using the three-way hold-out method (three data points are set
aside as the validation data set instead of only one as in the LOOCYV).

The Gaussian process regression is a non-parametric Bayesian analysis tech-
nique that assumes that the coefficients, {a1, s, . ..}, of the expansion ¢ (p) =
Zf\; a;¢ (P, p;) are normally distributed conditional on the data. As a result,
the predictions are likewise normally distributed, and the exact distribution and
its error is determined by the covariance, which in turn is determined by the ker-
nel function used. Thus, as in case of the kernel ridge regression, the coefficients
that minimize the posterior square loss function are given by a = (K + A\I )_1y,
but the hyper-parameter A is interpreted as the Gaussian prior amplitude rather
than a regularization coefficient. A Gaussian kernel is used in our analysis and
the parameters v, o, and A are selected by optimizing the log-likelihood cost
function using the Nelder-Mead method [16], while the coefficients « are opti-
mized by calculating the R? score using the three-way hold-out method (three
data points are set aside as the validation data set instead of only one as in the
LOOCV).
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