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Abstract

Hyperspectral fluorescence imaging is widely used when multiple fluorescent probes
with close emission peaks are required. In particular, Fourier transform imaging spec-
troscopy (FTIS) provides unrivaled spectral resolution; however, the imaging through-
put is very low due to the amount of interferogram sampling required. In this work,
we apply deep learning to FTIS and show that the interferogram sampling can be
drastically reduced by an order of magnitude without noticeable degradation in the
image quality. For the demonstration, we use bovine pulmonary artery endothelial
cells stained with three fluorescent dyes and 10 types of fluorescent beads with close
emission peaks. Further, we show that the deep learning approach is more robust to
the translation stage error and environmental vibrations. Thereby, the He-Ne correc-
tion, which is typically required for FTIS, can be bypassed, thus reducing the cost,

size, and complexity of the FTIS system. Finally, we construct neural network models



using Hyperband, an automatic hyperparameter selection algorithm, and compare the

performance with our manually-optimized model.

Introduction

Fluorescence imaging allows for direct observation of various organelles in a biological spec-
imen with high resolution and contrast. It typically uses fluorescent dyes which bind to
different key targets/organelles of cells or fluorescent proteins (FPs) that are fused to pro-
tein targets in living cells.? A dichroic filter tuned for the characteristic excitation and
emission bands of the fluorophore is typically required. For the observation of more than
one fluorophore, a dichroic filter with multiple passbands or a set of filters mounted on a filter
wheel is typically adopted. Many FPs commonly used in live-cell imaging have overlapping
emission spectra, which limit the number of FPs that can be used simultaneously.? Hyper-
spectral imaging, which combines imaging and spectroscopy, allows for using a multitude of
fluorophores with close emission peaks.®* It also allows for accurate detection and quantifi-
cation of target fluorescence signals in a tissue with highly autofluorescent background.®
For hyperspectral imaging with the spectral resolution of 10 nm or below, an acousto-
optic tunable filter (AOTF), a liquid crystal tunable filter (LCTF), or Fourier transform
spectroscopy (FTS) is typically combined with an imaging device. AOTF enables us to scan
the entire visible wavelength range in several seconds or randomly access to any wavelength
in the range.® LCTF is slower but can provide superior image quality.” AOTF provides a
narrower spectral bandwidth (1.5 — 4.1 nm) than LCTF (4.5 — 19 nm).” FTS is a preferred
method when a high spectral resolution is required, the signal is weak, or both. In contrast
to LCTF or AOTF, which passes only a narrow spectral band of interest, FTS uses the
entire spectrum of interrogated light for each sampled data; thus, the sensitivity of FTS
is very high.®? This Fellgett’s advantage is especially useful when the target fluorescence

signal is weak. For FTS, a Michelson interferometer or a Sagnac interferometer is typically



used, which splits the interrogated light into two, and a series of intensity data is acquired
for varying optical path differences (OPDs).1® The Fourier transform of the interferogram
can be related to the spectral profile of the interrogated light. Fourier transform imaging
spectroscopy (FTIS) combines FTS with an imaging device to measure the spectrum of each
pixel of an image. FTIS has been used for various applications that require simultaneous use
of multiple fluorophores. For example, it has been used to classify seven fluorophores with
overlapping emission spectra in immunofluorescence-stained tissue samples.?® FTIS is a gold
standard method for spectral karyotyping, which uses a combination of 4-5 fluorophores to
label 24 human chromosome pairs!!

One key disadvantage of FTIS is low throughput due to the large number of interferogram
images that need to be collected to reconstruct the spectrum. Typically, more than 1000
images are acquired, which can take tens of seconds even with a high-speed camera. Several
efforts have been made to reduce the sampling number with methods such as compressed
sensing.'? Since the interferogram measurements of FTIS are taken in the Fourier space,
the signal measurement procedure for FTIS satisfies the incoherence property which is a
requirement of compressed sensing. 3% Here, we show that deep learning can significantly
reduce the required FTIS sampling number. As with FTS, FTIS records interferograms at
uniform intervals of OPD; i.e., the distances between the moving mirror’s positions where
the interferograms are recorded are assumed to be the same. However, due to environmental
vibrations and translation stage error, the actual mirror position where each interferogram
is recorded is different from the target position. To correct for this error, a reference laser
(typically He-Ne laser) with a sharp peak at the known spectral position is inserted in the
same beam path as the interrogated light, and its interferogram is used to find the true OPD
(i.e., the actual mirror position) for each sampled data. The so-called He-Ne correction is
crucial for accurate reconstruction of the spectrum using F'T'S, but requires additional optical
components. Here we show that deep-learning-assisted F'TIS obviates the He-Ne correction;

thereby, it can reduce the complexity and footprint of the FTIS system. Deep learning-



based approaches have shown to outperform traditional methods in a wide array of fields
including imaging'® and natural language processing.*® For example, deep learning has been
applied to improve the resolution of optical microscopy,!” scanning electron microscopy, ®
and multispectral imaging.'® The enhanced imaging performance has been used to accurately

identify components of images that are indicative of specific diagnosis. 12921

Materials and Methods

Materials

To demonstrate the proposed technique, we imaged bovine pulmonary artery endothelial cells
labeled with three fluorescent dyes (MitoTracker Red CMXRos, Alexa Fluor 488 Phalloidin,
and DAPI). The sample slide was purchased from Thermo Fisher (F36924). Then, we
imaged 10 types (blue-green, green, yellow-green, orange, yellow, red, carmine, red-orange,
crimson, and scarlet) of fluorescent beads with close emission peaks (Invitrogen FluoSpheres
F21015 and F8891). For the training data, slides with individual bead types were prepared
by centrifuging each sample type, adding FluorSave mounting medium (MilliporeSigma,
345789), mixing, and repeating one additional time. The bead samples were then pipetted
onto a slide and sandwiched with a cover glass. For the test data, a combination of all bead
types was prepared using the same method. Each sample was covered from light and given

several hours for the mounting medium to solidify.

FTIS Optical System

For the data collection, we have built a wide-field epi-fluorescence microscope equipped with
a laboratory-built FTS module. Figure 1(a) shows a schematic diagram of the system. To
image BPAE cells, we used three individually-controlled light-emitting diodes (Thorlabs,
M385L2, M505L4, and M565L3) combined using two dichroic beam splitters (Thorlabs,
DMLP425R and DMLP550R). The excitation light was delivered to the sample through
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a triple-band filter set (Semrock, DA/FI/TX-3X). The fluorescence light emitted from the
sample was collected by the objective lens (OL) (Olympus, UPLFLN 100X). The numerical
aperture was reduced to 0.6 to collect the fluorescence signal from the entire depth of the
sandwiched BPAE cells. The tube lens (TL) of 100 mm focal length created an image at the
intermediate image plane, which coincided with the input plane for the FTS module. The
FTS module was built upon a Michelson interferometer with one of the mirrors mounted
on a motorized translation stage (Physik Instrumente, M-227.25). Two lenses (L1 and L2)
of the same focal length (150 mm) in a 4-f telecentric configuration relayed the image from
the intermediate image plane to the image plane where the camera was located. To record
the images, we used an electron-multiplying charge-coupled device (EMCCD) camera (C)
(Andor, iXon Ultra 888). The FTS module recorded a multitude of images for varying
OPDs, i.e., for different locations of the moving mirror. Because the wavelength of a He-Ne
laser fell in one of the fluorescence emission bands, we used a diode laser of the wavelength
488 nm (Coherent, OBIS 488 nm LS 60 mW) to record the actual mirror position. The
intensity of the reference interferogram was monitored using a silicon photodiode (Thorlabs,
SM1PD1A). To minimize contamination of the fluorescence images by scattered light photons
of 488 nm, we operated the diode laser at a minimum power level (1 mW) and installed a
notch filter (Thorlabs, NF488-15) in front of the EMCCD camera. The rejected band did not
overlap with the emission bands of the fluorescence filter set. The control of the translation
stage as well as the acquisition of the fluorescence images and the reference interferogram
were controlled using a Labview program (National Instruments, version 15). To image 10
types of fluorescent beads, we used a high-power, white LED (Thorlabs, SOLIS-3C) as the
light source together with a long-pass dichroic filter (Thorlabs, DMLP425R) and an emission
filter (Thorlabs, FELH0450). To record the bead images, we used a scientific Complementary

metal-oxide-semiconductor (sCMOS) camera (pco.edge 5.5).



FFC M2
S
11 BS
CLQ 12 <&
S —

o o
D oo -

o
~

Spectral Intensity [a.u.]
o
N

0.4 0.5 0.6 0.7
Wavelength [um]

Figure 1: (a) Schematic diagram of the optical system showing the excitation beam path
(blue) and emission beam path (green). LS: Light Source, CL: Collimating Lens, FFC: flu-
orescence filter cube, S: Sample, OB: Objective Lens, TL: Tube Lens, LL1 and L2: Lenses,
M1: Moving Mirror, M2: Stationary Mirror, BS: beam splitter, and C: Camera. (b) Inter-
ferogram image set and resulting spectral intensity.



Data Acquisition

Before the experiment, the zero OPD position, where the interferogram had the maximum
value, was found. To image BPAE cells, the power of each excitation LED was adjusted to
produce about the same fluorescence intensity levels for all the fluorophores. For each field of
view (FOV), 1000 interferogram images were recorded while moving the translation stage in
steps of 50 nm. This step size corresponds with 100 nm in terms of the OPD. The images were
recorded with the camera EM gain of 300 and the exposure time of 0.01s. Simultaneously
capturing the images with the camera, the reference interferogram was collected with a
photodiode. Each measurement took 23 seconds per set of 1000 images. A total of 30 sets
of images (i.e., FOVs) were collected. For the fluorescent beads, the power of the excitation
LEDs and the exposure time of the camera were adjusted to prevent pixel saturation for
the scarlet bead, which produced the strongest fluorescence intensity. The same setting was
used for all the other bead types. In each FOV there were a minimum of three beads. For
the training data, interferograms from 10 FOVs were collected for each fluorescent bead
type. For the test data, interferograms from twenty FOVs with mixed fluorescent bead were

collected.

Data Preprocessing

A flow chart of the data processing procedure is shown in Figure 2. The training data flow
is shown on the left side of the figure. For each FOV, we selected the sample region using
a binary mask, which was obtained by applying a threshold to the maximum projection of
the raw interferogram images. Then, for each pixel in the sample region, we extracted the
raw interferogram, and the maximum intensity was saved for later use. Each interferogram
was detrended, and normalized so that the peak was the center, with a mean of 0.5 and a
maximum of 1.

For the BPAE cell imaging, we trained the NN to predict the normalized channel intensity

(NCI), the area under each fluorescent band divided with the total area for all the three
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emission bands, which is shown in Figure 1(b). The ground truth NCI values were computed
from the interferograms using the conventional FTS method (including He-Ne correction).
For each channel (i.e., emission band), 20,000 interferograms producing the highest NCI
values were selected, which resulted in 60,000 interferograms from each FOV. Out of 30
FOVs, the datasets for 28 FOVs were used for training. The dataset for two remaining
FOVs were set aside for validation and testing. When all the training data samples have
been processed, the training data was randomly mixed so that each mini batch contained
data from multiple FOVs, multiple locations on each sample, and different fluorescent signal
types. The training data was augmented by adding three types of error: the peak location
was shifted from the center by an amount randomly sampled between -3 and 3, the mean
was shifted from 0.5 by an amount sampled from a normal distribution with a mean of zero
and a standard deviation of 0.05, and noise sampled from a normal distribution with a mean
of zero and a standard deviation of 0.05 was added to each point in each interferogram.
For the classification of 10 types of fluorescent dyes, 1,000 randomly selected pixels from
each training sample FOV were saved, resulting in 10,000 interferograms for each fluorescent
dye, 100,000 total. The average spectrum of each fluorescent dye was computed using the He-
Ne corrected data and the NUFFT for the range of 400 nm to 800 nm. Because the training
dataset for each dye type was acquired separately, the ground truth label is known. To
determine the ground truth labels of the mixed test data, the MSE between the test data pixel
spectrum and each of the 10 averaged training data spectrum was calculated, and the dye
type producing the lowest MSE was assigned to the pixel. This method produced over 99.99%
accuracy when it was applied to the training dataset. Once all of the labels were computed,

the He-Ne-corrected interferograms were discarded, and only the raw interferograms were

used by the NN.
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Figure 2: Data processing flowchart starting with collected interferogram images. Training
data is processed by computing the spectra, and finding the area under the curve of each
fluorescent band. The neural network is trained, and then used to predict and synthesize an
image from an unknown sample. Training process is shown in blue, while the testing process
is shown in green. Validation process followed training process except with a sample which
was not trained on.

Deep Learning Model

Figure 3 shows a schematic of the 1D convolutional neural network (1D CNN), which was
used for the BPAE cell imaging. After each convolutional block, there is a max pooling layer
which outputs the maximum of each neighborhood. After the max pooling layer of the final
convolutional block, the model is flattened and connected to one or more fully connected
“dense” layers providing enough capacity for the model to correctly represent the function
before reaching the output layer. The output layer consists of 3 fully connected nodes with
sigmoid activation to predict the normalized channel intensity for each of 3 fluorescence
emission bands. For the classification of 10 types of fluorescent dyes, the number of nodes
in the output layer was increased to 10. Although we tested several configurations, using
several layers of small kernels allowed us to detect more complex features at a lower cost
than using larger kernels, which is consistent with the previous works, for example, Simonyan

& Zisserman.?? The commonly used ReLU activation function was applied at each of the



hidden layers. ReLLU activation is widely used for deep CNNs as it introduces nonlinearity
while being more computationally efficient than other nonlinear activation functions such as
tanh.?3?4 Regularization reduces validation and test loss while sacrificing training loss leading
to better generalization. Here, we selected to use dropout and L2 regularization, which is
often referred to as “weight decay”, with a constant value in each layer. L2 regularization
penalizes large weights without leading to additional model sparsity, which results from L1
regularization.? The Adam adaptive learning rate optimization algorithm was selected for
weight optimization, which is known to perform well with stochastic gradient descent.?® The
loss for the cost function was selected to be based on mean absolute error (MAE) instead of
mean squared error (MSE), because MAE-based loss punishes smaller errors in prediction
harder than MSE-based loss, which disproportionately punishes larger prediction errors.
With our BPAE cell dataset, the models trained with MAE-based loss tended to synthesize

images closer to the ground truth.
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Figure 3: Schematic of IDCNN used for this study, which is comprised of six 1D convolutional
layers followed by a max pooling layer, and two fully connected layers. The raw input data
consists of an interferogram with 1000-50 sampled points each. The values at the output
predict the amount of each type of fluorescent signal in the pixel.
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Training of NN with 1D interferogram

The 1D CNN was trained using the standard training procedure shown in the lower middle
area of Figure 2. For the BPAE cell imaging, training data is fed to the NN, which outputs
predictions. These predictions are compared with the ground-truth NCI values to compute
the loss, and the weights of the 1D CNN are optimized to minimize the loss. Our training
set contained 1,680,000 interferograms from 28 FOVs. Each epoch, or time the 1IDCNN
trains on the mini batches covering the entire data set, the MAE and loss for training data
were calculated and written to a separate file; the same was done for the validation set
which consisted of 30,000 interferograms (10,000 producing the highest NCI values for each
channel) from a separate FOV. These values are evaluated by the early stopping algorithm.
Early stopping is important as it functions as a source of regularization in a synergistic way
alongside L2 regularization.!” The early stopping algorithm observes the loss of the validation
data and the epoch number. The training stops if either of the following conditions has been
met: 1) the current epoch has reached the maximum number of desired epochs 2) the loss
at the current epoch has not decreased below the minimum recorded loss in a set number
of epochs, which is referred to as the patience. We used the maximum iteration number
of 100 and patience of 5. When an early stopping condition has been met, the training
stopped, and the model resulting in the lowest validation MAE was saved. For the training
and testing of NN, we used a workstation with two GPUs (NVIDIA Quadro P6000). The
MirroredStrategy function built in to TensorFlow was used for synchronous training across
the multiple GPUs on a single workstation.

For the classification of the 10 fluorescent beads, the same procedure was used to train
the neural network except for a few things. First, the main difference in the architectures was
that the output layer had 10 output nodes with the Softmax activation function. Second,
the classification accuracy was monitored instead of the MAE. Finally, it was observed that
the validation accuracy was much higher when the cost function used MSE as opposed to

the MAE used in the BPAE cell label regression when testing a few architectures. For this
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reason, MSE was used for the cost function in the NN classifying the 10 fluorescent beads.

Hyperparameter Selection

The hyperparameters for our NN models were manually selected while monitoring the MAE
or MSE values for the training data and validation data as shown in Figure 4. For each
interferogram sampling case, the model capacity (the number of trainable weights and biases)
was increased until overfitting was observed. More specifically, each initial model started with
only one convolutional layer consisting of a small number of filters and a small kernel size,
a max pooling layer with large pool size, and the output layer. Each new model introduced
a new layer, more parameters per layer, or a decrease in pool size in a nonuniform fashion,
intending to make small changes and slightly increase the number of parameters. Filters per
convolutional layer ranged from 32 to 128, kernel size ranged from 4 to 8, pool size ranged
from 100 to 4, and dense layer nodes ranged from 256 to 3. Once the model with suitable
capacity was selected, L2 regularization was increased until the difference between training
and validation loss was minimized. For comparison, we have also generated NNs using
Hyperband, an automatic hyperparameter selection algorithm which uses random search
and successive halving.?” The process starts with a multitude of NN architectures trained in
search space for a small number of epochs. The best performing networks are trained further
while the poor performing networks are abandoned. This process continues until the best

network and corresponding set of hyperparameters are chosen.

Image Synthesis

For the FTS-computed spectrum, the cell image was synthesized by converting each wave-
length to an RGB value and then taking the sum of the RGB values weighted by the spectral
intensity. The outputs from the NN, which are labeled as “Predictions” on the flow chart
in Figure 2, represent signal weight between 0 and 1 of each fluorescent band region. These

predictions were each multiplied with their respective average spectrum (obtained from the
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Figure 4: Error vs model capacity of 1IDCNNs with manually selected hyperparameters,
without regularization.
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training data) and combined, resulting in a synthesized spectrum for each pixel. The maxi-
mum intensity of raw interferogram saved at each pixel was used to adjust the scale of the
synthesized spectrum. The adjusted spectrum for each pixel was converted to RGB values

the same way as described earlier, resulting in an RGB image.

Results and Discussion

Providing the fluorescence spectrum for each pixel, hyperspectral imaging allows us to use
various fluorophores with close emission spectra and distinguish target fluorescence signals
from autofluorescence background. With the superior spectral resolution of FTIS, we can
increase the number of fluorophores that can be simultaneously used, thereby increasing
the imaging throughput and obviating the need for sample washing. Here we show our
deep learning-based approach can increase the throughput by an order of magnitude while
minimally sacrificing the accuracy of measurement.

Figure 5 shows the images synthesized with F'TS for different sampling numbers: (a) 1000,
and (b) 50. The raw interferogram for each pixel was He-Ne corrected before being processed
with the FTS algorithm. Figure 5(a) is the ground truth that we use for comparison. Figure
5(b), reconstructed from 50 sampled points, shows the image completely lost the ability to
distinguish between the blue DAPI (nucleus) and green Alexa Fluor 488 Phalloidin (F-actin)
fluorescent dyes. Figure 6 shows the FTS-synthesized images without the He-Ne correction.
For N = 1000 (Figure 6(a)), the nucleus is shown in an incorrect color, and the F-actin and
mitochondria are indistinguishable. For N=50 (Figure 6(b)), all three fluorescent dyes are
indistinguishable. Comparing the images with those in Figure 5, the importance of He-Ne
correction in the conventional F'T'S can be clearly seen.

Figure 7 shows the images synthesized with the NN described earlier. The interferograms
used for the training, validation, and testing of NN have not been corrected with the He-Ne

data. Even though the He-Ne correction was not applied, the NN-synthesized image shown
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Figure 5: Synthesized fluorescent images using conventional FTS with He-Ne correction for
various sampling numbers (N): (a) N = 1000, and (b) N=50. Scale bars: 10 pm.

Figure 6: Synthesized fluorescent images using conventional FTS without He-Ne correction
for various sampling numbers (N): (a) N = 1000, and (b) N=50. Scale bars: 10 pm.
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Figure 7: Synthesized fluorescent images using deep learning without He-Ne correction for
various sampling numbers (N): (a) N = 1000, and (b) N=50. Scale bars: 10 pm.

in Figure 7(a), which corresponds to N=1000, looks very similar to the ground truth, Figure
5(a). The image shown in Figure 7(b) is also almost the same as the ground truth except
for some speckles. This is remarkable considering that it was synthesized from 20 times less
data than the ground truth and without the He-Ne correction.

Figure 8(a) shows the MSE with varying sampling amounts for the various synthesis
methods: FTS without He-Ne correction, FTS with He-Ne correction, and NN without He-
Ne correction. The FTS without He-Ne correction method starts heavily degraded with a
high MSE (;0.14) even for N = 1000. The MSE of FTS reconstruction with He-Ne correction
is very low for N = 1000; however, it quickly degrades to near 0.08 as the sampling num-
ber decreases. In contrast, the NN without He-Ne correction has some small MSE at full
interferogram sampling of N=1000, and the MSE stays below 0.04 as the sampling number
decreases. For N=>50, the MSE for the NN without He-Ne correction is less than half of the
corresponding FTS with He-Ne correction. While the images computed by FTS with and
without He-Ne correction are heavily degraded with less sampling, the images synthesized by

the NN remain intact at the sampling amount of N=50. The limit of our approach appears

16



__________ -O0--©
_________________ —Q—-="="""
w9 .
N1+ =©-FTS No HeNe Correction )
S =B~ FTS HeNe Correction a
-B-
—©—NN No HeNe Correction Pt
=T —e—0
Og; - - - 1
1000 800 600 400 200 0
h Sampling Amount
0.6¢--=-—"=""" i ™ iiniiiid o R
—©—FTS No HeNe Correction _a
% 04} |- FTS HeNe Correction _,—‘E ]
s —©—NN No HeNe Correction "_/”
0.24— —" o _
OBL_ ------- 'I"'_'_'--_-T-_--a" I |
1000 800 600 400 200 0

Sampling Amount

Figure 8: Comparison of traditional FTS with He-Ne correction, FTS without He-Ne cor-
rection, and DLFITS without He-Ne correction for varying sampling amounts. MSE: mean
squared error; and MAE: mean absolute error.
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to be at N=>50, which is reducing the sampling number by 95%.

Hyperband Hyperband Hyperband Manual
Model 1 Model 2 Model 3 Selection

Dropout: 20% Dropout: 0%

Legend

L2, 2 Reguiarization
Conv1D: 1D Convolutional Layer
F: Filters
KS: Kernel Size
PS: Pool Size

- Dense: Fully Connected Layer

Figure 9: Architectures of the top 3 performing models selected by Hyperband and the
architecture resulting from manual hyperparameter selection.

The results presented earlier were obtained using a manually optimized NN. For com-
parison, we built NNs using Hyperband, an automatic hyperparameter selection algorithm.
Figure 9 shows the hyperparameters of the top 3 Hyperband models, which have a few key
differences. Model 1 does not use pooling, which may reduce the ability to detect translations
in patterns,? but uses the highest dropout rate of 20%. Model 2 is the only model to use
L2 regularization without dropout. To compensate for omitting dropout, the L2 regulariza-
tion in Model 2 is two orders of magnitude higher than the other models which also feature
dropout. Model 3 features 2 standard convolutional blocks, each with max pooling which
may lead to the ability to detect pattern translation.?® The manually selected model uses
only one convolutional block consisting of 4 convolutional layers and a max pooling layer
with the largest pool size of the 4 models. It also uses significantly fewer nodes in the fully
connected layers. Using the models shown in Figure 9, we applied k-fold cross validation
with 10 folds using only the training and validation sets.

Table 1 shows a table of k-fold cross validation results for the N=50 case with the models
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found using Hyperband compared to the manually selected model. From Table 1, we see
that Model 3 has the lowest validation error (MAE) of all the models. For this N = 50 case,
the Hyperband model search space was between 1,083 and 1,015,075 trainable parameters.
The model resulting from manual hyperparameter selection consisted of only 4,460 trainable
parameters, an order of magnitude below all three models selected by Hyperband. This
manually selected model resulted the highest mean k-fold cross validation error out of the 4
models; however, its test error is greater than the best performing model, Model 3, only by
8%. In contrast, Models 1 and 2 produced about the same validation error as Model 3 but
significantly higher test error: 15% and 36%, respectively. The good generalization of the
manually selected model is also reflected in the smallest standard deviation for the validation
error and may be attributed to the small number of parameters (i.e., low capacity). Since the
Hyperband models have an order of magnitude more parameters than the manually selected
model, and more than double the standard deviation of validation error, they appear to be
memorizing some of the training sets. Therefore, we proceeded with the manually selected
model.

Table 1: K-fold cross validation results (MAE) of the top 3 performing model architectures
selected by the Hyperband hyperparameter optimization algorithm compared with the model
with manually selected hyperparameters.

Hyperband (1,083 — 1,015,075 parameters)
Model 1 Model 2 Model 3

Manual selection

Number of parameters | 86,879 73,855 57,903 4,460

Validation error (MAE) | 0.0405 + 0.0017 | 0.0432 £ 0.0027 | 0.0393 £ 0.0014 | 0.0589 + 0.0006

Test error (MAE) 0.0976 0.1157 0.0852 0.0920

To further demonstrate the performance of deep-learning-assisted FTIS, we demonstrated
the technique using 10 fluorescently dyed microspheres with close emission peaks and over-
lapping spectra shown in Figure 10. For the N = 50 case, the best classification accuracy
that was achieved was 85%. This low accuracy is attributed to the close emission spectra of
some beads. We were able to achieve a very high classification accuracy of 97.8% for N =

100, which is 10 times less sampling than conventional FTS. The confusion matrix in Table
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2 shows that the main source of error comes from the yellow bead pixels being mistaken for
the orange bead pixels, and the red-orange bead pixels being confused with the carmine bead
pixels. Looking at the average spectra of these beads shown in Figure 10, the yellow and
orange spectra peak locations are indeed very close relative to the other fluorescent dyes. For
the carmine and red-orange spectra, they are close, but also have similar bandwidths which
could have contributed to the problem. Regardless, the IDCNN is able to very accurately
classify 8 of the 10 fluorescent beads, and acceptably classify all 10 fluorescent beads with
only 1/10th of the data sampling amount. Figure 11 shows a test sample containing each
type of fluorescent bead and the pixel classification of each pixel interferogram for the N
= 100 case. We observe that the beads are very accurately classified, and the only error
appears to be near the edges of some beads.

The significant reduction of interferogram sampling by 10 to 20 times is comparable
to the performance demonstrated with compressed sensing, which requires 1/16 of data
traditionally needed?® or 1/9 of random samples from the original dataset.?® Reducing the
sampling size allows FTIS-based approaches to be readily used for hyperspectral fluorescence
imaging, allowing more fluorescent dyes to be used including dyes with close emission spectra.
Obviating the need for He-Ne correction, we can eliminate several optical elements, and
thereby reduce the cost, size, and complexity of the FTIS system.

We observed that the MAE loss worked better for the reconstruction of BPAE cells, which
required a regression-type NN prediction. However, the MSE loss worked better for the
classification of 10 bead types. The superior performance demonstrated with the MAE loss
may be attributed to its lower sensitivity to outliers; however, we would need a more extensive
study to confirm this, which is left as our future study. The NN prediction is applied to each
pixel and capable of distinguishing multiple fluorophores mixed at different concentrations in
the pixel volume. Changing the labeling protocol would not affect the NN accuracy, unless it
significantly alters the emission spectrum of each fluorophore. The noise that can affect the

accuracy of NN most is the Poisson noise due to low fluorescence signal. Noteworthy, FTIS
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Figure 10: Average spectra of each fluorescent bead sample using full sampling of N=1000

and He-Ne correction. BG: blue-green, G: green, YG: yellow-green, O: orange, Y: yellow, R:
red, CA: carmine, RO: red-orange, CR: crimson, and S: scarlet.

Table 2: Confusion matrix (%) of final IDCNN for classification of 10 types of fluorescent
beads from non He-Ne corrected inter-ferograms with N=100 sampling.
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Figure 11: Synthesized image of 10 types of fluorescent beads using classification predictions
by the convolutional neural network with N=100 non He-Ne corrected interferograms at each
pixel.
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is more sensitive than LCTF- or AOTF-based hyperspectral imaging due to the Fellgett’s
advantage. The aberration may affect the spatial registration of the fluorescence signal;
however, it will not affect the NN prediction. It is well established that the He-Ne correction
can compensate for the stage error and environmental vibrations in the F'T'S reconstruction.
We also confirmed this by comparing the MSE/MAE values of FTS with and without He-Ne
correction (Figure 8). For all the sampling number cases, the NN produced MSE/MAE
values that are much lower than those for FTS without He-Ne correction. This confirms
that the NN is more robust to the stage error and environmental vibrations than the FTS
without He-Ne correction. A more systematic study on the relationship between the actual

noise level and the accuracy of F'TS as well as NN is left as our future study.

Conclusion

In this paper, we have demonstrated hyperspectral fluorescence imaging by combining deep
learning and FTIS. The image synthesized by the NN with a 10-20 times reduction in sam-
pling accurately matched the ground truth image. Using triple-labeled bovine pulmonary
artery endothelial cells and 10 types of fluorescent beads with close emission peaks, we
demonstrated the capabilities of our approach. While greatly reducing the required sam-
pling, we also bypass the need for He-Ne correction, eliminating several optical elements
which reduces the cost, size, and complexity of the FTIS system. The developed system can
be used in a wide range of applications where several fluorescent dyes with close emission

spectra must be used, with much higher throughput.
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