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Space mission planning and spacecraft design are tightly coupled and need to be consid-
ered together for optimal performance; however, this integrated optimization problem results
in a large-scale Mixed-Integer Nonlinear Programming (MINLP) problem, which is challeng-
ing to solve. In response to this challenge, this paper proposes a new solution approach to
this MINLP problem by iterative solving a set of coupled subproblems via the augmented
Lagrangian coordination approach following the philosophy of Multi-disciplinary Design Op-
timization (MDQ). The proposed approach leverages the unique structure of the problem that
enables its decomposition into a set of coupled subproblems of different types: a Mixed-Integer
Quadratic Programming (MIQP) subproblem for mission planning and one or more Nonlinear
Programming (NLP) subproblem(s) for spacecraft design. Since specialized MIQP or NLP
solvers can be applied to each subproblem, the proposed approach can efficiently solve the
otherwise intractable integrated MINLP problem. An automatic and effective method to find
an initial solution for this iterative approach is also proposed so that the optimization can be
performed without the need for a user-defined initial guess. In the demonstration case study,
a human lunar exploration mission sequence is optimized with a subsystem-level parametric
spacecraft design model. Compared to the state-of-the-art method, the proposed formulation
can obtain a better solution with a shorter computational time even without parallelization.
For larger problems, the proposed solution approach can also be easily parallelizable and thus
is expected to be further advantageous and scalable.

I. Nomenclature
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A = Setof arcs

ayijs = Cost coefficient matrix of commodity
a’viji = Cost coeflicient matrix of spacecraft
d;; = demand vector

e, = Spacecraft design variable vector
F(-) = Spacecraft sizing function

f = Objective function (subproblem)

g = Inequality constraint

h Equality constraint

Hyij = Concurrency matrix

J = Objective function

k = Decomposed subproblem index

L = Number of subsystems in the dry mass

M = Number of subproblems in a quasi-separable MDO problem
m = Mass of spacecraft subsystems

my = Spacecraft dry mass

my = Spacecraft propellant capacity

mp = Spacecraft payload capacity

N = Number of types of spacecraft

= Set of nodes
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n = dimension of variables

Ovijt = Commodity transformation matrix
q = Iteration count

T = Set of time steps

tinis = Mission length

At = Time of Flight (ToF)
Uyijs = Spacecraft flow variable
% = Set of spacecraft

Wi = Launch time window
Xyijr = Commodity flow variable
y =  Shared variables

b4 = Local variables

4 = Propellant type

1) = Penalty function
Subscipt

i = Node index (departure)

j = Node index (arrival)

k = Subproblem index

[ = Subsystem index

t = Time index

v = Vehicle index

I1. Introduction

S we pursue sustainable presence in space, a framework to optimize large-scale, long-term space missions efficiently
Ais imperative. A number of studies on space logistics that incorporates the transportation network in large-scale
space mission design have been developed, including SpaceNet [1], the interplanetary logistics model [2], and the
extensive literature on space logistics optimization frameworks based on the generalized multicommodity network flow
[3-5]. Utilizing the linear nature of such space logistics or transportation network optimization problems, researchers
have developed frameworks that can efficiently optimize the mission design as Mixed-Integer Linear Programming
(MILP) problems [6-9]. However, due to the nonlinear nature of spacecraft design, a naive integration of spacecraft
design into space mission/campaign planning (a transportation scheduling or resource distribution) would result in a
large-scale Mixed-Integer Nonlinear Programming (MINLP) problem, which is oftentimes computationally prohibitive.
Since the concurrent optimization of space mission planning and spacecraft design is highly desired in practice, each
community took different approaches to bridge these two domains.

In the space logistics community, spacecraft design has been considered as a high-level nonlinear sizing model and
has been integrated into mission planning either by separating the nonlinear part from the mission planning optimization
or by piecewise linearization of the spacecraft model. Taylor [10] developed a parametric spacecraft sizing model which
determines the spacecraft dry mass from its payload capacity and propellant capacity. Based on this model, Simulated
Annealing (SA) or a similar metaheuristic optimization algorithm optimizes the spacecraft design variables, while the
linear programming (LP) or MILP solver evaluates the constraints and determines transportation flow variables. In this
way, the LP or MILP solver is embedded into SA, and thus it was called the embedded optimization methodology. Using
the same spacecraft sizing model, Chen and Ho [6] employed piecewise linear (PWL) approximation of the nonlinear
model to approximate the entire MINLP problem as a MILP problem that can be efficiently solvable. However, this
approach is an approximation model, and the resulting solution is not guaranteed to be feasible nor optimal in the
original nonlinear problem.

On the other hand, aerospace vehicle design has been tackled by the Multidisciplinary Design Optimization (MDO)
community. Despite various optimization and sizing methods that can deal with the high-dimensional nonlinear design
of aircraft or spacecraft [11], few studies integrated the mission-level analysis or optimization. One of the few studies that
tackled the integrated mission planning and spacecraft design is Ref. [12] by Beauregard et al., which proposed an MDO
architecture for a lunar lander design with a lunar mission sequence architecture analysis. This architecture connects the
mission planning and spacecraft design problem using a sequential procedure without a feedback structure (i.e., the
mission architecture is first chosen and fixed, then the lunar lander MDO is performed); therefore, strictly speaking, the
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mission and spacecraft are not simultaneously optimized and spacecraft design is neglected when selecting the mission
architecture. In addition, the candidates of the mission architectures are given a priori and discrete (combinatory).
These two factors limit the design space and make this approach not suitable for the integrated space mission design.

This paper proposes an efficient decomposition-based optimization scheme for integrated space mission planning
and spacecraft design. The key idea is to decompose the integrated MINLP problem into multiple coupled subproblems
of different types: the Mixed-Integer Quadratic Programming (MIQP) subproblem for space mission planning and the
Nonlinear Programming (NLP) subproblem(s) for spacecraft design. Since specialized efficient MIQP or NLP optimizers
(e.g., Gurobi [13] for MIQP; IPOPT [14] for NLP) can be utilized to solve each subproblem, the proposed method
can solve the otherwise intractable integrated MINLP problem efficiently. The iterative coordination between each
subproblem can be achieved using an MDO approach [11, 15]. Specifically, the Augmented Lagrangian Coordination
(ALC) approach [16] with the Analytical Target Cascading (ATC) structure [17, 18] is chosen for the proposed method.
This architecture fits our problem well because (1) it allows us to decompose the original complex problem into the
subproblems with different and simpler types (MIQP or NLP), each of which can be efficiently solvable with specialized
solvers; (2) it has a robust convergence property; and (3) it allows the complex hierarchical structure for the spacecraft
design subproblem(s) and can be easily parallelizable (and thus scalable) if needed. Since the nonlinear optimization
solvers generally require a good initial guess, we further develop an automated initial guess generation method based on
PWL approximation to the MINLP problem so that no user-defined initial guess is needed for the optimization.

The remainder of this paper proceeds as follows. In Section III, the problem definition of the integrated space
mission planning and spacecraft design as an all-in-one optimization problem formulation is described. Section IV
illustrates the solution procedure for the proposed problem based on the decomposition-based method. Section V
introduces a case study of human lunar exploration missions and compares the computational efficiency of the proposed
method and existing method. Finally, Section VI states the conclusion.

I11. Problem Definition: Integrated Space Mission Planning and Spacecraft Design

The goal of this research is to optimize the transportation scheduling (referred to as space mission planning) and
vehicle design (referred to as spacecraft design) for a long-term space campaign that can potentially comprise multiple
missions. This section introduces the formulation for this integrated space mission planning and spacecraft design
problem (referred to as the all-in-one formulation). The idea behind this formulation is to consider space mission
planning as a transportation network optimization problem for which the design of vehicles is also part of the decision
variables. In the network, the nodes correspond to the orbital or surface locations and the arcs correspond to the
trajectories connecting the nodes. The decision variables include both the commodities that flow over the network and
the design parameters for the vehicles that carry these commodities. The optimization formulation is listed as follows,
and the list of variables and parameters is included in Table 1.

min j=z Z (azijtxvijt+alzijtmd\,uvijt) (1
1ET (v.i,j)eA
subject to
Xyii Xy ii(t—At
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Table 1 Variables and parameters used in the space transportation scheduling problem

Name Description

Variables
Commodity flow variable, or the quantity of the commodity delivered from node

Evijr j to i.at t.ime t by .spacecraft. v. Xy 2 0. .Each component of this .Variable can
contain either continuous variables (C,) or discrete variables (C;). This vector will
be p x 1 vector if the total commodity variation is p.

Uyije ?pacecraft .ﬂOW. Vari.able, Whi'Ch inc'licate's the number of spacecraft type v moving
rom node i to j at time ¢. This variable is integer scalar.

e, Spacgcraft design variables and parameters. In this problem, it includes payload
capacity m, and propellant capacity m s .

mgy Spacecraft dry mass.

Parameters

ayij Cost coefficient matrix of commodity.

a’viji Cost coeflicient of spacecraft.

d;; Demands/supplies of different commodities and spacecraft at node i at time 7.

Ovijt Transformation matrix.

Hy;j Concurrency constraint matrix.

Wi Launch window vector, which indicates the available launch window of spacecraft.

F(-) Spa.cecraft.sizing functior}. This illustrates the nonlinear relationship of the spacecraft
design variables and design parameters.

At Time of Flight (ToF) from node i to j.

Ly Propellant type for each spacecraft (predetermined).

Sets

AV NN, T) Set of arcs realized by spacecraft.

N Set of nodes.

T Set of time steps.

v Set of spacecraft (vehicles).

(7

®)

Equation (1) indicates the objective function, which can be the lifecycle cost or launch mass, depending on the
application context. In this research, we set the coeficients @, ;;; and a,;;; so that the objective function corresponds to
the sum of initial mass at low-earth orbit IMLEQO).

Equations (2)-(4) are the constraints for space mission planning. First, Eq. (2) is the mass balance constraint that
guarantees that the inflow (supply) of the commodity is larger than the sum of the outflow and demand. Q,;;; is
the transformation matrix, which indicates the transformation of the commodity during the spaceflight; for example,
the relationship of impulsive propellant consumption can be illustrated using this constraint. Next, Eq. (3) is the
concurrency constraint. This indicates that the commodity loaded on each spacecraft is constrained by the dimension of
the spacecraft. Specifically in this paper, the payload and propellant flow is limited: the amount of propellant is lower
than the propellant capacity of the spacecraft, and the sum of other payloads is lower than the payload capacity. Finally,
Eq. (4) is the time window constraints. The commodity flow is allowed only if the time ¢ belongs to the launch window
vector W;;, and for the remaining time steps, the commodity flow is conserved to be zero.
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Equation (5) indicates an abstract representation of the spacecraft design constraints, which describes the constraints
between the properties of the vehicle. This can take a wide range of complexity, including an explicit or implicit
relationship of the subsystems or design parameters of the spacecraft; when the spacecraft requires multiple disciplines
or multiple subsystems, an MDO problem can be embedded in this constraint.

Along with Table 1, Egs. (6), (7), and (8) show the definitions and domains of commodity flow variables, spacecraft
flow variables, and spacecraft design variables, respectively.

This integrated mission planning and spacecraft design problem results in a constrained MINLP problem, one of the
most challenging optimization problem types to solve. Namely, this problem contains both discrete and continuous
variables as well as both linear and nonlinear constraints. Specifically, the discrete variables represent the definition
of the commodity flow and the number of spacecraft on the mission planning side of the problem. In addition, the
nonlinearity appears in two ways: (1) the spacecraft design relationship in Eq. (5); (2) the quadratic terms in the
mass balance constraint (Eq. 2) and concurrency constraint (Eq. 3) for mission planning (Note: both e, and u,;;; are
variables). Fortunately, this second nonlinearity can be converted into an equivalent linear relationship through the
big-M method, as explained in Ref. [6], so that the nonlinearity only exists on the spacecraft design side of the problem.
Therefore, as a result, the problem contains two coupled problems: one for space mission planning which is linear
with integer variables, and the other for spacecraft design which is nonlinear with continuous variables. Our approach
leverages this unique structure of the problem and proposes a new approach to solve this problem efficiently.

IV. Proposed Approach: Decomposition-Based Optimization with Augmented Lagrangian

Coordination

Decomposition-based optimization is often used to decompose an MDO problem in terms of disciplines or
subsystems. Leveraging the unique feature of the integrated space mission planning and spacecraft design problem, we
apply this approach to decompose the large-scale MINLP problem (Fig. 1a) into coupled MIQP and NLP subproblems
(Fig. 1b), each of which is significantly easier to solve with specialized solvers compared to the original MINLP problem.
The space mission planning subproblem can be solved using a MIQP solver, and the spacecraft design subproblem can
be solved using an NLP solver without any integer variables. The coupled subproblems are solved iteratively using the
ALC-based coordination until convergence is reached. To enable the optimization without a user-defined initial guess,
an automated and effective initial solution generation approach is also proposed.
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MIQP NLP y NLP
g | i i e | i __________________';
: : : l P;(Spacecraft 1) 'LP_V{Spacecraﬂ N
| I :
| 1y b . - - . : i S - . .
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MINLP | Space Mission | | | =l o N weal ] e + |
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| | | I : e s | |
| | | i} ' v i |
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(a) All-in-one formulation (b) Proposed decomposition-based formulation based on [16]

Fig. 1 Solution strategy for integrated space mission planning and spacecraft design.

A. Derivation of Decomposed Problems with Augmented Lagrangian Coordination

We first start with deriving the formulations of the decomposed problems with ALC. ALC tackles complex MDO
optimization problems that are quasi-separable and thus can be decomposed into a set of coupled subproblems. ALC is
attractive because of (1) its ability to break down our MINLP problem into MIQP and NLP problems; (2) its robust
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convergence property; and (3) its flexibility with the hierarchical structure of the problems. For an extensive discussion
on ALC, refer to Ref. [16].
The formulation for the quasi-separable MDO problem with M subproblems is given as follows:

M-1
L NI LA )
subjectto  gx (y,2x) <0 k=0,...,M~1

hy (y,2,))=0 k=0,....M~—1

where y € R™ indicates the shared variables, Zr € R” indicates the local variables for subproblem k. The shared
variables y can be common variables over multiple subproblems. fi : R +— R indicates the local objective function, gx
and h; indicate the equality and inequality constraints for each subproblem. The dimension of the total design variable
s = [yT,ZOT, .. ,zL_l]T ,seR"isn=n"+ Z,’:’ZBI ni The dimension of the local design variable is n; = n” + ni
The decomposition-based approach for this problem follows the following steps. First, we introduce the auxiliary
variables and consistency constraints so that the local constraints, gx and hy, are only dependent on the auxiliary

variables y; and independent of the shared variables y.

M-1
min ’

Y»)’O,Z(),.‘.,_)}M,],ZMil kZ:O fk (yk Zk)
subjectto g (yx,zx) <0 k=0,...,.M—1 a0)

hy (yi,zi) =0 k=0,...,M~-1
ck (y.y)=0  k=0,....M-1
With the consistency constraints ¢, which ensures that the auxiliary variables y are the same as the shared variables y,

the shared variables are separated from the local variables while representing the same problem as the original one.
Next, the relaxation of the consistency constraints is introduced with the local Lagrangian penalty function:

M~1 M~-1
' SZK) + ;
yooz 0 Z Ji ks z1) Z di (cx (3. ¥1))
k=0 k=0 (11)
subjectto gk (yk.zk) <0 k=0,....M -1
hi (yi,zi) =0 k=0,...,.M—-1
The augmented Lagrangian penalty function for subproblem k, ¢y, is defined as follows.
¢r (e (3, 30)) =vi =y +lwk o (v = y0)II3 (12)

where v is the vector of Lagrange multiplier estimates, and w is the vector of penalty weights. Here, o represents the
element-wise product of matrices or vectors, also known as the Hadamard product. By moving the consistency constraints
into the local objective functions, the local subproblems can be completely separated. The bi-level decomposition-based
problem is now formulated by establishing the master problem above the subproblems. The master problem minimizes
the penalty function and updates the shared variables y. Note that even though the bi-level formulation is employed
here, the ALC has the capability to handle multi-level hierarchical formulation as well.

(1) Master Problem

M-1
myin Z ¢ (cr (¥,¥1)) (13)
=0
(2) Subproblem k
ynkﬂlzri S Oiszi) + di (er (¥, y1))

subjectto  gr (Yx,2k) <0 (14)
hi (Y zi) =0

Adopting the above approach to our problem of the integrated space mission planning and spacecraft design with
N vehicle types, Fig. 1b represents the decomposition-based optimization architecture. We have one space mission
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planning subproblem (Subproblem 0) and multiple spacecraft design subproblems (Subproblems 1,...,N), where N
is the number of spacecraft types; thus, we have N + 1 subproblems in total (i.e., M = N + 1). The shared variables
among them include the vehicle design parameters y = [y1, ...y} 1", where y, = [m,,,my,,mq,]" for each vehicle
v where m,, my, mq respectively represent payload capacity, propellant (fuel) capacity, and dry mass of the spacecraft.

First, the space mission planning problem (P in Fig. 1b) is different from the all-in-one formulation outlined in
Section IIT with respect to the following two points: the nonlinear vehicle sizing constraint (Eq. (5)) is not included, and
the quadratic penalty function is added to the objective function as Eq. (15) shows. Due to the quadratic objective
function, this subproblem is a MIQP problem.

. Hngtin' Z Z (az:l'jtxvijt + alz:ijzmdvuvijt) + o (co (¥,¥0))
vijt-Uvijt-Y0 IET(V,i,j)Eﬂ
subject to  Egs. (2)-(4) and (6)—(8)

]T

5)

where y:[le,...,yITV and yv:[mpv,mfv,mdv]T

Next, for the spacecraft design subproblems (P, in Fig. 1b), the penalty function is minimized and the vehicle
sizing constraint (mq, = ¥ (m,,,my,)) is enforced. This subproblem contains various interacting subsystems and a
hierarchical structure can be used to provide detailed subsystem-level design if needed. The subproblem for v-th type of
vehicle can be expressed as Eq. (16). Due to the nonlinear constraint, the subproblem is an NLP problem and can be
solved by an NLP solver.

Hylin ¢y (v (¥,¥v))

subjectto  mg, =F(mp,,mg,) (16)

- T
where y, = [mp, ,mys,mgq,]

B. Solution Algorithm and Iteration Scheme

This subsection introduces the iterative solution algorithm for the decomposition-based algorithm introduced in
Section IV.A. The formulated decomposed optimization problems with ALC can be solved iteratively in two loops: the
outer loop updates the augmented Lagrangian penalty parameters (v, w), while the inner loop solves the master problem
and each subproblem to update the variables. The iteration continues until the convergence (i.e., all subproblems are
consistent, or ¢ is near zero, within a tolerance). The following describes the details of each loop.

For the updates for the outer loop, the solution from the inner loop is used [16]. Specifically, at g-th iteration, v is
updated as follows:

pa*l = pd 4 29 o w9 o ¢4 (17)

In addition, for r-th consistency constraint c,, the corresponding penalty weight w, is updated as follows:

. _ (18)
" yiwd i |l > yaled ™|

o {w? it [c?] < yaled™|
w =
where y; > 1 and 0 < y, < 1. The initial penalty parameter values can take v! = 0 and w'! ~ 1.
The updates for the inner loop is performed by alternating between solving the master problem and the subproblems
with the fixed penalty parameters. While each subproblem can be solved using the specialized numerical optimizer for
MIQP or NLP, the master problem can be solved analytically as follows.

N N7 Wi oW, o _1 N7 v
y =argmin S ¢ (ex (3, yi)) = a0 WA OWE O IE) =3 Zuco Ve (19)

N
Yy =0 Yo Wi owy)

For our problem, we make an additional heuristics-based modification to the master problem to facilitate the
convergence. Namely, the aforementioned master problem updates all the shared variables at the same time at every
iteration, but this approach does not work effectively in our problem. This is because, the space mission planning,
with no knowledge of the constraints behind the spacecraft design, can return an aggressive or infeasible spacecraft
design, which can deteriorate the convergence performance. Therefore, we propose to only update the spacecraft
payload capacity and the propellant capacity in the master problem, while passing the spacecraft dry mass from the
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spacecraft design subproblem directly to the next iteration, as shown in Fig. 2. Mathematically, we separate the

shared variables y into the regular shared variables @ = [m,,my, ..., mp, ,my, ] and the prioritized shared variables
B =1[mag,....mg,] (e.,y = [a,B]), and only « is updated in the master problem.
N
min > g (ex (@, @p)) (20)
¢ k=0

Note that, in the space mission planning subproblem, the spacecraft dry mass remains a variable, not a fixed parameter,
and is subject to the penalty function. It indicates that the resultant dry mass 3y is not used in the entire optimization
architecture but only used to facilitate the convergence of the whole optimization problem.

L fiyens sy
i 4 [ﬂb---yﬂﬂ-’]zﬁ
P*
Master Problem
o
MIQP NLP |y=lapl NLP

—— 11 " |3 I
| I | |
I 11 | v |
| 11 | |
| Py 1] P, | Py I
| Space Mission Il | |
I Planning JI : Spacecraft | | Spacecraft N :
| |
| ; Il , I "nr I
| Yo l 11 Y1 l ! YN l |
b oy e ) == == T |

Fig. 2 Proposed decomposition-based optimization architecture with prioritized shared variables.

C. Automatic Initial Solution Generation

For the above iterative algorithm to perform effectively, a good initial guess of the shared variable is necessary.
Thus, there is a need to develop an automatic and effective method that does not require a user-defined initial guess.
To this end, we propose to use the PWL approximation of the nonlinear optimization spacecraft design problem, and
convert the entire MINLP into a MILP problem, which can be solved using a specialized solver [6]. Although the PWL
approximation does not necessarily return an optimal or even feasible solution to the original MINLP problem, the
returned shared variables can be used as a good initial guess for the iterative approach. Another advantage is that the
MILP problem can be solved to the global optimum for the approximated nonlinear model [6]. Thus, the MILP-based
initial guess is not only automatically generated but also likely to be close to the nonlinear global optimum.

Specifically, in our problem, nonlinearity exists on the spacecraft design side of the problem. Thus, we choose
a series of equally-spaced "mesh" points over the feasible ranges of the spacecraft design parameters and use them
as breakpoints for the PWL function generation. Note that since the dry mass is an (implicit) function of the payload
capacity and propellant capacity, we only used the latter two for breakpoint generation. The breakpoint increment (or
the number of breakpoints) is a key hyperparameter; a smaller increment or more breakpoints would lead to a more
accurate initial guess, but it will also require a longer computational time.

V. Case Study: Human Lunar Exploration Campaign
To demonstrate the effectiveness of the proposed approach, we perform a demonstration case study and compare our
approach with the state-of-the-art method. We first introduce the case study settings, followed by the results and the
computational performance analysis.
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A. Case Study Settings

A human lunar exploration with two missions is considered here for the case study. The mission network model,
parameters, commodity demand and supply used in this case study are presented in Fig. 3, Table 2, and Table 3,
respectively. Note that only one type of spacecraft, which is a single-stage lunar lander, is considered for simplicity.
It means that the lander sizing constraint is applied to other vehicles such as in-space transfer vehicles. As landers
are typically heavier than other spacecraft due to their landing structure, the optimization result might represent a
conservative design. In addition, in-situ resource utilization (ISRU) is also considered as an option in the formulation,
although it is never chosen by the optimizer in this case study due to the considered short time horizon.

AV = 4.04 [km/s AV =187 [km/s]
=1 [day TOF=3 [day] =1 [day
Pacific Ocean Low Earth Orbit Low Lunar Orbit Lunar Surface
(PAC) (LEO) (LLO) (Ls)

Fig.3 Lunar campaign network model [6].

Table 2 Parameters used in the case study problem

Parameters Assumed values
Spacecraft Propellant type LH2/L.OX
Propellant I, s 420

Propellant density p, kg/m3 360

Spacecraft miscellaneous mass fraction c,,;sc (see Eq. (21))  0.05

Type of spacecraft designed 1

Number of vehicles for each type 6

Crew mass (including space suit), kg/person 100

Crew consumption, kg/day/person 8.655
Spacecraft maintenance, structure mass/flight 1%

Table 3 Lunar campaign commodity demand and supply

Payload Type Node Time [days] Supply/Demand
Outbound to the Moon

Crew Earth 0, 365 4
Habitat, Equipment, and Propellant, kg  Earth 0, 365 00
Crew Moon 5,370 -4

Habitat & Equipment, kg Moon 5,370 -2000

Inbound to the Earth

Crew Moon 8,373 4

Returned mass, kg Moon 8,373 1000
Crew Earth 13, 378 -4

Returned mass, kg Earth 13, 378 -1000

The subsystem-level spacecraft model used as the spacecraft design constraint in Eq. (5) in this study is developed
by the least square curve fitting to the data from the lunar lander design database in Ref. [19, 20]. The following set of
equations shows the spacecraft model used in the case study.
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mqyg = Z Mgsub = Mgy + Mprop + Mpower ¥ Mayvi T MECLSS T Mupisc

where
Mgy = 51400793 (0.3238 m 4 + 693.7 m ,0-045%0)
m
Mprop = 0.1648 (my +m,,) +20.26 (—f)
Mpower  =71.277-1078 m >3 +137.0
Mavi = 1.014 M porer O +22.33 1,5

mecrss = 0.004190 neyew tnis ma® % ng %735 +434.7

Minisc = Cmisc Md

Note that, beyond the payload capacity and propellant capacity, there are some additional parameters in these equations:
ns1g 1s the number of stages (either 1 or 2), p ¢ is the propellant density in kg/m?>, t,,is is the surface time of the lunar
mission in days, 7,y 1S the number of crew, ¢,,;sc s the miscellaneous mass fraction. The miscellaneous mass fraction
Cmisc represents how much of the dry mass is categorized as the miscellaneous mass. It can range from 0 to 0.15,
meaning 0% to 15% of the dry mass is the miscellaneous mass. The higher c,,;s., the heavier and more conservative
the vehicle design becomes. All mass properties are defined in kg.

As shown in Eq. (21), the model captures the subsystem-level interactions to return the relationship between the
payload capacity, propellant capacity, and dry mass of the spacecraft. Particularly, the subsystem interactions are
captured through the dry mass. For instance, an increase in any subsystem mass will raise the dry mass. Since each
subsystem mass is dependent on the dry mass, their mass should increase as well, which will further raise the dry mass.
The "balanced’ dry mass with such subsystem circular references can be found by solving Eq. (21) for the dry mass, m,.
More details on this model can be found in Appendix A.

In the case study, the computational time for all problems is measured on a platform with Intel Core i7-10700 (8
Core at 2.9 GHz). In the proposed decomposition-based method, Gurobi 9.1 solver [13] is used for the initial MILP
problem and MIQP subproblem, and IPOPT [14] is chosen for the NLP subproblem.

B. Optimization Results by the Proposed Decomposition-Based Formulation

This subsection introduces the optimization results by the proposed decomposition-based formulation. Since the
performance of the proposed method is dependent on the breakpoint increment (or the number of breakpoints) for the
PWL approximation of the MILP-based initial solution generation, five different increments are tested. The results
are shown in Table 4. Although the optimizer’s computational time involves some randomness depending on the
individual problems, there are several general trends that can be observed. First, when the increment is too large (too
few breakpoints, e.g., 10,000 kg increment with 13 mesh points), the initial solution quality becomes poor, and thus the
final solution IMLEQ is also poor. Second, the computational time to solve the initial MILP problem rapidly increases
when the increment is too small (too many breakpoints, e.g., 625 kg increment with 1,595 mesh points), resulting
in a long total computational time. In summary, we can observe the expected trend that a smaller increment (more
breakpoints) leads to a better initial guess at the cost of computational time. Thus, the most efficient strategy is to use an
increment that can generate a reasonably accurate initial solution and leave the rest to the proposed decomposition-based
optimization. Although this hyperparameter needs to be chosen for the proposed algorithm, it is also worth noting that
the computational performance is not very sensitive against the choice of its value except for the extreme cases. Also,
note that, theoretically speaking, if we reduce the increment to zero (an infinite number of breakpoints), the solution
would match with the global optimum; however, this is impractical as it requires infinite computational time. The
proposed decomposition-based formulation can take the reasonable approximate solution by PWL formulation and offer
a better computational efficiency to achieve a high-quality solution.
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Table 4 Optimization results by the proposed decomposition-based formulation

Breakpoint increment for PWL, kg 10,000 5,000 2,500 1,250 625
Number of mesh points for PWL 13 36 120 425 1,595
Initial IMLEO via PWL, kg 741,115 700,684 677,035 677,343 677,315
Initial solution generation time, s 5.617 4.277 3.620 23.83 495.9
Decomposition-based optimization time, s ~ 28.34 19.53 12.65 12.91 12.94
Solution IMLEO, kg 727,558 695,271 676,930 677,203 677,179
Total optimization time, s 33.96 23.81 16.27 36.75 508.8

C. Benchmarking with State-of-the-Art Method: Embedded Optimization

Although our formulation of the integrated mission planning and subsystem-level spacecraft design has not been
directly tackled in the literature, we can extend straightforwardly a state-of-the-art approach for a similar problem as a
benchmark to evaluate our newly proposed method.

The identified state-of-the-art approach is the embedded optimization method by Taylor [10], which was demonstrated
to be more efficient than directly solving the original integrated MINLP problem using a global optimizer. With the
embedded optimization method, the spacecraft variables are separated from the whole problem and determined by a
metaheuristics algorithm. At every iteration, the metaheuristics algorithm picks the payload and propellant capacity of
N vehicles, and the corresponding spacecraft dry mass is then calculated as a function of them, following the spacecraft
subproblem procedure. After obtaining the feasible vehicle design, these values are fed to the space mission planning
problem, which is solved by the MILP optimizer. Unlike the all-in-one formulation, the vehicle parameters are fixed
within the space mission planning part. Then, the corresponding objective function value is returned to the metaheuristic
optimizer for the evaluation for the next iteration. As a result, the metaheuristics only handles an optimization problem
with 2N variables (i.e., the payload capacity and propellant capacity for each spacecraft), where the evaluation of the
constraints and the determination of the remaining variables are handled by the embedded MILP solver. The problem to
be optimized by the metaheuristic solver is expressed as Eq. (22).

min IMLEO(«, ¥ (@))
¢ (22)
where @ = [mp,mp,....,mpy,mpl, a e RN

Since the performance of the embedded optimization would depend on the choice of the metaheuristics algorithm,
three different metaheuristics algorithms are tested: the extended Ant Colony Optimization (ACO) [21], the Genetic
Algorithm (GA) [22], and the Particle Swarm Optimization (PSO) [23]. The optimization is terminated when a
predefined number of generations are populated; different termination generation numbers are tested for each algorithm
to explore the tradeoff between the computational time and accuracy. Furthermore, due to the random nature of the
metaheuristic optimizers, the optimization is run three times with the same algorithm and generation number.

Table 5 shows each algorithm’s best results with 10, 50, and 100 generations. Note that ’inf’ indicates that no
feasible solutions can be found. The complete set of results is given in Table 7 in Appendix. In many cases, especially
with low numbers of generations, the optimizers fail to even reach a feasible IMLEO solution. As the number of
generations increases, the computational time increases, a feasible solution is more likely to be found, and the solution
tends to be better, although such trends might not always hold due to the random nature of the metaheuristic algorithms.

Table 5  Results of the state-of-the-art embedded optimization

Algorithm Ant Colony Optimization Genetic Algorithm Particle Swarm Optimization
Number of generations 10 50 100 10 50 100 10 50 100
Best Solution IMLEO, kg 723,090 747,398 689,287 764,301 746,702 728,831 inf 677,659 677,221
Optimization Time, s 85.03 391.7 776.0 86.18 413.6 836.6 84.69 3979 793.9
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D. Performance Analysis and Discussions

As we compare the optimization results by the proposed decomposition-based optimization method in Table 4
and the state-of-the-art embedded optimization method in Table 35, it is clear that the proposed method can achieve
a better solution (lower IMLEO) at a less computational time. Even with respect to the best embedded optimization
case in Table 5, which is the PSO case with 100 generations (IMLEO 677,221kg, computational time 793.9s), the
proposed decomposition-based optimization can achieve a better solution with a substantially shorter computational
time (676,930kg, computational time 16.27s). Note that the computational time by the two methods is measured without
any parallelization under a fair setting.

Beyond the numerical solution comparison, one substantial advantage of the proposed method is its deterministic
and thus repeatable performance. This is in contrast to the metaheuristics that returns different results every run, varying
from near-optimal results to infeasible results. The proposed formulation can consistently achieve better solutions than
those that the metaheuristics optimizers would find "by chance."

Another advantage of the proposed formulation is that more complicated spacecraft design problems, such as models
with more constraints or even MDO problems, can be integrated in a scalable way. Namely, if more subproblems are
considered, they can be parallelized to further reduce the computational time. When complex MDO problems are
included as subproblems, a multi-level hierarchical ALC formulation can also be utilized [18].

Overall, the case study demonstrates that the higher computational performance of the proposed method compared to
the state-of-the-art embedded optimization method. The proposed formulation can consistently obtain a better solution
in a shorter computational time. It also has greater room for potential improvement and extension, such as parallelization
and MDO subproblem integration.

VI. Conclusion

This paper tackles the challenging problem of integrated space mission planning and spacecraft design. The
all-in-one formulation is presented as an MINLP problem, and an efficient solution approach is developed leveraging
the unique structure of the problem and following the philosophy of MDO. Namely, the all-in-one MINLP problem is
decomposed into the space mission planning subproblem (MIQP) and the spacecraft design subproblem(s) (NLP) so
that they can be solved iteratively using the ALC approach to find the optimal solution for the original MINLP problem.
Furthermore, an automatic and effective approach for finding an initial solution for this iterative process is proposed
leveraging a piecewise linear approximation of the nonlinear vehicle model, so that no user-defined initial guess is
needed. The case study results demonstrate that the proposed method achieves a better result in less time compared to
the state-of-the-art embedded optimization method. The combination of the unique problem structure, the iterative
algorithms for shared variables, and the efficient initial solution generation method leads to this computational efficiency
even without parallelization. The parallelizable nature of the algorithm is expected to make the proposed method even
more advantageous for large-scale problems. Due to the flexibility of the ALC method, the proposed formulation can
also integrate more complex vehicle design models, which is left for future work.
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Appendix A: Spacecraft Design Model
This appendix provides more details on the parametric sizing model for the spacecraft used in the case study. In the
considered model, the subsystems of single-stage landers and their relations to the dry mass are defined as Eq. (23).

mq = Z Mgyb = Mgty + Mprop T Mpower + Mayi T MECLSS + Mmisc (23)

where myg,, indicates the mass of subsystem. m,, indicates the structure and thermal protection system (TPS), which
includes all subsystems that are attached to support or connect other components. This is not limited but includes
landing legs and truss, TPS for the reentry to the earth, and docking mechanism. m ., is the propulsion system, such as
propellant tanks, reaction control system (RCS), and hardware of engines. m 0. ¢, is the power system, which contains
batteries, fuel cells, solar panels, or other electrical systems. m,; indicates the avionics, and mgcrss indicates the
environmental and life control system (ECLSS) that supports the crew’s lives such as consumables (food, water, air) or
related piping and tankage. Finally, we also consider other miscellaneous required components, expressed as 7,
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Through the dry mass, each subsystem interacts with every other subsystem, and this relation is visualized in Fig. 4 as
an N2 diagram.

Structure |
b k4
Propulsion
System

Power

System
[y r

| Avionics

ECLSS

. k.
- Misc.

Fig. 4 Relationship of domains in a single-stage lunar lander.

For the defined subsystems, mass estimation relationships (MERs) are developed as functions of payload capacity,
propellant capacity, propellant type f, and some other known parameters. If the propellant type is fixed, the subsystems
MERs and dry mass are dependent on the payload capacity and propellant capacity only, and thus serves as the vehicle
sizing constraint (Eq. (5), mg = ¥ (m,, m)). Each subsystem MER is developed by the least square curve fitting to the
data from the lunar lander design database in Ref. [19, 20], which includes both existing and elaborated conceptual
design. The form of each subsystem’s MER is manually determined to be a sufficiently simple yet accurate form. The
resultant MERs are shown in Eq. (21).

Table 6 summarizes the independent variables, the R? values for curve fitting, number of data points used for curve
fitting (Ngaqrq), average errors against the data points, and the maximum errors. Note that only a small number of data
points are used for the propulsion system MER since two-stage lander data are excluded as their propulsion systems with
staging are too distinct from those of single-stage ones. One may also see that relatively poor correlations are obtained
for the power systems and avionics mass as they simply might not be strong functions of the dry mass or vehicle size.
However, since they typically account for small portions of the dry mass, the poor correlation does not have a significant
effect on the validation process.

The limitation of this sizing model should also be noted. Because the MERs are developed from the existing data
points, a solution for vehicles that are significantly heavier than the ones in the database would either be a low-fidelity
model or infeasible. In other words, m, that satisfies Eq. (23) might not exist for certain weight classes. Specifically,
the upper bound of the dry mass is approximately 23,000 kg. When ¢,,; is 3 days, n¢rew 1S 4, Cmisc 18 0.05, and the
propellant is LH2/LOX, the upper bound are found at 500 kg payload and 75,500 kg propellant, or at 10,000 kg payload
and 45,500 kg propellant.

Table 6 Summary of subsystem MERs

Subsystem Notation Independent Variables R2 Naata Avg. Error ~ Max. Error
Structure + TPS Mty Mg, Nsrg, Mp 0.9254 17 7.379% 24.31%
Propulsion System Mprop Mg, Mp,Pp 0.9279 8 7.429% 11.16%
Power System Mpower my 0.7182 13 16.24% 36.68%
Avionics Myyi Mpower (Ma), tmis 0.6204 22 36.42% 75.94%
ECLSS MECLSS Mg, Nerews Nstgs bmis 0.9293 12 11.93% 38.09%
Miscellaneous Mmisc my - - - -

Appendix B: Summary of the Embedded Optimization Results

Table 7 includes the full results obtained from the embedded optimization.
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Table 7 Summary of the embedded optimization results
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Algorithm Number of generations  Optimization time, s IMLEO, kg
45.35 820891
5 45.06 inf
45.77 681302
83.19 806153
10 85.03 723090
83.81 793031
161.4 714202
Ant Colony Optimization 20 161.2 801618
162.3 710166
389.8 761514
50 391.2 765182
391.7 747398
776.0 689287
100 771.9 732297
775.9 691874
46.50 inf
5 45.71 inf
46.09 inf
85.38 inf
10 86.18 764301
83.97 inf
161.9 inf
Genetic Algorithm 20 172.4 761116
161.7 inf
394.7 inf
50 413.6 746702
394.6 inf
836.6 728831
100 788.3 875069
777.7 inf
46.54 inf
5 46.57 inf
46.26 711382
84.75 inf
10 84.69 inf
85.22 inf
162.5 726951
Particle Swarm Optimization 20 162.1 688182
161.6 inf
3923 inf
50 397.9 677659
394.6 714169
788.9 677754
100 793.9 677221
791.2 677316
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