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Space mission planning and spacecraft design are tightly coupled and need to be consid-
ered together for optimal performance; however, this integrated optimization problem results
in a large-scale Mixed-Integer Nonlinear Programming (MINLP) problem, which is challeng-
ing to solve. In response to this challenge, this paper proposes a new solution approach to
this MINLP problem by iterative solving a set of coupled subproblems via the augmented
Lagrangian coordination approach following the philosophy of Multi-disciplinary Design Op-
timization (MDO). The proposed approach leverages the unique structure of the problem that
enables its decomposition into a set of coupled subproblems of different types: a Mixed-Integer
Quadratic Programming (MIQP) subproblem for mission planning and one or more Nonlinear
Programming (NLP) subproblem(s) for spacecraft design. Since specialized MIQP or NLP
solvers can be applied to each subproblem, the proposed approach can efficiently solve the
otherwise intractable integrated MINLP problem. An automatic and effective method to find
an initial solution for this iterative approach is also proposed so that the optimization can be
performed without the need for a user-defined initial guess. In the demonstration case study,
a human lunar exploration mission sequence is optimized with a subsystem-level parametric
spacecraft design model. Compared to the state-of-the-art method, the proposed formulation
can obtain a better solution with a shorter computational time even without parallelization.
For larger problems, the proposed solution approach can also be easily parallelizable and thus
is expected to be further advantageous and scalable.

I. Nomenclature

A = Set of arcs

𝒂𝑣𝑖 𝑗𝑡 = Cost coefficient matrix of commodity

𝑎′𝑣𝑖 𝑗𝑡 = Cost coefficient matrix of spacecraft

𝒅𝑖𝑡 = demand vector

𝒆𝑣 = Spacecraft design variable vector

F (−) = Spacecraft sizing function

𝑓 = Objective function (subproblem)

𝒈 = Inequality constraint

𝒉 = Equality constraint

𝐻𝑣𝑖 𝑗 = Concurrency matrix

J = Objective function

𝑘 = Decomposed subproblem index

𝐿 = Number of subsystems in the dry mass

𝑀 = Number of subproblems in a quasi-separable MDO problem

𝑚 = Mass of spacecraft subsystems

𝑚𝑑 = Spacecraft dry mass

𝑚 𝑓 = Spacecraft propellant capacity

𝑚𝑝 = Spacecraft payload capacity

𝑁 = Number of types of spacecraft

N = Set of nodes
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𝑛 = dimension of variables

𝑄𝑣𝑖 𝑗𝑡 = Commodity transformation matrix

𝑞 = Iteration count

T = Set of time steps

𝑡𝑚𝑖𝑠 = Mission length

Δ𝑡𝑖 𝑗 = Time of Flight (ToF)

𝑢𝑣𝑖 𝑗𝑡 = Spacecraft flow variable

V = Set of spacecraft

𝑊𝑖 𝑗 = Launch time window

𝒙𝑣𝑖 𝑗𝑡 = Commodity flow variable

𝒚 = Shared variables

𝒛 = Local variables

𝜁 = Propellant type

𝜙 = Penalty function

Subscipt
𝑖 = Node index (departure)

𝑗 = Node index (arrival)

𝑘 = Subproblem index

𝑙 = Subsystem index

𝑡 = Time index

𝑣 = Vehicle index

II. Introduction

A
s we pursue sustainable presence in space, a framework to optimize large-scale, long-term space missions efficiently

is imperative. A number of studies on space logistics that incorporates the transportation network in large-scale

space mission design have been developed, including SpaceNet [1], the interplanetary logistics model [2], and the

extensive literature on space logistics optimization frameworks based on the generalized multicommodity network flow

[3–5]. Utilizing the linear nature of such space logistics or transportation network optimization problems, researchers

have developed frameworks that can efficiently optimize the mission design as Mixed-Integer Linear Programming

(MILP) problems [6–9]. However, due to the nonlinear nature of spacecraft design, a naive integration of spacecraft

design into space mission/campaign planning (a transportation scheduling or resource distribution) would result in a

large-scale Mixed-Integer Nonlinear Programming (MINLP) problem, which is oftentimes computationally prohibitive.

Since the concurrent optimization of space mission planning and spacecraft design is highly desired in practice, each

community took different approaches to bridge these two domains.

In the space logistics community, spacecraft design has been considered as a high-level nonlinear sizing model and

has been integrated into mission planning either by separating the nonlinear part from the mission planning optimization

or by piecewise linearization of the spacecraft model. Taylor [10] developed a parametric spacecraft sizing model which

determines the spacecraft dry mass from its payload capacity and propellant capacity. Based on this model, Simulated

Annealing (SA) or a similar metaheuristic optimization algorithm optimizes the spacecraft design variables, while the

linear programming (LP) or MILP solver evaluates the constraints and determines transportation flow variables. In this

way, the LP or MILP solver is embedded into SA, and thus it was called the embedded optimization methodology. Using

the same spacecraft sizing model, Chen and Ho [6] employed piecewise linear (PWL) approximation of the nonlinear

model to approximate the entire MINLP problem as a MILP problem that can be efficiently solvable. However, this

approach is an approximation model, and the resulting solution is not guaranteed to be feasible nor optimal in the

original nonlinear problem.

On the other hand, aerospace vehicle design has been tackled by the Multidisciplinary Design Optimization (MDO)

community. Despite various optimization and sizing methods that can deal with the high-dimensional nonlinear design

of aircraft or spacecraft [11], few studies integrated the mission-level analysis or optimization. One of the few studies that

tackled the integrated mission planning and spacecraft design is Ref. [12] by Beauregard et al., which proposed an MDO

architecture for a lunar lander design with a lunar mission sequence architecture analysis. This architecture connects the

mission planning and spacecraft design problem using a sequential procedure without a feedback structure (i.e., the

mission architecture is first chosen and fixed, then the lunar lander MDO is performed); therefore, strictly speaking, the
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mission and spacecraft are not simultaneously optimized and spacecraft design is neglected when selecting the mission

architecture. In addition, the candidates of the mission architectures are given a priori and discrete (combinatory).

These two factors limit the design space and make this approach not suitable for the integrated space mission design.

This paper proposes an efficient decomposition-based optimization scheme for integrated space mission planning

and spacecraft design. The key idea is to decompose the integrated MINLP problem into multiple coupled subproblems

of different types: the Mixed-Integer Quadratic Programming (MIQP) subproblem for space mission planning and the

Nonlinear Programming (NLP) subproblem(s) for spacecraft design. Since specialized efficient MIQP or NLP optimizers

(e.g., Gurobi [13] for MIQP; IPOPT [14] for NLP) can be utilized to solve each subproblem, the proposed method

can solve the otherwise intractable integrated MINLP problem efficiently. The iterative coordination between each

subproblem can be achieved using an MDO approach [11, 15]. Specifically, the Augmented Lagrangian Coordination

(ALC) approach [16] with the Analytical Target Cascading (ATC) structure [17, 18] is chosen for the proposed method.

This architecture fits our problem well because (1) it allows us to decompose the original complex problem into the

subproblems with different and simpler types (MIQP or NLP), each of which can be efficiently solvable with specialized

solvers; (2) it has a robust convergence property; and (3) it allows the complex hierarchical structure for the spacecraft

design subproblem(s) and can be easily parallelizable (and thus scalable) if needed. Since the nonlinear optimization

solvers generally require a good initial guess, we further develop an automated initial guess generation method based on

PWL approximation to the MINLP problem so that no user-defined initial guess is needed for the optimization.

The remainder of this paper proceeds as follows. In Section III, the problem definition of the integrated space

mission planning and spacecraft design as an all-in-one optimization problem formulation is described. Section IV

illustrates the solution procedure for the proposed problem based on the decomposition-based method. Section V

introduces a case study of human lunar exploration missions and compares the computational efficiency of the proposed

method and existing method. Finally, Section VI states the conclusion.

III. Problem Definition: Integrated Space Mission Planning and Spacecraft Design
The goal of this research is to optimize the transportation scheduling (referred to as space mission planning) and

vehicle design (referred to as spacecraft design) for a long-term space campaign that can potentially comprise multiple

missions. This section introduces the formulation for this integrated space mission planning and spacecraft design

problem (referred to as the all-in-one formulation). The idea behind this formulation is to consider space mission

planning as a transportation network optimization problem for which the design of vehicles is also part of the decision

variables. In the network, the nodes correspond to the orbital or surface locations and the arcs correspond to the

trajectories connecting the nodes. The decision variables include both the commodities that flow over the network and

the design parameters for the vehicles that carry these commodities. The optimization formulation is listed as follows,

and the list of variables and parameters is included in Table 1.

min J =
∑
𝑡 ∈T

∑
(𝑣,𝑖, 𝑗) ∈A

(𝒂𝑇𝑣𝑖 𝑗𝑡𝒙𝑣𝑖 𝑗𝑡 + 𝑎′𝑇𝑣𝑖 𝑗𝑡𝑚𝑑𝑣𝑢𝑣𝑖 𝑗𝑡 ) (1)

subject to ∑
(𝑣, 𝑗):(𝑣,𝑖, 𝑗) ∈A

[
𝒙𝑣𝑖 𝑗𝑡

𝑚𝑑𝑣𝑢𝑣𝑖 𝑗𝑡

]
−

∑
(𝑣, 𝑗):(𝑣,𝑖, 𝑗) ∈A

𝑄𝑣 𝑗𝑖𝑡

[
𝒙𝑣 𝑗𝑖 (𝑡−Δ𝑡 𝑗𝑖)

𝑚𝑑𝑣𝑢𝑣 𝑗𝑖 (𝑡−Δ𝑡 𝑗𝑖)

]
≤ 𝒅𝑖𝑡 ∀𝑡 ∈ T ∀𝑖 ∈ N (2)

𝐻𝑣𝑖 𝑗𝒙𝑣𝑖 𝑗𝑡 ≤ 𝒆𝑣𝑢𝑣𝑖 𝑗𝑡 ∀𝑡 ∈ T ∀(𝑣, 𝑖, 𝑗) ∈ A (3){
𝒙𝑣𝑖 𝑗𝑡 ≥ 0𝑝×1 if 𝑡 ∈ 𝑊𝑖 𝑗

𝒙𝑣𝑖 𝑗𝑡 = 0𝑝×1 otherwise
∀(𝑣, 𝑖, 𝑗 , 𝑡) ∈ A (4)

𝑚𝑑𝑣 = F (𝒆𝑣 , 𝜁𝑣 ) ∀𝑣 ∈ V (5)

𝒙𝑣𝑖 𝑗𝑡 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1

𝑥2
...

𝑥𝑝

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ 𝑣𝑖 𝑗𝑡
,

𝑥𝑛 ∈ R≥0 ∀𝑛 ∈ C𝑐

𝑥𝑛 ∈ Z≥0 ∀𝑛 ∈ C𝑑
∀(𝑣, 𝑖, 𝑗 , 𝑡) ∈ A (6)
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𝑢𝑣𝑖 𝑗𝑡 ∈ Z≥0 ∀(𝑣, 𝑖, 𝑗 , 𝑡) ∈ A (7)

𝒆𝑣 =

[
𝑚𝑝

𝑚 𝑓

]
𝑣

, 𝑚𝑝𝑣 , 𝑚𝜁𝑣 , 𝑚𝑑𝑣 ∈ R≥0, ∀𝑣 ∈ V (8)

Table 1 Variables and parameters used in the space transportation scheduling problem

Name Description

Variables

𝒙𝑣𝑖 𝑗𝑡

Commodity flow variable, or the quantity of the commodity delivered from node

𝑗 to 𝑖 at time 𝑡 by spacecraft 𝑣. 𝒙𝑣𝑖 𝑗𝑡 ≥ 0. Each component of this variable can

contain either continuous variables (C𝑐) or discrete variables (C𝑑). This vector will

be 𝑝 × 1 vector if the total commodity variation is 𝑝.

𝑢𝑣𝑖 𝑗𝑡
Spacecraft flow variable, which indicates the number of spacecraft type 𝑣 moving

from node 𝑖 to 𝑗 at time 𝑡. This variable is integer scalar.

𝒆𝑣
Spacecraft design variables and parameters. In this problem, it includes payload

capacity 𝑚𝑝 and propellant capacity 𝑚 𝑓 .

𝑚𝑑 Spacecraft dry mass.

Parameters
𝒂𝑣𝑖 𝑗𝑡 Cost coefficient matrix of commodity.

𝑎′𝑣𝑖 𝑗𝑡 Cost coefficient of spacecraft.

𝒅𝑖𝑡 Demands/supplies of different commodities and spacecraft at node 𝑖 at time 𝑡.

𝑄𝑣𝑖 𝑗𝑡 Transformation matrix.

𝐻𝑣𝑖 𝑗 Concurrency constraint matrix.

𝑊𝑖 𝑗 Launch window vector, which indicates the available launch window of spacecraft.

F (−)
Spacecraft sizing function. This illustrates the nonlinear relationship of the spacecraft

design variables and design parameters.

Δ𝑡𝑖 𝑗 Time of Flight (ToF) from node 𝑖 to 𝑗 .

𝜁𝑣 Propellant type for each spacecraft (predetermined).

Sets
A(V,N ,N ,T) Set of arcs realized by spacecraft.

N Set of nodes.

T Set of time steps.

V Set of spacecraft (vehicles).

Equation (1) indicates the objective function, which can be the lifecycle cost or launch mass, depending on the

application context. In this research, we set the coefficients 𝒂𝑣𝑖 𝑗𝑡 and 𝑎𝑣𝑖 𝑗𝑡 so that the objective function corresponds to

the sum of initial mass at low-earth orbit (IMLEO).

Equations (2)-(4) are the constraints for space mission planning. First, Eq. (2) is the mass balance constraint that

guarantees that the inflow (supply) of the commodity is larger than the sum of the outflow and demand. 𝑄𝑣𝑖 𝑗𝑡 is

the transformation matrix, which indicates the transformation of the commodity during the spaceflight; for example,

the relationship of impulsive propellant consumption can be illustrated using this constraint. Next, Eq. (3) is the

concurrency constraint. This indicates that the commodity loaded on each spacecraft is constrained by the dimension of

the spacecraft. Specifically in this paper, the payload and propellant flow is limited: the amount of propellant is lower

than the propellant capacity of the spacecraft, and the sum of other payloads is lower than the payload capacity. Finally,

Eq. (4) is the time window constraints. The commodity flow is allowed only if the time 𝑡 belongs to the launch window

vector 𝑊𝑖 𝑗 , and for the remaining time steps, the commodity flow is conserved to be zero.
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Equation (5) indicates an abstract representation of the spacecraft design constraints, which describes the constraints

between the properties of the vehicle. This can take a wide range of complexity, including an explicit or implicit

relationship of the subsystems or design parameters of the spacecraft; when the spacecraft requires multiple disciplines

or multiple subsystems, an MDO problem can be embedded in this constraint.

Along with Table 1, Eqs. (6), (7), and (8) show the definitions and domains of commodity flow variables, spacecraft

flow variables, and spacecraft design variables, respectively.

This integrated mission planning and spacecraft design problem results in a constrained MINLP problem, one of the

most challenging optimization problem types to solve. Namely, this problem contains both discrete and continuous

variables as well as both linear and nonlinear constraints. Specifically, the discrete variables represent the definition

of the commodity flow and the number of spacecraft on the mission planning side of the problem. In addition, the

nonlinearity appears in two ways: (1) the spacecraft design relationship in Eq. (5); (2) the quadratic terms in the

mass balance constraint (Eq. 2) and concurrency constraint (Eq. 3) for mission planning (Note: both 𝒆𝑣 and 𝑢𝑣𝑖 𝑗𝑡 are

variables). Fortunately, this second nonlinearity can be converted into an equivalent linear relationship through the

big-M method, as explained in Ref. [6], so that the nonlinearity only exists on the spacecraft design side of the problem.

Therefore, as a result, the problem contains two coupled problems: one for space mission planning which is linear

with integer variables, and the other for spacecraft design which is nonlinear with continuous variables. Our approach

leverages this unique structure of the problem and proposes a new approach to solve this problem efficiently.

IV. Proposed Approach: Decomposition-Based Optimization with Augmented Lagrangian
Coordination

Decomposition-based optimization is often used to decompose an MDO problem in terms of disciplines or

subsystems. Leveraging the unique feature of the integrated space mission planning and spacecraft design problem, we

apply this approach to decompose the large-scale MINLP problem (Fig. 1a) into coupled MIQP and NLP subproblems

(Fig. 1b), each of which is significantly easier to solve with specialized solvers compared to the original MINLP problem.

The space mission planning subproblem can be solved using a MIQP solver, and the spacecraft design subproblem can

be solved using an NLP solver without any integer variables. The coupled subproblems are solved iteratively using the

ALC-based coordination until convergence is reached. To enable the optimization without a user-defined initial guess,

an automated and effective initial solution generation approach is also proposed.

(a) All-in-one formulation (b) Proposed decomposition-based formulation based on [16]

Fig. 1 Solution strategy for integrated space mission planning and spacecraft design.

A. Derivation of Decomposed Problems with Augmented Lagrangian Coordination
We first start with deriving the formulations of the decomposed problems with ALC. ALC tackles complex MDO

optimization problems that are quasi-separable and thus can be decomposed into a set of coupled subproblems. ALC is

attractive because of (1) its ability to break down our MINLP problem into MIQP and NLP problems; (2) its robust
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convergence property; and (3) its flexibility with the hierarchical structure of the problems. For an extensive discussion

on ALC, refer to Ref. [16].

The formulation for the quasi-separable MDO problem with 𝑀 subproblems is given as follows:

min
𝒚,𝒛0 ,...,𝒛𝑀−1

𝑀−1∑
𝑘=0

𝑓𝑘 (𝒚, 𝒛𝑘 )

subject to 𝒈𝑘 (𝒚, 𝒛𝑘 ) ≤ 0 𝑘 = 0, . . . , 𝑀 − 1
𝒉𝑘 (𝒚, 𝒛𝑘 ) = 0 𝑘 = 0, . . . , 𝑀 − 1

(9)

where 𝒚 ∈ R𝑛
𝑦

indicates the shared variables, 𝒛𝑘 ∈ R𝑛
𝑧
𝑘 indicates the local variables for subproblem 𝑘 . The shared

variables 𝒚 can be common variables over multiple subproblems. 𝑓𝑘 : R𝑛𝑘 ↦→ R indicates the local objective function, 𝒈𝑘
and 𝒉𝑘 indicate the equality and inequality constraints for each subproblem. The dimension of the total design variable

𝒔 =
[
𝒚𝑇 , 𝒛𝑇0 , . . . , 𝒛

𝑇
𝑀−1

]𝑇
, 𝒔 ∈ R𝑛 is 𝑛 = 𝑛𝑦 +

∑𝑀−1
𝑘=0 𝑛𝑧𝑘 . The dimension of the local design variable is 𝑛 𝑗 = 𝑛𝑦 + 𝑛𝑧𝑘 .

The decomposition-based approach for this problem follows the following steps. First, we introduce the auxiliary

variables and consistency constraints so that the local constraints, 𝒈𝑘 and 𝒉𝑘 , are only dependent on the auxiliary

variables 𝒚𝑘 and independent of the shared variables 𝒚.

min
𝒚,𝒚0 ,𝒛0 ,...,𝒚𝑀−1 ,𝒛𝑀−1

𝑀−1∑
𝑘=0

𝑓𝑘 (𝒚𝑘 , 𝒛𝑘 )

subject to 𝒈𝑘 (𝒚𝑘 , 𝒛𝑘 ) ≤ 0 𝑘 = 0, . . . , 𝑀 − 1
𝒉𝑘 (𝒚𝑘 , 𝒛𝑘 ) = 0 𝑘 = 0, . . . , 𝑀 − 1
𝒄𝑘 (𝒚, 𝒚𝑘 ) = 0 𝑘 = 0, . . . , 𝑀 − 1

(10)

With the consistency constraints 𝒄𝑘 , which ensures that the auxiliary variables 𝒚𝑘 are the same as the shared variables 𝒚,

the shared variables are separated from the local variables while representing the same problem as the original one.

Next, the relaxation of the consistency constraints is introduced with the local Lagrangian penalty function:

min
𝒚,𝒚0 ,𝒛0 ,...,𝒚𝑀−1 ,𝒛𝑀−1

𝑀−1∑
𝑘=0

𝑓𝑘 (𝒚𝑘 , 𝒛𝑘 ) +
𝑀−1∑
𝑘=0

𝜙𝑘 (𝒄𝑘 (𝒚, 𝒚𝑘 ))

subject to 𝒈𝑘 (𝒚𝑘 , 𝒛𝑘 ) ≤ 0 𝑘 = 0, . . . , 𝑀 − 1
𝒉𝑘 (𝒚𝑘 , 𝒛𝑘 ) = 0 𝑘 = 0, . . . , 𝑀 − 1

(11)

The augmented Lagrangian penalty function for subproblem 𝑘 , 𝜙𝑘 , is defined as follows.

𝜙𝑘 (𝒄𝑘 (𝒚, 𝒚𝑘 )) = 𝒗𝑇𝑘 (𝒚 − 𝒚𝑘 ) + ‖𝒘𝑘 ◦ (𝒚 − 𝒚𝑘 )‖
2
2 (12)

where 𝒗 is the vector of Lagrange multiplier estimates, and 𝒘 is the vector of penalty weights. Here, ◦ represents the

element-wise product of matrices or vectors, also known as the Hadamard product. By moving the consistency constraints

into the local objective functions, the local subproblems can be completely separated. The bi-level decomposition-based

problem is now formulated by establishing the master problem above the subproblems. The master problem minimizes

the penalty function and updates the shared variables 𝒚. Note that even though the bi-level formulation is employed

here, the ALC has the capability to handle multi-level hierarchical formulation as well.

(1) Master Problem

min
𝒚

𝑀−1∑
𝑘=0

𝜙𝑘 (𝒄𝑘 (𝒚, 𝒚𝑘 )) (13)

(2) Subproblem 𝑘
min
𝒚𝑘 ,𝒛𝑘

𝑓𝑘 (𝒚𝑘 , 𝒛𝑘 ) + 𝜙𝑘 (𝒄𝑘 (𝒚, 𝒚𝑘 ))

subject to 𝒈𝑘 (𝒚𝑘 , 𝒛𝑘 ) ≤ 0
𝒉𝑘 (𝒚𝑘 , 𝒛𝑘 ) = 0

(14)

Adopting the above approach to our problem of the integrated space mission planning and spacecraft design with

𝑁 vehicle types, Fig. 1b represents the decomposition-based optimization architecture. We have one space mission
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planning subproblem (Subproblem 0) and multiple spacecraft design subproblems (Subproblems 1, . . . , 𝑁), where 𝑁
is the number of spacecraft types; thus, we have 𝑁 + 1 subproblems in total (i.e., 𝑀 = 𝑁 + 1). The shared variables

among them include the vehicle design parameters 𝒚 = [𝒚𝑇1 , . . . , 𝒚
𝑇
𝑁 ]𝑇 , where 𝒚𝑣 = [𝑚𝑝𝑣 , 𝑚 𝑓𝑣 , 𝑚𝑑𝑣 ]

𝑇 for each vehicle

𝑣 where 𝑚𝑝 , 𝑚 𝑓 , 𝑚𝑑 respectively represent payload capacity, propellant (fuel) capacity, and dry mass of the spacecraft.

First, the space mission planning problem (𝑃0 in Fig. 1b) is different from the all-in-one formulation outlined in

Section III with respect to the following two points: the nonlinear vehicle sizing constraint (Eq. (5)) is not included, and

the quadratic penalty function is added to the objective function as Eq. (15) shows. Due to the quadratic objective

function, this subproblem is a MIQP problem.

min
𝒙𝑣𝑖 𝑗𝑡 ,𝑢𝑣𝑖 𝑗𝑡 ,𝒚0

∑
𝑡 ∈T

∑
(𝑣,𝑖, 𝑗) ∈A

(𝒂𝑇𝑣𝑖 𝑗𝑡𝒙𝑣𝑖 𝑗𝑡 + 𝑎′𝑇𝑣𝑖 𝑗𝑡𝑚𝑑𝑣𝑢𝑣𝑖 𝑗𝑡 ) + 𝜙0 (𝒄0 (𝒚, 𝒚0))

subject to Eqs. (2)–(4) and (6)–(8)

where 𝒚 = [𝒚𝑇1 , . . . , 𝒚
𝑇
𝑁 ]𝑇 and 𝒚𝑣 = [𝑚𝑝𝑣 , 𝑚 𝑓𝑣 , 𝑚𝑑𝑣 ]

𝑇

(15)

Next, for the spacecraft design subproblems (𝑃𝑣 in Fig. 1b), the penalty function is minimized and the vehicle

sizing constraint (𝑚𝑑𝑣 = F (𝑚𝑝𝑣 , 𝑚 𝑓𝑣 )) is enforced. This subproblem contains various interacting subsystems and a

hierarchical structure can be used to provide detailed subsystem-level design if needed. The subproblem for 𝑣-th type of

vehicle can be expressed as Eq. (16). Due to the nonlinear constraint, the subproblem is an NLP problem and can be

solved by an NLP solver.

min
𝒚𝑣

𝜙𝑣 (𝒄𝑣 (𝒚, 𝒚𝑣 ))

subject to 𝑚𝑑𝑣 = F (𝑚𝑝𝑣 , 𝑚 𝑓𝑣 )

where 𝒚𝑣 = [𝑚𝑝𝑣 , 𝑚 𝑓𝑣 , 𝑚𝑑𝑣 ]
𝑇

(16)

B. Solution Algorithm and Iteration Scheme
This subsection introduces the iterative solution algorithm for the decomposition-based algorithm introduced in

Section IV.A. The formulated decomposed optimization problems with ALC can be solved iteratively in two loops: the

outer loop updates the augmented Lagrangian penalty parameters (𝒗, 𝒘), while the inner loop solves the master problem

and each subproblem to update the variables. The iteration continues until the convergence (i.e., all subproblems are

consistent, or 𝒄𝑘 is near zero, within a tolerance). The following describes the details of each loop.

For the updates for the outer loop, the solution from the inner loop is used [16]. Specifically, at 𝑞-th iteration, 𝒗 is

updated as follows:

𝒗𝑞+1 = 𝒗𝑞 + 2𝒘𝑞 ◦ 𝒘𝑞 ◦ 𝒄𝑞 (17)

In addition, for 𝑟-th consistency constraint 𝑐𝑟 , the corresponding penalty weight 𝑤𝑟 is updated as follows:

𝑤𝑞+1
𝑟 =

{
𝑤𝑞
𝑟 if |𝑐𝑞𝑟 | ≤ 𝛾2 |𝑐

𝑞−1
𝑟 |

𝛾1𝑤
𝑞
𝑟 if |𝑐𝑞𝑟 | > 𝛾2 |𝑐

𝑞−1
𝑟 |

(18)

where 𝛾1 > 1 and 0 < 𝛾2 < 1. The initial penalty parameter values can take 𝒗1 = 0 and 𝒘1 ≈ 1.

The updates for the inner loop is performed by alternating between solving the master problem and the subproblems

with the fixed penalty parameters. While each subproblem can be solved using the specialized numerical optimizer for

MIQP or NLP, the master problem can be solved analytically as follows.

𝒚 = argmin
𝒚

𝑁∑
𝑘=0

𝜙𝑘 (𝒄𝑘 (𝒚, 𝒚𝑘 )) =

∑𝑁
𝑘=0 (𝒘𝑘 ◦ 𝒘𝑘 ◦ 𝒚𝑘 ) −

1
2
∑𝑁

𝑘=0 𝒗𝑘∑𝑁
𝑘=0 (𝒘𝑘 ◦ 𝒘𝑘 )

(19)

For our problem, we make an additional heuristics-based modification to the master problem to facilitate the

convergence. Namely, the aforementioned master problem updates all the shared variables at the same time at every

iteration, but this approach does not work effectively in our problem. This is because, the space mission planning,

with no knowledge of the constraints behind the spacecraft design, can return an aggressive or infeasible spacecraft

design, which can deteriorate the convergence performance. Therefore, we propose to only update the spacecraft

payload capacity and the propellant capacity in the master problem, while passing the spacecraft dry mass from the
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spacecraft design subproblem directly to the next iteration, as shown in Fig. 2. Mathematically, we separate the

shared variables 𝒚 into the regular shared variables 𝜶 = [𝑚𝑝1 , 𝑚 𝑓1 , . . . , 𝑚𝑝𝑁 , 𝑚 𝑓𝑁 ] and the prioritized shared variables

𝜷 = [𝑚𝑑1 , . . . , 𝑚𝑑𝑁 ] (i.e., 𝒚 = [𝜶, 𝜷]), and only 𝜶 is updated in the master problem.

min
𝜶

𝑁∑
𝑘=0

𝜙𝑘 (𝒄𝑘 (𝜶,𝜶𝑘 )) (20)

Note that, in the space mission planning subproblem, the spacecraft dry mass remains a variable, not a fixed parameter,

and is subject to the penalty function. It indicates that the resultant dry mass 𝛽0 is not used in the entire optimization

architecture but only used to facilitate the convergence of the whole optimization problem.

Fig. 2 Proposed decomposition-based optimization architecture with prioritized shared variables.

C. Automatic Initial Solution Generation
For the above iterative algorithm to perform effectively, a good initial guess of the shared variable is necessary.

Thus, there is a need to develop an automatic and effective method that does not require a user-defined initial guess.

To this end, we propose to use the PWL approximation of the nonlinear optimization spacecraft design problem, and

convert the entire MINLP into a MILP problem, which can be solved using a specialized solver [6]. Although the PWL

approximation does not necessarily return an optimal or even feasible solution to the original MINLP problem, the

returned shared variables can be used as a good initial guess for the iterative approach. Another advantage is that the

MILP problem can be solved to the global optimum for the approximated nonlinear model [6]. Thus, the MILP-based

initial guess is not only automatically generated but also likely to be close to the nonlinear global optimum.

Specifically, in our problem, nonlinearity exists on the spacecraft design side of the problem. Thus, we choose

a series of equally-spaced "mesh" points over the feasible ranges of the spacecraft design parameters and use them

as breakpoints for the PWL function generation. Note that since the dry mass is an (implicit) function of the payload

capacity and propellant capacity, we only used the latter two for breakpoint generation. The breakpoint increment (or

the number of breakpoints) is a key hyperparameter; a smaller increment or more breakpoints would lead to a more

accurate initial guess, but it will also require a longer computational time.

V. Case Study: Human Lunar Exploration Campaign
To demonstrate the effectiveness of the proposed approach, we perform a demonstration case study and compare our

approach with the state-of-the-art method. We first introduce the case study settings, followed by the results and the

computational performance analysis.
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A. Case Study Settings
A human lunar exploration with two missions is considered here for the case study. The mission network model,

parameters, commodity demand and supply used in this case study are presented in Fig. 3, Table 2, and Table 3,

respectively. Note that only one type of spacecraft, which is a single-stage lunar lander, is considered for simplicity.

It means that the lander sizing constraint is applied to other vehicles such as in-space transfer vehicles. As landers

are typically heavier than other spacecraft due to their landing structure, the optimization result might represent a

conservative design. In addition, in-situ resource utilization (ISRU) is also considered as an option in the formulation,

although it is never chosen by the optimizer in this case study due to the considered short time horizon.

Fig. 3 Lunar campaign network model [6].

Table 2 Parameters used in the case study problem

Parameters Assumed values

Spacecraft Propellant type LH2/LOX

Propellant 𝐼𝑠𝑝 , s 420

Propellant density 𝜌 𝑓 , kg/m3 360

Spacecraft miscellaneous mass fraction 𝑐𝑚𝑖𝑠𝑐 (see Eq. (21)) 0.05

Type of spacecraft designed 1

Number of vehicles for each type 6

Crew mass (including space suit), kg/person 100

Crew consumption, kg/day/person 8.655

Spacecraft maintenance, structure mass/flight 1%

Table 3 Lunar campaign commodity demand and supply

Payload Type Node Time [days] Supply/Demand

Outbound to the Moon

Crew Earth 0, 365 4

Habitat, Equipment, and Propellant, kg Earth 0, 365 ∞

Crew Moon 5, 370 -4

Habitat & Equipment, kg Moon 5, 370 -2000

Inbound to the Earth

Crew Moon 8, 373 4

Returned mass, kg Moon 8, 373 1000

Crew Earth 13, 378 -4

Returned mass, kg Earth 13, 378 -1000

The subsystem-level spacecraft model used as the spacecraft design constraint in Eq. (5) in this study is developed

by the least square curve fitting to the data from the lunar lander design database in Ref. [19, 20]. The following set of

equations shows the spacecraft model used in the case study.
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𝑚𝑑 =
∑

𝑚𝑠𝑢𝑏 = 𝑚𝑠𝑡𝑟 + 𝑚𝑝𝑟𝑜𝑝 + 𝑚𝑝𝑜𝑤𝑒𝑟 + 𝑚𝑎𝑣𝑖 + 𝑚𝐸𝐶𝐿𝑆𝑆 + 𝑚𝑚𝑖𝑠𝑐

where

𝑚𝑠𝑡𝑟 = 𝑛𝑠𝑡𝑔
−0.6705 (0.3238𝑚𝑑 + 693.7𝑚𝑝

0.04590)

𝑚𝑝𝑟𝑜𝑝 = 0.1648 (𝑚𝑑 + 𝑚𝑝) + 20.26
(
𝑚 𝑓

𝜌 𝑓

)
𝑚𝑝𝑜𝑤𝑒𝑟 = 7.277 · 10−8 𝑚𝑑

2.443 + 137.0

𝑚𝑎𝑣𝑖 = 1.014𝑚𝑝𝑜𝑤𝑒𝑟
0.8423 + 22.33 𝑡𝑚𝑖𝑠

𝑚𝐸𝐶𝐿𝑆𝑆 = 0.004190 𝑛𝑐𝑟𝑒𝑤 𝑡𝑚𝑖𝑠 𝑚𝑑
0.9061 𝑛𝑠𝑡𝑔

0.7359 + 434.7

𝑚𝑚𝑖𝑠𝑐 = 𝑐𝑚𝑖𝑠𝑐 𝑚𝑑

(21)

Note that, beyond the payload capacity and propellant capacity, there are some additional parameters in these equations:

𝑛𝑠𝑡𝑔 is the number of stages (either 1 or 2), 𝜌 𝑓 is the propellant density in kg/m3, 𝑡𝑚𝑖𝑠 is the surface time of the lunar

mission in days, 𝑛𝑐𝑟𝑒𝑤 is the number of crew, 𝑐𝑚𝑖𝑠𝑐 is the miscellaneous mass fraction. The miscellaneous mass fraction

𝑐𝑚𝑖𝑠𝑐 represents how much of the dry mass is categorized as the miscellaneous mass. It can range from 0 to 0.15,

meaning 0% to 15% of the dry mass is the miscellaneous mass. The higher 𝑐𝑚𝑖𝑠𝑐 , the heavier and more conservative

the vehicle design becomes. All mass properties are defined in kg.

As shown in Eq. (21), the model captures the subsystem-level interactions to return the relationship between the

payload capacity, propellant capacity, and dry mass of the spacecraft. Particularly, the subsystem interactions are

captured through the dry mass. For instance, an increase in any subsystem mass will raise the dry mass. Since each

subsystem mass is dependent on the dry mass, their mass should increase as well, which will further raise the dry mass.

The ’balanced’ dry mass with such subsystem circular references can be found by solving Eq. (21) for the dry mass, 𝑚𝑑 .

More details on this model can be found in Appendix A.

In the case study, the computational time for all problems is measured on a platform with Intel Core i7-10700 (8

Core at 2.9 GHz). In the proposed decomposition-based method, Gurobi 9.1 solver [13] is used for the initial MILP

problem and MIQP subproblem, and IPOPT [14] is chosen for the NLP subproblem.

B. Optimization Results by the Proposed Decomposition-Based Formulation
This subsection introduces the optimization results by the proposed decomposition-based formulation. Since the

performance of the proposed method is dependent on the breakpoint increment (or the number of breakpoints) for the

PWL approximation of the MILP-based initial solution generation, five different increments are tested. The results

are shown in Table 4. Although the optimizer’s computational time involves some randomness depending on the

individual problems, there are several general trends that can be observed. First, when the increment is too large (too

few breakpoints, e.g., 10,000 kg increment with 13 mesh points), the initial solution quality becomes poor, and thus the

final solution IMLEO is also poor. Second, the computational time to solve the initial MILP problem rapidly increases

when the increment is too small (too many breakpoints, e.g., 625 kg increment with 1,595 mesh points), resulting

in a long total computational time. In summary, we can observe the expected trend that a smaller increment (more

breakpoints) leads to a better initial guess at the cost of computational time. Thus, the most efficient strategy is to use an

increment that can generate a reasonably accurate initial solution and leave the rest to the proposed decomposition-based

optimization. Although this hyperparameter needs to be chosen for the proposed algorithm, it is also worth noting that

the computational performance is not very sensitive against the choice of its value except for the extreme cases. Also,

note that, theoretically speaking, if we reduce the increment to zero (an infinite number of breakpoints), the solution

would match with the global optimum; however, this is impractical as it requires infinite computational time. The

proposed decomposition-based formulation can take the reasonable approximate solution by PWL formulation and offer

a better computational efficiency to achieve a high-quality solution.
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Table 4 Optimization results by the proposed decomposition-based formulation

Breakpoint increment for PWL, kg 10,000 5,000 2,500 1,250 625

Number of mesh points for PWL 13 36 120 425 1,595

Initial IMLEO via PWL, kg 741,115 700,684 677,035 677,343 677,315

Initial solution generation time, s 5.617 4.277 3.620 23.83 495.9

Decomposition-based optimization time, s 28.34 19.53 12.65 12.91 12.94

Solution IMLEO, kg 727,558 695,271 676,930 677,203 677,179

Total optimization time, s 33.96 23.81 16.27 36.75 508.8

C. Benchmarking with State-of-the-Art Method: Embedded Optimization
Although our formulation of the integrated mission planning and subsystem-level spacecraft design has not been

directly tackled in the literature, we can extend straightforwardly a state-of-the-art approach for a similar problem as a

benchmark to evaluate our newly proposed method.

The identified state-of-the-art approach is the embedded optimization method by Taylor [10], which was demonstrated

to be more efficient than directly solving the original integrated MINLP problem using a global optimizer. With the

embedded optimization method, the spacecraft variables are separated from the whole problem and determined by a

metaheuristics algorithm. At every iteration, the metaheuristics algorithm picks the payload and propellant capacity of

𝑁 vehicles, and the corresponding spacecraft dry mass is then calculated as a function of them, following the spacecraft

subproblem procedure. After obtaining the feasible vehicle design, these values are fed to the space mission planning

problem, which is solved by the MILP optimizer. Unlike the all-in-one formulation, the vehicle parameters are fixed

within the space mission planning part. Then, the corresponding objective function value is returned to the metaheuristic

optimizer for the evaluation for the next iteration. As a result, the metaheuristics only handles an optimization problem

with 2𝑁 variables (i.e., the payload capacity and propellant capacity for each spacecraft), where the evaluation of the

constraints and the determination of the remaining variables are handled by the embedded MILP solver. The problem to

be optimized by the metaheuristic solver is expressed as Eq. (22).

min
𝜶

IMLEO(𝜶, F (𝜶))

where 𝜶 = [𝑚𝑝1 , 𝑚 𝑓1 , . . . , 𝑚𝑝𝑁 , 𝑚 𝑓𝑁 ], 𝜶 ∈ R2𝑁
(22)

Since the performance of the embedded optimization would depend on the choice of the metaheuristics algorithm,

three different metaheuristics algorithms are tested: the extended Ant Colony Optimization (ACO) [21], the Genetic

Algorithm (GA) [22], and the Particle Swarm Optimization (PSO) [23]. The optimization is terminated when a

predefined number of generations are populated; different termination generation numbers are tested for each algorithm

to explore the tradeoff between the computational time and accuracy. Furthermore, due to the random nature of the

metaheuristic optimizers, the optimization is run three times with the same algorithm and generation number.

Table 5 shows each algorithm’s best results with 10, 50, and 100 generations. Note that ’inf’ indicates that no

feasible solutions can be found. The complete set of results is given in Table 7 in Appendix. In many cases, especially

with low numbers of generations, the optimizers fail to even reach a feasible IMLEO solution. As the number of

generations increases, the computational time increases, a feasible solution is more likely to be found, and the solution

tends to be better, although such trends might not always hold due to the random nature of the metaheuristic algorithms.

Table 5 Results of the state-of-the-art embedded optimization

Algorithm Ant Colony Optimization Genetic Algorithm Particle Swarm Optimization

Number of generations 10 50 100 10 50 100 10 50 100

Best Solution IMLEO, kg 723,090 747,398 689,287 764,301 746,702 728,831 inf 677,659 677,221

Optimization Time, s 85.03 391.7 776.0 86.18 413.6 836.6 84.69 397.9 793.9
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D. Performance Analysis and Discussions
As we compare the optimization results by the proposed decomposition-based optimization method in Table 4

and the state-of-the-art embedded optimization method in Table 5, it is clear that the proposed method can achieve

a better solution (lower IMLEO) at a less computational time. Even with respect to the best embedded optimization

case in Table 5, which is the PSO case with 100 generations (IMLEO 677,221kg, computational time 793.9s), the

proposed decomposition-based optimization can achieve a better solution with a substantially shorter computational

time (676,930kg, computational time 16.27s). Note that the computational time by the two methods is measured without

any parallelization under a fair setting.

Beyond the numerical solution comparison, one substantial advantage of the proposed method is its deterministic

and thus repeatable performance. This is in contrast to the metaheuristics that returns different results every run, varying

from near-optimal results to infeasible results. The proposed formulation can consistently achieve better solutions than

those that the metaheuristics optimizers would find "by chance."

Another advantage of the proposed formulation is that more complicated spacecraft design problems, such as models

with more constraints or even MDO problems, can be integrated in a scalable way. Namely, if more subproblems are

considered, they can be parallelized to further reduce the computational time. When complex MDO problems are

included as subproblems, a multi-level hierarchical ALC formulation can also be utilized [18].

Overall, the case study demonstrates that the higher computational performance of the proposed method compared to

the state-of-the-art embedded optimization method. The proposed formulation can consistently obtain a better solution

in a shorter computational time. It also has greater room for potential improvement and extension, such as parallelization

and MDO subproblem integration.

VI. Conclusion
This paper tackles the challenging problem of integrated space mission planning and spacecraft design. The

all-in-one formulation is presented as an MINLP problem, and an efficient solution approach is developed leveraging

the unique structure of the problem and following the philosophy of MDO. Namely, the all-in-one MINLP problem is

decomposed into the space mission planning subproblem (MIQP) and the spacecraft design subproblem(s) (NLP) so

that they can be solved iteratively using the ALC approach to find the optimal solution for the original MINLP problem.

Furthermore, an automatic and effective approach for finding an initial solution for this iterative process is proposed

leveraging a piecewise linear approximation of the nonlinear vehicle model, so that no user-defined initial guess is

needed. The case study results demonstrate that the proposed method achieves a better result in less time compared to

the state-of-the-art embedded optimization method. The combination of the unique problem structure, the iterative

algorithms for shared variables, and the efficient initial solution generation method leads to this computational efficiency

even without parallelization. The parallelizable nature of the algorithm is expected to make the proposed method even

more advantageous for large-scale problems. Due to the flexibility of the ALC method, the proposed formulation can

also integrate more complex vehicle design models, which is left for future work.
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Appendix A: Spacecraft Design Model
This appendix provides more details on the parametric sizing model for the spacecraft used in the case study. In the

considered model, the subsystems of single-stage landers and their relations to the dry mass are defined as Eq. (23).

𝑚𝑑 =
∑

𝑚𝑠𝑢𝑏 = 𝑚𝑠𝑡𝑟 + 𝑚𝑝𝑟𝑜𝑝 + 𝑚𝑝𝑜𝑤𝑒𝑟 + 𝑚𝑎𝑣𝑖 + 𝑚𝐸𝐶𝐿𝑆𝑆 + 𝑚𝑚𝑖𝑠𝑐 (23)

where 𝑚𝑠𝑢𝑏 indicates the mass of subsystem. 𝑚𝑠𝑡𝑟 indicates the structure and thermal protection system (TPS), which

includes all subsystems that are attached to support or connect other components. This is not limited but includes

landing legs and truss, TPS for the reentry to the earth, and docking mechanism. 𝑚𝑝𝑟𝑜𝑝 is the propulsion system, such as

propellant tanks, reaction control system (RCS), and hardware of engines. 𝑚𝑝𝑜𝑤𝑒𝑟 is the power system, which contains

batteries, fuel cells, solar panels, or other electrical systems. 𝑚𝑎𝑣𝑖 indicates the avionics, and 𝑚𝐸𝐶𝐿𝑆𝑆 indicates the

environmental and life control system (ECLSS) that supports the crew’s lives such as consumables (food, water, air) or

related piping and tankage. Finally, we also consider other miscellaneous required components, expressed as 𝑚𝑚𝑖𝑠𝑐 .

12



Through the dry mass, each subsystem interacts with every other subsystem, and this relation is visualized in Fig. 4 as

an N2 diagram.

Fig. 4 Relationship of domains in a single-stage lunar lander.

For the defined subsystems, mass estimation relationships (MERs) are developed as functions of payload capacity,

propellant capacity, propellant type 𝑓 , and some other known parameters. If the propellant type is fixed, the subsystems

MERs and dry mass are dependent on the payload capacity and propellant capacity only, and thus serves as the vehicle

sizing constraint (Eq. (5), 𝑚𝑑 = F (𝑚𝑝 , 𝑚 𝑓 )). Each subsystem MER is developed by the least square curve fitting to the

data from the lunar lander design database in Ref. [19, 20], which includes both existing and elaborated conceptual

design. The form of each subsystem’s MER is manually determined to be a sufficiently simple yet accurate form. The

resultant MERs are shown in Eq. (21).

Table 6 summarizes the independent variables, the 𝑅2 values for curve fitting, number of data points used for curve

fitting (𝑁𝑑𝑎𝑡𝑎), average errors against the data points, and the maximum errors. Note that only a small number of data

points are used for the propulsion system MER since two-stage lander data are excluded as their propulsion systems with

staging are too distinct from those of single-stage ones. One may also see that relatively poor correlations are obtained

for the power systems and avionics mass as they simply might not be strong functions of the dry mass or vehicle size.

However, since they typically account for small portions of the dry mass, the poor correlation does not have a significant

effect on the validation process.

The limitation of this sizing model should also be noted. Because the MERs are developed from the existing data

points, a solution for vehicles that are significantly heavier than the ones in the database would either be a low-fidelity

model or infeasible. In other words, 𝑚𝑑 that satisfies Eq. (23) might not exist for certain weight classes. Specifically,

the upper bound of the dry mass is approximately 23,000 kg. When 𝑡𝑚𝑖𝑠 is 3 days, 𝑛𝑐𝑟𝑒𝑤 is 4, 𝑐𝑚𝑖𝑠𝑐 is 0.05, and the

propellant is LH2/LOX, the upper bound are found at 500 kg payload and 75,500 kg propellant, or at 10,000 kg payload

and 45,500 kg propellant.

Table 6 Summary of subsystem MERs

Subsystem Notation Independent Variables 𝑅2 𝑁𝑑𝑎𝑡𝑎 Avg. Error Max. Error

Structure + TPS 𝑚𝑠𝑡𝑟 𝑚𝑑 , 𝑛𝑠𝑡𝑔, 𝑚𝑝 0.9254 17 7.379% 24.31%

Propulsion System 𝑚𝑝𝑟𝑜𝑝 𝑚𝑑 , 𝑚𝑝 , 𝜌𝑝 0.9279 8 7.429% 11.16%

Power System 𝑚𝑝𝑜𝑤𝑒𝑟 𝑚𝑑 0.7182 13 16.24% 36.68%

Avionics 𝑚𝑎𝑣𝑖 𝑚𝑝𝑜𝑤𝑒𝑟 (𝑚𝑑), 𝑡𝑚𝑖𝑠 0.6204 22 36.42% 75.94%

ECLSS 𝑚𝐸𝐶𝐿𝑆𝑆 𝑚𝑑 , 𝑛𝑐𝑟𝑒𝑤 , 𝑛𝑠𝑡𝑔, 𝑡𝑚𝑖𝑠 0.9293 12 11.93% 38.09%

Miscellaneous 𝑚𝑚𝑖𝑠𝑐 𝑚𝑑 - - - -

Appendix B: Summary of the Embedded Optimization Results
Table 7 includes the full results obtained from the embedded optimization.
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Table 7 Summary of the embedded optimization results

Algorithm Number of generations Optimization time, s IMLEO, kg

Ant Colony Optimization

5

45.35 820891

45.06 inf

45.77 681302

10

83.19 806153

85.03 723090

83.81 793031

20

161.4 714202

161.2 801618

162.3 710166

50

389.8 761514

391.2 765182

391.7 747398

100

776.0 689287

771.9 732297

775.9 691874

Genetic Algorithm

5

46.50 inf

45.71 inf

46.09 inf

10

85.38 inf

86.18 764301

83.97 inf

20

161.9 inf

172.4 761116

161.7 inf

50

394.7 inf

413.6 746702

394.6 inf

100

836.6 728831

788.3 875069

777.7 inf

Particle Swarm Optimization

5

46.54 inf

46.57 inf

46.26 711382

10

84.75 inf

84.69 inf

85.22 inf

20

162.5 726951

162.1 688182

161.6 inf

50

392.3 inf

397.9 677659

394.6 714169

100

788.9 677754

793.9 677221

791.2 677316
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