
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1

Permchecker: A Toolchain for Debugging Memory
Managers with Typestate

ANONYMOUS AUTHOR(S)∗

Dynamic memory managers are a crucial component of almost every modern software system.In addition
to implementing efficient allocation and reclamation,memory managers provide the essential abstraction
of memory as distinct objects,which underpins the properties of memory safety and type safety.Bugs in
memory managers,while not common,are extremely hard to diagnose and fix.One reason is that their
implementations often involve tricky pointer calculations, raw memory manipulation, and complex memory
state invariants. While these properties are often documented, they are not specified in any precise, machine-
checkable form.A second reason is that memory manager bugs can break the client application in bizarre
ways that do not immediately implicate the memory manager at all.A third reason is that existing tools
for debugging memory errors,such as Memcheck,cannot help because they rely on correct allocation and
deallocation information to work.

In this paper we present Permchecker, a tool designed specifically to detect and diagnose bugs in memory
managers. The key idea in Permchecker is to make the expected structure of the heap explicit by associating
typestates with each piece of memory. Typestate captures elements of both type (e.g., page, block, or cell) and
state (e.g.,allocated,free,or forwarded).Memory manager developers annotate their implementation with
information about the expected typestates of memory and how heap operations change those typestates.
At runtime, our system tracks the typestates and ensures that each memory access is consistent with the
expected typestates. This technique detects errors quickly, before they corrupt the application or the memory
manager itself, and it often provides accurate information about the reason for the error.

The implementation of Permchecker uses a combination of compile-time annotation and instrumentation,
and dynamic binary instrumention. Because the overhead of DBI is fairly high, Permchecker is suitable for
a testing and debugging setting and not for deployment.It works on a wide variety of existing systems,
including explict malloc/free memory managers and garbage collectors,such as those found in JikesRVM
and OpenJDK. Since bugs in these systems are not numerous, we developed a testing methodology in which
we automatically inject bugs into the code using bug patterns derived from real bugs. This technique allows
us to test Permchecker on hundreds or thousands of buggy variants of the code. We find that Permchecker
effectively detects and localizes errors in the vast majority of cases; without it, these bugs result in strange,
incorrect behaviors usually long after the actual error occurs.

Additional Key Words and Phrases: typestate,debugging,language implementation,memory management,
memory layout, compiler extension

1 INTRODUCTION
In December of 2018,a bug was reported to Oracle’s OpenJDK [Oracle 2006] development team.
In this bug, the Java Virtual Machine (JVM) would deadlock on an object monitor, even though no
threads held exclusive access to the monitor. This failure only occurred when the jemalloc [Evans
2006] was used in place of the default malloc/free implementation, leading the developers to sus-
pect a memory safety error. However, the failure was difficult to reproduce and caused knock-on
effects leading to incomplete and misleading stack traces. After ten months of on-again off-again
investigation, the team had all but given up, with one comment added to the bug report as follows:

2018. 2475-1421/2018/1-ART1 $15.00
https://doi.org/

Proc.ACM Program.Lang., Vol.1, No.CONF, Article 1.Publication date:January 2018.

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

1:2 Anon.

I've exhausted what I can do to investigate this. All appearances
are that it is a jemalloc issue related to the thread caching.
Closing as "External".

Please reopen if further information comes to light.

David Holmes added a comment - 2019-10-09 19:11

In the Fall of 2019,this developer finally figured it out using carefully hand-coded instrumen-
tation of object monitors.An address mix-up was causing the monitor in question to be owned
by two different threads. After almost a year from the initial report, the bug was found and fixed:
an address comparison that should have been a greater-than was using a greater-than-or-equal-to
operation instead.

This kind of bug is among the most difficult and time-consuming to diagnose because it involves
the very subsystem that we ordinarily rely on to enforce memory safety:the memory manager,
and an object model describing how objects and their metadata are laid out in memory.For this
reason,many of the existing tools and techniques for tackling memory errors are ineffective or
cannot be easily applied to code in the memory manager.At the same time,the programming
of such code is very challenging and error prone, involving sensitive pointer arithmetic, implicit
address invariants, and complex memory layouts accessed by disparate subsystems. We normally
expect runtime system code to support a diverse array of hardware and software environments,
where concurrency is the norm and performance is at a premium. Although the number of mem-
ory manager implementations is relatively small, every single program that dynamically allocates
memory relies on one to run correctly.

In this paper we present Permchecker, a toolchain specifically designed to aid in the debugging
of memory managers,including both explicit allocators and garbage collectors.Permchecker’s
design is based on the observation that all memory managers perform essentially the same basic
task: they take a large array of bytes and partition it into chunks,giving structure to memory
and managing the lifecycle of objects for the client application. The specific partitioning strategy
of a memory manager gives each chunk of memory meaning, much the way types give meaning
to data in a programming language.An error in a memory layout looks much like a type safety
error: a chunk of memory designated for one purpose is accessed improperly or used for another
purpose.

Memory chunk types, however,have important differences from traditionaltypes. For one,
chunk types often cannot be explicitly defined in the type system of the implementation language.
Instead,the role of a chunk is implied by its relative spatial location in memory.For example,a
generational garbage collector might classify a page of memory as part of the nursery because
it resides in the address range reserved for nursery objects.Similarly, the argument to a manual
free() implementation is an untyped pointer, and the implementation of this function might need
to inspect the pointer value or metadata stored elsewhere in memory to determine, e.g., that the
chunk belongs on a free list.Traditional types alone are a poor fit for these for these situations
because the correct type information is not readily available from either type declarations or the
operations performed.

Another difference from traditional types is that a chunk of memory changes type during the
normal course of partitioning, allocation, deallocation, and coalescing. For example, when a page
is divided up into smaller cells,all subsequent code is expected to access memory locations in

Proc.ACM Program.Lang., Vol.1, No.CONF, Article 1.Publication date:January 2018.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Permchecker:A Toolchain for Debugging Memory Managers with Typestate 1:3

the page as cells, even though they reside at the same address. This behavior is notably different
from dynamic typing, where a single variable can refer to values of different types, but the values
themselves do not change type. The most closely related type feature is C/C++ union, which allows
a single chunk of memory to be viewed as different types,but provides no mechanism to check
and maintain type safety.

The key idea in Permchecker is to use typestates [Strom and Yemini 1986] to specify and track
the structure of memory as it changes, and check that the memory manager accesses and updates
this structure according to the expected specification (the “permissions”).The system consists of
two main parts: (1) an API that developers can use to annotate memory management code with
the expected types and state transitions in each operation (e.g., alloc, free, scan, collect, etc), and
(2) a runtime system that associates typestates with real memory (a shadow map) and uses binary
instrumentation to check that at every memory access the permissions associated with the code
match the typestate of the underlying memory. We show that this technique detects errors as soon
as they happen, rather than when they manifest, which can be much later in the execution of the
program.

An important goal of our work is to provide tools that work with existing memory managers
across a range of platforms. Our approach is designed around this use case. We assume that devel-
opers cannot reimplement their systems in a new language or using a new methodology.There-
fore, our API is generated from a separate specification and added to the memory manager code.
To avoid high up-front costs, developers can introduce these annotations gradually, starting with
a simple, but coarse model of memory, and increasing the precision as necessary with more fine-
grained annotations.

1.1 Contribution
In this work, we develop a notion of typestate applicable to how a memory manager partitions
memory and dynamically reuses it according to some algorithm.The goal of Permchecker is to
provide a way for the developer of a runtime system to specify and check the lifecycles of memory
typestates across all abstraction levels of the system. A relatively simple tracking API allows the
developer to associate a typestate with a chunk of memory.A permissions API and annotations
can then be used to declare access permissions. This formulation of dynamic typestate is a natural
extension of the static typestate program analysis techniques developed in the 1980’s [Strom and
Yemini 1986].

The contributions presented in this paper are:

• A technique for specifying the hierarchical layout and decomposition of memory employed
by the memory manager, and a tool that uses this specification to generate an API that the
code can use to track structures of memory using explicit typestates.

• Compile-time support, implemented in the Clang C/C++ compiler, for automatically trans-
lating common typestate transitions from function annotations to API calls.

• A Pin-based DBI tool that tracks the typestate of every byte of memory and ensures that
memory accesses from the anywhere in the program (both the memory manager and the
application) respect the expected structure.

• An experimental methodology that includes both real bugs and injected bugs. Since bugs
in memory managers are relatively uncommon,we use a technique in which we extract
the essence of a real bug as a bug pattern, and then run hundreds of experiments in which
similar defects are introduced in different places in the code.

Proc.ACM Program.Lang., Vol.1, No.CONF, Article 1.Publication date:January 2018.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

1:4 Anon.

2 DESIGN OVERVIEW
Permchecker takes a step towards verifiable memory management by providing a way to explicitly
annotate the structure and state of a heap,and then check that the implementation of the mem-
ory manager properly maintains and respects that structure. Our design is inspired by Valgrind’s
Memcheck tool,but generalized to an arbitrarily hierarchical memory manager.At the applica-
tion level, memory is either allocated or not, and Memcheck checks that application code only ac-
cesses allocated memory. Inside a memory manager, there are often numerous intermediate states
of memory apart from allocated and free. Memory is obtained from the operating system in large
chunks and carved into successively smaller pieces. Each partitioning is typically managed by an
intermediate allocator which services requests from higher-level allocators and requests memory
from lower-level allocators.Additionally, multiple independent allocators often service requests
for specific categories of values, contributing further to the rich landscape of memory subsystems
that compose a modern runtime system.

Allocation Policies & Alternative Hierarchies. As an example, a generational garbage collector might
contain three independent allocators: a bump pointer for the nursery, a free-list allocator for the
mature space, and a reference-counted allocator and collector for large objects. For instance, the
free-list allocator has at least two allocation levels.First, a low-level block allocator carves off a
large chunk of the virtual address space from the operating system.Second,the free-list’s cell
allocator extracts from the large chunk an object-sized cell and doles it out to the application. This
process is further complicated by a myriad of allocation and collection policies at both the block
and cell level. As a result a fully automated technique, like Memcheck, is infeasible in the absence
of definitive memory type and allocator state information.
Typestate Permissions.It is crucial for the correct operation of a memory manager for runtime
system code to only ever access the types of memory it is supposed to.For example,a free-list
allocator should not find itself managing memory originally controlled by the nursery’s bump
pointer allocator. Given explicit expectations of these two subsystems, we can begin to verify that
memory is managed safely by ruling out cross-contamination.

With Permchecker,each location in memory is assigned a type,or more precisely a typestate
since the type can change over the course of execution.After assignment,code which accesses
the location must have permission to access the assigned typestate.An error is thus reported
as soon as a memory access occurs over a typestate of memory the code was not expecting to
access. The resulting error message is a detailed report of the impermissible memory access, and is
described in the terminology of the particular system. For example, a garbage collector’s nursery
allocator might incorrectly attempt to allocate memory recently added to the mature space’s free-
list. The error reported by Permchecker would be something like the following:“Observed type
FREELIST_CELL expecting type NURSERY_CELL.”

Incrementality. A primary goal of this work is to provide practical debugging tools and techniques
that can help diagnose bugs in existing systems. To this end, Permchecker is built as a lightweight
C/C++ API and accompanying heavyweight DBI toolrunnable on virtually any memory man-
ager.In this paper, we present our use of this tool to debug OpenJDK’s Hotspot VM,Oracle’s
open-source version of their industrial-strength JVM.Not discussed further in this paper is our
use of Permchecker to debug and verify memory layouts found in various manual and automatic
memory managers alike.These include dlmalloc [Lea 1991],Doug Lea’s implementation of the
standard malloc/free interface, and the Jikes Research Virtual Machine [IBM 2005], a classic Java-
in-Java implementation of a JVM. Without the trial-and-error process of studying this multitude
of diverse systems, we would not have landed upon an incremental usage of Permchecker where

Proc.ACM Program.Lang., Vol.1, No.CONF, Article 1.Publication date:January 2018.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Permchecker:A Toolchain for Debugging Memory Managers with Typestate 1:5

the programmer starts out with a simple model of their heap,adding more and more typestate
information over time.

3 BACKGROUND & RELATED WORK
Memory safety is not a new concern. Over the years, a wide array of systems, tools, techniques, and
languages have been developed to help diagnose and prevent these potentially catastrophic errors.
One of the most successful and widely deployed techniques is automatic memory management
(garbage collection) which, together with runtime bounds checking, has practically eliminated the
most common coding errors that lead to memory corruption. But a nagging problem has remained:
how to find and fix bugs in the memory manager itself. In this section, we discuss how this concern
is different from ordinary memory safety and why that makes it such a hard problem to deal with.

Debugging an Abstraction. Memory safety ensures that a memory access respects the boundaries
and lifetimes of objects and values in memory.At the level of raw memory (virtual addresses),
however, there are no boundaries and lifetimes; memory is just one giant array of bytes. These ab-
stractions are created and maintained by the memory manager, and unfortunately existing mem-
ory safety tools require this information in order to perform their checks.Valgrind [Nethercote
and Seward 2007], for example, can perform highly detailed memory safety checks on an applica-
tion, but it must be able to intercept (shim) calls to malloc and free in order to know when objects
are allocated and freed, and their bounds. When the memory manager itself has an error, however,
the memory checker becomes unreliable because it is using faulty information.
Missing Information.A memory manager bug is similar in spirit to a compiler bug:a rare “bug
of last resort” that is often identified only after extensive application-level debugging fails.In a
compiler bug, however, it is possible to inspect the assembly code output and verify that it correctly
implements the input source code (or not, as the case may be). No such opportunity exists for errors
in the heap layout of a memory manager. Most implementations do not include a formal description
of what correct states of the heap can look like. Therefore, we cannot merely inspect the resulting
contents of memory to determine if the memory manager has functioned correctly. For this reason,
a preprocessing tool in the Permchecker toolchain is inspired by LoCal [Vollmer et al. 2019] and
Floorplan [Cronburg and Guyer 2019],both of which are memory layout description languages
intended to provide special purpose heap access abstractions.
Static Solutions.Typestate finds numerous applications in both static analysis [Strom and Yem-
ini 1986] and static programming language features.For instance typestate in Rust [Weiss et al.
2019] derives from the language’s support for linear and affine types at compile-time, by enforcing
memory movement semantics statically in the context of a single variable. In contrast typestates
supported by Permchecker derive from the toolchain’s tracking of shadow memory at runtime,
and enforcing memory access permissions dynamically in the context of an individual memory
location. The key difference here is that a single variable cannot be aliased by constructing it from
dynamic calculations, whereas a memory location must be aliasable with pointer arithmetic in the
implementation of a memory manager.

Smart Pointers. Much like linear and affine types for enforcing usage constraints at compile-time on
variables, a smart pointer can check or enforce certain usage properties at runtime on a variable as
well. One canonical example is a reference-counted smart pointer for distinguishing live allocated
objects from garbage.Such a reference counting scheme tracks the number of known pointers
stored in memory in places where they can,in the future, be loaded into variables (registers,at
runtime) and referenced as such with a load or store instruction. This ability to access memory in-
dicates the memory remains allocated. A memory manager however not only manages allocated

Proc.ACM Program.Lang., Vol.1, No.CONF, Article 1.Publication date:January 2018.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

1:6 Anon.

<id> := [A-Z][_a-zA-Z0-9]*
<ts> := <id> // A typestate is a unique identifier
<prim> := bytes | words
<stmt> := <ts> -> <ts>

| <ts> -> seq { <exp> , ... } // One or more ','-separated exps
| <ts> -> union { <exp> | ... } // One or more '|'-separated exps
| # <exp> // Prefix notation for "zero-or-more" repetitions

<exp> := <ts> | <stmt> | [0-9]+ <prim>
<spec> := <stmt>+

Fig.1. Basic syntax for describing the layout of memory in terms of typestates.A layout <spec> here is
one or more layout statements describing a sequence of memory with seq,alternative views of the same
memory with union, some amount of primitive memory with <prim>, or repetitions of a memory structure
with #.

memory: it also manages and requires access to any and all freed memory.Thus,without reach-
ability as a proxy for whether or not a memory location should be accessible, reference-counted
smart pointers alone cannot sufficiently check memory management code for safety.
Compiler Extensions.A compiler extension known as AddressSanitizer [Serebryany et al.2012],
like Valgrind’s Memcheck,is able to detect out-of-bounds accesses to memory locations with
shadow memory.Unlike Memcheck,it relies on unaddressable “poisoned” padding to be added
to heap, stack, and global chunks of memory. As a result this mechanism is able to detect a subset
of inter-chunk corruptions,but not any intra-chunk corruptions.Detecting intra-chunk corrup-
tion requires a richer allocation distinction than just allocated/free, and fewer assumptions about
where memory comes from. The key problem we face, in the domain of memory management, is
that multiple memory allocation schemes share the same single virtual address space.
Bug Injection Methodologies.The process of collecting or generating a corpora of bugs is often
motivated by a specific kind of mistake a programmer can make: off-by-one errors, operator selec-
tion defects [Rice et al. 2017], bounds-checking mistakes [Dolan-Gavitt et al. 2016], and more. The
mechanics of these mistakes generally lend themselves to being constructed by source code muta-
tion [Roy et al. 2018]. What this bug creation technique does not generally take into account, to
our knowledge, is the modeling of undesirable algorithmic operations of the system having bugs
injected into it.

In a memory manager,we know of a relatively fixed and small set of algorithmic operations
that are bad: use-after-free,overlapping allocations,among others.In contrast,the categories of
linguistic (syntactic and semantic) mistakes a programmer can make are limited only by which
symbols the programmer decides to type and that the compiler will accept.The key difference
then is that injecting invalid algorithmic operations into a system realistically stresses a broad
category of resulting downstream behaviors of the system, while injecting linguistic bugs does not.
Injecting linguistic bugs requires both a far larger enumeration of sources of linguistic mistakes
and increasingly clever tactics for eliminating uninteresting bugs,such as ones which virtually
always crash the program.

4 TOOLCHAIN OVERVIEW BY EXAMPLE
In this section we present in modest detail the mechanisms by which a memory management

programmer and the Permchecker toolchain orchestrate the checking of typestates in a memory
manager. In doing so we illuminate the role of the compiler, VM annotations, and DBI engine in

Proc.ACM Program.Lang., Vol.1, No.CONF, Article 1.Publication date:January 2018.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Permchecker:A Toolchain for Debugging Memory Managers with Typestate 1:7

tracking and checking the typestates. The idea here is that each toolchain component is small or
simple in nature and designed to serve a single purpose effectively: manage and check uniquely
identifiable typestates over a process’ address space.To start,the following are some important
high-level definitions clarifying the scope of typestate in this work:

Typestate. This is a uniquely identifiable state of a memory location, coupled with the valid value
types that can reside in that location.A mutable typestate on a heap memory location for the
duration of a program’s execution is similar to a dynamic type on a local variable for the duration
of a function’s execution.The key difference is that a type typically restricts a function call-site
to referring to a specific set of variables, whereas a typestate restricts an assembly instruction to
accessing a specific set of memory locations.

Set of typestates. This is a collection of typestates, each of which can be accessed by the same piece
of polymorphic code.Such a collection associated with a specific piece of code permits access
to memory locations containing the same types of values,without unnecessarily restricting the
code to a highly particular typestate. Unlike polymorphic types where the programmer typically
defines new functionality to extend existing code, our variant of polymorphic typestate allows the
programmer to model existing functionality in the presence of new typestates.

4.1 Allocation Hierarchies
In Figure 1 we define a minimal syntax for defining typestates of memory. The idea is that types-
tates are interrelated via the hierarchy by which they are allocated. For example in Hotspot, a page
resource allocates for regions,the region manager allocates for objects,and object management
code allocates object headers and various primitive application field types.To broadly describe
this hierarchy with the syntax, we might write the following:

Pages -> # union { Region | ... }
Region -> seq { # Object, # words }
Object -> seq { Header, # Field }
Header -> union { 2 words | Array -> 3 words }
Field -> # words

(L1)

This hierarchy defines 6 typestates: Pages, Region, Object, Header, Array, and Field. The idea
is that each and every memory location in use by the memory manager is in one of these typestates
at some point during runtime (or implicitly in an UNMAPPED typestate). For instance, an allocated
heap region with a single 10-word object allocated into it involves three typestates.The first 2
words of the region are in the Header typestate,the next 8 words are Field,and the remaining
memory is all Region.In this example,the first # repetition in the Region statement effectively
takes on a value of 1 (a single object) and the second # repetition consumes the remaining words in
a (fixed-size) region. Also note that the ellipsis on the first line is a placeholder for other allocation
schemes that we do not discuss here.

4.2 Layout Description
In addition to defining a hierarchy, we need to be able to declare what the intended contents
(values) of a memory layout are.In a memory manager,navigating a memory layout to obtain
values in memory is performed by pointer-arithmetic and offset calculations.These calculations
ultimately lead us to the underlying contents of memory.To declare the underlying contents of
objects from Code L1, we might for example write the following:

Proc.ACM Program.Lang., Vol.1, No.CONF, Article 1.Publication date:January 2018.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

1:8 Anon.

Object -> union {
Free -> # words

| Alloc -> seq { Header, # words } }
Header -> union {

Arr -> seq { MarkWord, KlassPtr, Len, Gap } // 3 words
| Cls -> seq { MarkWord, KlassPtr } } // 2 words

(L2)

In this Code L2, we define the typestates of an Object and its Header. An object is either in the
Free typestate, or it is in the Alloc typestate and therefore contains a header and some number
of payload words of memory which we leave unrefined. The Header of such an object is either 3
or 2 words in size, depending on whether or not the object is an array with an array length (Len)
field. The subfields MarkWord, KlassPtr, Len, and Gap can then be given concrete sizes, assuming
a 64-bit architecture, like follows:

MarkWord -> 1 words
KlassPtr -> 1 words
Len -> 4 bytes
Gap -> 4 bytes

(L3)

Code L2 and L3 serve two purposes: (1) to define hierarchical relationships among named types-
tates, and (2) to associate sizes with them. With (1), the idea is that this code models where a piece
of memory comes from in the context of a hierarchy of typestate mutators.One such typestate
mutator is the code in Hotspot which stores a garbage object onto a free-list.This mutator code
implicitly changes the typestate of the underlying memory from allocated to free. However, this is
in some sense a lazy operation. Perhaps we could deem an object to be free as soon as a Java-level
pointer update causes the object to no longer be accessible by the Java heap. While more precise,
this definition would clearly require more complex code to track1. The point is it is not always
clear, based on a cursory analysis of the code, where a typestate mutation should occur. This state
of affairs reflects our dynamic formulation of typestate for tracking memory as implemented, with
minimal disruption to that implementation.

4.3 Typestate Identifiers: Code Generation
In this section we discuss how we annotated the Hotspot VM with typestate layout annotations
generated from a version of Code L1. The idea is that we can generate much of the repetitive boil-
erplate necessary to track typestates at runtime. This boilerplate includes a consistent centralized
naming scheme for managing varied hierarchies of allocable typestates.

To start, a preprocessing tool in our toolchain process a layout description, generating a series of
named typestates, among other code snippets to reduce boilerplate during annotation of a memory
management algorithm. From Code L2, we get out a series of typestates defined like follows:

1Such as auxiliary reference counting.

Proc.ACM Program.Lang., Vol.1, No.CONF, Article 1.Publication date:January 2018.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Permchecker:A Toolchain for Debugging Memory Managers with Typestate 1:9

#define PCK_Object ((TypeState)1)
#define PCK_Object_Free ((TypeState)2)
#define PCK_Object_Alloc ((TypeState)3)
#define PCK_Object_Alloc_Header ((TypeState)4)
#define PCK_Object_Alloc_Header_Arr_MarkWord ((TypeState)5)
#define PCK_Object_Alloc_Header_Arr_KlassPtr ((TypeState)6)
...
#define PCK_MarkWord ((TypeState)30)
#define PCK_KlassPtr ((TypeState)31)
...

(C1)

In this series of typestates in Code C1,TypeState is a class for unique identifiers,and any
top-level defined <stmt> gets associated with it a nested hierarchy of addressable typestates. For
instance,an addressable memory location can be part of a free (PCK_Object_Free) or allocated
(PCK_Object_Alloc) object. Notably this means that no typestates of the form PCK_Alloc_* are
generated, but indeed PCK_Header_* are generated. The key is that one can choose which typestate
contexts are useful to track based on how memory is managed.

One interesting distinction is, for example, the distinction between the typestates PCK_Object_-
Alloc_Header_Arr_MarkWord and PCK_MarkWord. Clearly, two different memory locations in ei-
ther typestate could contain values that look identical, and in fact are semantically identical for two
values of the same type.The difference then is in how the two different memory locations were
allocated.The latter PCK_MarkWord is applicable to a top-level variable,in the C++ implementa-
tion of the Hotspot VM, not located in the Java heap.In contrast the former is a fully-qualified
mark word of an allocated array object header. This typestate is applicable to a piece of memory
which was allocated by the proper Java object allocation code. The distinction here is necessarily
self-enforced, based on annotation usage, but it is a useful distinction. The idea is that by default
internal memory allocation context is all-but lost once an initialization is complete. With the two
typestates however,we can now retain the context for validation or diagnosis purposes if and
when a corruption occurs.

However, the typestate distinction comes at a price. In order to specify that the distinction does
not matter, in some piece of code, we must annotate the code with all of the allowable typestates.
Instead of doing this manually, the code generator does this for us. The generator creates names
for collections of typestates based on all the qualified names by which any given “leaf” typestate
can be allocated.For example,for the mark word typestates from Code L2 we get the following
collection:

#define PCK_ALL_MarkWord PCK_MarkWord PCK_Object_Alloc_Header_Cls_MarkWord \
PCK_Object_Alloc_Header_Arr_MarkWord PCK_Header_Arr_MarkWord \
PCK_Header_Cls_MarkWord (C2)

This macro is boilerplate for describing a fairly common idiom in memory managers.That is,
some accessor function intended to access a mark word typically by default does not care which
variant it accesses. By annotating code with this PCK_ALL_MarkWord typestate collection, we get
the benefit of a coarse polymorphic typestate when the precise distinction does not matter. At the
same time, we still get the benefit of a detailed taint analysis when Permchecker reports an error
in terms of the precise typestate observed at runtime.

Proc.ACM Program.Lang., Vol.1, No.CONF, Article 1.Publication date:January 2018.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

1:10 Anon.

namespacepck {
class Map;
class TypeState; // Includes an identifying member field of u64_t
Map create();
void destroy(Map m);
TypeState Map::get(Address a);
void Map::put(Address a, TypeState ts); }

Fig. 2. The VM-level interface to initialize and track a memory to typestate mapping. All functions here are
in the pck (Permchecker) namespace.

4.4 Typestate Tracking
The VM’s interface to the typestate tracker is shown in Figure 2. Apart from its connection to the

DBI engine, this interface operates how one would expect it to. An individual shadow map can be
created and destroyed, with each map maintaining an injective key-value mapping from addresses
to typestates. The special UNMAPPED typestate is the default value for unaddressable memory, and
UNMAPPED can be explicitly referenced as a typestate. The interface further uses array-access over-
loading to provide the following map update and query syntax:

Address a; TypeState ts;
map[a] = ts;
pck::assert(map[a] == ts)

(C3)

In this Code C3, we have defined some address a and some typestate ts. On the second line, an
assignment operation calls Map::put to assign the r-value ts to the map location referenced by ad-
dress a. On the third line, an equality comparison operation calls Map::get to query the typestate
at address a and check that it matches ts. Note that the equality and map-access operations return
proxy object types tracking what address was accessed,and the arguments to any comparisons.
This proxy information allows pck::assert to report a useful error message in terms of the ad-
dress, observed typestate, and expected typestate of the comparison, rather than simply reporting
that the assertion failed.

As we will discuss in the next section,the DBI engine effectively performs an assertion,like
above,over the typestate map for each and every memory access executed by the processor.To
simplify our discussion,we focus on the (sufficient) use case of tracking a single typestate map.
In this case, the create and destroy functions get called near the beginning and end of program
execution, respectively. In the case of Hotspot, some complication arises from the use of fork/exec
system calls,requiring explicit map initialization after the main Java thread is created.A more
careful integration with thread and process creation system calls could provide more automation
of this process in the future. For now, this is unnecessary work to automate a very small amount
of code that a memory management developer knows exactly where to put.

4.4.1 In Practice.We initially inserted 52 assertions related to object mark-words and klass point-
ers in Hotspot.Of these,11 assertions were subsequently replaced with annotations on simple
accessor functions, to be discussed in Section 4.5.1. A typical pattern in a memory manager is for a
simple one-line accessor function to access a specific set of typestates, and so a function-level anno-
tation is ideal. In contrast, manual assertions are ideal when instrumenting (1) compiled Java code,
(2) other VM components that cannot easily rely on the C++ compiler,and (3) when substantial
code refactoring would be necessary to systematically instrument certain memory accesses.

Proc.ACM Program.Lang., Vol.1, No.CONF, Article 1.Publication date:January 2018.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Permchecker:A Toolchain for Debugging Memory Managers with Typestate 1:11

namespacepck {
enum Perms{ RW, R, W, NONE };
Map::protect(TypeState ts, Perms ps);
Map::unprotect(); }

Fig. 3. The VM-level interface to set memory access protections by typestate, instead of a concrete address
like with the POSIX mprotect system call. The Map::protect method here applies only to the calling thread,
and temporarily overrides any previous protections for the given typestate. These previous protections are
restored by a subsequent matching call to unprotect.

4.4.2 Code Generation.For some of the more verbose typestates,Permchecker’s preprocessor
generates helper macros. One such macro manages all the appropriate typestate updates for when
a typestate with numerous nested components is to be allocated.For example,for tracking the
nested typestates associated with an array header the preprocessor generates the following macro
based on Code L2:

#define transition_Object_Alloc_Header_Arr (a) { \
map[words(a, 1)] = PCK_Object_Alloc_Header_Arr_MarkWord; \
map[words(a + words(1), 1)] = PCK_Object_Alloc_Header_Arr_KlassPtr; \
map[bytes(a + words(2), 4)] = PCK_Object_Alloc_Header_Arr_Len; \
map[bytes(a + words(2) + bytes(4), 4)] = PCK_Object_Alloc_Header_Arr_Gap; }

(C4)

In this Code C4 we see a series of array-update operations over the shadow map, as explained
earlier. The words and bytes functions in this code return a C++ proxy class indicating the location
and size of a piece of memory to update in the typestate map. For the two-parameter versions, the
first parameter is a starting address and the second parameter is a number of bytes to assign the
typestate to. For the one-parameter version, the parameter is just a memory size for use in offset
calculations.For example,the offset calculation in the second map update above computes the
address of a offset by one word of memory. The key is that this code fragment conceptually (if not
literally, for performance) boils down to a series of appropriate calls to Map::put.

4.5 Permission Tracking
Next, we need to be able to assign permissions to a piece of code in terms of the typestates the code
is allowed to access. The primary mechanism the toolchain supports for this purpose is permission
attributes on functions and classes in C++. The exact low-level mechanism to track this information
involves intercepting specific function calls by Permchecker’s DBI tool. In view of this mechanism,
we conclude this section by discussing what Permchecker’s typestate permissions can and cannot
detect.

The VM’s interface to the permission tracker is shown in Figure 3. This interface models memory
access permissions by associating with each thread of execution a set of per-typestate permissions.
For example, each thread which calls an accessor function with read or write access to the mark
word of an object header can temporarily be given permission to access any such mark word.
This does not guarantee the correct mark word is accessed, just that the underlying memory was
allocated as such. The key is that an individual function, class, or algorithmic operation typically
either has permission to access the mark word, or it does not.

The protect and unprotect functions implement this permission model.These functions op-
erate similarly to the mprotect POSIX system call, but with a few differences. A call to protect
states that the currently executing thread now has the specified permission to access any memory

Proc.ACM Program.Lang., Vol.1, No.CONF, Article 1.Publication date:January 2018.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

1:12 Anon.

__attribute__((pck_R (TypeState...)))
__attribute__((pck_W (TypeState...)))
__attribute__((pck_RW(TypeState...)))
__attribute__((pck_NONE(TypeState...)))

Total Mark & Klass
Lines added 1830 49
Map updates 144 25
Annotations 64 24
Typestates 60 16

Fig. 4. Left: Read, write, and read-write annotation forms which can be attached to either a function or a
class to indicate that entity has permission to access the listed typestates. The pck_NONE option allows one
to explicitly remove access, notably on a member function where the class generally has permission but the
member function should not. Right: Breakdown of VM modifications.

address in the given typestate. A subsequent matching call to unprotect returns the permissions
to what they were before. In designing this part of Permchecker, a simpler model was considered
where permissions could only be updated with protect and the previous permissions are forgot-
ten. This simpler stateless model,however,fails to account for two nested call frames for which
the associated functions both have permission to access the same typestate in the same way. Such
behavior is desirable when in one calling context the leaf call frame for a function will inherit
access permission to a typestate, but in another calling context the same function’s call frame will
not inherit the necessary typestate. With a statefulunprotect call, the calling framewith permis-
sion over the typestate would incorrectly lose that permission if the leaf frame were to remove
permission upon completion.

4.5.1 Function & Class Annotations.In Figure 4,on the left, we have a series of typestate per-
mission annotations for functions and classes.On a function,an annotation compiles to calls to
protect and unprotect in the prologue and epilogues of the function. On a class, the annotation
gets distributed across functions in that class to the same effect. Based on this model, an annotated
function calling some other function conservatively grants the callee the same permissions it has.

Also in Figure 4, on the right, is a breakdown of modifications made to the Hotspot VM to
achieve permission checking of object header words. The modifications reported are the ones at-
tributable to the memory management developer, with the Total column including modifications
necessary to support tracking of the Java heap across the entire allocation hierarchy. These num-
bers represent a reasonable upper bound on the annotation burden of dealing with a small number
of the most complex typestates in a memory manager.

The overall number of lines of code added involved modifications to the JIT compiler, assembler,
argument parsing,imports, error reporting, foreign function interface,and write barrier.Apart
from these tasks,144 and 64 lines were respectively added to track typestates and to apply per-
missions to code.Of those typestate management lines of code,49 dealt with just a variety of
16 typestates pertaining to the mark or klass word of an object.The remaining 44 of 60 types-
tates were added to provide useful allocation context for when the mark or klass word is accessed
erroneously.Such typestates include allocated object fields,free regions,and reserved pages of
memory, among others.

4.5.2 Low-Level Tracking Mechanism.In order to track typestate permissions, Permchecker’s DBI
tool relies on intercepting calls to the protect and unprotect functions. As a result, calls to these
functions show up in the compiled version of the memory manager.This mechanism,however,
has its own tradeoffs and possible sources of errors that we must consider.The key is that we
want robust error detection in the presence of any incorrect code, be it in the bootstrapping com-
piler (Clang),the memory manager,or some other VM component with purview over memory

Proc.ACM Program.Lang., Vol.1, No.CONF, Article 1.Publication date:January 2018.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Permchecker:A Toolchain for Debugging Memory Managers with Typestate 1:13

layout. In the next few subsections we go on to discuss how Permchecker reports useful typestate
mismatches in the presence of either a specification or an implementation error.

4.5.3 True Negatives.Consider a VM function intended to access the mark word of an object,
and we wish to give the corresponding assembly code permission to access mark words therein.
Therefore we want the function to compile to an instruction sequence that looks like the following:

// Begin perms: stack (RW)
mov $0x21,%esi
mov $0x2,%edx
// Begin perms: stack (RW) & mark word (W)
call protect // Mangled name: _ZN3pck3Map7protectEyNS_5PermsE
mov -0x28(%rbp),%rax
movl $0x1,(%rax) // Write to a mark word
call unprotect // Mangled name: _ZN3pck3Map9unprotectEv
// Ending perms: stack (RW)

(A1)

Code A1 executes as follows.We store immediate values for a mark word’s typestate (0x21)
into register esi and for write access permission (0x2) into edx.On line 3 we call protect to
register this permission for the current thread. Next on line 4, we load an address to an object off
the stack and into register rax.Finally on line 5, we set four bytes of the object header to 0x1
to indicate it is a regular unlocked object.After this, a call to unprotect reverts the executing
thread’s permissions to what they were at lines 1 and 2. The idea is that if line 5 writes to 4 bytes
in a valid mark word typestate then the program did not have a memory error, resulting in a true
negative check by Permchecker.

4.5.4 True Positives.Now consider a bug where the mark word annotation is in the wrong place,
or where the C++ compiler itself erroneously reorders the memory access to the object’s mark
word. Therefore the memory access occurs outside the desired scope to our protect call,like
follows:

// Begin perms: stack (RW)
mov $0x21,%esi
mov $0x2,%edx
call protect // Begin perms: stack (RW) & mark words (W)
call unprotect // Begin perms: stack (RW)
mov -0x28(%rbp),%rax
movl$0x1,(%rax) // Violation!

(A2)

In this Code A2 Permchecker will report an access violation because line 6 here did not have
permission to write to the mark-word even though line 6 is supposed to be able to do so. The key
is that Permchecker does not make a claim of truth as to which permission was correct: the code
or the memory.By doing so,Permchecker can usefully report localized memory errors without
needing to assume any code is necessarily correct. Thus, not only is a bug in the implementation
reported as a typestate mismatch, but a specification (or compiler) bug is reported as such too.

4.5.5 Benign Checks.In the two snippets of assembly code above, we in fact accessed two different
kinds of memory: a mark word, and a pointer to that mark word found on the stack. For the true-
negative, both memory accesses occur within the scope of our call to protect, but we only needed
the mark word access to be checked. In checking both, we made a tradeoff in how Permchecker was

Proc.ACM Program.Lang., Vol.1, No.CONF, Article 1.Publication date:January 2018.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

1:14 Anon.

// lo addr --> |-----------------|
// . fields... .
// [k words] | (prev obj) |
// raw ptr --> |-----------------|
// [1 word] | fwding pointer |
// obj ptr --> |-----------------|
// [1 word] | mark word |
// |-----------------|
// [1 word] | klass ptr |
// |-----------------|
// [n words] | fields... |
// | (variable size) |
// . .
// . .
// hi addr --> |-----------------|

// |-----------------| <-- lo addr
// . fields... .
// | (prev obj) | [k words]
// |-----------------| <-- raw & obj
// | mark/fwd word | [1 word]
// |-----------------|
// | klass ptr | [1 word]
// |-----------------|
// | fields... | [n words]
// | (variable size) |
// . .
// . .
// |-----------------| <-- obj end
// | Unallocated due | [1 word]
// | to elimination | <-- hi addr

Fig.5. ASCII-art diagram depicting the difference between two memory layouts central to an off-by-one
bug affecting memory safety.

designed. The idea is that it is often sufficient to check a memory access against a set of possibly
unrelated typestates when doing so simplifies our permission specification.
4.5.6 Exceptions Limitation.When Permchecker instruments a function with calls to protect and
unprotect, it does not handle the presence of throw-catch style C++ exceptions. Nor does it reason
about any other dynamic feature which alters ordinary program controlflow in a permission-
annotated function.A long-term goal for Permchecker is to obviate this limitation by directly
relating typestate permissions with individual memory access assembly instructions in the code
spaces of a process. This high level of individual detail, however, increases by default the upfront
annotation cost required to annotate a memory manager. Therefore some care must ultimately go
into the design of assembly instruction permission techniques for Permchecker to support.
4.5.7 Failure Modes.A false positive is generally not possible with Permchecker. This is because
a typestate error indicates the presence of a bug in the memory manager, the layout specification,
or both. Such a bug can even be present and reported as an error when the application correctly
runs to completion. Such an error report is indicative of an at-least occasionally benign bug that
should be fixed.

In contrast, a false negative is generally possible with Permchecker. For example, a false negative
will occur in Code A1 when attempting to write the mark-word actually writes a value to stack
memory. Permchecker does not report this as an error because the executing thread had permission
to write to the stack when the purported mark word instruction clobbers the stack.To mitigate
this kind of source of false negative, we have come up with a dynamic heuristic to understand the
sensitivity of the specified code permissions.

The heuristic Permchecker provides is to generate a table of typestate usage statistics at the end
of a program’s execution. This table includes which typestates each instruction2 was observed to
have accessed, and whether or not any permissible typestates were never accessed. The idea is that
any given instruction in a mostly-bug-free memory manager will access a fixed set of typestates
after sufficient testing. Then, any remaining permissible typestates are suspicious. The permission
annotation could have been overly broad,blanketing a number of unrelated memory access in-
structions. Or, the instruction was insufficiently tested. In either case, there exist remedial actions
2Requires debugging symbols to get source locations.

Proc.ACM Program.Lang., Vol.1, No.CONF, Article 1.Publication date:January 2018.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Permchecker:A Toolchain for Debugging Memory Managers with Typestate 1:15

[error][pck] /jdk13/src/.../oop.inline.hpp:123
Permchecker Violation in Thread #2:

Expected typestates: PCK_MarkWord, ...
Observed typestate: PCK_Object_Header_Alloc_KlassPtr
Address = 0x00007ffb1c43e008
Address is preceded by 1 words of typestate PCK_Object_Header_Alloc_MarkWord
Address starts 1 words of typestate PCK_Object_Header_Alloc_KlassPtr
This is followed by 6 words of typestate PCK_Object_Alloc
Dumping typestates to /memdbg/permchecker.3952.log
Dumping core file to /memdbg/core.3952

Fig. 6. The error reported by Permchecker when code assuming the left-layout of Figure 5 attempts to access
the mark word of an object allocated and initialized by code assuming the layout on the right of that figure.

the memory management developer can take which either incrementally improve the precision of
the annotations, or improve the typestate coverage of the testing benchmarks.

4.6 Runtime Debugging
With typestate tracking and permissions in place, we now want a way to check the validity of each
memory access.The goal is to ensure that for each address in some typestate,the only load and
store instructions operating over the address occur when the code has permission to access it. In
this section we present how we achieve this goal by discussing an example where a header’s mark
word is incorrectly accessed.

4.6.1 Mark Word Example.In Figure 5 we see two distinct memory layouts.On the right is the
layout of an allocated Java object,as used in the production version of Hotspot.On the left is a
modified version of this layout,with a word of memory containing a forwarding-pointer added
to the beginning of the object’s header. In the middle of the diagram arrows pointing left-to-right
indicate how the different typestates shift in the address space when the author of the left layout
modified a part of the memory manager to use the layout on the right.

In Figure 6, we see the error observed and reported by Permchecker when two different pieces
of code disagree on the expected layout of objects in memory. In this case, the VM allocates and
initializes the contents of objects according to the production version of the VM where non-array
objects consume 2 words of memory for the header.When the VM proceeds to access memory
according to the development version with an extra header word,Permchecker reports that an
offending memory access read a Klass pointer but expected (had permission to access) mark word
typestates. The idea here is that Permchecker does not assume that either the observed layout or
the expected layout are necessarily correct. In fact, both could be incorrect. Instead, we label code
with intentions and Permchecker treats those annotations not as a ground-truth specification of
expected behavior, but as a mechanism for pin-pointing inconsistencies.

4.6.2 Lightweight Debugging.Permchecker supports both a lightweight and a heavyweight mode.
In the lightweight mode,only memory locations explicitly assigned a typestate are checked for
access permissions.In this mode, a program with no updates to the typestate map will never
produce a violation because all memory locations remain in the UNMAPPED typestate.The idea is
that the lightweight mode eliminates a lot of error detection noise when the memory manager
is initially being annotated, favoring local sensitivity over system-wide sensitivity.It does this
by only telling the developer when an unexpected piece of code accesses memory in a known
typestate. Memory accesses to locations with unknown typestates are ignored.

Proc.ACM Program.Lang., Vol.1, No.CONF, Article 1.Publication date:January 2018.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

1:16 Anon.

Feature Component Typestate Purpose
FFI VM modification Traffics typestates from non-native VM code with

prerogative over typestate.
Annotations Clang extension Distributes a typestate permission over an

entire VM component: functions and classes.
Layout Spec Preprocessing tool Allows for developer-defined relationships

among typestates as an allocation hierarchy.
Codegen Preprocessing tool Supports the expression of common permission

idioms and typestate transitions.
Macros VM boilerplate Manages error-prone calculations for offsets

among typestates.
Proxy objects C++ overloading Integrates typestate operations with the VM’s

host language for ease-of-use.
Tracking API pck namespace Flexibility to manage typestates at non-function

or class boundaries.
Assembly instr. JIT compiler Typestate checking of runtime generated code.
Checker DBI (Pin tool) Applies a simple and rational checking model

across every single memory access.
Shadow memory DBI library Maintains a snapshot of the typestate map.

Fig.7. Each feature Permchecker touches,what system component it involves,and the feature’s purpose
with respect to typestate.

4.6.3 Heavyweight Debugging.In the heavyweight mode, Permchecker reports an impermissible
memory access for all typestates, including UNMAPPED, as an error. In this mode, a program with no
updates to the typestate map will produce a violation for every single memory access because no
instruction has permission to read or write unmapped memory. The idea is that the heavyweight
mode increases the number of true positives once a related set of typestates have been annotated in
the memory manager, thus increasing system-wide sensitivity. While the lightweight mode allows
the developer to build the lifecycle of an individual typestate, the heavyweight mode discovers all
buggy, unspecified, or improperly specified memory accesses.
4.6.4 Thread Permissions.In Permchecker’s DBI engine, a per-thread permission tracker is imple-
mented as two extensible bit-vectors representing read and write permissions each with one bit
per typestate. When a bit in the vector is set, the associated thread has that kind of (read or write)
permission to the typestate associated with the offset of the bit into the bit-vector. This mechanism
directly relates to how the lightweight and heavyweight modes differ.

The lightweight mode can be thought of as an opt-in checking model, where all typestates im-
plicitly have their read and write bits set, except an explicitly named set of them. The one exception
to this occurs when a thread’s permissions are annotated as pck_NONE(<ts>), which does cause
the given <ts> to be checked. In contrast the heavyweight mode can be thought of as an opt-out
checking model,where all typestates implicitly have their read and write bits unset.As a result
every single memory access is checked by default,and the developer must tell Permchecker to
explicitly allow a memory access by annotating it.

5 DEBUGGING TOOLCHAIN ARCHITECTURE
Different components of a VM have access to widely varying and fundamentally different mech-
anisms to support typestate tracking.A simple numeric typestate tracking system is a modest

Proc.ACM Program.Lang., Vol.1, No.CONF, Article 1.Publication date:January 2018.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Permchecker:A Toolchain for Debugging Memory Managers with Typestate 1:17

Layout
Spec

Macros

Proxy
Objects

JIT
Assembly
Instrum.

Java
FFI Annotations

Tracking
Interface

DBI
Engine

↑ Compile time

↓ Runtime

↑ Preprocessing

↓ Language Features

Shadow
Memory

Typestate
Checker

codegen
tool

C++

C++

C++ C++ C++

clang extension

function
interception

Library Pin-tool API

Fig.8. Architecture of the Permchecker toolchain,indicating how typestate tracking and permissions are
implemented.Nodes are artifacts in the system which involve typestate,and arrows are mechanisms for
enacting their purpose.

endeavor in and of itself, short of supporting fully featured contracts and logic. In achieving the
former, Permchecker takes advantage of the language features listed in Figure 7 in order to manage
and track typestates.

Artifacts & Mechanisms. In Figure 8 we show how typestate information flows through the toolchain
at different levels of abstraction. For instance, the DBI engine intercepts function calls at runtime
to the typestate tracking interface. The DBI engine then uses Pin’s API for instrumenting memory
accesses,in order to check typestate permissions. The idea is that a shared universe of typestate
identifiers applies across all abstraction levels.This is necessary because each level accesses and
mutates the exact same pieces of memory according to specially crafted policies.These policies
all require unsafe low-level access, unlike any other domain to our knowledge, in order to extract
every ounce of performance from components including the JIT compiler, VM host-language, al-
locator, garbage collector, and heap mutator.

Proc.ACM Program.Lang., Vol.1, No.CONF, Article 1.Publication date:January 2018.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

1:18 Anon.

oop p = ...;
if (DoInjectCorruption && InjectID == 1 && !__CORRUPTION) {

if (__CORRUPTION_SIZE > 0 && p->klass() == first_kls) { // 3rd case
HeapWord *src = (HeapWord*) p;
HeapWord *dst = first_forwardee;
Copy::aligned_conjoint_words(src, dst, size);
oop(dst)->init_mark_raw();
log_info(permchecker)("Corruption #1");
__CORRUPTION = 1;

} else if (__CORRUPTION_SIZE == 0 && // 2nd case
__CORRUPTION_COUNTDOWN == 0 && p->is_forwarded()) {

__CORRUPTION_SIZE = (size_t)p->size();
first = (HeapWord*) p;
first_kls = p->klass();
first_forwardee = (HeapWord*)p->forwardee();

} else if (__CORRUPTION_COUNTDOWN > 0) { // 1st case
__CORRUPTION_COUNTDOWN--; } }

Fig. 9. The core functionality of a template for injecting object cloning bugs into Hotspot.In the third
conditional branch, we count down some number of executions ofthis code fragment. In the second
branch,we then record an object located at pointer “p”. Finally in the first branch, we discover a sec-
ond object of the same Klass type and (incorrectly) forward its contents to the destination of the first ob-
ject. The variables first, first_kls, first_forwardee, __CORRUPTION_COUNTDOWN,__CORRUPTION_SIZE,
DoInjectCorruption, InjectID, and __CORRUPTION are static class members.

6 BUG INJECTION BENCHMARKS
In this section we present a methodology, and application thereof, for injecting bugs into a memory
manager. The idea is that each injected bug is an instantiation of a template designed based on real
bugs found in memory managers.Each template encapsulates the memory safety or correctness
effects of the original bugs,with consistent reproducibility of many unique injectable bugs at
modest scale.Having such unique bugs at scale then allows us to stress the system for a broad
array of behaviors and failure modes.

6.1 Object Cloning Bug Injection
The core functionality of one bug template used to inject bugs into Hotspot is shown in Figure 9.

The code from this figure is placed in the compaction phase of the Shenandoah garbage collector.
More generally, the idea is that this particular template can be injected anywhere in the code where
an object pointer (oop type) is available. The template works by delaying bug injection until some
number of executions have happened. Once this happens the code injects a single non-recurring
bug that will not simply crash the system outright.

To run this template, we must first decide on an initial value for __CORRUPTION_COUNTDOWN. This
value tracks how many objects have been forwarded during concurrent compaction, and therefore
changing it varies which exact objects are affected by the injected bug. By varying it over a large
number of sufficiently long-running program runs,we now have numerous injected bugs each
with differing effects on the downstream behavior of the system.

It should be noted that this bug template is not entirely divorced from typestate annotations.
In fact, the functions is_forwarded, klass, and forwardee are annotated with the appropriate
access permissions, allowing ostensibly buggy code to access memory. However, it is evident these

Proc.ACM Program.Lang., Vol.1, No.CONF, Article 1.Publication date:January 2018.

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Permchecker:A Toolchain for Debugging Memory Managers with Typestate 1:19

Template Injections Pck Ad-hoc OS Error Output OOM Benign
Object cloning 13,812 13,812 4,820 0 8,957 0 35
Use-after-free (R) 836 832 0 379 452 1 4
Use-after-free (W) 799 799 0 346 432 0 21
Overflow (padding) 8,658 8,658 313 0 0 0 8,345
Overflow (no pad) 10,026 10,026 9364 662 0 0 0
Wasted Memory 1,000 0 0 0 0 0 1,000
Premature Free 976 649 562 31 2 5 376

Fig. 10. Breakdown of bug templates injected into Hotspot, as detected with and without Permchecker. The
second column group, Injections & Pck, indicate the total number of executions of the VM and how many
of those were detected by Permchecker, respectively. The third column group indicates how the VM reacts
in the absence of Permchecker.

functions are used here in an appropriate, non-buggy, manner. They are all used to access header
words of valid heap objects for which the typestates match the usage of the values being read.

It is not until the Copy operation that it becomes clear that a memory error is present. During
this operation, we read the contents of a valid object from src. But as it turns out, we write these
contents to a location which already contains an object as well. This fact about the typestate of the
destination is already tracked by Permchecker when the destination first received a valid object,
and therefore the operation is in error.

When the developer is told about this error, it might be tempting to think there is a specification
error and that the developer should give the copy operation permission to overwrite allocated type-
states. This option however makes no sense after minimal scrutiny, because transporting an object
from one location to another should never be allowed to write to memory already in an allocated
state.Instead,the developer must do one of two things.One,he can check that the destination
is in the appropriate free typestate,transition it to the allocated typestates,and then perform a
copy operation with permission to write to the allocated typestates.Or two, he can specify the
copy operation has permission to write to the free typestate, and then transition the memory to
the allocated typestates after copying.

The latter technique is preferable because it is less error-prone: the developer cannot forget to
insert a typestate check,because the check for free memory is implied by a new annotation on
the copy operation.The key is that with or without adding either the permission annotation or
typestate transition, Permchecker reports an error. Based on this reasoning, it is generally better
practice when instrumenting a memory manager to rely on automatic checks by the DBI tool than
to use a technique that relies on the developer to check a typestate before changing it. Discovering
this sort of best practice is one overarching goal of this work: to not only build correct systems,
but to build error-resistant debugging and instrumentation techniques.

6.2 Results
In Figure 10 we see how well Permchecker managed to detect the injection and execution of a
series of bug templates, including the one just discussed in Section 6.1. We consider a bug template,
when tested in a specific system configuration, to represent an. error benchmark. A key strategy we
developed to create good error benchmarks was to confine the effects of a bug to a single execution
of some operation by the memory manager. This strategy provides the following benefits:

• There is an increased chance of the bug evading traditional error detection mechanisms,
mimicking the rarity of incidence exhibited by similar real bugs.

Proc.ACM Program.Lang., Vol.1, No.CONF, Article 1.Publication date:January 2018.

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

1:20 Anon.

• No static analysis is necessary in order to synthesize or construct conditional statements
which help rarify the bug’s execution.

• We get a large number of possible injections because the number of dynamic operations
performed by the garbage collector is effectively unbounded,unlike the number of static
injection sites.

Based on this strategy, we created the bug templates listed below. For each template, the number
of injections reported in Figure 10 reflects the number of times we were able to get the template’s
preconditions to be satisfied.For example,the use-after-free templates require finding an object
near the end of its containing region, and therefore required more compute power to accumulate
the same number of injections as some of the other templates.
Object cloning - this bug template is the code fragment from Figure 9, which discovers two object
pointers of the same Klass type, and overwrites the memory of one with the other. This template
generally works in any VM function with access to at least one heap object pointer per execution.
Use-after-free (read) - this bug template discovers a single object pointer near the end of a region,
waits for its contents to be evacuated, and then redirects the application’s next field access to use
the freed memory as a base pointer in its load instruction.
Use-after-free (write) - like above, but the field access is a write instruction causing garbage to
be “corrupted” and the intended object field to not be updated.
Overflow (padding) - this bug template duplicates the Klass metadata for a single object instance
when it gets allocated, modifying the duplicate Klass to indicate this one object has some multiple
of an object’s alignment less of memory than it requires based on the fields in the object.
Overflow (no padding) - like above, but the injection only happens when the last field of the
object ends on an object alignment boundary.
Wasted Memory - this bug template operates similarly to the overflow templates, but the Klass
is modified to indicate the object consumes more memory than it requires.
Premature Free - this bug template discovers an allocated object residing at the end of a memory
region and skips compacting it, possibly causing other object(s) to point to a valid-looking object
that the memory manager believes to be free memory that can be allocated into.

6.2.1 Choice of User-LevelApplication.One particular class of memory management bugs we
wish to study are ones which do not crash the program at all, but instead affect the correctness of
the user-level application such as its output. The incidence of output-based errors relies heavily on
the chosen domain and implementation of the user-level application. Application characteristics
affecting whether or not an output error will arise include ones like object allocation and death
patterns, mean amount of drag time between last use of an object and when the object becomes
unreachable,overall fragility, and more.For the results in Figure 10,we modified a version of
GCBench [Ellis et al. 2014] so as to maximize fragility by minimizing drag.

We use fragility here to mean how likely an application is to compute the wrong result if one
of its objects gets corrupted.The original unmodified version of GCBench is a prime example
of a non-fragile benchmark.GCBench by default iteratively constructs a number of binary trees
of certain depths,in order to stress the performance characteristics of a garbage collector.The
benchmark is not actually intended to compute anything of algorithmic value. Therefore, so long
as the application terminates at the end of main, it “computed” the correct value.

In contrast our modified version of GCBench maximizes fragility.It does this by computing a
hash over the contents of each node in a binary tree shortly before we expect the tree to become
garbage. This hash value iteratively accumulates through every node allocated by the application,
and then prints the hash before the application terminates.This strategy aggressively links the
correctness of the application’s output to the presence of heap corruption. We further believe this

Proc.ACM Program.Lang., Vol.1, No.CONF, Article 1.Publication date:January 2018.

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Permchecker:A Toolchain for Debugging Memory Managers with Typestate 1:21

strategy is ripe for automation over any existing application in other domains than just perfor-
mance analysis.

6.2.2 Interesting Results.With the use-after-free (write) template, both pointer updates and prim-
itive field updates were affected throughout the various error benchmarks. As a result a small num-
ber of the benchmarks terminated significantly early (with incorrect program output), presumably
because a failed pointer initialization lopped-off a significant portion of a recursive data structure
before it was processed by the application. The same behavior appears to have happened with the
use-after-free (read) template,where some of the incorrect-output benchmarks terminated early
because a load of a pointer to a large recursive sub-structure was redirected to a smaller one.

Of the 4 benign results with the use-after-free (read) template, all of them went undetected by
Permchecker. This means that the freed memory was necessarily quickly reallocated by the mem-
ory manager, bringing it to a typestate validly accessible by the application mutator. Subsequently
the application accessed a field at the wrong address, but happened to read the correct value so-as
to be benign.We believe these 4 injections have to do with leaves of a binary tree being imple-
mented as the NULL value.As a result a memory access to the left or right child of a node was
corrupted, but would have received the NULL value it was supposed to read anyways.

This behavior exposes a limit to Permchecker’s checking capability. Permchecker cannot detect
a dangling pointer error when the memory pointed to by the dangling pointer is reallocated to
a similarly allocated object of the same typestate and size. Valgrind’s Memcheck tool is similarly
unable to detect this subclass of dangling pointers, for a fundamentally identical reason. Neither
tool checks how a pointer value is obtained, just that an observed access to the referenced memory
is permissible in each tool’s checking model.

6.2.3 Observable Behaviors.In Figure 10 we also break down the frequencies with which each bug
template caused a variety of observable behaviors in the absence of Permchecker.In debugging
practice, these behaviors are a holistic collection of failure modes that a developer would have to
reason about when confronted with them. The following list gives descriptions for how we defined
each of these failure modes:

• Ad-hoc: an error detected and reported by the VM itself, usually from a suspicious looking
pointer or other unexpected value.

• OS Error: a segmentation fault, bus error, or other OS-level error even if the VM intercepts
it to provide more information.

• OOM: an out-of-memory error reported by the VM. This could be caused by a corrupted
allocation loop that never terminates.

• Output: the program successfully terminates with textually incorrect output from the user-
level application.

• Benign: the program successfully terminates with the correct user-level textual output,
regardless of how long it took to run.

• Live/deadlock: corruption that leads to a non-terminating program. This was not observed
in our testing.

Notably, we consider a “benign” behavior a failure mode in the known presence of a (injected)
bug. This is because a program run observed to be benign does not necessarily preclude memory
corruption from having occurred.It only indicates that the bug was benign for the chosen exe-
cution trace.In fact, all the benign bugs from Figure 10 can rightly be considered failure modes
of the system to exhibit more obvious signs of corruption or typestate mismatch.The “Wasted
Memory” benchmark, too, corrupts the layout of memory, albeit only ever benignly in a way that

Proc.ACM Program.Lang., Vol.1, No.CONF, Article 1.Publication date:January 2018.

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1:22 Anon.

our Permchecker annotations were unable to detect because no read or write instructions access
“extra” memory.
6.2.4 Utility of Error Reports.In addition to a tool with high sensitivity and specificity in reporting
the presence or lack of an error, it is also desirable for the contents of the error report to be useful.
Subjectively, a useful error report is one which identifies information pertinent to the source of the
error. With typestate checking, a simple first-order metric is whether or not either the permissible
or the observed typestates, of a Permchecker error report, indicates the memory (or layout) which
was actually corrupted.

In all of the Permchecker error reports pertaining to Figure 10,the error report included the
pertinent typestate for each of the typestates. For instance in the “Overflow (padding)” template,
Permchecker always reported an error where the program had permission to access an object
Field, but in fact accessed some kind ofPadding typestate.Similarly with the “Overflow (no
pad)” template, Permchecker always reported an error involving permission to access a MarkWord
but observed a Field access, or vice-versa. The takeaway is that typestate checking did not only
improve sensitivity over the existing ad-hoc error checks. Checking also exhibits improved diag-
nostic usefulness by reporting an observed type,in-lieu of just an expected type implied by the
stack trace of an ad-hoc check.
6.2.5 Latency of Error Reports.Prior to writing bug templates and testing their impact on the be-
havior of the VM, we had little basis for any kind of insight into how quickly typestate annotations
would be able to detect a memory safety error compared to existing ad-hoc checks in the VM. In
one formulation, we believed existing and often value-based sanity checks in the VM might excel
at proactively preventing bad values from being operated over. In contrast, Permchecker’s types-
tate annotations might excel at detecting bad operations once they happen, after a bad value has
already been created computationally rather than loaded from memory.

For the bug templates we chose, this formulation was entirely not the case. In all the injections
from Figure 10, Permchecker detects an error accounted for in the third column prior to
any corresponding error accounted for in the fourth (ad-hoc) column. Methodologically
this ordering is determined by running the VM with both forms of checks enabled, but where the
program simply logs the error reports rather than terminating immediately.This methodology
has the benefit of obviating any need to create strictly reproducible thread schedules for the VM.
Furthermore it is valid to compare program behaviors this way because program checkers have
ostensibly no side-effects or impact on values in the VM. The tradeoff is that this methodology can-
not compare one-to-one results of Permchecker with any similarly purposed, but non-composable
with Permchecker, DBI tools.

7 SCOPE, LIMITATIONS, & FUTURE WORK

Overhead.Permchecker’s DBI tool incurred a 10𝑥 to 50𝑥 slowdown in the tests reported in Sec-
tion 6.2. This observed slowdown primarily owes itself to the instrumentation of each and every
memory access by the VM: stack, Java heap, and C++ metadata alike. At each memory access, the
most common fast path of the shadow-memory implementation performs two or three additional
memory accesses. This behavior leaves substantial room for improvement, either in smarter data
structures or, optimally, hardware support similar in nature to page tables.

Thread Safety. Thread safety in the Java Native Interface (JNI / FFI), JIT compiler, and mutator slow
paths of Hotspot are entirely handled by existing VM code. Thus the only place in the toolchain
where thread-safety became a non-trivial concern was in the implementation of shadow memory.
As such we implemented shadow memory as a lock-free tree-like map data structure in which

Proc.ACM Program.Lang., Vol.1, No.CONF, Article 1.Publication date:January 2018.

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

Permchecker:A Toolchain for Debugging Memory Managers with Typestate 1:23

map updates and map allocations are atomic.In the presence of a data race involving an update
and a read access to the typestate of the same memory location, the shadow memory provides no
guarantee as to which typestate the read access observes: the old one or the new one.
First-Order Permissions.Permchecker is limited in scope to checking access permissions over a
fixed set of uniquely identifiable typestates.This scope limits our ability to check the validity of
broader algorithmic contracts or predicates. For example, this predicate: “the second write to some
Field at address𝛼 should be preceded by memory of typestate MarkWord containing the value 0b00”.
Such a check would require both a mechanism by which to communicate the desirable property to
the DBI engine, as well as efficient algorithms and data structures to track necessary information
and verify validity.

Other debugging tools, notably GDB,supports features like conditional watchpoints and step-
wise debugging. These features allow a developer to know when the program accesses a particular
memory address, and to inspect subsequent instructions. Similarly, there is value in knowing when
the memory manager accesses a particular typestate of memory. In this work we focused on build-
ing a toolchain to diagnose reproducible errors, but a natural future extension could involve more
traditional debugging features capable of inspecting typestate at runtime.

REFERENCES
Karl Cronburg and Samuel Z. Guyer. 2019.Floorplan: Spatial Layout in Memory Management Systems. In Proceedings of

the 18th ACM SIGPLAN International Conference on Generative Programming: Concepts and Experiences (Athens, Greece)
(GPCE 2019).Association for Computing Machinery,New York, NY, USA, 81–93. https://doi.org/10.1145/3357765.
3359519

B. Dolan-Gavitt, P. Hulin, E. Kirda, T. Leek, A. Mambretti, W. Robertson, F. Ulrich, and R. Whelan. 2016.LAVA: Large-Scale
Automated Vulnerability Addition. In 2016 IEEE Symposium on Security and Privacy (SP). IEEE, San Jose, CA, 110–121.
https://doi.org/10.1109/SP.2016.15

John Ellis, Pete Kovac, and Hans Boehm. 2014.https://hboehm.info/gc/gc_bench/ Accessed: 2021-04-13.
Jason Evans. 2006.A Scalable Concurrent malloc(3) Implementation for FreeBSD.
IBM. 2005.Jikes RVM. http://www.jikesrvm.org/ Accessed: 2018-09-28.
Doug Lea. 1991.A Memory Allocator. http://g.oswego.edu/dl/html/malloc.htmlAccessed: 2021-04-13.
Nicholas Nethercote and Julian Seward. 2007.Valgrind: A Framework for Heavyweight Dynamic Binary Instrumentation.

In Proceedings of the 28th ACM SIGPLAN Conference on Programming Language Design and Implementation (San Diego,
California, USA) (PLDI ’07). ACM, New York, NY, USA, 89–100.https://doi.org/10.1145/1250734.1250746

Oracle. 2006.OpenJDK Hotspot Division.http://openjdk.java.net/groups/hotspot/ Accessed: 2021-04-13.
Andrew Rice,Edward Aftandilian,Ciera Jaspan,Emily Johnston,Michael Pradel,and Yulissa Arroyo-Paredes.2017.De-

tecting Argument Selection Defects.Proc.ACM Program.Lang.1, OOPSLA,Article 104 (Oct.2017),22 pages. https:
//doi.org/10.1145/3133928

Subhajit Roy,Awanish Pandey,Brendan Dolan-Gavitt,and Yu Hu.2018. Bug Synthesis: Challenging Bug-Finding Tools
with Deep Faults. In Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (Lake Buena Vista,FL,USA) (ESEC/FSE 2018).Association for
Computing Machinery, New York, NY, USA, 224–234.https://doi.org/10.1145/3236024.3236084

Konstantin Serebryany,Derek Bruening,Alexander Potapenko,and Dmitriy Vyukov.2012.AddressSanitizer: A Fast Ad-
dress Sanity Checker. In 2012 USENIX Annual Technical Conference (USENIX ATC 12). USENIX Association, Boston, MA,
309–318. https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany

R. E. Strom and S.Yemini.1986. Typestate:A programming language concept for enhancing software reliability.IEEE

Transactions on Software Engineering SE-12, 1 (1986), 157–171.
Michael Vollmer,Chaitanya Koparkar,Mike Rainey,Laith Sakka,Milind Kulkarni, and Ryan R.Newton.2019. LoCal: A

Language for Programs Operating on Serialized Data. In Proceedings of the 40th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (Phoenix, AZ, USA) (PLDI 2019). Association for Computing Machinery, New
York, NY, USA, 48–62.https://doi.org/10.1145/3314221.3314631

Aaron Weiss, Daniel Patterson,Nicholas D. Matsakis,and A. Ahmed. 2019. Oxide: The Essence ofRust. ArXiv

abs/1903.00982 (2019).

Proc.ACM Program.Lang., Vol.1, No.CONF, Article 1.Publication date:January 2018.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23

