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Janaka N. Edirisinghe 1, Michael Mundy 2, Nicholas Chia 2, Elad Noor 3,
Moritz E. Beber 4, Aaron A. Best 5, Matthew DeJongh 6, Jeffrey A. Kimbrel 7,
Patrik D’haeseleer7, Sean R. McCorkle 8, Jay R. Bolton 9, Erik Pearson 9,
Shane Canon 9, Elisha M. Wood-Charlson 9, Robert W. Cottingham 10, Adam P. Arkin 9

and Christopher S. Henry 1,*

1Computing, Environment, and Life Sciences Division, Argonne National Laboratory, Lemont, IL 60439, USA,
2Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA, 3Department of Biology, Institute of
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ABSTRACT

For over 10 years, ModelSEED has been a primary
resource for the construction of draft genome-scale
metabolic models based on annotated microbial or
plant genomes. Now being released, the biochem-
istry database serves as the foundation of bio-
chemical data underlying ModelSEED and KBase.
The biochemistry database embodies several prop-
erties that, taken together, distinguish it from other
published biochemistry resources by: (i) including
compartmentalization, transport reactions, charged
molecules and proton balancing on reactions; (ii) be-
ing extensible by the user community, with all data
stored in GitHub; and (iii) design as a biochemical
‘Rosetta Stone’ to facilitate comparison and integra-
tion of annotations from many different tools and
databases. The database was constructed by com-
bining chemical data from many resources, apply-
ing standard transformations, identifying redundan-
cies and computing thermodynamic properties. The

ModelSEED biochemistry is continually tested us-
ing flux balance analysis to ensure the biochemical
network is modeling-ready and capable of simulat-
ing diverse phenotypes. Ontologies can be designed
to aid in comparing and reconciling metabolic re-
constructions that differ in how they represent var-
ious metabolic pathways. ModelSEED now includes
33,978 compounds and 36,645 reactions, available
as a set of extensible files on GitHub, and avail-
able to search at https://modelseed.org/biochem and
KBase.

INTRODUCTION

Genome-scale metabolic reconstructions and models have
become central tools for systems biology research. These
models are valuable for their capacity to consolidate and
represent the functional annotations of biology using the
more concrete and universal language of biochemistry. By
representing annotations with chemistry, we can move be-
yond a simple cataloguing of observed and predicted func-
tions and begin to assemble those functions into the inter-
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connected series of metabolic pathways that comprise the
chemical foundation of any metabolic model. Models can
then be applied to automatically identify any gaps that in-
terrupt these pathways and suggest new hypothesis-driven
experiments to fill these gaps (1).
Beyond the capacity of models to give structure and

chemical meaning to functional annotations in biology,
these models are also valuable for their predictive capacity.
Today, models can be used to predict a wide range of bio-
logical phenotypes, including: (i) respiration, photosynthe-
sis and fermentation types (2–11); (ii) feasible growth condi-
tions and Biolog phenotype array profiles (12–15); (iii) es-
sential genes and reactions (16–20); (iv) potential existing
or engineerable by-product biosynthesis pathways (21–25);
and (v) the yields and even titre available for those pathways
(26–29).
Metabolicmodels are also now emerging as ideal tools for

the integration of fluxomes, metabolomes, transcriptomes
and proteomes. This capability has been applied to em-
power the development and parametrization of dynamic ki-
netic models (30–32); the reconstruction of tissue specific
metabolic models (33–35); the discovery of new chemistry
and pathways from metabolomes (36); and the simulation
and analysis of interactions within a microbial community
(37–39).
Given the rapid adoption of these models as tools in sys-

tems biology, the pace with which newmodels are produced
has grown dramatically, particularly with the emergence of
numerous automated model reconstruction pipelines (40).
The diversity of resources now producing large numbers of
these models has created new challenges due to a lack of
standardization in models and their underlying biochem-
istry, assumptions and associated data. Tools like MEM-
OTE aid in improving standardization in metabolic mod-
els (41), but variations in how the same metabolic pathways
are represented in different models remains a problem. The
ability to rapidly map chemistry across different metabolic
models is critical to facilitate the comparison and reconcil-
iation of models or to permit models to interoperate within
larger microbiome community models (42). It is also crit-
ical to support the integration of supplementary data for
models, including thermodynamic properties (43), kinetic
constants (44) and metabolomics data (45,46).
Here we present theModelSEED biochemistry database,

a transparent resource of biochemistry designed to support
standardization and data integration. This database em-
bodies several properties tailored to this objective. First,
biochemistry data are unified and integrated from multi-
ple major external sources, includingKEGG (47,48),Meta-
Cyc (49) and BiGG (50). All reactions and compounds
from these sources are integrated and retained within the
database to facilitate rapid automated mapping of new
models to the database. Second, special attention and cu-
ration are performed to ensure that as many compounds
in the database as possible have chemical structures as-
sociated with them, and compounds with identical struc-
tures are mapped together within the database. This facili-
tates the checking of reaction mass and charge balance, and
the mapping of database metabolites to metabolomics data.
Third, thermodynamic properties and pH-based molecular
ion charges are computed consistently for compounds in
the database, with these data being further used to com-

pute reaction properties, including proton stoichiometry,
Gibbs energy change of reaction, and predicted reversibil-
ity and directionality. These reaction and compound prop-
erties may then be mapped to models, where they can be
used to evaluate thermodynamic feasibility of model out-
put. Fourth, we applied flux balance analysis to explore
how the connectivity of this new release of ModelSEED
has improved in terms of activating diverse pathways and
simulating biomass production in diverse media. This new
release of the ModelSEED database also includes an on-
tology, which maps equivalent reactions from various data
sources to each other. This ontology can be used to auto-
matically convert a model to a standard biochemical repre-
sentation to facilitate rapid comparison and integration. Fi-
nally, the database is encoded within GitHub, with a collec-
tion of testing scripts and a continuous integration environ-
ment, designed to facilitate the rapid extension of the Mod-
elSEED database with community contributions, as well as
providing an update and release mechanism enabling users
to sync with database changes and see full details on how
the database changes with each update cycle. Such exten-
sibility is critical to keep pace with rapid discovery of new
chemistry. Below we describe each of these capabilities in
detail.

MATERIALS AND METHODS

Collation of biochemical data

We downloaded the molecular structures from KEGG and
MetaCyc, and the compounds and reactions from >20 bio-
chemistry databases and published metabolic models. See
Supplemental Table S1 for a full list of sources.

Biochemical integration

We successively integrated the downloaded biochemistry
in multiple layers (Table 1 and Figure 1), prioritizing first
the KEGG and MetaCyc biochemistry as primary sources,
merging metabolites if they shared the same molecular
structure, then selected BioCyc databases and published
models using KEGG/MetaCyc identifiers were integrated
as secondary sources, wherein, the compounds were inte-
grated with the database if the identifiers matched. The rest
of the publishedmodels were treated as tertiary sources, and
the compounds were integrated into the database if a syn-
oym was matched.
At each stage, we integrated the compounds first, then

integrated reactions based on whether they use the same
reactants, products and stoichiometry (allowing for vari-
ations in proton stoichiometry). Crucially, this means we
did not integrate reactions based on names or identifiers.
For the integration of the primary sources, we used InChI
and SMILES representations of the available molecular
structures to match compounds from KEGG and Meta-
Cyc. For the primary and secondary sources, if a new com-
pound did not have an available structure, or a match-
ing KEGG/MetaCyc identifier, we used the available syn-
onyms to find matches if any. Finally, in order to provide
external links with other databases known for use with
metabolic models, we integrated the identifiers of Rhea and
MetaNetX usingmatchingKEGG andMetaCyc identifiers
(Table 3).
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Table 1. The degree to which ModelSEED biochemistry was integrated from different data sources via different means: structure, identifier and synonym

Sources
Integrated
compounds

Integrated
reactions

Unintegrated
compounds

Unintegrated
reactions

KEGG/MetaCyc 6290 (6229) 4889 (4777) 24 318 (21 858) 22 902 (19 251)
BioCyc (11 databases) 6960 (6896) 6736 (6599) 997 1613
Published models (34 models) 3688 4332 1792 5406

It should be noted that the integration was done in stages (see ‘Biochemical integration’), so ‘unintegrated’ for KEGG andMetaCyc means not integrated
with each other, but ‘unintegrated’ for published models means not integrated with either KEGG,MetaCyc or BioCyc. For KEGG/MetaCyc, the number
in parentheses are for integration using structures only, and for BioCyc, the numbers in parentheses are for integration using BioCyc identifiers only.

Figure 1. The growth of the ModelSEED biochemistry database. Since the release of the ModelSEED resource, along with its biochemistry, we have
steadily updated the biochemistry database with the latest data in several public databases as well as integrated more published metabolic reconstructions.
At the same time, we have refined our approach for integrating structural data, and so our database has grown not only in size, but also in quality: today,
we have a biochemistry database of >20,000 mass-balanced reactions that can be utilized in metabolic reconstructions spanning the microbial, fungal and
plant kingdoms.

Provenance

We do not exclude any compounds and reactions in the
process of integrating the various biochemical sources. As
such, a number of unconventional compounds and reac-
tions, such as those that were manually created for individ-
ual published models, or incompletely curated reactions in
some BioCyc databases, are included in the ModelSEED
Biochemistry Database. We keep these in our database,
and their external identifiers, so that any researcher can
trace where they came from, for the twin purpose of trans-
parency and reproducibility. We insist that their presence in
our database does not mean that they are suitable for use
in metabolic reconstructions, and as such, we direct users
to use the ‘status’ field to find suitable reactions; a value
of ‘OK’ indicates that the reaction is both mass-balanced
and charge-balanced (see ‘Balancing of reactions in Mod-
elSEED’).

Transport

We identify, parse and integrate all transport reactions from
each of the BioCyc databases and published models. A
transport reaction is identified as one where reagents are al-
located to different compartments, regardless of which com-
partment. In order to best integrate transport reactions, and
also tomake them available for use with any combination of

compartments in any metabolic reconstruction, we general-
ize the compartments as 0 or 1, thus removing their original
identity. This means that, for example, a biochemical reac-
tion catalyzed by ATP synthase can be used with a model
abstracting a bacterial periplasmic membrane as well as a
mitochondrial inner membrane, or a plastidial thylakoid
membrane.

Protonation and conversion of ModelSEED compounds

Marvin from ChemAxon was used to protonate all molec-
ular structures at a pH of 7 and to convert every molecu-
lar structure into InChI and SMILES format, Marvin 19.1,
ChemAxon (https://www.chemaxon.com). Due to limita-
tions in (i) the molecular structures, (ii) the InChI format
and (iii) Marvin, we are unable to protonate or convert
every molecular structure to InChI or SMILES format.
Where possible, we defaulted to the InChI representation
of the protonated structure and, failing that, the SMILES
representation of the unprotonated structure.

Balancing of reactions in ModelSEED

A combination of RDKit 2020.03.1.0 (51) and OpenBabel
2.4.1 (52), two open source cheminformatics software pack-
ages, was used to derive the correct formula and charge from
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themolecular structures.We used two separate packages be-
cause each would fail or report errors on a small but differ-
ing set of molecular structures. We derived the formula and
charge from each of the InChI and SMILES strings gen-
erated by Marvin after protonating the original structure.
Using the stoichiometry and formula of each reagent and
product in a reaction, we calculate how the elemental mass
of a biochemical reaction is canceled out on each side of
the equation. If the total number of each atomic element
found in the reagents was equal to the number found in the
products, we’d consider the reaction to be mass-balanced.
The same process was carried out for the electronic charge
of each reagent and product. We indicate the result of this
balancing process in the ‘status’ field, where ‘OK’ indicates
that a reaction is both mass-balanced and charge-balanced,
and is appropriate for use in metabolic reconstructions.
As we use Marvin to protonate each molecular structure

at a pH of 7, and thereby change the number of protons,
we find that a significant number of reactions are mass-
imbalanced, but only with protons. Therefore, we add, or
remove, protons from the reactions in order to make sure
they are completely mass and charge balanced. We only do
this if we find we can balance out the reactions. We indicate
for which reactions this was done by adding ‘HB’ in ‘notes’
field of the reaction. This was done for 7175 reactions.

Computation of thermodynamic properties of ModelSEED
compounds and reactions

For previous releases of the ModelSEED biochemistry, the
standard Gibbs energy of formation for each compound
(�fG`o) and the standard Gibbs energy of reaction for each
reaction (�rG`o) were estimated using a group contribution
approach (53). For this new release, we recalculated these
energies using eQuilibrator, a more recent approach devel-
oped by Noor et al., 0.2.5 (http://equilibrator.weizmann.ac.
il) (54). All energies were calculated at pH 7.0, ionic strength
of 0.25 M and temperature of 298.15 K. Data from these
two methods were integrated in a complementary manner,
giving precedence to the results from eQuilibrator.
The set of complete structures in the ModelSEED bio-

chemistry from which energy of formation was computed
using the group contribution approach, as integrated from
KEGGandMetaCyc, only partially overlaps with the set of
complete structures inMetaNetX, from which eQuilibrator
computed pKa values. There was a total of 23 989 unique
InChI structures inModelSEED, and 465 752 unique InChI
structures inMetaNetX, but only 19 479 of these structures
were shared between the two databases. In addition, neither
the group contribution method nor eQuilibrator was able
to return an estimate for (�fG`o) for every structure, and
as such, there were only 19 621 ModelSEED compounds
with an estimate for (�fG`o) from the group contribution
method and 17 510 ModelSEED compounds with an esti-
mate for (�fG`o) from eQuilibrator. For each compound,
we use the value from eQuilibrator in our database where
possible, but we retain the values computed by the group
contribution approach in the repository.
A reaction was considered to be ‘complete’ when ev-

ery reactant had a defined structure and for which (�fG`o)
was available via either the group contribution method or

eQuilibrator. There were 18 930 ModelSEED reactions de-
fined as complete by the group contribution method, and
15 574ModelSEED reactions defined as complete by eQui-
librator, with 14 677 reactions shared between the two.
For each of these reactions, we used the value of (�rG`o)
computed by eQuilibrator, except when estimated error re-
turned by eQuilibrator exceeds an arbitrary value of 100
kilocal.mole−1 (2459 reactions). For those, the value com-
puted by the group contribution method was used. When
computing �rG`o, we always used either eQuilibrator or
group contribution values exclusively, and never mixed and
matched �rG`o values from these two methods to compute
a single �rG`o because they differ in their reference states,
and thus would cause significant error. For each of the reac-
tions with an estimated�rG`o, we applied a heuristic to esti-
mate the thermodynamic reversibility of the reaction based
on a set of rules developed in earlier work (55).

Undetermined compounds

Many compounds in the database, whether they were as-
signed a structure or not, were considered to be undeter-
mined for a number of reasons. The compound may be
‘lumped’ if their structure was partially or wholly unknown
and the ‘lumped’ structure was represented by an ‘R’ group.
Where we could, we included the reactions containing such
compounds while making sure that the ‘R’ groups balanced
and represented the same substructure. The compoundmay
have been generic or abstract, in that they were represen-
tative of a class of compounds; so, we include these com-
pounds by generating hierarchical links between them and
their structurally-specific representatives. Compounds that
were partially or wholly determined can be found by search-
ing for the ‘R’ group in the ‘Formula’ column on our web-
site.

GitHub policies for community contributions

GitHub offers a valuable venue and toolkit to support com-
munity curation, and it has been applied to this purpose for
the codevelopment of computer code by a vast user commu-
nity. This community has demonstrated how a large group
of individuals can work together on a single project and be
effective. The tools that GitHub offers its developer-users,
as well as the policies and practices it encourages, are crit-
ical components that make large-scale cooperative projects
possible. With this release of theModelSEED biochemistry
database, we anticipate the same principles and methods
apply and will ultimately support large-scale community-
curation of biochemistry data in the ModelSEED. To ac-
complish this goal, we have adoptedmany of the same prac-
tices used by developers.

Use of branches. The ModelSEED repository includes a
dev and master branch in GitHub. All releases will be de-
ployed to the master branch, which will be tagged with re-
lease identifiers when the release is complete. All active new
curation work will take place in the dev branch, where all
external contributors are encouraged to submit their pull
requests.

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/49/D

1/D
575/5912569 by H

ope C
ollege - VanW

ylen Library user on 21 M
arch 2022

http://equilibrator.weizmann.ac.il


Nucleic Acids Research, 2021, Vol. 49, Database issue D579

Table 2. The statistics of the ModelSEED biochemistry database over time (Figure 1)

2010 (ModelSEED) 2014 (PlantSEED) Current 2020

Compounds 16 275 27 694 33 992
Compounds with structures 13 821 (85%) 19 605 (71%) 28 120 (83%)
Compounds with generic groups 1261 (8%) 1402 (5%) 4416 (13%)
Reactions 13 257 27 558 36 193
Complete* reactions 11 338 (86%) 7898 (29%) 27 991 (77%)
Balanced reactions 10 263 (77%) 17 264 (63%) 25 457 (70%)
Reactions with generic groups 1988 (15%) 2939 (11%) 9772 (27%)

*A complete reaction is one where every reactant has a fully defined metabolic structure in our database. Balanced reactions were calculated to be mass-
and charge-balanced, see ‘Balancing of reactions in ModelSEED’.

Table 3. A description of the biochemistry data that we have integrated from various sources

ModelSEED KEGG MetaCyc BiGG MetaNetX Rhea

Compounds 33 958 17 760 19 138 2704 30 858 –
Structures 28 120 16 198 18 118 – – –
Reactions 36 193 10 850 21 830 4306 23 758 8786

Only KEGG and MetaCyc were completely integrated so the numbers for the other databases may not reflect their published content.

External user contributions. The ModelSEED database,
despite years of development, is still far from being per-
fect or complete. We welcome contributions from external
users, including: (i) new proposed compounds, reactions
and pathways; (ii) curations to existing data including cor-
recting reaction stoichiometry, aliases or molecular struc-
tures; and/or (iii) integrating new tools to support database
maintenance, quality control and analysis. Users can pro-
pose changes by creating their own fork of theModelSEED
GitHub repository, implementing their changes within this
fork, running ModelSEED test scripts to ensure that the
proposed changes meet data quality and minimal informa-
tion standards and submitting changes to the ModelSEED
team for review by issuing a pull request in GitHub against
the dev branch. Once the team has ensured that proposed
changes meet all standards, pull requests can be merged.
The pull request mechanism on GitHub includes a built-
in discussion forum to permit interactive discussion of pro-
posed changes. We utilize Travis CI (56) along with scripts
for testing data immediately, and reporting whether or not
data in the pull request is valid.

Release procedure. On a quarterly basis, we will release a
new version of the ModelSEED database via GitHub. Re-
leases will always be deployed from the master branch in
GitHub, and each release will be tagged with a version in
GitHub. Additionally, on release, updated data will be de-
ployed into the ModelSEEDmodeling environment as well
as the chemistry database in the U.S. Department of Energy
(DOE) Systems Biology Knowledgebase, KBase (57).

RESULTS

Growth in the compounds and reactions included in the Mod-
elSEED database

Development of the ModelSEED database began 10 years
ago with the release of the first ModelSEED resource
for microbial metabolic model reconstruction (58). The
database was expanded in 2014 by integrating additional
sources of plant biochemistry with the release of the

PlantSEED (59). Here, for the first time, we are releasing
theModelSEEDbiochemistry database as a stand-alone re-
source. This new release includes expansions of the Mod-
elSEED, updating data from our source databases, and
adding additional sources. As expected, the ModelSEED
database has expanded over time from 13 257 reactions in
2010 to 36 193 reactions today (Table 2).
The updated ModelSEED database now contains reac-

tions fromKEGG,MetaCyc, BiGG,MetaNetX and Rhea,
but it is important to note that only the KEGG and Meta-
Cyc databases have been integrated in their entirety (Table
3).
Molecular structure is very important in theModelSEED

because we use structure as our primary tool to map to-
gether identical compounds from our source databases and
because we apply structures with thermodynamic property
estimation tools to predict Gibbs free energy change for
compounds and reactions. Currently, 84% of compounds in
the ModelSEED have specified structure, which translates
to 81% of reactions defined as complete, meaning the struc-
ture is defined for every reactant involved in the reaction
(Table 2).
One significant area of improvement for this new release

of the ModelSEED was the identification and correction of
redundant copies of various compounds and reactions that
were previously added to the database in error due to a fail-
ure to match identical compounds. We previously failed to
match identical compounds based on three problems: (i) no
associated molecular structure, making it impossible to au-
tomatically match these compounds to other compounds in
our database based on structure; (ii) errors or inconsisten-
cies in compound structures that prevented a match from
being made; or (iii) missing stereochemistry information in
compound structures. We identified and corrected some of
these issues in this latest release by reviewing and correcting
many problems. For example, we reviewed 47 cases where
sets of two or more compounds in our database appeared
to have completely identical structures, involving 3320 reac-
tions. Ultimately 32 compounds were consolidated, which
led to the correction of 1301 reactions in our database that
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involved one or more of these compounds as reactants. This
subsequently led to the consolidation of 7577 reactions. We
were also able to identify and correct previously automated
consolidations of compounds and reactions that turned out
to be erroneous. These cases primarily consisted of stere-
ochemically generic compounds being consolidated with
stereochemically specific versions. In the majority of cases,
we only had to ensure the correct structure was used. We
corrected the remainder of cases by disambiguating 39 com-
pounds, leading to the correction of 20 reactions. We note
that this is an ongoing curation effort and our data is by no
means completely ‘fixed’ or perfect but a work in progress.
This is why we made the decision to officially distribute the
ModelSEEDdatabase viaGitHub (see a detailed discussion
later). GitHub enables users to easily clone our database in
a form that can also be easily updated as the database im-
proves overtime (as well as showing users detailed informa-
tion about every aspect of the data that have changed).

Thermodynamics

For this release of the ModelSEED database, eQuilibrator
(54) was applied to update � f G ′o for the compounds in
the database. � f G ′o could be computed by eQuilibrator for
17 510 (73%) of the compounds with assigned structures in
the database. The remaining 10 885 compounds had struc-
tures representing abstract molecules, macromolecules, or
in some cases compounds containing functional groups
with no associated energy contribution in eQuilibrator.
About 9884 (56%) of the successful� f G ′o predictions from
eQuilibrator had very low uncertainty (<5%), but 6930
(40%) had a high uncertainty of over 100%. Given the large
disparity in uncertainty values between eQuilibrator and
our previously applied group contribution method (53) for
computing � f G ′o, we retain the � f G ′o values from both
methods in our repository, with the source and uncertainty
of each value labeled.
We similarly applied eQuilibrator to predict new �rG ′o

for the reactions in theModelSEED database, where we ob-
served similar results with 13 042 (84%) reactions having
an uncertainty below 5% and 2459 (16%) reactions having
an uncertainty over 100%. As with the � f G ′o predictions,
we retained both our original �rG ′o and the eQuilibrator
�rG ′o values in our repository, with the source and uncer-
tainty of each value labeled. Unlike with the � f G ′o values,
it may be possible tomix andmatch�rG ′o values from these
competing methods. The results from our recomputation of
� f G ′o and�rG ′o using eQuilibrator and our original group
contribution method are highlighted in Table 4.
When comparing the newly calculated �rG ′o computed

by eQuilibrator to that computed using the group contri-
bution method, we find that most (65%) of the reactions
had a difference of <5 kcal/mol (Figure 2). As the dif-
ference increases, the number of reactions dropped signif-
icantly, only 9% of the reactions had a difference above 15
kcal/mol. The uncertainty of the �rG ′o computed by eQui-
librator for reactions with a difference >15 kcal/mol was
also high, at least 80% of these reactions had >100% un-
certainty, which implies a low confidence in the eQuilibra-
tor energies for these reactions with high deviations in their
�rG ′o values. When directly comparing the uncertainty be-

Table 4. Integration of thermodynamics data from the Group Contribu-
tion approach (GC) and eQuilibrator (eQ)

Compounds Reactions

All 33 958 36 193
Structures (GC) 28 087 (100%) 36 193 (100%)
Complete (GC) – 18 930 (52%)
Accepted (GC) 9208 (33%) 6141 (17%)
Structures (eQ) 17 510 (62%) 36 193 (100%)
Complete (eQ) – 17 440 (48%)
Accepted (eQ) 10 580 (37%) 13 298 (37%)
Final 19 788 (70%) 19 439 (54%)

The two approaches can only be applied to compounds for which struc-
tures are available. The number of reactions in rows denoted ‘Structures’
includes any reactions for which a reagent has associated thermodynam-
ics data, and the number of reactions in rows denoted ‘Complete’ includes
any reactions for which all reagents have associated thermodynamics data.
The ‘Final’ number of reactions includes the total number of reactions for
which the thermodynamics data were accepted for GC approach and eQ.
“Accepted” means the data were utilized if it passed several basic tests, but
precedent was placed on data from eQuilibrator (see the main text).

tween the two approaches, 43% of the compared reactions
exhibited >100% uncertainty for the group contribution
method and only 10% of the compared reactions exhibited
>100% uncertainty for eQuilibrator (Figure 2). For the pur-
pose of this analysis, we only compared nontransport and
mass-balanced reactions
We apply these newly calculated reaction energies, us-

ing the eQuilibrator values when the uncertainty was low
and using the group contribution method values otherwise,
to determine the reversibility of all reactions in the Mod-
elSEED (see ‘Materials and Methods’ section). Based on
this analysis, we find that we were able to determine the re-
versibility of 3894 reactions that had not been determined
before. For the reactions for which reversibility had been de-
termined before, we compared the reversibility if we were
to use the group contribution method alone versus if we
were to apply eQuilibrator values (Figure 2). We find that
85% of the compared reactions exhibited no change. Hav-
ing adopted the approach integrating eQuilibrator values,
we double-checked the subset of reactions that we use in our
automated metabolic reconstructions in ModelSEED and
in KBase, to ensure that they did not disrupt the behavior
of the drafted reconstructions, and we integrated the up-
dated reversibility constraints into the gap-filling reactions
used by the reconstruction process.

Improvements to database connectivity

One key purpose driving the development of the Mod-
elSEED biochemistry database was to serve as the under-
lying chemistry source for the reconstruction of metabolic
models in the ModelSEED (58), PlantSEED (58,60) and
KBase (57). As such, we needed to evaluate how our over-
all database performs in flux balance analysis. Metabolic
modeling and flux balance analysis both place very spe-
cific demands on a biochemistry database. First and fore-
most, FBAwas designed to be applied to reaction networks
comprised of mass- and charge-balanced reactions, so im-
balanced reactions should be filtered out of any network
that is to be leveraged for FBA. This does not mean that
imbalanced reactions are excluded from the ModelSEED
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Figure 2. Thermodynamics in ModelSEED and eQuilibrator. We integrated the results calculated by eQuilibrator, a more recently developed approach,
to estimate the Gibbs energy of formation for >17K compounds and 17K reactions in the database. In comparing the results for reactions to those of the
group contribution approach used in this and prior releases of ModelSEED, we find that there is very little change. In a very small percentage of cases, the
error reported for values computed by eQuilibrator is much higher than that reported for the group contribution approach (inset). The integration of data
computed by eQuilibrator led to the adjustment of thermodynamic reversibility for roughly ∼5% of the reactions in our database (see ‘Thermodynamics’
section).

database, as it was also important to have as complete a
database as possible to support annotation comparison,
which is discussed later. However, all imbalanced reactions
were identified and filtered from the database prior to the
use of data in any FBA-based approach. Currently, of the
36K reactions in the ModelSEED database, 25 457 (70%)
are charge andmass balanced, 2424 (7%) are mass balanced
but not charge balanced and 8338 (23%) are not mass bal-
anced. This represents a significant improvement over pre-
vious releases which included only 22 421 mass balanced
reactions.
Secondly, FBA also depends on having constraints on the

reversibility of reactions to ensure that reactions have the
flexibility needed to replicate true biological behavior with-
out having too much flexibility leading to thermodynami-
cally unrealistic flux profiles. For this, the improved �rG ′o
estimates in this release of the ModelSEED lead to an ad-
justment of the reversibility rules associated with 2783 reac-
tions as described in the previous section. These changes im-

pact how every reaction in theModelSEED network is con-
nected to every other reaction and the number of functional
reactions when flux balance analysis is applied. When con-
structing an FBA model of the ModelSEED biochemistry,
we included all balanced single-compartment reactions as
intracellular, while transport reactions were used to define
the metabolites that are allowed to move from the extracel-
lular space into the intracellular compartment. The SEED
bacterial biomass reaction was added as a sink for biomass
metabolites, as many biomass components would otherwise
become dead-ends in the metabolic network.
We used this whole-biochemistry model to study how our

updates to the ModelSEED biochemistry affected the con-
nectivity and flux profile of our reaction network when used
with flux balance analysis (Table 5). First, we applied flux
variability analysis assuming every metabolite in the extra-
cellular space is available for uptake. This enabled us to
determine how many reactions in our database are func-
tional, meaning they are capable of carrying a nonzero
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Table 5. Results from running flux balance analysis on ModelSEED database

Release
Total

reactions
Mass

balanced Reversible
Functional
reactions*

Functional growth
conditions

Current (2020) 36 193 25 457 18 399 21 403 (22 530) 355 (91%)
PlantSEED (2014) 27 558 17 264 8906 21 917 (23 461) 337 (86%)
ModelSEED (2010) 13 257 10 263 6195 8505 (9073) 330 (85%)

*A reaction is considered functional if it were determined to be capable of carrying nonzero mass-balanced flux (see the main text). Values in parentheses
are without thermodynamic constraints (i.e., all reactions reversible).

Figure 3. Directed acyclic graph representation of compound classes. Hierarchy is defined by their functional relationship in metabolism. (A) Example of
DAG representation of a few electron transfer compounds. (B) Parallel representation of compound and reaction hierarchy; both rxn06138 and rxn09551
are abstract representations of rxn09067. However, rxn09551 is a context adapted version for the yeast, thus it has a different stoichiometry weight.

mass-balanced flux from one set of transported metabo-
lite inputs to another set of transported metabolite outputs
(61). We actually saw a very slight decline in the number
of functional reactions versus our previous release with the
PlantSEED. This is primarily a result of our efforts to com-
bine and eliminate redundant reactions in our database (de-
scribed earlier). Additionally, some reactions are character-
ized to be nonfunctional because they lead exclusively to the
production of terminal compounds that lack transport re-
actions and are not currently included in our biomass com-
position. To test the extent to which this new release has
improved capabilities in simulating phenotypes, we applied
our database to simulate biomass production using an ex-
ample bacterial biomass objective function in 390 Biolog
growth conditions (62). In this study, our database was ca-
pable of successfully producing biomass for 355 (91%) of
the Biolog conditions, which was an improvement over pre-
vious releases.

LeveragingModelSEED biochemistry to map annotation on-
tologies and support comparison

The field of biology has long struggled to arrive at a stan-
dardized controlled way of describing the function of genes
and their products. A variety of controlled vocabularies
do exist (e.g. UniRef (63), Enzyme Classification numbers
(64),GeneOntology (65),KEGGorthology (48) and SEED
(66)), but many annotation platforms do not use these con-
trolled vocabularies. Additionally, in order to compare the
annotations of one platformwith those of another, it is criti-
cally important to map together equivalent ontology terms.
This enables one to differentiate cases where a difference in
the function assigned to a gene by two platforms represents
an actual disagreement in the function of the gene rather
than a difference in nomenclature. Unfortunately, in the ab-

sence of any other abstraction, this mapping of functional
descriptions becomes a largely manual exercise in syntactic
interpretation (e.g., is the function described by these words
equivalent to the function described by these other words).
Fortunately, in the case of metabolic functions, we have an-
other abstraction: biochemistry. Biochemistry is distinctive
in that, if one knows the stoichiometry of a reaction and
the molecular structure of the metabolites involved in the
reaction, one does not need to rely on alias mapping or syn-
tactic interpretation to determine if one reaction is equiva-
lent to another. Instead, it is possible to computationally en-
code the compound structure and associated reactions into
unique strings that make it possible to automatically com-
pare reactions from different databases to one another. This
makes biochemistry a valuable tool that may be leveraged
to automatically map between functional ontologies where
those ontologies have been associated with some kind of
biochemistry database (which is increasingly becoming the
case for most annotation ontologies).
Extensive effort has already been applied to exploit bio-

chemistry structure codes (e.g., InChI and SMARTS) data
to automatically generate translation tables among the re-
action and compound identifiers in various biochemistry
databases (e.g., MetRxn (67) and MetaNetX (68)). Indeed,
this semi-automated mapping is a major component of our
own ongoing curation of the ModelSEED database, as pre-
viously discussed. We already highlighted one mechanism
by which this automated mapping procedure may fail (e.g.,
if some compounds havemissing or erroneous structures as-
sociated with them). The other significant reason why this
mapping process may fail is that, in many cases, different
biochemistry databases will represent the same biochemi-
cal pathway using different reactions (e.g., Figure 3B is an
example of this in lipid metabolism). This issue can lead
to significant apparent disagreement between the chem-
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Figure 4. Reaction comparison between iJR904 andModelSEEDbiochemistry of theEscherichia coli genome-scalemodel. Excluded - Exchange reactions,
Biomass, maintenance ATP (ATPM); Match - Traditional matching approach (identity matching) with protonation comparison. Unique - Reactions that
are not present in theModelSEEDmodel. Subchart: reactions otherwise marked as unique but with alternative representation inModelSEED. Isomer and
Cis/Trans: reaction present but utilizing different isomer or cis/trans metabolite; Subreaction/Lump: reaction present but is a merge or split version of a
ModelSEED reaction; Charge: reaction matches but compounds carry different charge; Hierarchy: reaction matches ModelSEED reaction but utilizing
an abstract representation of the compound; Compartment: reaction matches exact stoichiometry but utilizing different compartment configuration;
Alternative transport: transport of the compound present but using different mechanism or co-substrate. The submitted manuscript has been created by
UChicago Argonne, LLC as Operator of Argonne National Laboratory (‘Argonne’) under Contract No. DE-AC02–06CH11357 with the U.S. Department
of Energy. The U.S. Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article to
reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. The
Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan.

istry assigned by different resources to the same genes. For
example, a comparison of the ModelSEED model of Es-
cherichia coliwith the earliest manually curated model of E.
coli, the iJR904 (69) revealed extensive apparent differences
between these models. Of the 625 distinct compounds in-
cluded in the iJR904 model, only 547 overlapped perfectly
with the ModelSEED. However, many of these apparent
miss-matching compounds were due to differences in rep-
resentation of the same biochemistry between BiGG and
ModelSEED.
We have now developed a mechanism within the Mod-

elSEED database for identifying and accounting for these
differences in representation when comparing models and
genome annotations. This approach begins with a general
policy applied by theModelSEEDwhen we integrate chem-
istry from other resources into our own database. Unlike
other biochemistry databases (e.g., KEGG and MetaCyc),
the chemistry in the ModelSEED is not necessarily nonre-
dundant. The same biochemistry may occur multiple times
in the ModelSEED with differing representations. This is
an explicit design decision in the ModelSEED made to
facilitate the creation and maintenance of an ontological
map between these various representations. The creation of
this map begins with a semi-automated process of mapping
together compounds in the database that are structurally
different but chemically equivalent. Some associations can
be made automatically (e.g., mapping �-D-glucose and �-
D-glucose to D-glucose and mapping D-glucose and L-
glucose to generic glucose). Note, other frameworks like
ChEBI support this type of automated mapping as well

(Hastings et al., 2009). Other associations must be made
manually (e.g., mapping three different chain-length rep-
resentations of fatty acid together as done in Figure 3B).
Once these compound associations have been created, we
then have an automated mechanism for the creation of a
directed acyclic graph (DAG) connecting equivalent reac-
tions to one another based on the associations among reac-
tants. Once constructed, this DAG can be used to automat-
ically support the translation of chemistry from one map-
ping to another, which in turn enables the automated com-
parison of metabolic annotations between resources. Ap-
plying our current DAG to our example comparison of the
ModelSEED and iJR904 model of E. coli, this translation
process reduced the number of mismatching compounds
from 78 to 31. The impact of the reactions (Figure 4) is also
significant, the number of uniques detected in iJR904 is re-
duced from 258 to 159, the usage of different isomers had
the highest impact, followed by abstract representation of
phospholipids and lumped fatty acid metabolism.
The current ontological mappings established in the

ModelSEED represent three different types of relation-
ships: (i) equivalent compound sets, (ii) lumped reaction
sets and (iii) context-specific reaction sets. We stored each
of these sets in separate DAGs that connect together
ModelSEED compound and reaction entities. The equiv-
alent compound and reaction set relationships expose com-
pounds and reactions that are abstract/generic represen-
tations of other compounds and reactions. For exam-
ple, in many electron transfer reactions (Figure 3A) when
the co-substrate is unknown, both KEGG and MetaCyc
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use a pair of abstract compounds to act as placeholders
(acceptor/donor). These reactions must be adapted when
used for modelling purposes. KEGG and MetaCyc cur-
rently contain 235 and 644 reactions respectively that are
represented with generic acceptors. Using the ontological
relationships implemented in the ModelSEED, we iden-
tified 104 clusters of reactions with specific cosubstrates
that represent instantiations of generic acceptor/donor re-
actions. Now if two models from two different sources use
different members of these clusters to represent the same
overall reaction, we can automatically determine that these
models at least agree that the generic reaction is happen-
ing. Other common problematic abstractions include: sugar
isomers, and pathways that apply the same chemical ac-
tions on multiple substrates (i.e., pathways that are repli-
cated for multiple representations of the participating sub-
strate, such as phospholipids, quinones and fatty acid chain
lengths, etc). The lumped reaction set relationship connects
lumped versions of reactions to the series of substep reac-
tions that have been lumped. Examples of these reactions
include composite reactions in MetaCyc or multi-step reac-
tions inKEGG.However,metabolicmodelsmay alsomerge
reactions for other purposes (e.g., modeling mechanism,
hypothesizing unknown pathways and avoiding poorly de-
fined intermediates).We use these relationships to automat-
ically convert lumped reactions into their component reac-
tions or vice versa. The organism/context specific relation-
ship connects entities that weremodified to fit a certain con-
text (e.g., adaptation for modeling purposes) to their stan-
dard representation (Figure 3B). In general, these reactions
are unfit for modelling purposes, but they might contribute
knowledge for the database (e.g., related genes).
We note that the ModelSEED is far from the first bio-

chemistry database to apply ontologies to metabolites and
biochemical reactions. ChEBI, MetaCyc and KEGG all do
this to varying extents (70). In general, most of the exist-
ing ontologies represent identity (e.g., cross-references) or
structural relationships (e.g., alpha/beta glucose); theMod-
elSEED ontology is designed to add additional relation-
ships required to translate among the representational het-
erogeneity that exists between various metabolic databases
and modeling approaches. For example, we add relation-
ships to represent compound adaptations often used in
modeling, such as using FAD instead of electron transfer
flavoprotein (Figure 3A) or using an adapted version of a
generic compound (Figure 3B). However, other database
ontologies have focused on classifying and categorizing
these entities, whereas our focus is on mapping data from
disparate sources to better facilitate comparison, reconcili-
ation and integration of annotation information.

Using GitHub as a tool for community contributions and
maintenance

One major goal for this release of the ModelSEED bio-
chemistry database is to become a community-driven re-
source, meaning that contributions, updates and correc-
tions could be rapidly integrated from the research com-
munity. We also want the database to evolve over time in
as transparent a manner as possible. To accomplish these
goals, we have released the ModelSEED database to the

public, using the Creative Commons Attribution License,
in the Git repository: https://github.com/ModelSEED/
ModelSEEDDatabase. Note, data directly derived from
KEGG andMetaCyc are still subject to licenses from these
resources. Using Git to store the changes made to the data
and to the underlying scripts inherently maintains prove-
nance of the data and scripts.
All themain datasets in the repository arewell-formatted,

and accompanied by instructions and a library of scripts for
loading and handling the data across several folders. The
main compound and reaction databases were formatted as
tables that can be exported to Excel and as structured JSON
objects that can be directly imported into any scripting lan-
guage and web application. For example, a researcher can
load the data directly into a local Solr instance (as described
below). These files are accompanied by the data and scripts
we use to maintain metabolic structure, thermodynamics,
and external identifiers and synonyms.
Crucially, we expect the ModelSEED database to grow

and to be improved over time, and invite researchers to col-
laborate with us. The use of a Git repository in GitHub pro-
vides the means by which we can interact with researchers
and include changes from external teams with the accompa-
nying provenance. Researchers will be able to submit edits,
additions, and changes to the current data via use of Git
and GitHub Pull Requests. We particularly welcome any
new metabolic pathways relevant to the microbial, fungal,
and plant kingdoms, as well as any newmetabolic structures
or thermodynamic data that would improve the process of
reconstructing metabolism. We will review these submis-
sions, and interact with the wider community to merge the
new data and maintain the repository at a high standard.
Policies for community contributions to the ModelSEED
Github are described in the ‘Materials and Methods’ sec-
tion. Finally, we will release new changes and data on a
quarterly basis.

DISCUSSION

Currently in the field of bioinformatics, there aremany pow-
erful techniques for predicting gene function, including nu-
merous homology methods like BLAST, Hidden Markov
Models and k-mer indexing. There are also numerous non-
homology methods exploiting chromosomal context, coex-
pression, gene fitness data, co-occurrence and protein struc-
ture. No single approach is a panacea. Rather, it has been
demonstrated numerous times that optimal results in bioin-
formatics are obtained by combining many different ap-
proaches and data sources together to obtain a consensus
result (71). One of the biggest impediments to building such
a consensus approach for biology today is the lack of a sin-
gle standard ontology for describing gene functions. An-
other impediment is the need for a mechanism to be able
to test predicting gene functions for consistency with avail-
able phenotypic evidence (e.g., growth conditions and gene
fitness data). A final impediment is the need for a stream-
lined mechanism for the research community to rapidly in-
tegrate new annotations and pathways into these chemistry
databases, as well as track full provenance on changes in
those databases over time.
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Figure 5. Biochemistry in DOE Systems Biology Knowledgebase (KBase). TheModelSEED biochemistry database is widely used for a range of metabolic
modeling Apps in KBase Narratives (https://kbase.us) and there is also an interface for searching the entire biochemistry. The screenshot shows an example
of a search result where ‘pyruvate’ is used for the search term, and the first returned hit is expanded (by clicking in the first column).

The ModelSEED biochemistry database was designed
to address these challenges. By integrating together diverse
chemistry databases and building and maintaining map-
pings to those databases based on structure and ontol-
ogy, we provide a resource that can automatically translate
many different annotation ontologies into a single chem-
ical representation. This in turn facilitates the rapid com-
parison and reconciliation of annotations. By also making
that single chemical representation ‘modelable’ and inte-
grating deeply with model reconstruction platforms like the
ModelSEED, PlantSEED and KBase, we offer a means of
converting that single chemical representation into mech-
anistic models. Mechanistic models can then apply func-
tional annotations to predict conditional phenotypes like
gene fitness or growth conditions so that competing annota-
tions may be tested and reconciled to maximize consistency
between phenotype predictions and experimental data. Fi-
nally, by deploying our database on GitHub, we provide an
easy, trackable method for rapidly accepting contributions
of new chemistry and data from the research community.
GitHub also provides an excellent built in system for track-
ing database changes over time, as well as tracking who is
responsible for each change.
Competing biochemistry resources do exist that meet one

of these challenges. MetaCyc and BIGG are both top tier
resources for supporting metabolic model reconstruction,
but neither of these databases supports direct community
contributions, and of this pair, only MetaCyc offers signifi-
cant ontology support. Even inMetaCyc, the ontology sup-
port is directed more at classification rather than mapping
between databases. Other resources exist that focus more
specifically on supporting database mapping and ontology,
includingRhea, which is integrated with gene ontology, and
MetaNetX, which maintains mappings of identical com-
pounds and reactions from numerous data sources. How-
ever, again neither of these resources supports direct com-
munity contribution or model reconstruction.

Mapping, reconciling, testing and integrating knowledge
of gene function in biological systems is one of the primary
driving missions of KBase. The ModelSEED biochemistry
database is an important part of the KBase platform. The
tools presented here significantly advance that mission by
providing a structured, extensible framework, with prove-
nance, to support all of these activities for metabolism.
As implemented in KBase, the ModelSEED biochemistry
database exemplifies how a specialized, independently cu-
rated resource that provides valuable integration of multi-
dimensional omics data can significantly enrich the avail-
able data content and structure in KBase, and thereby fur-
ther empower a systems biological analytical approach for
all KBase users.

DATA AVAILABILITY

We have released the ModelSEED biochemistry database
to the public, using the Creative Commons Attribu-
tion License, in the Git repository: https://github.com/
ModelSEED/ModelSEEDDatabase. The release of data
will be not only in the repository but also deployed to
several key resources: ModelSEED (https://modelseed.org)
and its accompanying SOLR database (https://modelseed.
org/solr) and KBase (https://kbase.us) by way of inclusion
in all of our metabolic modeling Apps in KBase narra-
tives, and also via the KBase search interface (Figure 5;
https://narrative.kbase.us/#biochem-search).
In addition to our establishment of a GitHub repository

for the ModelSEED data, we have also created a web inter-
face in both the ModelSEED and KBase environments to
search and browse this data. The ModelSEED interface to
the biochemistry data is available at http://modelseed.org/
biochem/reactions. This interface includes a compound and
reaction table, fully searchable by column, including sup-
porting search by aliases from other databases. The inter-
face also includes compound and reaction landing pages
showing a more detailed view of these entities. We also up-
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dated this interface to ensure that all biochemistry data are
accessible without logging in. Finally, we added an inter-
face to KBase for browsing this biochemistry data: https://
narrative.kbase.us/#biochem-search. Like theModelSEED
interface, this tabular view enables users to search for re-
actions and compounds by a variety of terms, including
aliases, and redirects compound and reaction views to the
landing pages in the ModelSEED.
In addition to these web interfaces for manually browsing

the ModelSEED biochemistry data, we have also created
programmatic APIs. All data can be loaded into an Apache
Solr (https://lucene.apache.org/solr/) database, which offers
a publically accessible REST API for accessing the data. In
the Solr folder of the ModelSEEDGitHub, we have several
examples of how a researcher can fetch the data directly via
https, or via a python script. If researchers wish to setup
their own Solr endpoint to serve their own biochemistry
data, formatted in the same manner as our public one, a
set of instructions for how to do that is in the same folder.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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