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A B S T R A C T   

Alfalfa (Medicago sativa L.), referred to as the “Queen of Forages” because of its importance among forage crops, 
provides high quality forage for the livestock industry. The timing and frequency of alfalfa hay harvesting have 
implications on its quality and quantity. With ever-increasing capability, it is possible to use satellite remote 
sensing data to monitor alfalfa harvests. This study investigated the potential of using satellite remote sensing to 
capture frequent harvesting events on an alfalfa field in central Oklahoma. Both passive remote sensing data, 
namely Moderate Resolution Imaging Spectroradiometer (MODIS), Landsat-7 and -8, Sentinel-2, Harmonized 
Landsat and Sentinel-2 (HLS), and active remote sensing data, namely Sentinel-1, were included. Our results 
indicate that good quality optical remote sensing datasets (i.e., cloud and cloud shadow free) with both fine 
spatial (≤100 m) and high temporal (effective observation at 8-day intervals or better) resolutions are necessary 
to detect frequent alfalfa harvesting events, challenged by possible adverse weather conditions and quick 
regrowth of vegetation after harvest. Landsat (7 and 8) and Sentinel-2 were more sensitive to changes in 
vegetation indices after harvest than MODIS due to their higher spatial resolutions, which helped avoid the 
mixed pixel issue in MODIS caused by its coarser spatial resolution (~500 m). Combining Landsat (7 and 8) with 
Sentinel-2 imageries through linear regression between the Normalized Difference Vegetation Index (NDVI) 
values, up to one week apart, increased the accuracy of detecting frequent alfalfa harvesting events. The re
sponses of HLS to alfalfa harvesting events were similar with fused Landsat and Sentinel-2 data using their linear 
relationship of NDVI values. However, the high noise level in the HLS data needs to be minimized before it can be 
used to detect alfalfa harvests at the regional scale. In most cases, both Sentinel-1 radar backscatter coefficients 
(vertical transmit and vertical receive, VV + vertical transmit and horizontal receive, VH) and interferometric 
coherence from Sentinel-1 Simple Look Complex (SLC) data were decreased by harvesting events in small 
incident angle observations (34.31◦). No consistent relationships existed between backscatter or coherence and 
alfalfa harvests in larger incident angle observations (45.11◦). Future studies should focus on small incident angle 
observations instead of processing all of the radar data, which has big data volume and is time-consuming. 
Overall, active radar has the potential to detect alfalfa harvesting events. However, it is visually less intuitive 
than optical data with incident angles, quantity harvested, and soil moisture being the compounding factors. This 
study illustrates that combining multiple optical sensors with a fine spatial resolution (e.g., Landsat-7, 8, and 
Sentinel-2) and/or fusing radar with optical remote sensing to increase the temporal resolution are promising 
approaches to detect frequent alfalfa harvesting events and other hay harvesting activities.   
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1. Introduction 

Alfalfa (Medicago sativa L.) has been cultivated as an important 
forage crop in as many as 80 countries around the world and is the most 
intensively produced (52.6 M tons in 2018) perennial forage crop in the 
United States (U.S. Department of Agriculture – National Agricultural 
Statistics Services 2019). Alfalfa provides high quality protein, vitamins, 
and energy for livestock, including dairy cattle in the Southern Great 
Plains (SGP) of the U.S. (Burris 2001; Butler et al., 2012; Caddel et al., 
2001). Information about the harvested area of alfalfa is thus important 
for the livestock industry as an indication of forage availability. The 
livestock industry usually depends on statistical data (e.g., survey data 
from the U.S. Department of Agriculture – National Agricultural Statis
tics Service, USDA-NASS) to obtain harvested alfalfa acreage and yield 
data, which has a coarse spatial resolution (county-level or coarser) and 
is usually available one year after the survey (e.g., USDA-NASS releases 
annual agricultural statistics for the previous year in the current year). 

Alfalfa is generally on a four-year rotation as the legume fixes ni
trogen well for rotational crops, such as corn, and because young stands 
of alfalfa yield more than old stands (Noland et al., 2018; Undersander 
et al., 2011). Common management practices account for proper irri
gation, weed and pest controls via chemical application, disease/insect 
management, and fertilization (Undersander et al., 2011). When 
managed properly, an alfalfa field can be harvested several times during 
the growing season depending on varying climate and soil conditions 
(Caddel et al., et al., et al., 2001). Due to large variability in climate in 
the SGP, alfalfa growth is highly variable as regrowth following harvest 
depends on the timing of harvesting during the growing season (growth 
stage) and precipitation (Zhou et al., 2017b). To detect the frequent and 
variable alfalfa harvests at a large scale, it is necessary to utilize high 
temporal resolution remote sensing data. Additionally, the spatial res
olution of the satellite data also needs to account for varying sizes of 
alfalfa fields (with width and length range from several hundred meters 
to 1.6 km in the SGP). For instance, the Moderate Resolution Imaging 
Spectroradiometer (MODIS) provides daily surface reflectance products, 
but its spatial resolution (~500 m) might be too coarse to monitor alfalfa 
harvesting in small fields because of the occurrence of mixed pixels. The 
large, often mixed, pixels of MODIS have been a challenge for many 
agriculture field studies in the past (Flynn et al., 2020; Zhou et al., 
2019). Compared to the coarse spatial resolution of MODIS, Landsat (7 
and 8) has a finer spatial resolution (30 m). However, it has a lower 
temporal resolution (16 days). The adverse weather condition (e.g., 
cloud and cloud shadow) during Landsat overpass further reduces its 
availability. Thus, the use of Landsat data alone may not be sufficient for 
detecting these short-term harvesting events. Sentinel-2 has spectral 
bands similar to Landsat-8 and has a temporal resolution of five days. 
With its higher temporal resolution, it may better detect the frequent 
alfalfa harvesting events. Since both Sentinel-2 and Landsat-8 have 
similar band configurations, they can be merged to further increase the 
temporal resolution (Claverie et al., 2018; Griffiths et al., 2019). How
ever, all of these are optical sensors and are susceptible to adverse 
weather conditions. 

Unlike optical sensors, active radar sensors are not sensitive to 
weather conditions. Thus, short-term land surface changes can be 
detected using high temporal resolution radar. Radar remote sensing 
methods have been applied to agriculture to predict leaf area index 
(Hosseini et al., 2015), soil moisture (Zhu et al., 2019), phenology 
(McNairn et al., 2018), and growth conditions (Mandal et al., 2020) 
using many different polarizations and bands (Bégué et al., 2018). For 
instance, Sentinel-1 is a satellite mission with an active radar sensor and 
has been used to monitor mowing events on grasslands (Tamm et al., 
2016). 

With an ever-increasing volume of remote sensing data and higher 
spatial, temporal, and spectral resolutions, we hypothesize that it is 
possible to detect the frequent harvesting of alfalfa using remote 
sensing. To test the potential of using satellite remote sensing to detect 

frequent alfalfa harvesting events, this study used multiple remote 
sensing datasets, namely MODIS, Landsat-7 and -8, and Sentinel-1 and 
−2 over an alfalfa field in central Oklahoma during a two-year study 
period (2016–2017). Multiple data fusion methods including simple 
linear regression and principle driven fusion approach were included. 
The sensitivity of these datasets to alfalfa harvesting events was also 
evaluated. This study, using both active and passive remote sensing data 
to detect the frequent harvesting of alfalfa, can provide a proof of 
concept for new regional monitoring technologies for alfalfa harvesting. 

2. Study site and data retrieval 

2.1. Site description 

The study site, an alfalfa field, is located at the USDA-Agricultural 
Research Service (USDA-ARS), Grazinglands Research Laboratory 
(GRL) in El Reno, Oklahoma (Fig. 1). The field (triangle in Fig. 1) was 
planted with alfalfa (Cimarron VL400) in fall 2012 and managed under 
rain-fed condition. The major soil types in the field are Dale silt loam and 
Brewer silty clay loam according to data from the Soil Survey 
Geographic Database (https://websoilsurvey.sc.egov.usda. 
gov/App/HomePage.htm). 

2.2. Climate data 

The Oklahoma Mesonet El Reno station, which provides quality- 
controlled measurements of major meteorological variables (McPher
son et al., 2007), is 3 km to the south of the study area. Precipitation was 
more evenly distributed in 2016 than in 2017 (Fig. 2). However, the 
total precipitation was less in 2016 (63.14 cm) compared to 2017 
(110.92 cm). There was little rain during the early growing season in 
2016 while a dry spell existed in October and November of 2017. 

2.3. Harvesting record for the alfalfa field 

The field was harvested for hay multiple times each year depending 
on weather conditions and forage availability. Table S1 presents the 
harvest dates and forage yields for each harvesting event during the 
study period. 

2.4. Satellite data 

For inter-comparison, multiple satellite remote sensing datasets 
including both active and passive remote sensing were incorporated. 
Sentinel-1 is a satellite platform with an active radar. Sentinel-2, 
Landsat-7 and -8, and MODIS are satellite platforms with passive opti
cal sensors. Table 1 provides a brief summary of satellite datasets used. 
The Harmonized Landsat and Sentinel-2 (HLS), which fuses Landsat-8 
and Sentinel-2, was also included. More information about each data
set is described in the supplementary material, and employed data 
analysis (Fig. 3) is described in the following sections. 

3. Data analysis 

3.1. Quality control of optical data 

For each of the three optical remote sensing datasets (e.g. MODIS, 
Landsat-7 and -8, Sentinel-2), their respective quality assessment in
formation was used to exclude image artifacts caused by cloud, cloud 
shadow, and aerosols. Specifically, all MODIS data that did not pass the 
quality control were excluded for further analyses based on the 
following criteria: cloud state flag indicates cloudy or mixed, or cloud 
shadow existence, or aerosol quantity flag shows high, or cirrus-detected 
flag is average or high. Only clear pixels in Landsat-7 and -8 data, 
indicated by the pixel quality band, were included. Similar quality 
control processes were implemented for the Sentinel-2 and HLS datasets 
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where cloud, cloud shadow, cirrus, and high aerosol observations were 
excluded using the SC map (Müller-Wilm et al., 2016) and the quality 
assessment layer in Sentinel-2 and HLS, respectively. Further analysis 

only included those dates with the ratio of good quality pixels more than 
50%. This strict quality control step helps reduce the noise when 
calculating vegetation indices (VIs) and correlating them with 

Fig. 1. Study site overlapping with the Moderate Resolution Imaging Spectroradiometer (MODIS) pixel.  

Fig. 2. Daily average air temperature and daily precipitation for 2016–2017 from the Oklahoma Mesonet El Reno station.  
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harvesting events. 

3.2. Vegetation indices (VIs) calculation 

Two widely used VIs, namely Normalized Difference Vegetation 
Index (NDVI) and Enhanced Vegetation Index (EVI), were calculated 
from the quality controlled surface reflectance from respective optical 
remote sensing datasets in blue (ρblue), red (ρred), and NIR (ρnir) bands 
(Eqs. (1) and (2)) (Huete et al., 2002; Tucker 1979). These VIs are 
commonly used in remote sensing methods to represent biomass 
(Bartsch et al., 2020; Weiss et al., 2020; Yang et al., 2018). The NIR 
bands used in calculating VIs for MODIS and Sentinel-2 were 841–876 
nm and 785–900 nm, respectively. 

NDVI =
ρnir − ρred

ρnir + ρred
(1)  

EVI = 2.5 ×
ρnir − ρred

ρnir + 6.0 × ρred − 7.5 × ρblue + 1
(2) 

After VIs were computed, the mean VIs for the alfalfa field was 
extracted to represent the average condition of the field. Moreover, for 
depiction purposes, shortwave infrared (SWIR), NIR, and red bands were 
used to develop false color composite images for harvesting events with 

large and small quantities harvested (i.e., large and small harvests). 

3.3. Fusing Landsat and Sentinel-2 data with statistical transformation 
function 

The HLS dataset includes both Landsat-8 and Sentinel-2 data. How
ever, it does not include Landsat-7 data, and the Sentinel-2 cloud 
masking omission is a known issue with HLS (Claverie et al., 2018). To 
further improve the temporal resolution of the fine spatial resolution 
optical remote sensing data, we combined VIs derived from Landsat (7 
and 8) and Sentinel-2. For this purpose, we compared Landsat and 
Sentinel-2 based NDVI values, which were observed up to one week 
apart. A simple linear regression was performed for those observations 
and the slope of the regression was applied to calibrate Sentinel-2 based 
NDVI and EVI to Landsat observations (i.e., Landsat based VIs are in
dependent variables). The fused Landsat and Sentinel-2 data were then 
used as a new dataset to detect frequent alfalfa harvesting events. 

3.4. Sentinel-1 backscatter and interferometric coherence 

Our study area was covered by two orbits (34 and 107) but with 
different incident angles by Sentinel-1. Orbit 34 has an incident angle of 
34.31◦, while orbit 107 has an incident angle of 45.11◦ for the study site. 
The Sentinel-1 Ground Range Detected (GRD) products were used to 
calculate the geocoded backscatter coefficient (σ◦), and the Single Look 
Complex (SLC) data was used to obtain the interferometric coherence 
using the Sentinel Application Platform (SNAP). Details of data pro
cessing steps can be found in the supplementary material. 

Time-series of VV and VH backscatter coefficient and coherence for 
the entire alfalfa field were extracted to show their sensitivity to 
different harvest yields. To examine the impact of the incident angle in 
determining the response of backscatter and coherence to alfalfa har
vest, we analyzed the data for the two orbits separately. 

Table 1 
A brief summary of satellite datasets used in this study.  

Satellite Product type Spatial 
resolution 

Temporal 
resolution 

Number of 
images 

Sentinel- 
1A 

Ground Range 
Detected 

20 m 12 days 91 

Sentinel- 
2A 

Top-Of-Atmosphere 
Reflectance 

10 m 10 days 41 

Sentinel- 
2B 

Top-Of-Atmosphere 
Reflectance 

10 m 10 days 11 

Landsat 7 Surface Reflectance 30 m 16 days 39 
Landsat 8 Surface Reflectance 30 m 16 days 32 
MODIS Surface Reflectance 500 m 8 days 92  

Fig. 3. Methodological flowchart of the study. NDVI: Normalized Difference Vegetation Index; EVI: Enhanced Vegetation Index; VV: vertical transmit and vertical 
receive; VH: vertical transmit and horizontal receive. 
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3.5. Sensitivity analysis 

Since remote sensing datasets have different temporal resolutions, 
sensitivity analysis was done for comparison purposes. The change rate, 
(present – past)/ (time difference in days), for each dataset was used to 
indicate its sensitivity. All optical remote sensing datasets, including 
MODIS, Landsat, Sentinel-2, HLS, and fused Landsat and Sentinel-2 were 
grouped in one group, while radar data in two orbits were treated as 
another group. The sensitivity analysis then utilized each of the two 
groups of data to understand which instance of optical/active data 
groupings were most sensitive to the harvesting events. The sensitivity 
analysis proposed here considers the duration between the revisit time 
of the given platform that may or may not have been hindered by clouds, 
affecting the temporal resolution. By using this sensitivity analysis, we 
are combining the platform’s spectral and temporal abilities to better 
understand the platform’s given potential in detecting frequent alfalfa 
harvests. 

4. Results 

4.1. VIs derived from single optical remote sensing dataset 

Both NDVI and EVI were highly correlated with each other in all 
single optical remote sensing dataset as expected (Figs. 4–6). Their 
values decreased immediately following the harvesting events. Howev
er, the decrease in VIs caused by harvests did not necessarily correlate 
with the size of the harvesting events, especially for the largest harvest 
(June 7, 2017, with a forage yield of 4.41 t ha−1) in which MODIS- 
derived NDVI values only decreased slightly (Fig. 4). The decrease in 
Landsat- and Sentinel-2-derived NDVI and EVI was more closely related 
to the size of the harvesting events (Figs. 5 and 6 middle panels) 
compared to MODIS-derived VIs (Fig. 4). However, both Landsat and 
Sentinel-2 missed some harvesting events (e.g., Landsat and Sentinel-2 
missed the harvesting events on May 18, 2016 and May 3, 2017, 
respectively). 

The impacts of harvesting on land surface were captured in the color 
composite images before and after alfalfa harvesting from Landsat and 
Sentinel-2 (Figs. 5 and 6 top and bottom panels). Note that the differ
ences of the field before and after harvests were much clearer in a small 
(Fig. 5 bottom panels) than a large harvesting event (Fig. 5 top panels), 
which will be explained later in Section 4.3. The timing (Fig. 6a and d) 
and size (Table S1) of harvesting events jointly determined the impacts 
of each harvest (Fig. 6b and e) on surface reflectance. 

4.2. VIs derived from the HLS data 

The HLS data that incorporated both Landsat-8 and Sentinel-2 
increased the temporal resolution of VIs (Fig. 7). HLS-derived VIs 
decreased significantly in response to most of the harvesting events. 
However, the noise level was also high in the HLS-derived VIs, which 
causes some abnormal values. For example, NDVI and EVI increased 
after harvest in August. To further examine the reasons for the high 
noise level in HLS, we compared the results of HLS-derived NDVI and 
EVI with those directly from Landsat (Fig. S1) and Sentinel-2 (Fig. S2). 
Possible causes for the high noise are the inclusion of both Landsat-8 
Collection-1 Tier-1 and Tier-2 data (Fig. S1), Sentinel-2 cloud masking 
omission (Fig. S2), and Bidirectional Reflectance Distribution Function 
(BRDF) adjustment (see Claverie et al., 2018 for more details) in HLS 
data processing. The impacts of cloud masking omission were also 
manifested by the abrupt increases in NDVI during winter (black dashed 
circle in Fig. 7). These noises pose challenges to separate the drops in the 
signal from the true harvesting events. 

4.3. VIs derived from fused Landsat and Sentinel-2 data 

There was a good linear relationship (r2 = 0.87) between NDVI 
values derived from Landsat (7 and 8) and Sentinel-2 that were acquired 
up to one week apart (Fig. 8). The slope of the regression was ~1, 
indicating that Landsat and Sentinel-2 derived VIs can be merged to 
increase the temporal resolution of the data. The slope of the regression 
was applied to calibrate Sentinel-2 based VIs to Landsat observations. 

Combining Landsat and Sentinel-2 derived VIs increased the possi
bility of detecting frequent alfalfa harvesting events (Fig. 9). VIs 
decreased significantly after each harvesting event except for the small 
harvest on August 9, 2017 (Table S1), which was followed by a large 
precipitation event (Fig. 2). Both NDVI and EVI had similar performance 
in detecting alfalfa harvests. The decrease in VIs was positively corre
lated with the size of harvesting events in general. The recovery of 
vegetation growth after harvest was better captured by this higher 
temporal resolution dataset. NDVI was already low right before the last 
harvest in 2017 (a small harvest). The following harvesting event thus 
further decreased the NDVI, which caused a distinct contrast before and 
after harvest than the one in a larger harvest (Fig. 5). Comparing the 
fused Landsat and Sentinel-2 NDVI to the HLS-derived NDVI, the former 
had much lower noise levels due to its strict and consistent quality 
control process (Section 3.1). Nevertheless, there was a very strong 
linear relationship between HLS-derived NDVI and fused Landsat and 
Sentinel-2 NDVI (Fig. S3), indicating that HLS well harmonized good 
quality Landsat-8 and Sentinel-2 observations. 

Fig. 4. Dynamics of Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) from the MODIS integrated with harvesting events (dash 
lines, with the width of the lines indicating forage yield). 
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4.4. Radar backscatter from Sentinel-1 

Dynamics of VV and VH backscatter coefficients from Sentinel-1 
(Fig. 10 middle panel) were similar in orbit 34, which has a smaller 
incident angle (34.31◦). In most cases, VV and VH backscatter co
efficients were decreased by harvests. In addition, VV backscatter co
efficients during the growing season (April-October) decreased only 
after harvest. The decrease in VV and VH backscatter coefficients at the 
end of the growing season and their fluctuations during the early spring 
period indicated the importance of plant phenology and soil moisture on 
radar backscatter. The color composite images before (Fig. 10a and d) 
and after (Fig. 10b and e) harvests showed the impacts of harvesting on 
radar backscatter. However, the contrasts between before and after 
harvests were not as clear as the contrasts seen in Landsat and Sentinel-2 
imageries (Figs. 5 and 6). The speckle noise also increased the difficulty 
of the interpretation of radar images (Fig. 10 top and bottom panels). 

There were no consistent relationships between VV and VH back
scatter coefficients from Sentinel-1 with alfalfa harvest in orbit 107 
(Fig. 11), which has a larger incident angle (45.11◦). The dynamics of 
backscatter were not relevant to the size of the harvesting events. As 

seen in the observations with a smaller incident angle (Fig. 10 middle 
panel), the backscatter decreased at the end of the growing season and 
fluctuated during the non-growing season for the larger incident angle 
observations. 

4.5. Interferometric coherence from Sentinel-1 

Dynamics of VV and VH interferometric coherence from Sentinel-1 
(Fig. 12 middle panel) were mostly similar in orbit 34, which has a 
smaller incident angle (34.31◦). In contrast to backscatter coefficients 
(Fig. 11), the interferometric coherence coefficients were increased by 
harvesting events. However, similar to the backscatter coefficient, the 
background noise was high in the coherence time-series. For example, 
there were two evident peaks of VV and VH coherence around August of 
2016 and January of 2017, which were not caused by harvesting events. 
The contrasts of color composite images, derived from coherence bands, 
between before and after harvests were not as clear as seen in Landsat 
and Sentinel-2 imageries (Figs. 5 and 6). As in the case of the backscatter 
coefficient, there were no consistent relationships between VV and VH 
interferometric coherence coefficient from Sentinel-1 with alfalfa 

Fig. 5. Dynamics of NDVI and EVI from Landsat-7 and -8 and color composite (SWIR-2, NIR, and red) images for large and small harvesting events in 2017. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 6. Dynamics of NDVI and EVI from Sentinel-2 and color composite (Shortwave infrared (Band 11), near-infrared (Band 8), and red (Band 4)) images for large 
and small harvesting events in 2017. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 7. Dynamics of NDVI and EVI from the HLS data. The black dashed circle indicates the impacts of cloud masking omission on vegetation indices.  
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harvest in orbit 107 (Fig. S4), which has a larger incident angle (45.11◦). 

4.6. Sensitivity of each dataset to detect different sized harvesting events 

The decrease in VIs caused by harvests were larger in Landsat and 
Sentinel-2 (Fig. 13b and c) than in MODIS (Fig. 13a), indicating the 
former is spatially more sensitive than the latter in detecting alfalfa 
harvests. The higher spatial resolutions of Landsat and Sentinel-2 helped 
avoid the mixed pixel issue in MODIS caused by its coarser spatial res
olution. However, MODIS can better depict all harvest events and reflect 
the impacts of climate on alfalfa because of its higher temporal resolu
tion. The changes in VIs in HLS (Fig. 13d) and our fused Landsat and 
Sentinel-2 data (Fig. 13e) were more evident after each harvest, indi
cating improved detection of alfalfa harvests. However, the noise level 
increased in the HLS and our fused Landsat and Sentinel-2 data, espe
cially in the former, which makes it hard to differentiate VIs decreases 
caused by harvesting events and noises in the dataset. 

The radar backscatters were mostly decreased by harvests in smaller 
incident angle observations (34.31◦) (Fig. 14a). There were also signif
icant changes in backscatter during the non-growing season, probably 

caused by the dynamics of soil moisture. The change in radar backscatter 
was not consistently correlated with the alfalfa harvests in the larger 
incident angle observations (45.11◦) (Fig. 14b). Similar to the radar 
backscatters, the coherence in smaller incident angle observations 
(Fig. 14c) were more sensitive to harvesting events than those in the 
larger incident angle observations (Fig. 14d), which were largely not 
responsive to the harvesting events. However, as it was mentioned 
before, the coherence was increased by harvesting events, in contrast to 
backscatter (Fig. 14a). There were other factors besides harvesting that 
affected the dynamics of coherence. For example, the coherence values 
decreased around September 2016 and February 2017 (Fig. 14c), when 
there were no harvesting events. 

5. Discussion 

5.1. The requirements of remote sensing data to detect frequent alfalfa 
harvests 

The typical size (width and length) of an alfalfa field is several 
hundred meters to 1.6 km (1 mile) in the SGP. Coarse spatial resolution 
remote sensing data may suffer from mixed pixel issues, limiting its 
ability to detect alfalfa harvesting events at a field scale. For example, 
here the MODIS pixel of ~500 m resolution included a portion of 
Bermuda pasture (Fig. 1). This mixed pixel might have caused lower 
sensitivities of VIs to alfalfa harvests as compared to finer spatial reso
lution datasets (Landsat and Sentinel-2) (Fig. 13). Thus, spatial resolu
tions of 100 m or finer, depending on the sizes of the fields, are needed 
for monitoring field-scale alfalfa harvests in this region. 

Alfalfa is harvested multiple times during a year and vegetation can 
regrow quickly, depending on growth stage and water availability. 
Tracking of frequent harvesting events requires high temporal resolu
tion remote sensing data. However, most fine resolution satellite remote 
sensing products have relatively low temporal resolutions. Both Landast- 
7 and -8 have a temporal resolution of 16-days. Combining them 
together results in an improved temporal resolution of 8-days. However, 
not all Landsat-7 and -8 images were effective observations as they were 
affected by adverse weather conditions. As a result, even the combined 
Landsat data were not temporally high enough to track all alfalfa har
vesting events (Fig. 5 middle panel). Although Sentinel-2 has a 5-day 
temporal resolution, it still missed the first harvesting event in 2017 
(Fig. 6 middle panel). One possible reason is that Sentinel-2B was 
launched on March 7, 2017. Before the launch of Sentinel-2B, Sentinel-2 
mission’s temporal resolution was only 10-days due to just one satellite 
(Sentinel-2A) being in orbit. Effective fine spatial resolution observation 
(i.e., cloud and cloud shadow free) at a higher temporal resolution (i.e., 
at least an 8-day interval) is necessary to adequately characterize the 

Fig. 8. Relationship between Landsat derived and Sentinel-2 derived NDVI for 
one week apart. 

Fig. 9. Dynamic of NDVI and EVI after fusion of Landsat and Sentinel-2 data.  
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Fig. 10. Dynamics of VV (vertical transmit and vertical receive) and VH (vertical transmit and horizontal receive) backscatter coefficient (dB) from Sentinel-1 in 
orbit 34 and color composite (VV, VH, and VV/VH) images for large and small harvesting events in 2017. 

Fig. 11. Dynamics of VV and VH backscatter coefficient (dB) from Sentinel-1 in orbit 107.  
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localized disturbances/management practices such as frequent har
vesting of alfalfa in this study. 

5.2. Data fusion to increase temporal resolution 

Using data fusion approaches to increase temporal resolution is 
necessary to meet the requirements of both spatial and temporal reso
lutions for detecting alfalfa harvests. The HLS dataset harmonizes the 
Landsat-8 and Sentinel-2 data together through radiometric and geo
metric corrections to increase the temporal resolution to facilitate time- 
series analysis. Our results showed that HLS (Fig. 7) greatly increased 
the number of available observations compared to any single fine spatial 
resolution dataset (Figs. 5 and 6 middle panels). However, the noise 
level was high in HLS-derived VIs (Figs. 7 and 13d). The direct com
parison between HLS-derived VIs with those directly from Landsat 
(Fig. S1) and Sentinel-2 (Fig. S2) showed that the noises were high in the 
harmonized time-series of HLS data. Further improvement of HLS and 
temporal compositing methods to reduce the noises in the harmonized 
time-series of HLS data is necessary to better facilitate its application in 
detecting alfalfa harvests at the regional scale. 

In addition to the HLS dataset, we also combined Landsat (both 7 and 
8) and Sentinel-2 imageries based on the NDVI values up to one week 

apart (Fig. 8), and increased the temporal resolution of optical remote 
sensing data to detect frequent alfalfa harvests. The fused Landsat and 
Sentinel-2 VIs (Fig. 9) were more effective in detecting each harvesting 
event in comparison to any single dataset (Fig. 5and 6 middle panels). In 
addition, the noise level in our fused Landsat and Sentinel-2 dataset was 
lower than those in HLS (Fig. 7), suggesting that simple statistical 
transformation functions are also effective in fusing these two datasets at 
the site level. However, more rigid data fusion approaches, like HLS, is 
needed for regional scale analyses. These results demonstrate that 
merging fine spatial resolution datasets from different optical remote 
sensing sensors to increase temporal resolution is an effective way to 
better track the field scale management practices such as frequent alfalfa 
harvesting events. 

An alternative approach is to fuse optical and radar data, which 
provides both spectral and structural information of land surfaces. For 
example, Zhou et al. (2017a) mapped winter wheat in an urban agri
cultural region in China using multi-temporal SAR (Sentinel-1A) and 
optical images (Landsat-8). Sentinel-1A and 2A were used for crop 
classification in Japan (Sonobe et al., 2017). However, there is a lack of 
framework and effective methods for integrating optical and radar data 
(Joshi et al., 2016). 

Fig. 12. Dynamics of VV and VH interferometric coherence coefficient from Sentinel-1 in orbit 34 and color composite (VV, VH, and VV/VH) images for large and 
small harvesting events. 
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Fig. 13. Sensitivity of VIs derived from different optical remote sensing products [(a) MODIS, (b) Landsat, (c) Sentinel-2, (d) Harmonized Landsat and Sentinel-2, and 
(e) Fused Landsat and Sentinel-2.] to different sized harvesting events. 
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5.3. Passive optical remote sensing versus active radar in detecting 
frequent alfalfa harvests 

Vegetation indices derived from optical remote sensing datasets have 
been widely used in vegetation monitoring (Zhang et al., 2006; Zhou 
et al., 2017b). However, there is always a tradeoff between spatial and 
temporal resolutions. Coarse spatial resolution data (e.g., MODIS) can 
have mixed pixel issues, while low temporal resolution data might miss 
the signal in high frequency and localized disturbances (e.g., frequent 
alfalfa harvests in this study). Moreover, passive optical remote sensing 

is susceptible to adverse weather conditions. 
Active radar can function in all weather conditions. Radar has been 

used in monitoring crop harvest patterns (Tamm et al., 2016; Zhao et al., 
2014) and crop residues (Daughtry et al., 2005; McNairn et al., 2001). 
Radar sensors with high spatial and temporal resolutions provide an 
opportunity to analyze the response of time-series radar data to frequent 
alfalfa harvests. Our results indicated that Sentinel-1 (Fig. 6) had the 
potential to detect alfalfa harvests especially in observations with a 
small incident angle (34.31◦). However, the visual aesthetics of radar 
signals were less intuitive than optical data. Additionally, other 

Fig. 14. Sensitivity of radar backscatters and interferometric coherence with small (a for backscatter and c for coherence) and large (b for backscatter and d for 
coherence) observation angles. 
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compounding factors, including incident angle, size of harvesting, and 
soil moisture, need to be further examined. 

6. Conclusion 

To assess the potential of different remote sensing datasets to detect 
frequent alfalfa harvests, active and passive remote sensing data of 
different spatial and temporal resolutions were used. Our results indi
cate that both fine spatial and high temporal resolutions are important to 
reliably detect frequent alfalfa harvests. Landsat and Sentinel-2 were 
more effective to detect alfalfa harvests compared to MODIS because of 
their finer spatial resolutions, which helped overcome the issue of a 
mixed pixel. However, they missed some harvesting events because of 
lower temporal resolutions. The HLS dataset that fused both Landsat-8 
and Sentinel-2 data detected most of the harvesting events. However, 
the noise level in the HLS dataset was high. Thus, we fused Landsat (7 
and 8) and Sentinel-2 data with a strict quality control to further in
crease the temporal resolution of effective optical remote sensing data. 
Our fused dataset performed better in detecting frequent alfalfa har
vesting events than any single dataset, while also incurring less noise 
than the HLS dataset. Radar backscatter coefficients from Sentinel-1 
were decreased by alfalfa harvests in the small incident angle observa
tions (34.31◦). In contrast, interferometric coherence coefficients were 
mostly increased by alfalfa harvests. Both backscatter and coherences 
values in the large incident angle observations did not show consistent 
responses to alfalfa harvesting events. Our results showed that active 
radar has the potential to detect alfalfa harvests. However, it is required 
to further investigate the impacts of incident angle, size of harvesting, 
and soil moisture on radar backscatter. Thus, fusing optical remote 
sensing datasets to increase temporal resolution is a more suitable 
approach to detect frequent alfalfa harvesting events at the current 
stage. This study demonstrates the potential of utilizing multiple remote 
sensing datasets to monitor field scale disturbances, including all types 
of hay harvesting (e.g., alfalfa, winter wheat, prairie grasslands). 
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