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ARTICLE INFO ABSTRACT

Keywords: Alfalfa (Medicago sativa L.), referred to as the “Queen of Forages” because of its importance among forage crops,
Optical remote sensing provides high quality forage for the livestock industry. The timing and frequency of alfalfa hay harvesting have
Radar

implications on its quality and quantity. With ever-increasing capability, it is possible to use satellite remote
sensing data to monitor alfalfa harvests. This study investigated the potential of using satellite remote sensing to
capture frequent harvesting events on an alfalfa field in central Oklahoma. Both passive remote sensing data,
namely Moderate Resolution Imaging Spectroradiometer (MODIS), Landsat-7 and -8, Sentinel-2, Harmonized
Landsat and Sentinel-2 (HLS), and active remote sensing data, namely Sentinel-1, were included. Our results
indicate that good quality optical remote sensing datasets (i.e., cloud and cloud shadow free) with both fine
spatial (<100 m) and high temporal (effective observation at 8-day intervals or better) resolutions are necessary
to detect frequent alfalfa harvesting events, challenged by possible adverse weather conditions and quick
regrowth of vegetation after harvest. Landsat (7 and 8) and Sentinel-2 were more sensitive to changes in
vegetation indices after harvest than MODIS due to their higher spatial resolutions, which helped avoid the
mixed pixel issue in MODIS caused by its coarser spatial resolution (~500 m). Combining Landsat (7 and 8) with
Sentinel-2 imageries through linear regression between the Normalized Difference Vegetation Index (NDVI)
values, up to one week apart, increased the accuracy of detecting frequent alfalfa harvesting events. The re-
sponses of HLS to alfalfa harvesting events were similar with fused Landsat and Sentinel-2 data using their linear
relationship of NDVI values. However, the high noise level in the HLS data needs to be minimized before it can be
used to detect alfalfa harvests at the regional scale. In most cases, both Sentinel-1 radar backscatter coefficients
(vertical transmit and vertical receive, VV + vertical transmit and horizontal receive, VH) and interferometric
coherence from Sentinel-1 Simple Look Complex (SLC) data were decreased by harvesting events in small
incident angle observations (34.31°). No consistent relationships existed between backscatter or coherence and
alfalfa harvests in larger incident angle observations (45.11°). Future studies should focus on small incident angle
observations instead of processing all of the radar data, which has big data volume and is time-consuming.
Overall, active radar has the potential to detect alfalfa harvesting events. However, it is visually less intuitive
than optical data with incident angles, quantity harvested, and soil moisture being the compounding factors. This
study illustrates that combining multiple optical sensors with a fine spatial resolution (e.g., Landsat-7, 8, and
Sentinel-2) and/or fusing radar with optical remote sensing to increase the temporal resolution are promising
approaches to detect frequent alfalfa harvesting events and other hay harvesting activities.
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1. Introduction

Alfalfa (Medicago sativa L.) has been cultivated as an important
forage crop in as many as 80 countries around the world and is the most
intensively produced (52.6 M tons in 2018) perennial forage crop in the
United States (U.S. Department of Agriculture — National Agricultural
Statistics Services 2019). Alfalfa provides high quality protein, vitamins,
and energy for livestock, including dairy cattle in the Southern Great
Plains (SGP) of the U.S. (Burris 2001; Butler et al., 2012; Caddel et al.,
2001). Information about the harvested area of alfalfa is thus important
for the livestock industry as an indication of forage availability. The
livestock industry usually depends on statistical data (e.g., survey data
from the U.S. Department of Agriculture — National Agricultural Statis-
tics Service, USDA-NASS) to obtain harvested alfalfa acreage and yield
data, which has a coarse spatial resolution (county-level or coarser) and
is usually available one year after the survey (e.g., USDA-NASS releases
annual agricultural statistics for the previous year in the current year).

Alfalfa is generally on a four-year rotation as the legume fixes ni-
trogen well for rotational crops, such as corn, and because young stands
of alfalfa yield more than old stands (Noland et al., 2018; Undersander
et al.,, 2011). Common management practices account for proper irri-
gation, weed and pest controls via chemical application, disease/insect
management, and fertilization (Undersander et al., 2011). When
managed properly, an alfalfa field can be harvested several times during
the growing season depending on varying climate and soil conditions
(Caddel et al., et al., et al., 2001). Due to large variability in climate in
the SGP, alfalfa growth is highly variable as regrowth following harvest
depends on the timing of harvesting during the growing season (growth
stage) and precipitation (Zhou et al., 2017b). To detect the frequent and
variable alfalfa harvests at a large scale, it is necessary to utilize high
temporal resolution remote sensing data. Additionally, the spatial res-
olution of the satellite data also needs to account for varying sizes of
alfalfa fields (with width and length range from several hundred meters
to 1.6 km in the SGP). For instance, the Moderate Resolution Imaging
Spectroradiometer (MODIS) provides daily surface reflectance products,
but its spatial resolution (~500 m) might be too coarse to monitor alfalfa
harvesting in small fields because of the occurrence of mixed pixels. The
large, often mixed, pixels of MODIS have been a challenge for many
agriculture field studies in the past (Flynn et al., 2020; Zhou et al.,
2019). Compared to the coarse spatial resolution of MODIS, Landsat (7
and 8) has a finer spatial resolution (30 m). However, it has a lower
temporal resolution (16 days). The adverse weather condition (e.g.,
cloud and cloud shadow) during Landsat overpass further reduces its
availability. Thus, the use of Landsat data alone may not be sufficient for
detecting these short-term harvesting events. Sentinel-2 has spectral
bands similar to Landsat-8 and has a temporal resolution of five days.
With its higher temporal resolution, it may better detect the frequent
alfalfa harvesting events. Since both Sentinel-2 and Landsat-8 have
similar band configurations, they can be merged to further increase the
temporal resolution (Claverie et al., 2018; Griffiths et al., 2019). How-
ever, all of these are optical sensors and are susceptible to adverse
weather conditions.

Unlike optical sensors, active radar sensors are not sensitive to
weather conditions. Thus, short-term land surface changes can be
detected using high temporal resolution radar. Radar remote sensing
methods have been applied to agriculture to predict leaf area index
(Hosseini et al., 2015), soil moisture (Zhu et al., 2019), phenology
(McNairn et al., 2018), and growth conditions (Mandal et al., 2020)
using many different polarizations and bands (Bégué et al., 2018). For
instance, Sentinel-1 is a satellite mission with an active radar sensor and
has been used to monitor mowing events on grasslands (Tamm et al.,
2016).

With an ever-increasing volume of remote sensing data and higher
spatial, temporal, and spectral resolutions, we hypothesize that it is
possible to detect the frequent harvesting of alfalfa using remote
sensing. To test the potential of using satellite remote sensing to detect
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frequent alfalfa harvesting events, this study used multiple remote
sensing datasets, namely MODIS, Landsat-7 and -8, and Sentinel-1 and
—2 over an alfalfa field in central Oklahoma during a two-year study
period (2016-2017). Multiple data fusion methods including simple
linear regression and principle driven fusion approach were included.
The sensitivity of these datasets to alfalfa harvesting events was also
evaluated. This study, using both active and passive remote sensing data
to detect the frequent harvesting of alfalfa, can provide a proof of
concept for new regional monitoring technologies for alfalfa harvesting.

2. Study site and data retrieval
2.1. Site description

The study site, an alfalfa field, is located at the USDA-Agricultural
Research Service (USDA-ARS), Grazinglands Research Laboratory
(GRL) in El Reno, Oklahoma (Fig. 1). The field (triangle in Fig. 1) was
planted with alfalfa (Cimarron VL400) in fall 2012 and managed under
rain-fed condition. The major soil types in the field are Dale silt loam and
Brewer silty clay loam according to data from the Soil Survey
Geographic Database (https://websoilsurvey.sc.egov.usda.
gov/App/HomePage.htm).

2.2. Climate data

The Oklahoma Mesonet El Reno station, which provides quality-
controlled measurements of major meteorological variables (McPher-
son et al., 2007), is 3 km to the south of the study area. Precipitation was
more evenly distributed in 2016 than in 2017 (Fig. 2). However, the
total precipitation was less in 2016 (63.14 cm) compared to 2017
(110.92 cm). There was little rain during the early growing season in
2016 while a dry spell existed in October and November of 2017.

2.3. Harvesting record for the alfalfa field

The field was harvested for hay multiple times each year depending
on weather conditions and forage availability. Table S1 presents the
harvest dates and forage yields for each harvesting event during the
study period.

2.4. Satellite data

For inter-comparison, multiple satellite remote sensing datasets
including both active and passive remote sensing were incorporated.
Sentinel-1 is a satellite platform with an active radar. Sentinel-2,
Landsat-7 and -8, and MODIS are satellite platforms with passive opti-
cal sensors. Table 1 provides a brief summary of satellite datasets used.
The Harmonized Landsat and Sentinel-2 (HLS), which fuses Landsat-8
and Sentinel-2, was also included. More information about each data-
set is described in the supplementary material, and employed data
analysis (Fig. 3) is described in the following sections.

3. Data analysis
3.1. Quality control of optical data

For each of the three optical remote sensing datasets (e.g. MODIS,
Landsat-7 and -8, Sentinel-2), their respective quality assessment in-
formation was used to exclude image artifacts caused by cloud, cloud
shadow, and aerosols. Specifically, all MODIS data that did not pass the
quality control were excluded for further analyses based on the
following criteria: cloud state flag indicates cloudy or mixed, or cloud
shadow existence, or aerosol quantity flag shows high, or cirrus-detected
flag is average or high. Only clear pixels in Landsat-7 and -8 data,
indicated by the pixel quality band, were included. Similar quality
control processes were implemented for the Sentinel-2 and HLS datasets
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Fig. 2. Daily average air temperature and daily precipitation for 2016-2017 from the Oklahoma Mesonet El Reno station.

where cloud, cloud shadow, cirrus, and high aerosol observations were only included those dates with the ratio of good quality pixels more than
excluded using the SC map (Miiller-Wilm et al., 2016) and the quality 50%. This strict quality control step helps reduce the noise when
assessment layer in Sentinel-2 and HLS, respectively. Further analysis calculating vegetation indices (VIs) and correlating them with
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Table 1
A brief summary of satellite datasets used in this study.

Satellite Product type Spatial Temporal Number of
resolution resolution images

Sentinel- Ground Range 20 m 12 days 91

1A Detected
Sentinel- Top-Of-Atmosphere 10 m 10 days 41

2A Reflectance
Sentinel- Top-Of-Atmosphere 10 m 10 days 11

2B Reflectance
Landsat 7  Surface Reflectance ~ 30 m 16 days 39
Landsat 8  Surface Reflectance ~ 30 m 16 days 32
MODIS Surface Reflectance 500 m 8 days 92

harvesting events.
3.2. Vegetation indices (VIs) calculation

Two widely used VIs, namely Normalized Difference Vegetation
Index (NDVI) and Enhanced Vegetation Index (EVI), were calculated
from the quality controlled surface reflectance from respective optical
remote sensing datasets in blue (p,;,.), red (), and NIR (p,;.) bands
(Egs. (1) and (2)) (Huete et al., 2002; Tucker 1979). These VIs are
commonly used in remote sensing methods to represent biomass
(Bartsch et al., 2020; Weiss et al., 2020; Yang et al., 2018). The NIR
bands used in calculating VIs for MODIS and Sentinel-2 were 841-876
nm and 785-900 nm, respectively.

NDVI = Puir — Prea 6
Prir T Prea
EVI =25 % Prir — Pred )

+6.0Xp;—75%Xpy, +1

After VIs were computed, the mean VIs for the alfalfa field was
extracted to represent the average condition of the field. Moreover, for
depiction purposes, shortwave infrared (SWIR), NIR, and red bands were
used to develop false color composite images for harvesting events with
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large and small quantities harvested (i.e., large and small harvests).

3.3. Fusing Landsat and Sentinel-2 data with statistical transformation
function

The HLS dataset includes both Landsat-8 and Sentinel-2 data. How-
ever, it does not include Landsat-7 data, and the Sentinel-2 cloud
masking omission is a known issue with HLS (Claverie et al., 2018). To
further improve the temporal resolution of the fine spatial resolution
optical remote sensing data, we combined VIs derived from Landsat (7
and 8) and Sentinel-2. For this purpose, we compared Landsat and
Sentinel-2 based NDVI values, which were observed up to one week
apart. A simple linear regression was performed for those observations
and the slope of the regression was applied to calibrate Sentinel-2 based
NDVI and EVI to Landsat observations (i.e., Landsat based VIs are in-
dependent variables). The fused Landsat and Sentinel-2 data were then
used as a new dataset to detect frequent alfalfa harvesting events.

3.4. Sentinel-1 backscatter and interferometric coherence

Our study area was covered by two orbits (34 and 107) but with
different incident angles by Sentinel-1. Orbit 34 has an incident angle of
34.31°, while orbit 107 has an incident angle of 45.11° for the study site.
The Sentinel-1 Ground Range Detected (GRD) products were used to
calculate the geocoded backscatter coefficient (6°), and the Single Look
Complex (SLC) data was used to obtain the interferometric coherence
using the Sentinel Application Platform (SNAP). Details of data pro-
cessing steps can be found in the supplementary material.

Time-series of VV and VH backscatter coefficient and coherence for
the entire alfalfa field were extracted to show their sensitivity to
different harvest yields. To examine the impact of the incident angle in
determining the response of backscatter and coherence to alfalfa har-
vest, we analyzed the data for the two orbits separately.
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Fig. 3. Methodological flowchart of the study. NDVI: Normalized Difference Vegetation Index; EVI: Enhanced Vegetation Index; VV: vertical transmit and vertical

receive; VH: vertical transmit and horizontal receive.
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3.5. Sensitivity analysis

Since remote sensing datasets have different temporal resolutions,
sensitivity analysis was done for comparison purposes. The change rate,
(present — past)/ (time difference in days), for each dataset was used to
indicate its sensitivity. All optical remote sensing datasets, including
MODIS, Landsat, Sentinel-2, HLS, and fused Landsat and Sentinel-2 were
grouped in one group, while radar data in two orbits were treated as
another group. The sensitivity analysis then utilized each of the two
groups of data to understand which instance of optical/active data
groupings were most sensitive to the harvesting events. The sensitivity
analysis proposed here considers the duration between the revisit time
of the given platform that may or may not have been hindered by clouds,
affecting the temporal resolution. By using this sensitivity analysis, we
are combining the platform’s spectral and temporal abilities to better
understand the platform’s given potential in detecting frequent alfalfa
harvests.

4. Results
4.1. VIs derived from single optical remote sensing dataset

Both NDVI and EVI were highly correlated with each other in all
single optical remote sensing dataset as expected (Figs. 4-6). Their
values decreased immediately following the harvesting events. Howev-
er, the decrease in VIs caused by harvests did not necessarily correlate
with the size of the harvesting events, especially for the largest harvest
(June 7, 2017, with a forage yield of 4.41 t ha™!) in which MODIS-
derived NDVI values only decreased slightly (Fig. 4). The decrease in
Landsat- and Sentinel-2-derived NDVI and EVI was more closely related
to the size of the harvesting events (Figs. 5 and 6 middle panels)
compared to MODIS-derived VIs (Fig. 4). However, both Landsat and
Sentinel-2 missed some harvesting events (e.g., Landsat and Sentinel-2
missed the harvesting events on May 18, 2016 and May 3, 2017,
respectively).

The impacts of harvesting on land surface were captured in the color
composite images before and after alfalfa harvesting from Landsat and
Sentinel-2 (Figs. 5 and 6 top and bottom panels). Note that the differ-
ences of the field before and after harvests were much clearer in a small
(Fig. 5 bottom panels) than a large harvesting event (Fig. 5 top panels),
which will be explained later in Section 4.3. The timing (Fig. 6a and d)
and size (Table S1) of harvesting events jointly determined the impacts
of each harvest (Fig. 6b and e) on surface reflectance.

International Journal of Applied Earth Observation and Geoinformation 104 (2021) 102539
4.2. VIs derived from the HLS data

The HLS data that incorporated both Landsat-8 and Sentinel-2
increased the temporal resolution of VIs (Fig. 7). HLS-derived VIs
decreased significantly in response to most of the harvesting events.
However, the noise level was also high in the HLS-derived VIs, which
causes some abnormal values. For example, NDVI and EVI increased
after harvest in August. To further examine the reasons for the high
noise level in HLS, we compared the results of HLS-derived NDVI and
EVI with those directly from Landsat (Fig. S1) and Sentinel-2 (Fig. S2).
Possible causes for the high noise are the inclusion of both Landsat-8
Collection-1 Tier-1 and Tier-2 data (Fig. S1), Sentinel-2 cloud masking
omission (Fig. S2), and Bidirectional Reflectance Distribution Function
(BRDF) adjustment (see Claverie et al., 2018 for more details) in HLS
data processing. The impacts of cloud masking omission were also
manifested by the abrupt increases in NDVI during winter (black dashed
circle in Fig. 7). These noises pose challenges to separate the drops in the
signal from the true harvesting events.

4.3. VIs derived from fused Landsat and Sentinel-2 data

There was a good linear relationship (r?> = 0.87) between NDVI
values derived from Landsat (7 and 8) and Sentinel-2 that were acquired
up to one week apart (Fig. 8). The slope of the regression was ~1,
indicating that Landsat and Sentinel-2 derived VIs can be merged to
increase the temporal resolution of the data. The slope of the regression
was applied to calibrate Sentinel-2 based VIs to Landsat observations.

Combining Landsat and Sentinel-2 derived VIs increased the possi-
bility of detecting frequent alfalfa harvesting events (Fig. 9). VIs
decreased significantly after each harvesting event except for the small
harvest on August 9, 2017 (Table S1), which was followed by a large
precipitation event (Fig. 2). Both NDVI and EVI had similar performance
in detecting alfalfa harvests. The decrease in VIs was positively corre-
lated with the size of harvesting events in general. The recovery of
vegetation growth after harvest was better captured by this higher
temporal resolution dataset. NDVI was already low right before the last
harvest in 2017 (a small harvest). The following harvesting event thus
further decreased the NDVI, which caused a distinct contrast before and
after harvest than the one in a larger harvest (Fig. 5). Comparing the
fused Landsat and Sentinel-2 NDVI to the HLS-derived NDVI, the former
had much lower noise levels due to its strict and consistent quality
control process (Section 3.1). Nevertheless, there was a very strong
linear relationship between HLS-derived NDVI and fused Landsat and
Sentinel-2 NDVI (Fig. S3), indicating that HLS well harmonized good
quality Landsat-8 and Sentinel-2 observations.
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Fig. 4. Dynamics of Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) from the MODIS integrated with harvesting events (dash

lines, with the width of the lines indicating forage yield).
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4.4. Radar backscatter from Sentinel-1

Dynamics of VV and VH backscatter coefficients from Sentinel-1
(Fig. 10 middle panel) were similar in orbit 34, which has a smaller
incident angle (34.31°). In most cases, VV and VH backscatter co-
efficients were decreased by harvests. In addition, VV backscatter co-
efficients during the growing season (April-October) decreased only
after harvest. The decrease in VV and VH backscatter coefficients at the
end of the growing season and their fluctuations during the early spring
period indicated the importance of plant phenology and soil moisture on
radar backscatter. The color composite images before (Fig. 10a and d)
and after (Fig. 10b and e) harvests showed the impacts of harvesting on
radar backscatter. However, the contrasts between before and after
harvests were not as clear as the contrasts seen in Landsat and Sentinel-2
imageries (Figs. 5 and 6). The speckle noise also increased the difficulty
of the interpretation of radar images (Fig. 10 top and bottom panels).

There were no consistent relationships between VV and VH back-
scatter coefficients from Sentinel-1 with alfalfa harvest in orbit 107
(Fig. 11), which has a larger incident angle (45.11°). The dynamics of
backscatter were not relevant to the size of the harvesting events. As

seen in the observations with a smaller incident angle (Fig. 10 middle
panel), the backscatter decreased at the end of the growing season and
fluctuated during the non-growing season for the larger incident angle
observations.

4.5. Interferometric coherence from Sentinel-1

Dynamics of VV and VH interferometric coherence from Sentinel-1
(Fig. 12 middle panel) were mostly similar in orbit 34, which has a
smaller incident angle (34.31°). In contrast to backscatter coefficients
(Fig. 11), the interferometric coherence coefficients were increased by
harvesting events. However, similar to the backscatter coefficient, the
background noise was high in the coherence time-series. For example,
there were two evident peaks of VV and VH coherence around August of
2016 and January of 2017, which were not caused by harvesting events.
The contrasts of color composite images, derived from coherence bands,
between before and after harvests were not as clear as seen in Landsat
and Sentinel-2 imageries (Figs. 5 and 6). As in the case of the backscatter
coefficient, there were no consistent relationships between VV and VH
interferometric coherence coefficient from Sentinel-1 with alfalfa
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harvest in orbit 107 (Fig. S4), which has a larger incident angle (45.11°).
4.6. Sensitivity of each dataset to detect different sized harvesting events

The decrease in VIs caused by harvests were larger in Landsat and
Sentinel-2 (Fig. 13b and c) than in MODIS (Fig. 13a), indicating the
former is spatially more sensitive than the latter in detecting alfalfa
harvests. The higher spatial resolutions of Landsat and Sentinel-2 helped
avoid the mixed pixel issue in MODIS caused by its coarser spatial res-
olution. However, MODIS can better depict all harvest events and reflect
the impacts of climate on alfalfa because of its higher temporal resolu-
tion. The changes in VIs in HLS (Fig. 13d) and our fused Landsat and
Sentinel-2 data (Fig. 13e) were more evident after each harvest, indi-
cating improved detection of alfalfa harvests. However, the noise level
increased in the HLS and our fused Landsat and Sentinel-2 data, espe-
cially in the former, which makes it hard to differentiate VIs decreases
caused by harvesting events and noises in the dataset.

The radar backscatters were mostly decreased by harvests in smaller
incident angle observations (34.31°) (Fig. 14a). There were also signif-
icant changes in backscatter during the non-growing season, probably
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caused by the dynamics of soil moisture. The change in radar backscatter
was not consistently correlated with the alfalfa harvests in the larger
incident angle observations (45.11°) (Fig. 14b). Similar to the radar
backscatters, the coherence in smaller incident angle observations
(Fig. 14c) were more sensitive to harvesting events than those in the
larger incident angle observations (Fig. 14d), which were largely not
responsive to the harvesting events. However, as it was mentioned
before, the coherence was increased by harvesting events, in contrast to
backscatter (Fig. 14a). There were other factors besides harvesting that
affected the dynamics of coherence. For example, the coherence values
decreased around September 2016 and February 2017 (Fig. 14c), when
there were no harvesting events.

5. Discussion

5.1. The requirements of remote sensing data to detect frequent alfalfa
harvests

The typical size (width and length) of an alfalfa field is several
hundred meters to 1.6 km (1 mile) in the SGP. Coarse spatial resolution
remote sensing data may suffer from mixed pixel issues, limiting its
ability to detect alfalfa harvesting events at a field scale. For example,
here the MODIS pixel of ~500 m resolution included a portion of
Bermuda pasture (Fig. 1). This mixed pixel might have caused lower
sensitivities of VIs to alfalfa harvests as compared to finer spatial reso-
lution datasets (Landsat and Sentinel-2) (Fig. 13). Thus, spatial resolu-
tions of 100 m or finer, depending on the sizes of the fields, are needed
for monitoring field-scale alfalfa harvests in this region.

Alfalfa is harvested multiple times during a year and vegetation can
regrow quickly, depending on growth stage and water availability.
Tracking of frequent harvesting events requires high temporal resolu-
tion remote sensing data. However, most fine resolution satellite remote
sensing products have relatively low temporal resolutions. Both Landast-
7 and -8 have a temporal resolution of 16-days. Combining them
together results in an improved temporal resolution of 8-days. However,
not all Landsat-7 and -8 images were effective observations as they were
affected by adverse weather conditions. As a result, even the combined
Landsat data were not temporally high enough to track all alfalfa har-
vesting events (Fig. 5 middle panel). Although Sentinel-2 has a 5-day
temporal resolution, it still missed the first harvesting event in 2017
(Fig. 6 middle panel). One possible reason is that Sentinel-2B was
launched on March 7, 2017. Before the launch of Sentinel-2B, Sentinel-2
mission’s temporal resolution was only 10-days due to just one satellite
(Sentinel-2A) being in orbit. Effective fine spatial resolution observation
(i.e., cloud and cloud shadow free) at a higher temporal resolution (i.e.,
at least an 8-day interval) is necessary to adequately characterize the
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localized disturbances/management practices such as frequent har-
vesting of alfalfa in this study.

5.2. Data fusion to increase temporal resolution

Using data fusion approaches to increase temporal resolution is
necessary to meet the requirements of both spatial and temporal reso-
lutions for detecting alfalfa harvests. The HLS dataset harmonizes the
Landsat-8 and Sentinel-2 data together through radiometric and geo-
metric corrections to increase the temporal resolution to facilitate time-
series analysis. Our results showed that HLS (Fig. 7) greatly increased
the number of available observations compared to any single fine spatial
resolution dataset (Figs. 5 and 6 middle panels). However, the noise
level was high in HLS-derived VIs (Figs. 7 and 13d). The direct com-
parison between HLS-derived VIs with those directly from Landsat
(Fig. S1) and Sentinel-2 (Fig. S2) showed that the noises were high in the
harmonized time-series of HLS data. Further improvement of HLS and
temporal compositing methods to reduce the noises in the harmonized
time-series of HLS data is necessary to better facilitate its application in
detecting alfalfa harvests at the regional scale.

In addition to the HLS dataset, we also combined Landsat (both 7 and
8) and Sentinel-2 imageries based on the NDVI values up to one week
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apart (Fig. 8), and increased the temporal resolution of optical remote
sensing data to detect frequent alfalfa harvests. The fused Landsat and
Sentinel-2 VIs (Fig. 9) were more effective in detecting each harvesting
event in comparison to any single dataset (Fig. 5and 6 middle panels). In
addition, the noise level in our fused Landsat and Sentinel-2 dataset was
lower than those in HLS (Fig. 7), suggesting that simple statistical
transformation functions are also effective in fusing these two datasets at
the site level. However, more rigid data fusion approaches, like HLS, is
needed for regional scale analyses. These results demonstrate that
merging fine spatial resolution datasets from different optical remote
sensing sensors to increase temporal resolution is an effective way to
better track the field scale management practices such as frequent alfalfa
harvesting events.

An alternative approach is to fuse optical and radar data, which
provides both spectral and structural information of land surfaces. For
example, Zhou et al. (2017a) mapped winter wheat in an urban agri-
cultural region in China using multi-temporal SAR (Sentinel-1A) and
optical images (Landsat-8). Sentinel-1A and 2A were used for crop
classification in Japan (Sonobe et al., 2017). However, there is a lack of
framework and effective methods for integrating optical and radar data
(Joshi et al., 2016).
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5.3. Passive optical remote sensing versus active radar in detecting
frequent alfalfa harvests

Vegetation indices derived from optical remote sensing datasets have
been widely used in vegetation monitoring (Zhang et al., 2006; Zhou
et al., 2017b). However, there is always a tradeoff between spatial and
temporal resolutions. Coarse spatial resolution data (e.g., MODIS) can
have mixed pixel issues, while low temporal resolution data might miss
the signal in high frequency and localized disturbances (e.g., frequent
alfalfa harvests in this study). Moreover, passive optical remote sensing
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is susceptible to adverse weather conditions.

Active radar can function in all weather conditions. Radar has been
used in monitoring crop harvest patterns (Tamm et al., 2016; Zhao et al.,
2014) and crop residues (Daughtry et al., 2005; McNairn et al., 2001).
Radar sensors with high spatial and temporal resolutions provide an
opportunity to analyze the response of time-series radar data to frequent
alfalfa harvests. Our results indicated that Sentinel-1 (Fig. 6) had the
potential to detect alfalfa harvests especially in observations with a
small incident angle (34.31°). However, the visual aesthetics of radar
signals were less intuitive than optical data. Additionally, other
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compounding factors, including incident angle, size of harvesting, and
soil moisture, need to be further examined.

6. Conclusion

To assess the potential of different remote sensing datasets to detect
frequent alfalfa harvests, active and passive remote sensing data of
different spatial and temporal resolutions were used. Our results indi-
cate that both fine spatial and high temporal resolutions are important to
reliably detect frequent alfalfa harvests. Landsat and Sentinel-2 were
more effective to detect alfalfa harvests compared to MODIS because of
their finer spatial resolutions, which helped overcome the issue of a
mixed pixel. However, they missed some harvesting events because of
lower temporal resolutions. The HLS dataset that fused both Landsat-8
and Sentinel-2 data detected most of the harvesting events. However,
the noise level in the HLS dataset was high. Thus, we fused Landsat (7
and 8) and Sentinel-2 data with a strict quality control to further in-
crease the temporal resolution of effective optical remote sensing data.
Our fused dataset performed better in detecting frequent alfalfa har-
vesting events than any single dataset, while also incurring less noise
than the HLS dataset. Radar backscatter coefficients from Sentinel-1
were decreased by alfalfa harvests in the small incident angle observa-
tions (34.31°). In contrast, interferometric coherence coefficients were
mostly increased by alfalfa harvests. Both backscatter and coherences
values in the large incident angle observations did not show consistent
responses to alfalfa harvesting events. Our results showed that active
radar has the potential to detect alfalfa harvests. However, it is required
to further investigate the impacts of incident angle, size of harvesting,
and soil moisture on radar backscatter. Thus, fusing optical remote
sensing datasets to increase temporal resolution is a more suitable
approach to detect frequent alfalfa harvesting events at the current
stage. This study demonstrates the potential of utilizing multiple remote
sensing datasets to monitor field scale disturbances, including all types
of hay harvesting (e.g., alfalfa, winter wheat, prairie grasslands).
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