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Figure 4: Advantages of camera jitter. Small camera motion,

while undesirable in visible cameras, helps reduce the effect of

slowly changing gain and offset in thermal images.

device physics and concise image representation.

4.1. Modeling multiframe capture

To regularize the inverse problem, we model the gain and

offset terms to be constant for the duration of L frames.

Further, we assume that every frame can be represented as a

geometric transformation of the first frame, which includes

rigid, affine, or perspective transforms. The overall model

y(u, v, tk) = g(u, v)(x(fk(u), hk(u)) + o(u, v)) · · ·

· · ·+ n(u, v, tk), (8)

where fk, hk are functions relating pixels in kth frame to

first frame. Vectorizing all representations, we obtain

yk = g ⊙ (Mkx0 + o) + n, (9)

where ⊙ is element-wise multiplication, Mk is the linear

operator to perform the geometric transformation, g is the

gain vector, x0 is the noise-free image, and o is the offset

term. Our goal is to recover the image x0. For L frames and

N pixels per frame, we have N parameters each from the

gain, offset, and latent images, and 8 parameters from the

geometric transformation assuming a generalized perspec-

tive transformation. Overall, we have LN equations and

3N + 8(L− 1) unknowns.

4.2. How much should we jitter the camera?

The amount of jitter needed to accurately recover the

scene’s radiant flux is highly dependent on the nature of the

non-uniformities. Intuitively, the more correlated the spatial

non-uniformities, the more the camera needs to jitter. To

understand the reason, consider the sequence of L images,

Yk(u, v) = G(u, v)X0(uk, vk), where we assume that the

offset is zero. Let us assume that each image is registered

back to the reference frame giving us

Ŷk(u, v) = G(ûk, v̂k)X0(u, v), (10)

where G(ûk, v̂k) is the resultant gain after registering

Xk(u, v). Then averaging the frame yeilds

X̂0 =
1

L

L∑

k=1

Ŷk(u, v) =
1

L
X0(u, v)

L∑

k=1

G(ûk, v̂k). (11)

The variance of estimate at pixel (u, v) is then

σ2

u,v = Var

(
1

L
X0(u, v)

L∑

k=1

G(ûk, v̂k)

)

=
1

L2
X2

0
(u, v)

(
L∑

k=1

Var(gk) + 2

L∑

p=1

L∑

q=1

Cov(gpgq)

)
.

(12)

Equation (12) states that the variance of estimate depends

on the autocorrelation function of the gain. Assuming the

autocorrelation function monotonically decreases with dis-

tance, it is intuitive to see why a more correlated gain re-

quires larger jitter.

In practice, it is difficult to estimate the autocorrelation

of the gain as it is a complex function of temperature of

operation, and the electronic circuitry. To obtain an empir-

ical estimate of the amount of jitter needed, we imaged a

flat black body with the low resolution FLIR lepton, and

the medium resolution FLIR Boson cameras. We then com-

puted spatial autocorrelation by cropping random patches

and computing cross correlation within a neighborhood of

50 pixels on all sides. Figure 5 shows the captured image,

and the temporal and spatial autocorrelation functions for

both cameras. We make three observations here. First, the

temporal autocorrelation gracefully reduces from 1.0 to 0.6
over 500 frames, with value being greater than 0.8 for up

to 20 frames. This implies we can assume approximately

constant non-uniformities for up to 20 frames for both cam-

eras. Second, the spatial autocorrelation function is dom-

inated along the horizontal and vertical axes Ð this is ex-

pected since the microbolometer cameras are equipped with

a rolling shutter readout circuitry [17]. An immediate im-

plication of this observation is that we cannot achieve noise

reduction by just horizontal or vertical shifts, we need a

combination of the two. Third, the Lepton camera has an

autocorrelation greater than 0.1 over a shift of 3 pixels, and

the Boson camera over 5 pixels on either sides. Hence we

require non-axial shifts of 3, and 5 pixels, respectively, for

the two cameras to ensure high quality reconstruction with

a small number of images.

5. Regularizing Physics with Deep Networks

In an ideal scenario, we can estimate the non-

uniformities, motion parameters, and the scene’s radiant

flux from as few as 4 frames. However, due to both signal

and readout noises, the inversion is often unstable. Hardie
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PSNR: 14.2 dB

SSIM: 0.001

(a) Ground truth (b) DeepIR

(c) Hardie et al. 2007 [8] (d) Kim et al. 2016 [26]

(single image)

Figure 7: Simulations for super resolution. We simulated a cap-

ture of 16 images and performed a 4× super resolution with var-

ious approaches. DeepIR outperforms competing techniques in-

cluding single image super resolution [26].

DeepIR across varying hardware settings.

Non-uniformity correction. Figure 8 shows the results of

non uniformity correction (NUC) with various approaches.

We note that He et al. [9] relied on a large pool of data

to learn to specifically remove column-wise NUC. To keep

the comparison fair, we applied this approach to multiple

images, registered and averaged them. We observe that

DeepIR outperforms [8], and is comparable to the quality

of [9] with multiple frames averaged.

Figure 9 shows results with Boson’s shutter-based flat

field correction applied once during the start of the cam-

era, which largely removed the stripes pattern. Since the

technique in [9] was not trained for such patterns, the ap-

proach did not denoise the image. DeepIR outputs a visibly

cleaner image, and estimates a gain that is independent of

the scene’s geometry.

(c) DeepIR (d) Hardie et al. 2007 [8]

(e) He et al. 2018 [9] (f) He et al. 2018 [9] + 

multiple frame average

(a) Frame 1 (b) Frame 5

Figure 8: Non-uniformity correction without shutter-based

compensation. DeepIR performs comparably to supervised tech-

niques [9] on cameras without built-in shutter-based FFC.

Super resolution. The FLIR Lepton camera is a low cost

but low resolution thermal imager. In order to increase the

resolution by 4×, we employed DeepIR framework with 16

images. Notice how the low resolution image contains no

significant information about the various keys, but the super

resolved image has the keys distinctly separated. DeepIR

hence allows us to convert low-cost thermal cameras to high

resolution cameras.

Suppressing reflections with a polarizer. Surfaces such

as polished metals and glass are strong reflectors in thermal

wavelengths, causing interference. Since the reflected po-

larizataion is predominantly orthogonal to the surface, we

can utilize a polarizer to remove its effect. However, the

presence of additional optics in front of thermal cameras

causes a narcissus effect. Figure 11 visualizes the effect of

a polarizer placed in front of our Boson camera. This is a

compelling example for how the offset term can be highly

structured, and hence biased. We applied DeepIR on the in-

puts with polarizer to remove the offset term, resulting in an

image that was as sharp as the image without a polarizer.
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