


intensive to produce the thousands or millions of image

pairs usually required to train a neural network. Further-

more, this approach only works when the flare-causing illu-

minant lies outside of the camera’s field of view (e.g., real

scenes in Fig. 7), which limits its utility.

To overcome this challenge, we propose to generate

semi-synthetic data grounded on the principles of physics.

We make the key observation that lens flare is an additive

layer on top of the underlying image, and that it is induced

by either scattering or internal reflection. For the scatter-

ing case (e.g., scratches, dust, other defects), we construct

a wave optics model that we demonstrate closely approxi-

mates reality. For the unintended reflections between lens

elements, we adopt a rigorous data-driven approach, as an

accurate optical model for a commercial camera is often un-

available. With this formulation, we are able to generate a

large and diverse dataset of semi-synthetic flare-corrupted

images, paired with ground-truth flare-free images.

Another challenge is removing flare while keeping the

visible light source intact. This is hard even with our semi-

synthetic data, as we cannot separate the light source from

the flare-only layer without affecting the flare it induces.

Hence, if trained naÈıvely, the network will try to remove the

light source along with the flare, leading to unrealistic out-

puts. To this end, we propose a loss function that ignores the

light source region, and a post-processing step to preserve

the light source in the output.

To show the effectiveness of our dataset and procedures,

we train two distinct convolutional neural networks origi-

nally designed for other tasks. During training, we mini-

mize a loss function on both the predicted flare-free image

and the residual (i.e., inferred flare). At test time, the net-

works require only a single RGB image taken with a stan-

dard camera and are able to remove different types of flare

across a variety of scenes. Although trained exclusively on

semi-synthetic data, both models generalize well to real-

world images. To the best of our knowledge, this is the

first general-purpose method for removing lens flare from a

single image.

Our code and datasets are publicly available at

https://yichengwu.github.io/flare-removal/.

2. Related work

Existing solutions for flare removal fall into three cat-

egories: (a) optical design intended to mitigate the pres-

ence of flare, (b) software-only methods that attempt post-

capture enhancement, and (c) hardware±software solutions

that capture additional information.

Hardware solutions The lenses of high-end cameras of-

ten employ sophisticated optical designs and materials to

reduce flare. As each glass element is added to a compound

lens to improve image quality, there is also an increased

probability that light is reflected from its surface to create

flare. One widely used technique is to apply anti-reflective

(AR) coating to lens elements, which reduces internal re-

flection by destructive interference. However, the thickness

of this coating can only be optimized for particular wave-

lengths and angles of incidence and therefore cannot be per-

fect. Additionally, adding an AR coating to all optical sur-

faces is expensive, and may preclude or interfere with other

coatings (e.g., anti-scratch and anti-fingerprint).

Computational methods Many post-processing tech-

niques have been proposed to remove flare. Deconvolution

has been used to remove flare in X-ray imaging [6, 18] or

HDR photography [16]. These approaches depend critically

on the assumption that the point spread function of the flare

does not vary spatially, which is generally not true. Other

solutions [1, 3, 21] adopt a two-stage process: detecting

lens flare based on their unique shape, location, or intensity

(i.e., by identifying a saturated region), and then recover-

ing the scene behind the flare region using inpainting [4].

These solutions only work on limited types of flare (e.g.,

bright spots), and are vulnerable to the misclassification of

all bright regions as flare. Additionally, these techniques

classify each pixel as either ªflareº or ªnot flareº, ignoring

the fact that most lens flares are better modeled as a semi-

transparent layer on top of the underlying scene.

Hardware±software co-design Researchers have used

computational imaging for flare removal, where the cam-

era hardware and post-processing algorithms are designed

in conjunction. Talvala et al. [20] and Raskar et al. [15]

attempt to selectively block flare-causing light using struc-

tured occlusion masks and recover the flare-free scene using

either direct±indirect separation or a light field-based algo-

rithm. Though elegant, they require special hardware and

are therefore limited in their practicality.

Learning-based image decomposition While no

learning-based flare removal techniques exist, a number of

recent works apply learning to similar applications such as

reflection removal [5, 12, 23], rain removal [14, 22], and

denoising [2]. These methods attempt to decompose an

image into ªcleanº and ªcorruptº components by training a

neural network. Their success relies heavily on high-quality

domain-specific training datasets, which this work tries to

address for the first time.

3. Physics of lens flare

An ideal camera, when in focus, is supposed to refract

and converge all rays from a point light source to a sin-

gle point on the sensor. In practice, real lenses scatter and

reflect light along unintended paths, resulting in flare arti-

facts [10], as shown in Fig. 2(a). The scattered and reflected

parts only constitute a small fraction of each incident light
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(a) Input (b) CNN output (c) Mask Mf (d) Blended

Figure 6. We deliberately prevent the network from learning to

inpaint the saturated regions (illuminants), so its output (b) is un-

defined in these regions. To preserve highlights, we compute a

mask (c) for the saturated regions of the input. The masked area in

the network output is then replaced by the input pixels, producing

a more realistic final result (d) in which the flare is removed, but

not the illuminant that produced it.

5.2. Post-processing for light source blending

Our losses explicitly prevent the network from ªlearning

to inpaintº anything in the saturated regions, so its output

there can be arbitrary. In practice, it tends to remove the

light source so that it is more similar to the surrounding

pixels, as shown in Fig. 6(b). Since the goal of this work

is to remove the flare, and not the light source, we post-

process the network output to add back the light source.

A key observation is that the flare-causing light source is

likely saturated in the input image (otherwise it would not

result in a visible flare). Hence, it can be identified easily

based on intensity. To create a gradual transition, we feather

the mask M defined in Sec. 5.1 at its boundary to con-

struct Mf (details and parameters are in the supplement).

We blend the input and output images using the feathered

mask in linear space (e.g., Fig. 6(d)):

IB = IF ⊙Mf + f(IF ,Θ)⊙ (1−Mf ) . (11)

6. Results

To evaluate how the models trained on semi-synthetic

data generalizes, we use three types of test data: (a) syn-

thetic images with ground truth (Sec. 4), (b) real images

without ground truth, and (c) real images with ground truth.

To obtain (c), we capture a pair of images on a tripod with

a bright illuminant just outside the field of view. In one im-

age, bright flare-causing rays can enter the lens, producing

artifacts. In the other image, we carefully place an occluder,

also out of the field of view (e.g., a lens hood), between the

illuminant and the camera, blocking the same rays.

6.1. Comparison with prior work

We provide quantitative and visual comparisons in Ta-

ble 1 and Fig. 7. To eliminate the influence of the light

source when computing metrics, the masked region is re-

placed by ground truth pixels following Eq. 7.

We evaluate all recent work in flare removal [1, 3, 21].

Notably, none of them attempt the general flare removal

task. Instead, they use hand-crafted heuristics to remove

one particular subset of flare (e.g., glare spots). As such,

they have little effect on other artifacts such as reflections

and streaks and cause the PSNR and SSIM to be close to or

even identical to the input. Since haze and reflections are

two common flare artifacts, we also compare with dehaz-

ing [8] and dereflection [23] algorithms on our data.

For our method, we trained two variants, one using the

architecture from [23], and the other using the popular U-

Net [17]. Our method significantly outperforms existing

methods and demonstrates the importance of our pipeline

and dataset. We use the U-Net variant for the rest of the

paper since it performs better.

Finally we also conducted a user study with 20 partici-

pants where each user is presented with a real image with

lens flare alongside two predicted flare-free images: one

from the U-Net and the other from one of the 5 baselines.

We then ask the user to identify which of the two did better

at removing lens flare. We use 52 images from 3 differ-

ent sets: images captured by the same type of lens as in

Sec. 4.2, images captured using five other lenses with dif-

ferent focal lengths, and images taken from [3]. To avoid

bias, we shuffle the images in each instance of the study.

As Table 2 shows, our method outperforms all others by a

significant margin on all 3 datasets. Even on the dataset by

Chabert [3], users strongly preferred our method to theirs

(85% vs. 15%). Unsurprisingly, it performs slightly worse

when tested on lenses not present in our training set.

Synthetic Real

Method PSNR SSIM PSNR SSIM

Input image 21.13 0.843 18.57 0.787

Flare spot removal [3] 21.01 0.840 18.53 0.782

Flare spot removal [21] 21.13 0.843 18.57 0.787

Flare spot removal [1] 21.13 0.843 18.57 0.787

Dehaze [8] 18.32 0.829 17.47 0.745

Dereflection [23] 20.71 0.767 22.28 0.822

Ours + network [23] 28.49 0.920 24.21 0.834

Ours + U-Net [17] 30.37 0.944 25.55 0.850

Table 1. Quantitative comparison with related methods on syn-

thetic and real data.

Comparison Dataset 1 Dataset 2 Dataset 3

Ours: Flare spot removal [3] 98%: 2% 97%: 3% 85%:15%

Ours: Flare spot removal [21] 98%: 2% 93%: 7% 89%:11%

Ours: Flare spot removal [1] 100%: 0% 99%: 1% 88%:12%

Ours: Dehaze [8] 96%: 4% 91%: 9% 92%: 8%

Ours: Dereflection [23] 83%:17% 78%:22% 64%:36%

Average 95%: 5% 92%: 8% 84%:16%

Table 2. Percent of images where the users favor our results (ours

+ U-Net) vs. prior work. Dataset 1 is captured using the same

lens design as in Sec. 4.2. Dataset 2 is captured using five other

lens types with different focal lengths. Dataset 3 contains images

from [3]. We outperform existing methods in all categories, even

on Chabert’s own dataset [3].
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Figure 7. Visual comparison between three related methods and ours, evaluated on both synthetic and real scenes. Networks trained using

our method remove lens flare more accurately and produce cleaner outputs.
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Figure 8. Our method robustly removes lens flare of various shapes, colors, and locations on diverse real-world images. It generalizes

reasonably to multiple light sources (column 2). When there is no significant flare (last column), the input is kept intact.

6.2. Ablation study

In this section, we study two key components in our pro-

cedure to demonstrate their impact on the output.

No LF No sim. data No captured data Full

PSNR 24.84 24.44 23.77 25.55

SSIM 0.841 0.843 0.828 0.850

Table 3. Ablation study on the flare loss and different flare data.

Flare loss Since most flares are brighter than the underly-

ing scene, we need to ensure that the network does not sim-

ply learn to darken all bright regions. We explicitly model

this in our flare loss LF . In Fig. 9, we show test set results

from the models trained with and without LF . Without LF ,

the network tends to remove some parts of bright objects

even if they are not part of the flare.

Captured and simulated flare data In Sec. 4, we men-

tioned that the captured data mostly accounts for reflective

(a) Input (b) No flare loss (c) With flare loss

Figure 9. Without our flare loss LF , bright regions in the input (a)

are incorrectly removed, especially on images taken at night (b).

LF makes the model more robust to such errors (c).

flare, whereas the simulated data covers the scattering case.

To show that both components are necessary, we train two

ablated models, each with one of the sources excluded. As

expected, models trained with flare-only images taken from

the captured or simulated dataset alone underperform the

model trained with both datasets, as shown in Fig. 10.
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