


volume, high-quality, and high-resolution 3D recon-

structions in light-limited environments. The key idea

in CodedStereo is the introduction of a phase mask in

the aperture of the stereo cameras that allows us to in-

crease the aperture size of the cameras without sacri-

ficing the depth of field.

II. We develop an end-to-end learning framework to

jointly optimize the phase masks and the algorithms

both for RGB image and disparity reconstructions.

III. We demonstrate the significant performance benefits

of CodedStereo both in simulation and using a proto-

type system.

2. Related work

Stereo matching. Given two (or more) cameras looking

at the scene from different perspectives, the goal of stereo is

to find the corresponding scene points between the two cam-

era views and use this to estimate depth based on triangula-

tion. Traditional methods[29, 16] typically formulate it as

a multistage optimization problem, including matching cost

computation, cost aggregation, disparity optimization, and

post-processing. Recently, learning-based stereo algorithms

have become popular primarily due to their improved per-

formance. Many networks, inspired by the traditional stereo

matching pipelines, have been shown to achieve state-of-art

results [27, 4, 23, 11, 38]. Among these algorithms, [23, 11]

are computationally efficient and can be used for real-time

inference. However, it is well known that existing stereo al-

gorithms degrade in performance when the images contain

significant blur or noise [22, 18].

Low light stereo. Extending stereo algorithms and im-

proving their performance in the presence of significant

noise (as is the case in low-light imaging) is an area of

active research. The simplest solutions attempt to first de-

noise the stereo pairs before the correspondence search. But

unlike generic denoising algorithms [5, 21], these methods

pay more attention to the consistency of the denoised im-

age pairs to make sure the stereo matching algorithms can

find the corresponding features. Another technique to im-

prove low-light performance is to replace one or both of the

stereo cameras with monochrome sensors, resulting in ap-

proximately a 3× increase in light throughput [18].

Stereo and defocus blur. When the camera aperture

is large such that the scene is no longer contained within

the depth of field of the camera, focus blur is apparent in

the captured images. There have been attempts to exploit

this focus blur as an additional depth cue to compensate for

the degraded stereo performance [6, 34, 7, 13]. Further-

more, Takeda et al. [33] proposed the addition of amplitude

masks in the aperture plane. The use of amplitude masks in-

creases the variations in the depth-dependent blur, improv-

ing depth from defocus approaches. Our technique also pro-

poses the addition of a mask within the camera’s aperture

plane. However, there are two key differences. First, since

our main goal is low-light imaging, we use phase masks in-

stead of amplitude masks to obtain high light throughput.

Second, compared to the heuristic mask design in [33], the

proposed design is directly optimized based on the 3D re-

construction, which improves the performance.

Extended depth of field imaging. For a conventional

camera, it is well understood that the aperture size controls

the relationship between the depth of field and SNR. Larger

apertures result in higher light collection leading to an in-

crease in SNR, but at the cost of decreasing the depth of

field. There have been a host of techniques that have been

developed to maintain a large aperture and a large depth-of-

field. One idea that has emerged from this line of inquiry

is to reconstruct all-in-focus images from integrated images

with a shaking sensor [25]. Another key idea is the use

of a phase mask in the aperture plane to control the depth-

dependent blur in a manner that makes the resultant blur

invertible [10, 8, 9, 12, 31]. Our design is intimately re-

lated to these efforts and the main difference is that when

applying these techniques to stereo, one must pay attention

to maintaining consistency across views, so that correspon-

dence matching algorithms remain stable.

End-to-end mask design. Over the last few years, sev-

eral techniques have emerged where optical system design

parameters and reconstruction algorithms are jointly opti-

mized in an end-to-end manner. The primary rationale for

this end-to-end learning framework is the significant im-

provements that are obtained as a result of this joint opti-

mization. Such methods have been shown to achieve supe-

rior performance in demosaicing [2], monocular depth es-

timation [35, 3, 15], microscopy [26, 19], structured light

[1, 36], EDOF [31], and high dynamic range [24, 32] imag-

ing. Our technique is of a similar vein, but tackling the

problem of large volume, low-light stereo reconstruction.

3. Imaging Volume vs SNR: The tradeoff

Traditional stereo exhibits a fundamental trade-off be-

tween light level, exposure time, and volume of reconstruc-

tion that limits the quality of 3D reconstructions. In a tra-

ditional camera, the image signal to noise ratio (SNR) is

proportional to incident light intensity, which in turn is pro-

portional to the product of aperture area, illumination level,

and exposure duration. Thus,

SNR ∝

LsTD
2

σtot

=
LsTf

2

σtotF 2
#

. (1)

where D = f/F# is the aperture diameter, f is the fo-

cal length, F# is the f-number, T is the exposure duration,

Ls denotes the average light intensity, and σtot refers to

the total noise. This relationship indicates that the imag-

ing SNR will become extremely low either under low-light

conditions or when scene/camera dynamics require the use
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