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Abstract

Conventional stereo suffers from a fundamental trade-off
between imaging volume and signal-to-noise ratio (SNR) —
due to the conflicting impact of aperture size on both these
variables. Inspired by the extended depth of field cameras,
we propose a novel end-to-end learning-based technique to
overcome this limitation, by introducing a phase mask at
the aperture plane of the cameras in a stereo imaging sys-
tem. The phase mask creates a depth-dependent yet numer-
ically invertible point spread function, allowing us to re-
cover sharp image texture and stereo correspondence over
a significantly extended depth of field (EDOF ) than conven-
tional stereo. The phase mask pattern, the EDOF image
reconstruction, and the stereo disparity estimation are all
trained together using an end-to-end learned deep neural
network. We perform theoretical analysis and characteri-
zation of the proposed approach and show a 6X increase
in volume that can be imaged in simulation. We also build
an experimental prototype and validate the approach using
real-world results acquired using this prototype system.

1. Introduction

Stereo-based 3D reconstruction, while extremely popu-
lar, suffers from a fundamental trade-off between volume
of imaging and noise. If you want to retain a large volume
of imaging, then in order to get sharp texture features for
correspondence, you need to ensure that the depth of field
(DOF) of the cameras covers the entire volume. This ne-
cessitates a narrow aperture, rapidly reducing the total light
level reaching the sensor (since SNR is quadratically related
to aperture size). As a consequence, it is challenging to get
large volume, high quality, and high resolution stereo-based
3D reconstruction in light-limited environments.

In light-limited environments, typically either the expo-
sure duration or the aperture size of a camera is increased to
increase light throughput. But for scenarios where there is
either scene motion (eg., motion capture) or camera motion
(eg., robotics, autonomous navigation), increasing exposure

*These two authors contributed equally. Corresponding author.

Shoou-I Yu?

Ashok Veeraraghavan''

2Facebook Reality Labs

Shoou-I.Yu@fb.com

Quantum efficiency(QE) = 0.69 i
I Read noise(N) = 3.31 x* -
Dark current(D) = 0.1 _--
T2t " CodedStereo
1
2
s
F
=
alr
- Conventional
- / Lens
600 Exposure time (ms) 2400
F8 Aperture F16

Figure 1. Tradeoff between depth of field and aperture size on
simulated data. We propose a CodedStereo system that can pro-
vide an 6 X increase in DOF (blue dashed curve, with stars for par-
ticular observations). In the curves, the x-axis is linearly sampled
in exposure time, and the corresponding f-numbers are converted
to maintain the same SNR level of 50dB. Both our system and the
conventional lens are focused at 1m, with a 50mm focal length.

duration results in motion blur. On the other hand, increas-
ing the aperture size will result in a smaller depth of field,
thereby reducing the volume that can be reconstructed.

Inspired by the extended depth of field (EDOF) imag-
ing techniques [10], we present CodedStereo, a technique
in which we add optimized phase masks to the aperture of
each of the two stereo cameras. These phase masks allow
each camera to maintain a large aperture size, increasing
the light throughput of the cameras. Meanwhile, the phase
masks are specially designed to produce a depth-dependent
focal blur that allows back-end stereo algorithms to con-
tinue to retain high resolution and quality. In addition, our
learned phase mask not only enables more accurate depth
estimation, but also encourages sharper extended depth of
field RGB images that can be used for downstream applica-
tions such as point cloud colorization. The reconstruction
algorithms and the phase masks are simultaneously opti-
mized using an end-to-end learning framework. The main
technical contributions of this paper are:

I. We propose CodedStereo, a technique to recover large-
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volume, high-quality, and high-resolution 3D recon-
structions in light-limited environments. The key idea
in CodedStereo is the introduction of a phase mask in
the aperture of the stereo cameras that allows us to in-
crease the aperture size of the cameras without sacri-
ficing the depth of field.

II. We develop an end-to-end learning framework to
jointly optimize the phase masks and the algorithms
both for RGB image and disparity reconstructions.

III. We demonstrate the significant performance benefits
of CodedStereo both in simulation and using a proto-
type system.

2. Related work

Stereo matching. Given two (or more) cameras looking
at the scene from different perspectives, the goal of stereo is
to find the corresponding scene points between the two cam-
era views and use this to estimate depth based on triangula-
tion. Traditional methods[29, 16] typically formulate it as
a multistage optimization problem, including matching cost
computation, cost aggregation, disparity optimization, and
post-processing. Recently, learning-based stereo algorithms
have become popular primarily due to their improved per-
formance. Many networks, inspired by the traditional stereo
matching pipelines, have been shown to achieve state-of-art
results [27, 4,23, 11, 38]. Among these algorithms, [23, 11]
are computationally efficient and can be used for real-time
inference. However, it is well known that existing stereo al-
gorithms degrade in performance when the images contain
significant blur or noise [22, 18].

Low light stereo. Extending stereo algorithms and im-
proving their performance in the presence of significant
noise (as is the case in low-light imaging) is an area of
active research. The simplest solutions attempt to first de-
noise the stereo pairs before the correspondence search. But
unlike generic denoising algorithms [5, 21], these methods
pay more attention to the consistency of the denoised im-
age pairs to make sure the stereo matching algorithms can
find the corresponding features. Another technique to im-
prove low-light performance is to replace one or both of the
stereo cameras with monochrome sensors, resulting in ap-
proximately a 3 X increase in light throughput [18].

Stereo and defocus blur. When the camera aperture
is large such that the scene is no longer contained within
the depth of field of the camera, focus blur is apparent in
the captured images. There have been attempts to exploit
this focus blur as an additional depth cue to compensate for
the degraded stereo performance [6, 34, 7, 13]. Further-
more, Takeda et al. [33] proposed the addition of amplitude
masks in the aperture plane. The use of amplitude masks in-
creases the variations in the depth-dependent blur, improv-
ing depth from defocus approaches. Our technique also pro-
poses the addition of a mask within the camera’s aperture

plane. However, there are two key differences. First, since
our main goal is low-light imaging, we use phase masks in-
stead of amplitude masks to obtain high light throughput.
Second, compared to the heuristic mask design in [33], the
proposed design is directly optimized based on the 3D re-
construction, which improves the performance.

Extended depth of field imaging. For a conventional
camera, it is well understood that the aperture size controls
the relationship between the depth of field and SNR. Larger
apertures result in higher light collection leading to an in-
crease in SNR, but at the cost of decreasing the depth of
field. There have been a host of techniques that have been
developed to maintain a large aperture and a large depth-of-
field. One idea that has emerged from this line of inquiry
is to reconstruct all-in-focus images from integrated images
with a shaking sensor [25]. Another key idea is the use
of a phase mask in the aperture plane to control the depth-
dependent blur in a manner that makes the resultant blur
invertible [10, 8, 9, 12, 31]. Our design is intimately re-
lated to these efforts and the main difference is that when
applying these techniques to stereo, one must pay attention
to maintaining consistency across views, so that correspon-
dence matching algorithms remain stable.

End-to-end mask design. Over the last few years, sev-
eral techniques have emerged where optical system design
parameters and reconstruction algorithms are jointly opti-
mized in an end-to-end manner. The primary rationale for
this end-to-end learning framework is the significant im-
provements that are obtained as a result of this joint opti-
mization. Such methods have been shown to achieve supe-
rior performance in demosaicing [2], monocular depth es-
timation [35, 3, 15], microscopy [26, 19], structured light
[1, 36], EDOF [31], and high dynamic range [24, 32] imag-
ing. Our technique is of a similar vein, but tackling the
problem of large volume, low-light stereo reconstruction.

3. Imaging Volume vs SNR: The tradeoff

Traditional stereo exhibits a fundamental trade-off be-
tween light level, exposure time, and volume of reconstruc-
tion that limits the quality of 3D reconstructions. In a tra-
ditional camera, the image signal to noise ratio (SNR) is
proportional to incident light intensity, which in turn is pro-
portional to the product of aperture area, illumination level,
and exposure duration. Thus,

L,TD?> L,Tf?
(X ==
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6]

where D = f/Fy is the aperture diameter, f is the fo-
cal length, Fy is the f-number, T is the exposure duration,
L denotes the average light intensity, and oy, refers to
the total noise. This relationship indicates that the imag-
ing SNR will become extremely low either under low-light
conditions or when scene/camera dynamics require the use
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of short exposure durations.

Imaging SNR, in turn, impacts the quality of corre-
spondence between the stereo pair, resulting in low-quality
and/or low-resolution 3D reconstructions. The simplest so-
lution to improve imaging SNR is to use a larger aperture.
Unfortunately, this is typically not a feasible solution for
stereo systems since this reduces the depth of field, which,
as a result, significantly reduces the imaging volume for
accurate 3D reconstruction. Specifically, the approximate
depth of field (DOF) can be determined by focal length f,
distance to subject zg, acceptable circle of confusion size c,
and aperture diameter [17].

2
ZZOf—};#C )

Figure 1 demonstrates this tradeoff between depth of field
and aperture size (or F#) for a lens with a focal length of
50mm and focused 1m in front of the lens. This shows that
if you want a large imaging volume, then you need to use a
narrow aperture. In particular, achieving a DOF of 1m re-
quires the use of a F'32 aperture. Unfortunately, under low-
light conditions and/or with short exposure duration, such
a small aperture size would severely limit light through-
put resulting in extremely noisy images — which in turn
will result in low-quality 3D reconstructions. On the other
hand, a large aperture in search of better light throughput
induces significant focus blur within the imaging volume.
This blur again affects the quality of stereo correspondences
and 3D reconstruction. Inspired by the extended depth of
field imaging techniques, the key idea in our approach is
to utilize a phase mask at the aperture plane to 1) keep the
aperture large, and 2) create depth-dependent yet numeri-
cally invertible focal blur point spread functions that allow
for high-quality 3D reconstruction over the entire imaging
volume. The increase in imaging volume/DOF achieved by
CodedStereo is shown for comparison in Figure 1.

DOF

4. Extended depth of field in stereo matching

One naive technique to overcome the imaging volume vs
SNR tradeoff in stereo systems would be to replace each
of the cameras in a stereo system with an EDOF cam-
era. Surprisingly, this naive application of EDOF does
not seem to result in significant improvement to the imag-
ing volume in stereo systems. The primary reason for this
discrepancy is that the deconvolution algorithms, irrespec-
tive of whether they are optimization-based [10, &, 9, 25]
or learning-based [31, 12], produce minor inconsistencies
across views. While these inconsistencies are imperceptible
and do not seem to affect the perceptual quality of individ-
ual images, they have a significant effect on the stereo cor-
respondence search. As a result, the stereo correspondence
search produces significant errors, affecting the quality of
the 3D reconstructions.

Rendering Reconstruction

pSFs Coded image et EDOF image
a ‘z
1

Ground truths

(d). Prediction from EDOF pairs (e). Ground truth

Figure 2. Naive EDOF stereo results in 3D reconstruction ar-
tifacts due to feature inconsistencies. (a) The framework used
to learn the e2eEDOF phase mask. (b)-(c) Reconstructed EDOF
images with inconsistent fine features across views. (d) Predicted
disparity map from EDOF pairs. The algorithm failed to recover
stereo correspondence for unmatched regions. (e) Ground truth.

Figure 2 shows the effect of these imperceptible incon-
sistencies on stereo reconstructions. We follow the tech-
nique in [31] to learn an optimal phase mask for EDOF
imaging and use that same phase mask for both the left
and the right camera in a stereo system. The e2eEDOF
learning framework and the prediction results from EDOF
pairs are shown in Figure 2. A close inspection of the re-
sults shows that the matching algorithm failed to recover
correspondence due to the inconsistencies in the individual
EDOF recovered images, as pointed to by the yellow arrow.

5. CodedStereo framework

Our technique consists of a single optimized phase mask
inserted into the aperture of both the cameras in a stereo
pair. With these phase masks inserted, the aperture of
these cameras can remain wide open, allowing significantly
larger light collection thereby improving imaging SNR. The
depth-dependent blur caused by the insertion of these phase
masks is jointly optimized along with the disparity and
image reconstruction algorithms to maximize the volume-
SNR tradeoff in stereo. We call our technique ’Coded-
Stereo’. Our system simultaneously obtains sharp image
texture and stereo correspondence in a large depth of field,
without sacrificing SNR or light throughput.

As shown in 3, the end-to-end training pipeline consists
of three distinct parts: (a) Rendering: A RGB-Disp simula-
tor to render left/right coded images using texture and depth
as inputs (while accounting for the depth-dependent defo-
cus effect of a particular phase mask), (b) Disparity Predic-
tion: a DispNet-based deep network to estimate disparity
from coded pairs, and (c) RGB Image Reconstruction: a U-
Net to reconstruct sharp images. The detailed description of
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Figure 3. Framework overview. We learn the phase mask together with a disparity prediction network and an RGB reconstruction network
in an end-to-end manner. In the RGB-Disp rendering layer, disparity-dependent PSFs are first simulated given the learnable phase mask.
These PSFs are then convolved with ground truths to render left/right coded images, which are the inputs to the following reconstruction
networks. We use a DispNet-based network and a U-Net-based network to estimate the sharp texture images and the disparity map,
respectively. The loss of reconstructed texture and disparity are summed up together in backpropagation to update the mask height map

and the network parameters at the same time.
each component is discussed in the following subsections.

5.1. Rendering Using RGB-Disp Simulator

In conventional stereo, it is assumed that the entire scene
is within the depth of field. When this is not true, as is the
case here, the defocus blur apparent on the captured images
depends upon the depth of the scene point, and thus depends
upon the disparity between the corresponding points of two
camera views. In addition, when a phase mask is inserted
into the aperture plane, the disparity-dependent point spread
function (PSF) also depends upon the phase mask pattern.
The goal within the rendering layer is to accurately model
the effect of phase mask pattern and disparity on the cap-
tured left and right images in a CodedStereo system.

The RGB-Disp rendering is based on Fourier optics the-
ory [14] and is fully differentiable to enable end-to-end
training. We first simulate the point spread functions (PSFs)
for each camera as the squared magnitude of the Fourier
transform of the pupil function (which depends on the phase
mask pattern)

PSFy o |F{Aexp(¢™ + ¢P1)} 2, 3)

where )\ is the wavelength. In the pupil function, A de-
notes a circular amplitude function with respect to aperture
size, »™ denotes the phase shift induced by the phase mask
(proportional to the mask height map), and ¢ denotes the
defocus phase. The defocus phase can be further derived as
a function of disparity d,

P (21,51) = 55 (d — do) (2] + y7) (4)

N
2/b

where k) = 27/ is the wavenumber, f is the focal length,

and b is the baseline between two views. (z1,y;) denotes
the spatial coordinate on mask plane, and dj is the corre-
sponding disparity value at in-focus depth. We then render
the coded images by convolving the ground truth RGB tex-
tures with the disparity and wavelength-dependent PSFs.

IS = ZMd - (I} % PSF) q) + noise 5)
d

where - is an element-wise product operator, I° is the in-
put all-in-focus image, and € is the rendered coded image.
M, denotes a segmentation mask (1 when the pixel dispar-
ity is d, 0 otherwise). To account for boundary occlusions,
the segmented layers were further blended using the nor-
malized matting weights[20]. To render the effect of noise
(which would be significant under low-light conditions), we
apply an additive Gaussian noise, whose standard deviation
is calculated based on the aperture size, light-level, and ex-
posure duration.

5.2. RGB and Disparity Reconstruction

We use two separate networks to reconstruct the dispar-
ity map and sharp texture images. The texture reconstruc-
tion network is based on a modified residual U-Net [28]
in which the differences between coded image and ground
truth image (i.e. residual image) are learned. The advantage
of learning a residual image is to encourage high-frequency
information recovery, like edges and detailed textures, and
therefore such residual learning techniques are widely used
in per-pixel estimation problems such as deblurring.

For disparity prediction, we adopt the structure of Disp-
NetC [23]. Note that DispNetC only outputs disparity maps
at half the resolution of the input stereo pairs. We modify
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Figure 4. Optimized PSFs in simulation (focus at 96px). Each
PSF slice is normalized for better visualization. PSFs for conven-
tional F'32 and F'8 lenses are also shown for comparison.

it by adding extra deconvolution layers to upsample the dis-
parity map [27], so that the final output is the same size as
the input left/right coded images. We further found that an
extra encoder-decoder module before DispNetC can benefit
the feature extraction of stereo pairs especially in areas of
the image with a large amount of out-of-focus blur. There-
fore, we process coded left/right images separately through
a shared-weighted encoder-decoder layer followed by two
convolution layers to extract features, and then horizontally
correlate the features. We considered a maximum shifting
of 64 pixels which corresponds to 192 pixels in the origi-
nal coded images. We call our disparity prediction network
DispSharpNet, as it enables disparity estimations with ex-
tra details and sharper boundaries. More details of network
architectures are shown in the supplementary.

5.3. Implementation details

We optimized the phase mask over a depth range of
[0.7m—1.7m] for a stereo system with a baseline of 22mm.
The lenses are focused at 1m with focal lengths of 50mm
and F'8 aperture sizes. The sensors’ pixel size was set to
4.8pum, corresponding to a disparity range of [134 — 326]
pixels. To avoid large disparity values, we manually pre-
shifted the right image by 134 pixels to the right. This is
equivalent to reduce the disparities by 134, and thus the dis-
parity range changes to [0 — 192]. During training, the mask
was directly optimized over the reduced disparities (21 dis-
tinct values sampled in [0 — 192]). The learnable mask
height map was discretized with a pitch size of 88um at a
resolution of 71 x 71. Similar to the previous works [30, 35],
we further parameterized the height profile and represented
it using Zernike polynomials with 55 coefficients.

Loss function. During training, the loss function is de-
fined as a combination of disparity prediction error and
RGB reconstruction error. We made use of the root mean
squared error for both the estimated RGB image I and the
predicted disparity d; at different resolutions i.

Loss = Loss_Disp + Loss_.RGB

1 l 7l 7
—— (|1 —1” I —ir
2+ \/NW(H 2+

d; — d;

2)7
©)

1 3
= e— (o7}
VM &

where «;, 7y are the corresponding weights, and M, N are
the number of pixels in the RGB image and disparity map,
respectively. [ denotes the left, and r denotes the right.
For stable feature matching, similar to DispNet [23], we
adopted a loss weight schedule to start training with only
the lowest resolution loss, and progressively increase the
weights of losses with higher resolutions.

Dataset & training. Our model was end-to-end trained
on a synthetic dataset consisting of dense ground truth dis-
parity maps (enabling our RGB-Disp rendering) for 35,454
training and 4370 testing stereo pairs [23]. During train-
ing, the image patches were randomly cropped into a size of
384 x 768, and preprocessed by subtracting out their means
and dividing by their standard deviations. We optimized our
phase mask and network parameters using Adam optimizer
(81 = 0.9, B2 = 0.999) with a batch size of 8 for 50 epochs,
on GeForce RTX 2080 Ti GPUs.

6. Simulation results

We conducted quantitative and qualitative evaluations of
our method in simulation. The phase masked learned with
v=0.5 was selected for evaluations, both in simulation and
in experiment, as it simultaneously produces the sharp RGB
texture and accurate disparity map over a large depth of
field. The optimized PSFs are shown in Figure 4. Com-
pared to a conventional F'8 lens, our PSFs have a signifi-
cantly shrunken radius of the Airy disk (comparable or even
smaller than F'32 lens) at out-of-focus depths, improving
the reconstruction of both RGB images and disparity map
with high resolution. Furthermore, our PSFs also come with
some variations along the disparity axis, providing comple-
mentary blur cues to assist the disparity prediction of prob-
lematic areas.

Comparison with conventional lenses. To illustrate the
improvement of our system over conventional designs, we
compared our masks with a pair of F'32 conventional lenses
(small-aperture resulting in low SNR), and a pair of F'8
lenses (open-aperture with a large amount of out-of-focus
blur). For each system, the networks were trained with an
additive 2% Gaussian noise, assuming the cameras are all
designed to work under normal-light conditions.

The average peak signal-to-noise ratio (PSNR) and the
structural similarity (SSIM) are adopted for evaluations on
the texture reconstruction, and the end-point error (EPE)
and the 3-pixel threshold error rate (3px) are used for the
disparity, as shown in Table 6. Our method outperforms
conventional designs with higher RGB reconstruction accu-
racy and lower disparity prediction error. A visual compar-
ison is shown in Figure 5. It is clear to see that the F'32
system suffers from low SNR, resulting in noisy textures
and disparity maps, while the F'8 system fails to reconstruct
fine features due to out-of-focus blur. Our design outper-
forms the F'32 system and the F'8 system in a high-quality,

7174



Reconstructed left image Input

Reconstruction Input

(c). Ours ((b). F8 Lens (a) F32 Lens

Ground truth

Reconstruction

Predicted disparity map

Prediction Prediction
I 3

T
e
U3

Figure 5. Comparison with conventional baselines (in simulation). (a) with small-aperture conventional F'32 lenses. (b) with open-
aperture conventional F'8 lenses. (c) ours with optimized masks. For comparison, we applied the same reconstruction networks to F'32
and F'8 systems as ours, i.e. U-Net for RGB images estimation, and DispSharpNet for disparity prediction. Results show that our design
outperforms conventional designs in a high-quality, high-resolution reconstruction with clear details and sharp edges.
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F32 Lens | F8 Lens Ours
@ | PSNR[dB] | 11.27 2852 | 31.90
E SSIM 0.048 0.807 0.880
g | EPE[px] 38.034 1.815 | 1.512
A 3px[%] 95.45% 9.79% | 7.85%

Figure 6. Comparison with conventional lenses. Top: The
reconstructed PSNR and EPE (normalized to disparity ground
truth) variations with disparity are plotted. Our method is sig-
nificantly better than conventional baselines, especially at the out-
of-focus range, resulting in a 6x increase in depth of field (black
dashed line for PSNR threshold at 30dB). Bottom: Average PSNR
and SSIM are used for evaluations on texture reconstruction (the
higher the better), and average EPE and 3-pixel error rate are used
for evaluations on disparity prediction (the lower the better).

high-resolution reconstruction with clear details and sharp
edges. We further compared the depth of field of the F'S
system and ours, by analyzing the reconstruction PSNRs
over disparities, as shown in Figure 6. Our methods surpass
the PSNR threshold (30dB) for all the disparities within the
range [0-192], resulting in a 6 increase in depth of field
(invert disparity) compared to the F'8 system. The curves of

the normalized disparity EPE (EPE divided by the ground
truth) are also shown on the right, indicating our disparity
prediction improvement in the out-of-focus range.

Comparison with other masks. We further compared
our method with several other coded-aperture stereo sys-
tems. These coded masks were optimized based on the the-
oretical or heuristic properties of the PSFs. Specifically, the
Fisher mask was designed to increase the PSFs variation
over depth using Fisher information [30], while the cubic
mask was derived to force the PSFs to be similar over a
large depth range [10]. The comparison results are shown
in Figure 7. Reconstruction results of the e2eEDOF mask
(Sec. 4) are also shown in the figure. Our optimized mask
outperforms the e2eEDOF mask, the Fisher mask, and the
cubic mask for both RGB and depth estimation.

Ablation study. As mentioned in Sec. 5.3, the overall
loss contains both the loss of RGB reconstruction and the
loss of depth prediction, and v is the corresponding weight.
In Table 1, we compared the performance under different
~ values. As expected, the network performs good depth
estimation when -y is small, and on the contrary, when -~y
is large the network performs good RGB estimation. We
finally chose v = 0.5 in our system.

7. Real experiment

To demonstrate our method, we built a hardware proto-
type with a fabricated mask inserted in a Yongnuo 50mm
lens (with a '8 aperture). As shown in Figure 8, a Blackfly
(BFS-U3-200S6C-C) color camera with 2.4um pixel size
was used as the sensor. To match simulations, we sub-
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Figure 7. Comparison with other masks in simulation. The
e2eEDOF mask is end-to-end trained [31], and its disparity is di-
rectly estimated from EDOF image pairs. The disparities of Fisher
[30] and Cubic [10] masks are predicted from coded images. Our
CodedStereo mask outperforms others on disparity estimation, and
has comparable texture reconstruction accuracy to EDOF.

sampled the sensor pixels by 2 x 2 so that the equivalent
pixel size is 4.8um (with a resolution of 1824 x 2736).
The left/right coded image pairs were captured by trans-
lating the camera 22mm (baseline) using a Thorlabs lin-
ear stage. Similar to simulation settings, scenes were con-
structed within a volume of [0.7m — 1.7m] from the proto-
type and the captured right images were pre-shifted by 134
pixels to reduce the disparity value. The reduced disparity
range then drops to [0 — 192], aligning with the settings for
which the network was trained.

Mask fabrication & system calibration. We fabricated
our mask using two-photon lithography (Photonic Profes-
sional GT Nanoscribe 3D printer). During printing, the
height-map of the mask was discretized (in height) into 10
steps with a stepsize of 200nm. To account for any imper-
fection and misalignment in real experiments, we calibrated
the PSFs with a deconvolution-based algorithm inspired by
[37, 35]. The calibrated PSFs are shown in Fig. 8, which are
used to finetune the reconstruction networks for best per-
formance. More fabrication and calibration details can be
found in the supplemental material.

v=0 | v=0.25 | v=0.5 | y=00
@ | PSNR[dB] | 28.82 | 30.34 | 31.90 | 32.44
2 SSIM 0.842 | 0.874 | 0.880 | 0.880
g | EPE[px] 1.462 1.477 1.512 | 1.718
A 3px[%] 7.73% | 1.25% | 7.85% | 9.13%

Table 1. Ablation study on various ~ values in loss function.
PSNR, SSIM of RGB reconstruction and EpE, 3-pixel error rate
of disparity prediction as a function of ~.
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Figure 8. Built prototype with calibrated PSFs. We fabricated
the mask and built a prototype to demonstrate our method.
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Experiment results. Our real-world experiment results
are shown in Fig. 9. From the captured coded image pair,
our method can reconstruct both RGB image and disparity
with high accuracy in a large depth-of-range. Similar to the
simulation section, we further compared our prototype with
conventional F'8 and F'32 lenses in real experiments. The
same exposure time (600ms) was applied for all three set-
tings. As a reference, we included the reconstruction results
of a F"32 system with 10s exposure time to show the best re-
sult we can get without the SNR constraint. The results are
shown in Fig. 10. As expected, the F'32 system produces
noisy reconstructions given low SNR, while the F'8 system
fails to recover fine features in texture and disparity due to
the large out-of-focus blur. Our CodedStereo system gen-
erates high-quality results similar to the long-exposure F'32
system with significantly shorter exposure time.

8. Conclusion & discussion

In this paper, we proposed a CodedStereo system that
can recover large-volume, high-resolution 3D information
under light-limited environments. The key idea of our sys-
tem is to introduce a single phase mask at the aperture plane
of stereo cameras. The mask was end-to-end learned to-
gether with an RGB reconstruction network and a disparity
estimation network. The optimized phase mask creates a
disparity-dependent point spread function, allowing us to
recover sharp image and stereo correspondence over a sig-
nificantly expanded depth of field than conventional stereo.
We showed in simulation and experiments (with a proto-
type) that our method outperforms conventional lens and
heuristic masks on both reconstructed texture and disparity.

Despite the advantages of our method, some limitations
remain. First, the introduction of the phase mask makes
the hardware system more complicated in design, and the
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Figure 9. Experiment results of various real-word scenes using our CodedStereo prototype. Reconstruction results are shown for real
scenes with both uniform background and non-uniform background (the last column, variation in texture/depth).

Captured left image

(c) Ours (b) F8 Lens (a) F32 Lens
(600ms exposure) (600ms exposure) (600ms exposure)

(d) F32 Lens
(10s exposure)

Reconstructed left image

Predicted disparity map

Figure 10. Comparison with conventional lenses in real-world experiments. We compare the real-world performance of our prototype
to the traditional F'32 and F'8 lenses here. The coded images of (a)-(c) are captured in the same 600ms exposure (scaled up by 8 times for
F'32 for visualization). (d) is long-exposure (10s) captured with a F'32 lens, and the reconstructions are considered as the ground truths.
As predicted by simulation, our system is superior to conventional designs in RGB and disparity reconstruction, and outperforms all these
baselines (even long-exposure F'32) on the disparity prediction in saturated regions, as pointed by the pink arrow.

re-training of phase masks and networks are required for
different system settings (such as the lens focal length, the
aperture size, the focus depth or the sensor pixel size that
ends up with different defocus blur/disparities). Second,
since our method is based on depth from disparity/defocus
methods, it inherits their limitations on texture-less areas.
Moreover, there is a trade-off between the accuracy of dis-
parity and texture reconstruction (controlled by the weight
). Further optimizing the system design might can mitigate
this trade-off, including designs with two different phase

masks/lenses across two views. Looking into the future, we
hope to extend our framework to multi-view large depth-of-
field stereo, enabling more reliable 3D information captur-
ing under low-light conditions.
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