SCIENCE ADVANCES | RESEARCH ARTICLE

APPLIED PHYSICS

Direct detection of 5-MeV protons by flexible

organic thin-film devices

llaria Fratelli'->*, Andrea Ciavatti'?, Enrico Zanazzi**, Laura Basiricd'?, Massimo Chiari®,
Laura Fabbri'?, John E. Anthony®, Alberto Quaranta®*, Beatrice Fraboni'?

The direct detection of 5-MeV protons by flexible organic detectors based on thin films is here demonstrated. The
organic devices act as a solid-state detector, in which the energy released by the protons within the active layer of
the sensor is converted into an electrical current. These sensors can quantitatively and reliably measure the dose
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of protons impinging on the sensor both in real time and in integration mode. This study shows how to detect and
exploit the energy absorbed both by the organic semiconducting layer and by the plastic substrate, allow-
ing to extrapolate information on the present and past irradiation of the detector. The measured sensitivity,
$=(5.15+0.13) pC Gy ™", and limit of detection, LOD = (30 + 6) cGy s, of the here proposed detectors assess their
efficacy and their potential as proton dosimeters in several fields of application, such as in medical proton therapy.

INTRODUCTION
The development of detectors for protons and heavy particles is a
long-lasting research topic not only for fundamental applications
but also, more recently, for monitoring energy and flow of particles
in ion beam applications. For instance, novel beam extraction tech-
nologies, like laser-driven accelerators, require fast and reliable systems
for monitoring the beam quality (I). However, the most demanding
application of ion beams, for which accurate measurements are in-
creasingly needed, is hadron therapy of cancer. In this application
field, ion beams, mostly proton beams, are used for the controlled
treatment of cancer by focusing them onto small volumes to avoid
the spreading of the radiation to healthy tissues (2). The effective-
ness of the treatment is enhanced by tuning the beam both in inten-
sity and in position to irradiate the tumor in a controlled way. For
this reason, there is an increasing demand of systems optimized for
the accurate recording and mapping of the dose delivered during a
treatment plan (3). Besides this aspect, the next frontier for medical
applications of proton beams is proton tomography, where high-energy
(230 to 250 MeV) proton beams are used through the patient (4, 5).
In proton therapy, a detector has to satisfy two major requirements.
The first one is the capability to detect dose rate and position of the
beam in real time. This is mandatory to have the control of the de-
livered dose if the beam position changes with respect to the patient.
Because the needed accuracy for the beam position is about 1 mm,
small involuntary movements, even due to respiration, can affect the
treatment effectiveness (6). The second issue is the monitoring of the
dose on healthy tissues. It is well known that the skin receives high
doses during the irradiation treatment of various types of cancers (i.e.,
breast cancer), giving rise to long-term side effects (7). For instance,
alopecia is a high risk in patients where brain tumors are treated with
scanning proton beams (8). Another severe collateral effect involves
the dose delivered to the rectal wall during prostate treatments, for
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which dose monitoring methods with detectors inserted into rectal
balloons have been studied (9, 10). In all these cases, detectors have to
be in contact with the patient to record the dose in real time.

A few types of detectors can reliably provide this information,
but many are not suitable for the listed applications. For instance,
dosimeters based on thermoluminescence, optical stimulated lumi-
nescence, and track measurements cannot be used for real-time
monitoring. On the other side, calorimeters, ionization chambers,
and gas detectors are very accurate but interfere with the beam pa-
rameters because they block the beam or are too bulky.

Suitable modern detectors are silicon-based MOSFET (metal ox-
ide semiconductor field-effect transistor), silicon strips, and plastic
scintillators. MOSFET detectors have been studied for the detection
of the dose delivered both on skin and on rectal walls with good
results (9, 11). The main drawback is the need for accurate calibra-
tion procedures, because the detectors are intrinsically nonwater
equivalent with an energy-dependent response. Moreover, MOSFET
fabrication requires a clean room and high-level technology, and to
date, no large-area detectors for imaging applications are in pro-
duction. Last, the limited radiation hardness of MOSFETSs leads to
continuous tests for their reliability and to expensive substitution
procedures.

Silicon microstrip detectors have been used for ion beam imag-
ing with very good temporal and spatial resolution. However, high
doses are required for a good image quality and noise can affect the
analysis of the proton energy. More complex structures, like CMOS
(complementary metal-oxide semiconductor) pixelated detectors,
present low radiation hardness for daily use, together with the com-
plexity of the readout procedure. Last, it has to be taken into account
that all silicon-based detectors cannot be used for flexible systems
adhering to the skin or to curved surfaces. An accurate review on the
different detection methods has been realized by Seco et al. (3).

Plastic scintillators are also used for beam diagnostics. In particu-
lar, scintillating fibers are used for real-time dose delivery and beam
imaging with very good results (12, 13). Drawbacks for this approach
are mainly related to the light detection, which has to be very sensitive
to obtain reliable results. Therefore, photomultiplier tubes or silicon
photomultipliers with a suitable readout chain have to be coupled to
the fibers. Moreover, a dose calibration procedure requires accurate
knowledge of the scintillation properties, namely, of the ionization
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quenching factor, and sometimes, the simultaneous detection with
different scintillators is needed for achieving accurate measure-
ments (14). Last, imaging with 1-mm resolution is a difficult task to
obtain near the target, because arrays of fibers have to be assembled
with a cumbersome setup. Moreover, the transmissivity of scintil-
lating plastic fibers can be lowered by bending or mechanical stress
due to the insertion in the setup or to the adjustment on the target,
resulting in calibration errors.

To date, there is no example of organic semiconductor detectors
used as proton beam dose monitoring systems. Organic semicon-
ductors have been successfully used for the realization of efficient
flexible x-ray dosimeters (15-20), and only few papers report a pre-
liminary test with polymeric semiconducting sheets for the detection
of a particles (20-23) and more recently for the detection of thermal
neutrons (24).

Organic semiconductors have already been demonstrated to be
reliable detectors for ionizing radiation, but they could offer also ap-
pealing properties for proton beam monitoring. They can be pro-
cessed and deposited at low temperature (<150°C) by solution,
leading the possibility to realize millimeter pixels of the order of mm®
onto flexible and large-area substrates. Moreover, the facts that they
do not require expensive fabrication setups and that they are reusable
make them a potential low-cost, industrially scalable sensing system.
Last, a crucial point for the dosimetry application is the fact that
they are water tissue equivalent in terms of absorption and, conse-
quently, the calibration of the sensor is not needed.

In this work, the first study on responsivity of organic semicon-
ductor detectors to proton beams is presented. Both the real-time
mode and the integration-mode response of the sensors are de-
scribed, and the process of interaction between the charged parti-
cles and the active layer of the detector is discussed.

RESULTS

The organic detectors we fabricated and tested are depicted in
Fig. 1A. The devices have a photoconductor structure where the
active semiconducting layer is an organic thin film (150 nm thick)
of microcrystalline bis(triisopropylgermylethynyl)-pentacene
(hereafter TIPGe-Pn), deposited by drop casting onto two interdig-
itated gold electrodes in coplanar architecture (Fig. 1A) (25). We de-
posited gold electrodes by thermal evaporation on a 125-um-thick
plastic substrate [i.e., polyethylene terephthalate (PET) or poly-
ethylene naphthalate (PEN)], ensuring the mechanical flexibility of

the system. In particular, we fabricated and tested samples with the
same channel length (i.e., the distance between the fingers of the
electrodes) of L = 30 um and two different width, i.e., W =205.5 mm
(W/L = 6850) and W = 45 mm (W/L = 1500).

TIPGe-Pn is an organic small molecule similar to bis
(triisopropylsilylethynyl)-pentacene molecule (TIPS-Pn) by sub-
stituting the two silicon atoms with two germanium atoms (26, 27).
The strong packing of the organic units and the oriented alignment
of the microcrystalline structures (Fig. 1B) ensure efficient charge
transport within the semiconducting layer. TIPGe-Pn-based detec-
tors have been demonstrated to enhance the charge carrier mobility
and the x-ray sensitivity with respect to TIPS-Pn-based counter-
parts (15, 28). All fabrication steps to implement these detectors are
scalable to large-area, low-temperature (<180°C) compatible pro-
cesses, thus allowing to obtain large-area, thin, and flexible detec-
tors (Fig. 1C).

The detector response under proton irradiation was tested using
a 5-MeV beam provided by the 3 MV Tandetron accelerator of the
LABEC ion beam center (Laboratory of Nuclear Techniques for the
Environment and Cultural Heritage, INFN Firenze, Italy). Proton
beam currents used in this work are typically in the 1- to 100-pA
range. The weak intensity of the beam is monitored and quantita-
tively measured using a rotating chopper (29), placed between the
silicon nitride window and the sample, that intercepts the beam.
Although the energy of ion therapy beams is commonly above 70 MeV,
the proton energy tested in this work is of the order of the end-of-
range values, in particular of the energies of scattered protons reaching
internal healthy tissues surrounding the target.

Figure 2A depicts the entire experimental setup used to access
the proton detection of the here reported sensing system. We en-
closed the devices in a box, keeping the detector in the dark during
the measurements, with a small aperture to let the proton beam
in. We centered the sensor in front of the extracted proton beam
(Fig. 2B). To determine the actual energy of the protons impinging
onto the 150-nm-thick organic layer, the energy lost by the protons
passing through the several layers interposed between the beam and
the sensor (see Materials and Methods) has to be calculated. After
passing through these layers, protons lose about 390 keV, as calculated
with the stopping and range of ions in matter (SRIM) Monte Carlo
code (30). Figure 2C reports the SRIM simulation of the linear energy
transfer (LET) of each proton in the TIPGe film and in the PEN
substrate. As can be observed, the total released energy, given by the
integral of the curves, in the plastic substrate is much higher than

Fig. 1. Organic thin film-based device: Architecture and morphology. (A) Coplanar structure composed of two interdigitated electrodes (Au) deposited onto a plastic
substrate (125 um thick) by thermal evaporation. The organic semiconducting thin film is deposited on the top by drop casting, and it is composed of TIPGe-Pn. (B) Opti-
cal image of the well-aligned microcrystalline structures forming the thin-film semiconducting layer. (C) Flexibility of the here presented TIPGe-Pn-based detectors.
Photo credit: llaria Fratelli, Department of Physics and Astronomy, University of Bologna, Italy.
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Fig. 2. The 5-MeV proton irradiation setup. (A) The detectors have been irradiated
by 5-MeV protons at the LABEC center using an extracted beam line and tuning the
fluences of protons in the range [3.5 x 10° to 8.7 x 10'"] H* cm™ Photo credit:
llaria Fratelli, Department of Physics and Astronomy, University of Bologna, Italy.
(B) During the measurements, the devices were closed in a box, which keeps the
organic detector in the dark. The protons passed through a 14-um-thick Al window
and 18 mm of air before impinging onto the active layer of the detector. (C) Simu-
lated curve of the energy released by the proton beam in each layer.

the one deposited in the organic semiconductor due to the substan-
tially different layer thicknesses. In particular, the energy lost by each
proton within the TIPGe-Pn layer is, on average, 1.55 keV, while the
energy absorbed by the plastic substrate is about 1590 keV. This dif-
ference can be effectively exploited to implement a proton detector able
to simultaneously operate both in real-time mode (exploiting the
absorption of the organic thin film) and in integration mode (based on
the absorption within the plastic substrate), as detailed in the following.
During the irradiation, the sensors were polarized at low voltages
(<1 V) to collect the charges generated by anelastic interactions of
protons with the electrons of the semiconducting layer. The detec-
tor performance has been tested under consecutive ON/OFF cycles
of exposure to 5-MeV proton beam, tuning the fluence of particles
impinging onto the devices in the range between 3.5 x 10’ H" cm ™
and 8.7 x 10" H" cm ™. The dynamic current response of the sen-
sors is reported in Fig. 3 (A and B) , where the colored areas of the
graphs represent the time windows of proton irradiation. We carried
out the measurements by either keeping the exposure time constant
(t =10 's; Fig. 3A) or varying it between 10 and 30 s (Fig. 3B).
Figure 3C zooms into one of the peaks reported in Fig. 3 (A and
B), highlighting the typical curve of response to proton irradiation
by the detector. The shadowed area indicates the total collected
charges during the interval of exposure to the flux of protons. The
small spikes during proton irradiation are due to the small metal plate
of the chopper necessary for the accurate evaluation of the beam
flux. As a result of the energy absorption from the impinging radiation,
electron-hole pairs are generated within the organic semiconductor
and the electrical current measured between the two electrodes in-
creases by AI. When the beam is switched off, the current has an
initial fast drop due to the recombination of the charges, followed
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Fig. 3. Real-time radiation detection response by organ semiconducting thin
films. (A and B) Current versus time response of the detectors irradiated by multiple
ON/OFF cycles of protons tuning the incident fluences (3.5 10°to 9x 10" H* cm™).
The detectors have been tested, keeping the exposure time constant t=10s (A) or
varying it between 10 and 30 s (B). During the measurements, an electric field (ap-
plied bias <1 V) was imposed to the organic semiconducting layer. The time win-
dow of the irradiation is colored in the graphs, and the color intensity of the boxes
indicates the intensity of the proton beam. (C) Highlight of dynamic response of
the detector. The slow increase of the current indicates photoconductive gain effect.
The current (Al) is calculated as the difference between maximum peak current
and the baseline current before the irradiation. The integral of the plot (colored in
pink) represents the total charge induced by the protons. (D) Plots of the collected
charges in function of the total dose of protons for two different W/L. The black
squares correspond to W/L=1500, while the red circles represent W/L =6850. In
both cases, the graphs indicate a linear response of the detector in a wide range of
fluences (40 Gy to 11 x 10% Gy).

by a slower decay. The dynamic of the induced current peak is a
fingerprint for the detection of ionizing radiation by thin-film or-
ganic semiconductor-based sensors. As recently discussed (31, 32),
the current induced in organic thin film following exposure to ion-
izing radiation is increased by an inner mechanism of amplification
[i.e., the photoconductive gain effect (31)] mediated by trap states.
In particular, for p-type semiconductor such as TIPGe-Pn, due
to the presence of electron traps, the negative charges are suddenly
trapped within the organic thin film, and to maintain the charge neu-
trality, additional holes are continuously injected inside the channel
of the device, so each radiation-induced charge contributes more than
one time to the total current. Thus, the current increase Al corre-
sponds to the induced hole current amplified by a gain factor G, de-
fined as the ratio between the recombination time (1) of the trapped
electrons and the transit time (1) of the holes through the channel.
These two characteristic times are described by Eqgs. 1 and 2

_ L
Tt_uv (1)

B I
v = §lo-in(5y)] @)
where L is the length of the channel, p is the charge carrier mobility,
V is the applied voltage, a is the time scale of the trap states, y is

related to the distribution of the trap states, and py and px are
the intrinsic and radiation-induced charge densities of the organic
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layer, respectively. These two characteristic times univocally describe
the “rise” and “fall” shapes of the dynamic response of the sensor
because they are intrinsically related to transport properties and to
the density and energy distribution of the active traps, which deter-
mine the “real-time” detection process. According to this model, the
proton-induced current can reach a saturation regime if the sensor
is irradiated for a time, which exceeds a certain threshold voltage. In
this case, a dynamic equilibrium between the generation and trap-
ping of minority carriers and their recombination is reached, result-
ing in a plateau in proton-induced current during the exposure (see
fig. S1).

Figure 3C shows how, after each exposure, the current does not
return to the initial value, but it maintains an offset that depends on
the absorbed total irradiation dose.

For each exposure cycle, the radiation dose absorbed by the sen-
sor has been calculated by

D = Eqps X Nprot (3)

PTIPG-Pn X Volume
where E,s is the simulated value of the energy released by each pro-
ton into the organic thin film obtained by multiplying the organic
layer thickness and the LET value extracted from the SRIM simula-
tion reported in Fig. 2C, Npyot is the number of protons impinging
onto the sensor and monitored by the rotating beam chopper de-
scribed in Materials and Methods, pripG.py is the density of the or-
ganic layer formed by TIPGe-Pn molecules (1.233 g cm ™), and
Volume is the active volume of the sensor, which has been calculated
as the product of the organic layer thickness and the proton beam
spot area that was centered and totally included onto the area of the
sensor. We calculated the proton-induced charges collected during
each exposure cycle as the integral of the induced current peaks (i.e.,
the colored shadow in Fig. 3C). Figure 3D reports the collected
charges as a function of the total proton dose for four samples: two
samples with W/L = 1500 (black dots) and two samples with
WI/L = 6850 (red dots). The response of all tested detectors is linear
with increasing radiation dose in a wide range of doses between
40 Gy and 11 kGy. Different samples with equal geometry lay on the
same fit line, assessing the reproducibility and the repeatability of the
detection response. From the plots in Fig. 3D, we extracted the
sensitivity of the detector (i.e., the induced charges collected per
unit of absorbed dose) as the slope of the linear fitting curve,
reaching the values of Swyr-1500 = (5.15 + 0.13) pC G}f1 and
Swir=6s50 = (3.40 = 0.18) pC Gyil. The different responses
achieved with the two geometries can be ascribed to the different
electrical efficiency for the extraction/injection of the induced
charges by the electrodes.

An important figure of merit for a detector is the minimum de-
tectable dose, often indicated as limit of detection (LOD), that allows
to envisage the potential exploitation of the detector for different
applications. We calculated the LOD of the here presented sensors
using the following equation

3x RMssignal

LOD = Sensitivity

(4)

where RMSqignal is the root mean square of the current flowing in
the device in dark condition and Sensitivity is the higher sensitivity
obtained. By applying this definition, a LOD down to (30 * 6) cGy
5™ has been estimated.

Fratelli et al., Sci. Adv. 2021; 7 : eabf4462 16 April 2021

The linearity of the real-time response holds even after 28.5 kGy
of proton irradiation, assessing the reliability and the radiation
hardness of TIPGe-Pn-based detectors.

It is also noteworthy that, exploiting the inner amplification pro-
vided by the photoconductive gain mechanism, we can operate the
detector at very low bias if compared with the typical voltages used
for semiconductor nuclear detectors (i.e., tens/hundreds of volts).
We choose low-bias operations as the best trade-off for this class of
sensors for three different reasons. First, organic materials suffer
from bias stress even at a few bias volts (33) (see fig. S2), and work-
ing at low voltages can improve the reliability and the stability of the
sensor. Second, the low bias and the interdigitated architecture
increase the signal-to-noise ratio of the detectors. Last, under the
application point of view, this is a key aspect to achieve portable,
light-weight, low-cost, even wearable technologies.

Up to now, we discussed the sensor’s detection mechanism in
real-time mode, based on the interaction between the proton beam
and the organic thin film. However, the persistent current turns to
be reproducible and scales with the total absorbed dose. Hereafter,
we discuss how to exploit the gradual baseline shift induced by mul-
tiple successive exposures, to implement an integration-mode oper-
ation, following the irradiation history of the sensor.

Figure 4A reports the current-voltage characteristics (I-V) of a
TIPGe-Pn detector before and after proton irradiation, and after up
to 3 months of storage in the dark. The increase of conductivity of
the organic layer due to the interaction with the proton beam is
evident. The conductivity raises from (1.93 + 0.08) x 10°Sm™' to
(36.4 £0.1) x 10 S m™! after 66 nC of incident protons. The effect
is reversible, and despite the long relaxation time, full recovery oc-
curs after 3 months [conductivity of (1.88 + 0.07) x 10°S m™.
Looking closely at the typical dynamic response curve of the detec-
tor to proton irradiation (see Fig. 4B), the total proton irradiation-
induced current can be considered composed of two different
contributions. The first one is the real-time response as a result of
energy released in the organic semiconductor layer and photocon-
ductive gain effect. This has already been discussed before and called
Al The second contribution, here denoted as Iy, represents the current
baseline shift due to the fixed charges trapped in the plastic sub-
strate after each proton beam exposure and depends on the irradia-
tion history of the detector. In analogy to the procedure described
above, we calculated the total induced charges (i.e., the integral of
the green area highlighted in the dynamic curve of Fig. 4B) and the
dose corresponding to each exposure (Fig. 4C). The integrated
amount of charges generated in the substrate, responsible for the
current baseline shift (and of its long relaxation time), is linearly
dependent on the integrated dose of proton irradiation received by
the detectors. From the linear fit of the curve reported in Fig. 4C,
the sensitivity of the detector, here thus operating in an integration
mode, results S = (6.97 + 0.18) x 10™" pC Gy™". The generation of
charges in polymeric foils following proton irradiation is an effect
known in the literature (34-38) and is well justified in the here pre-
sented devices, fabricated onto a 125-um-thick plastic substrate ab-
sorbing a consistent fraction of the proton energy (about 1590 keV
per H'; Fig. 2C).

We suggest that these proton-induced charges, accumulated in
the plastic substrate (Fig. 4D), act as a bottom-gate effect for the
organic semiconductor layer, increasing its electrical conductivity.
This effect can be assimilated to what occurs in a field effect transis-
tor (Fig. 4E), where the gate electrode is used to tune the density of
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Fig. 4. Organic proton sensor operated in integration mode. (A) Current-voltage curves acquired before (black) the irradiation, after 2.5 x 10'" incident protons (42 nC,
red line), after 4 x 10" incident protons (66 nC, green line), and after 4 hours (blue line), 64 hours (light blue line), and 95 days (pink line and dots) of storage in the dark.
The graph shows the increase of conductivity of the organic semiconducting layer due to the irradiation. (B) Dynamic curve (black line) of the current response of the
detector to different fluences of incident protons [(4.5 x 107" t0 6.6 X 107") H* cm™]. Two different contributions can be distinguished: Al (pink shadow) is the real-time
response proportional to the dose (already described in Fig. 3), while I (green shadow) represents the baseline shift due to the fixed charges trapped in the plastic sub-

strate. (C) Linear increase of the total charge generated in the plastic substrate as a function of the integrated dose, which irradiates the sample. (D and E) Schematics of

the detector integration-mode operation: the protons irradiating the sample generate charges in the polymeric foil with a very long relaxation time. These trapped
negative charges induce an increase of the semiconductor conductivity, leading to higher source-drain current in the organic thin film. This effect is similar to what hap-
pens in an organic field effect transistor (OFET) structure, where the gate electrode is typically used to tune the current flowing between the source and drain electrodes.
In this case, the irradiated polymeric substrate of the sensor acts as the bottom-gate electrode of an OFET structure, creating a gating effect proportional to the integrated

dose of irradiating protons.

charges flowing in the thin channel at the semiconductor/dielectric
interface, between the source and drain electrodes. Here, as the
charges induced in the plastic substrate have a long lifetime (as as-
sessed by the I-V curves; Fig. 4A), this gating effect adds up after each
proton exposure, with a contribution proportional to the actual
dose received, thus allowing to quantitatively monitor the irradia-
tion history of the detector.

It is noteworthy that to collect and to exploit the information
accumulated within the plastic substrate, the organic semiconducting

Fratelli et al., Sci. Adv. 2021; 7 : eabf4462 16 April 2021

layer and its interface with the substrate play an essential role, as
they permit to transduce into a source-drain current the informa-
tion stored in the static charges induced in the substrate by proton
irradiation. While the organic devices on PEN foils show the inte-
grative response that we described above, similar devices with or-
ganic layer deposited onto Corning glass slides do not follow the
same behavior. Only the sensors on PEN present the “memory” ef-
fect, while for devices onto glass, the proton irradiation induces a
nonlinear decrease of the current and does not allow to extract any
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information (fig. S3). This measurement confirms the crucial role
of both the organic material and the substrate in the integrative re-
sponse of the detector. In fact, proton irradiation effects and charge
generation are less pronounced in glass (35).

We demonstrated the complete decoupling of the real-time de-
tection response attributed to the organic semiconducting layer
(and ruled by the photoconductive gain mechanism) from the inte-
grative contribution due to the absorption of energy in the PEN
substrate. The independence of these two distinct mechanisms of
detection is demonstrated by the linearity of the generated charges
and the total dose represented in Fig. 3D. Moreover, when consid-
ering any two real-time peaks obtained under the same proton flu-
ence, they exactly overlap, demonstrating that, despite the different
amount of charges induced in the substrate due to the different “history”
of the detector, the organic semiconductor equally responds to the
same fluence of protons. The two signals can thus be both reliably and
effectively exploited to monitor the proton doses in an independent
way (more details are shown in fig. S4).

DISCUSSION

In conclusion, this study illustrates the direct detection of 5-MeV
protons by organic thin-film devices realized on a plastic flexible
substrate. The best sensitivity obtained by this new class of detectors
is $ = (5.15 £ 0.13) pC Gy’l, and a LOD down to (30 £ 6) cGy st
has been calculated. The sensors demonstrate a stable and repro-
ducible response to proton beams in a range of fluences between
3.5x10° H" cm™*and 8.7 x 10" H" cm™ and maintain a linear re-
sponse up to a total dose of 28.5 kGy. By exploiting the structure of
this sensor, two different operation modes can be effectively used:
(i) real-time mode sensing, where the amount of charges generated
and collected at the electrodes is proportional to the released dose,
and (ii) integration-mode sensing, where the energy released in the
plastic substrate by the impinging protons generates static long life-
time charges that accumulate in the polymeric substrate and induce
an increase of conductivity in the semiconducting layer. To the best
of our knowledge, this is the first study showing such a behavior in
an organic device, demonstrating the potentiality of this new class
of materials as flexible, portable, and human-tissue equivalent pro-
ton detectors.

MATERIALS AND METHODS

Device fabrication

Devices are fabricated onto a 125-um-thick plastic foil (i.e., PET or
PEN). The active layer of the device is formed by 150-nm-thick mi-
crocrystalline TIPGe-Pn (ie. bis(triisopropylgermylethynyl)-pentacene).
This organic small-molecule semiconductor is deposited from solu-
tion (i.e., 0.5 weight % in toluene) by drop casting onto two gold
interdigitated electrodes. The devices are annealed at 90°C for 1 hour.
The gold interdigitated electrodes are deposited by thermal evapora-
tion and patterned by photolithography. The channel length is L = 30 um,
while the channel width is, in one case, W =205.5 mm (W/L = 6850)
and, in the other, W = 45 mm (W/L = 1500).

Proton irradiation

We irradiated the detectors using a 5-MeV beam provided by the
3 MV Tandetron accelerator of the LABEC ion beam center (INFN
Firenze, Italy). The beam is extracted into ambient pressure through
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a 200-nm-thick SizNy membrane; the sample is typically installed at
a distance of 8 mm from the extraction window. Proton beam cur-
rents used in this work are typically in the 1- to 100-pA range. The
weak intensity of the extracted beam is monitored and quantitatively
measured using a rotating chopper, placed between the silicon ni-
tride window and the sample, that intercepts the beam; the chopper
is a graphite vane covered with a thin nickel evaporation, and the
Ni x-ray yield is used as an indirect measurement of the beam
current (29).

To determine the actual energy of the protons impinging onto
the 150-nm-thick organic layer, the energy lost by the protons pass-
ing through the several layers interposed between the beam and the
sensor, namely, 200 nm of SizNy for the beam extraction window,
8 mm of mixed air-He (50%-50%) atmosphere in the gap between
the extraction window and the metal box, 14 um of Al for the
entrance window of the box, where the sensor was enclosed, and
14 mm of air inside the box, has to be calculated. After passing
through these layers, protons lose about 390 keV, as calculated with
the SRIM Monte Carlo code (30).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/16/eabf4462/DC1
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