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Abstract

Objective: Brain-computer interfaces (BCls) show promise as a direct line of communication
between the brain and the outside world that could benefit those with impaired motor function.
The commands available for BCI operation are often limited by the ability of the decoder to
differentiate between the many distinct motor or cognitive tasks that can be visualized or
attempted. Simple binary command signals (e.g. right hand at rest versus movement) are
therefore used due to their ability to produce large observable differences in neural recordings.
At the same time, frequent command switching can impose greater demands on the subject’s
focus and takes time to learn. Here, we attempt to decode the degree of effort in a specific
movement task to produce a graded and more flexible command signal. Approach: Fourteen
healthy human subjects (9 male, 5 female) responded to visual cues by squeezing a hand
dynamometer to different levels of predetermined force, guided by continuous visual feedback,
while the electroencephalogram (EEG) and grip force were monitored. Movement-related EEG
features were extracted and modeled to predict exerted force. Main Results: We found that
event-related desynchronization (ERD) of the 8-30 Hz mu-beta sensorimotor rhythm (SMR)
of the EEG is separable for different degrees of motor effort. Upon four-fold cross-validation,
linear classifiers were found to predict grip force from an ERD vector with mean accuracies
across subjects of 53% and 55% for the dominant and non-dominant hand, respectively. ERD
amplitude increased with target force but appeared to hit a trough that hinted at non-monotonic
behavior. Significance: Our results suggest that modeling and interactive feedback based on
the intended level of motor effort is feasible. The observed ERD trends suggest that different
mechanisms may govern intermediate versus low and high degrees of motor effort. This may
have utility in rehabilitative protocols for motor impairments.

Keywords: Electroencephalogram (EEG), Brain-Computer Interface (BCI), Event-Related
Desynchronization (ERD), Force, Effort, Sensorimotor Rhythm, Handgrip
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1. Introduction

Brain-computer interfaces (BCls) are systems designed to
translate brain signals into commands for external devices.
This technology offers a communication and control pathway
that circumvents the peripheral nervous system and holds
considerable potential for helping individuals disabled as a
result of neuromuscular injury or neurodegenerative disease.
A BCT takes on the challenge of discriminating changes in the
user’s brain signals associated with the task at hand [1]. Pre-
processing and feature extraction transform neural signals
from the brain into measurable quantities. These features are
then translated into command signals that directly control a
device such as a neuroprosthesis or computer cursor, which in
turn provide feedback to the user for continued operation.

Today, BCIs are primarily limited to research environments
due to usability challenges. The limited ability of classifiers to
reliably discriminate between the EEG signatures associated
with different tasks is a tremendous hurdle in BCI
development; the need to juggle multiple distinct commands
in real time requires great skill on the part of the subject, which
can take longer to acquire [2]. BCIs often rely on volitional
brain activity as control signals. But such activity is usually
modeled on simple binary tasks, for instance hand movement
versus rest; gradations in effort or fine control related to the
task are not explicitly modeled, but are instead left to the
controller to handle in a goal-directed task [3-4]. It is
interesting to speculate whether graded — as opposed to binary
— responses will lead to improved BCI control. Here, we
propose to model graded changes in the electroencephalogram
(EEG) that convey the level of effort associated with
movement. Measurable changes in brain activity can serve as
commands that bridge the gap between intent and fine control
and thereby play a vital role in therapeutic protocols aimed at
recovery of function.

Such a signal may be found within the brain’s sensorimotor
rhythm (SMR). The SMR generally refers to characteristic
EEG rhythms associated with sensation and movement [5]. At
rest — i.e., the idling state — they reflect the dynamics of EEG
potentials over the sensorimotor cortices [5-8], and are
modulated or attenuated by movement intent, execution, or
imagery [5], a phenomenon known as event-related
desynchronization (ERD). Two components of the SMR —mu
(8 — 13 Hz) and beta (13 — 30 Hz) [9] — have been widely used
in BCI work with healthy and clinical populations [10-11].
Prior studies using positron emission tomography [12] and
functional magnetic resonance imaging [13-14] have shown
graded activation in a hand-force task within the sensorimotor
cortex. Therefore, it is hypothesized that graded ERD signals
associated with motor effort could be discerned in the EEG. If
this is indeed feasible, it would offer a more information-rich
signal for use in BCI applications.

Several studies have investigated neural markers of graded
movement. Movement-related cortical potentials (MRCPs)
have been used as markers of exerted or intended force [3, 15-
16]. Jochumsen et al. demonstrated that MRCPs can be used
to discriminate between two levels of force [17]. The peak
amplitude of an MRCP may also encode generated force in the
EEG [18]. The primary limitation with MRCPs is their
considerable trial-to-trial wvariability [15]. MRCPs are
typically averaged over many repetitions before their
morphology becomes distinctive; therefore, an MRCP-based
BCI may underperform with limited training [19]. Further, in
cued paradigms, the MRCP can be conflated with evoked
responses to visual stimuli [20]. An advantage of the MRCP
is that it marks a specific phase of activity: i.e., movement
onset. However, phase is less consequential in a sustained
activity such as continuous force exertion, which is of interest
here.

Cao et al. [21] examined four different EEG frequency
bands within the 8-45 Hz range and found reduced power at
low compared to high handgrip force. Attenuation of the SMR
during force exertion in a movement task hints at the
possibility that the level of attenuation may correlate with
force. Characterizing and quantifying the spatiotemporal
profile of cortical SMR activity during different levels of a
specific movement might pave the way for the use of graded
ERDs as BCI command signals. We hypothesize that features
of the SMR observed during controlled isometric force
exertion are separable for different levels of force and can
therefore be used to predict applied force. While an impaired
individual may be unable to generate any force, let alone the
desired value, the same SMR features may convey their
intended effort in the motor task and serve as the basis for a
control signal in an assistive or rehabilitative BCI therapy, for
instance, one that involves functional electrical stimulation.
We set various target force levels that the subject must reach
and maintain while performing a handgrip contraction in
response to a cue. Subjects were given continuous visual
feedback based on their applied force. Features of the EEG
during force exertion were extracted offline, and classification
and regression models trained to predict the target force class
and value, respectively, in out-of-sample data. The ability to
predict graded motor effort from the EEG during isometric
force production could help further our basic understanding of
the dynamics of SMR modulation with possible implications
for BCI development.

2. Methods

2.1 Subjects

Fourteen healthy human subjects (nine male, five female)
participated in this study after providing informed consent.
Procedures were approved by the University of Kentucky
Institutional Review Board in compliance with the
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Declaration of Helsinki. Visual or neuromuscular impairment
as well as recent injuries to the hand or forearm were specified
as exclusion criteria. All subjects but two were right-hand
dominant.

2.2 Experimental Design

A visual display presented intermittent cues to the subject
for three phases of activity in sequence: (1) Preparation, (2)
Task, and (3) Rest (Figure 1). This sequence was repeated 21
times to make a run, during which EEG was recorded. In total,
12 runs were performed in a session and each subject
participated in exactly one session. During the experiment,
subjects were seated approximately 1 meter in front of a
computer display. Instructions were given to minimize any
movement during Preparation and Rest but to perform a
controlled handgrip contraction on a hand dynamometer
during the Task phase. Immediate feedback was given to the
subject in the form of a blue ring, whose diameter varied
dynamically in proportion to the measured handgrip force
(Figure 1). The goal was to apply just enough force for the
blue ring to match a preset target force represented by a

concentric dotted black ring and maintain that force level for
the duration of the Task phase. In a subset of cues representing
a control “No-Go” condition, subjects were directed not to
perform the handgrip contraction during the Task phase. Five
of the 21 cues in every run were No-Go cues, interspersed at
random.

Target forces were set to specific percentages of each
subject’s maximum voluntary contraction (MVC) force
measured for each hand at the beginning of the session. In the
first eight runs, the target force was set to the same discrete
value for every cue within that run. This was done to help the
subject create and maintain a mental strategy for an expected
target and perform the task consistently across cues. The target
forces were set to 20, 35, 50, and 65% of the subject’s MVC.
In the last four runs, the target force for each cue was randomly
selected from a uniform distribution on a continuous interval
between 10 and 80% of the subject’s MVC. Hence, the subject
would not be able to anticipate the target force in each cue
before starting to perform the task. Fatigue is an important
factor to consider in a movement-based protocol. As depicted
in Figure 1, runs alternated between the left and right hands,
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Figure 1. Schematic of testing protocol. Runs were composed of 21 cues consisting of Preparation, Task, and Rest phases.
In five of the 21 cues, the subject was instructed not to squeeze (No-Go); this serves as a statistical control. The diameter
of the black rings is set proportional to the target force and the innermost blue ring grows or shrinks based on force
measured by the hand dynamometer. Runs alternated between the left and right hands. The first eight runs featured
fixed force targets (20, 35, 50, or 65% MVC), whereas the target forces varied from 10 to 80% MVC at random in each of

the last four runs.
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which gave subjects at least a five-minute break between runs
on a particular hand. In the first eight runs, the target force
alternated between a low-effort value (20 and 35% MVC) and
a high-effort value (50 and 65% MVC) for every other run on
the same hand (and was held constant for all cues within each
run). The order in which the subject encountered each low-
effort value (or high-effort value) was randomized: for
instance, one subject may encounter runs with target forces in
the sequence 20, 65, 35, 50% MVC, while another might see
the sequence 35, 50, 20, 65% MVC. This was done to avoid
introducing progressive changes in the force target as a
confounding variable. Subjects were allowed to rest between
runs if needed.

2.3 Data Acquisition

Grip force was measured as an analog voltage signal by a
hand dynamometer (HD-BTA, Vernier Software and
Technology, Beaverton, OR). The EEG was simultaneously
acquired using active electrodes (g.SCARABEO, g.tec
medical engineering, GmbH, Graz, Austria) at 18 locations on
the scalp defined by the International 10-20 positioning
system [22] (Figure 2). The electrodes were embedded in a cap
strapped to the subject’s head and a conductive gel was
injected into an aperture on each electrode to reduce
impedance and improve signal quality. The EEG was sampled
at 256 Hz synchronously with the hand dynamometer using a
biosignal amplifier (g.Hlamp, g.tec medical engineering,
Graz, Austria) and pre-processed with 4™ order Butterworth
bandpass (0.1 — 100 Hz) and notch (58 — 62 Hz) filters. Some
channels were used only to detect ocular artifacts (F4) or
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Figure 2. Scalp montage. 18 total active electrodes recorded
EEG (grey) with an ear clip reference (A1) and ground (AFz).
Electrodes at F4, PO7, POz, and PO8 were excluded from feature
extraction.

evaluate signal quality during setup (PO7, POz, POS), and
were excluded from further analysis. Electromyography was
performed to measure flexor carpi radialis muscle activity in
both forearms to confirm grip onset time.

2.4 Signal Processing

Offline, all data were processed in MATLAB (release
2017a, Mathworks, Natick, MA) using the Signal Processing
toolbox and custom-written scripts as needed. After applying
a common average reference, the EEG signals were sent
through a 4" order Butterworth filter with a pass band of 8 —
30 Hz, the EEG frequency range corresponding to the SMR.
This signal was then squared to obtain an estimate of SMR
band power. Using data from the cue state and hand
dynamometer, EEG signals were segmented into their
different phases: Preparation, Task, and Rest. For each cue,
the mean-squared SMR power in each EEG channel was
computed over the last five seconds of the Task period. We
focused on this time interval, highlighted in Figure 3, to allow
time for the subject to meet the target force and stabilize
muscle contraction. The first cue in each run allowed the
subject to adapt to the particular target force and was omitted
from analysis. EEG power estimates X and time j were then
normalized by a baseline value R (see Equation 1) to obtain a
measure of the event-related desynchronization (ERD) [23].

Xi—R
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R was computed as the mean band power over the final one
second of the Preparation phase for each cue of a given run.
ERD is expressed as the percent change in X relative to R and
takes on values in the interval (-100, +). To eliminate
occasionally observed high amplitude spike-like artifacts in
the EEG, a Hampel filter (hampel function in MATLAB) was
applied to replace outliers in the ERD traces greater than six
standard deviations from the median by the value of the
median in a quarter-second moving window [24]. Then, the
mean of the ERD over 1-s intervals was used as the input
feature for force prediction. A label corresponding to the target
force was assigned to each ERD value for use in classifier
training and testing.

2.5 Graded ERD Feature Analysis

In order to verify that the ERD feature of the EEG was
steady over the period of each cue selected for analysis, during
which hand contraction is performed to match the stipulated
target force, we computed the coefficient of variation (CV) —
i.e., the standard deviation over the mean — over the five 1-s
windows of the analysis period of the Task phase. This was
repeated using the force signal from the hand dynamometer.
The ERD values computed in each window form a vector with
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n = 14 spatial components, one for each EEG channel used in
the analysis. Rather than study ERD at each location in
isolation, the Euclidean norm (L2) of the ERD vector was
computed after shifting each component by +100% so that it
is contained in (0,+o0). This was then normalized by v/n, the

L2 norm of the unity vector, which is equal to v/14 for this
vector space, and then the natural logarithm taken to give a
scalar measure, gamma (y) of ERD strength over the scalp
(Equation 2). This method avoids averaging out focal
contributions from specific locations that may be stronger or
weaker than others. That is:

y =log (R72) e e e

2

vy is negative, positive, or zero depending on whether mu-
beta EEG activity is suppressed, elevated, or unchaged relative
to the baseline period of each cue. The standard deviation and
mean of y over the five windows of each cue were used to
compute the CV to estimate ERD variability in the force
exertion period. Since identical or similar values of y can arise
from different spatial ERD maps — for instance, focal ERD
troughs at C3 versus C4 for right-handed versus left-handed
tasks, respectively — we propose an additional metric to assess
spatial differences from one analysis window to another

within a cue. For any pair of 1-s windows k and /, we use the
cosine of the angle between their ERD vectors — estimated
through their scalar product — as a measure of difference in
spatial orientation.

__ ERDyERD
cosf = W (3)

Positive values close to 1 suggest strong agreement
between spatial ERD maps of the windows in question, while
zero or negative values indicate spatial differences. With five
windows per cue, there are (3) = 10 unique pairs of ERD
vectors. cos 6 was computed and averaged over all unique
pairs for each cue and independently for each subject-hand
combination. Together, CV(y) and < cos § > tell us how
variable the intensity and pattern of spatial ERD maps are
during the motor control task performed in response to each
cue.

2.6 Graded Target Force Prediction from the EEG

Movement-based BCIs typically make predictions about
user intent and behavior using classification and regression
modeling techniques [25]. Therefore, both types of supervised
machine learning approaches were tested to fully evaluate the
potential of graded ERD for force prediction. A k-fold cross-
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Figure 3. Temporal location of EEG data used for feature extraction. Top row: the timing of visual cues given to the
subject. Middle row: the corresponding measured force is displayed. Bottom row: EEG signals were segmented into five

1-second windows (blue) at the end of the Task phase.
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validation scheme was employed for training the predictor and
testing it out of sample. The ERD values for each subject were
randomly divided into £ = 4 folds. Data to train the model
came from k£ — 1 folds and predictions were made for the
remaining k" fold and compared with the true target forces.
By repeating this exercise with each of the & folds as the test
sample in turn, all of the data were tested out-of-sample. To
reduce classification bias, the training and testing sets were
generated using a block-based design within each fold such
that all 1-s windows in to a particular cue were assigned
together to either the training or test set. This method allows
us to better assess the generalizability of the model. Data were
analyzed separately for each subject-hand combination and
presented according to hand dominance. Data from the left-
handed (non-dominant) runs in subject 4 were corrupt and
therefore excluded from analysis.

Three commonly used machine learning algorithms were
used to classify the ERD values into target forces: linear
discriminant analysis (LDA), the support vector machine
(linear kernel) (SVM), and the multilayer perceptron (MLP).
All three are computationally inexpensive, which makes them
good candidates for use in future studies involving online
classification [26].

To determine the feasibility of predicting grip force over a
continuous interval rather than just the nominal force class, a
linear regression model was fitted to the ERD-target force data
(fitlm function in MATLAB). Two models were built to
adequately test the value of a continuous predictor. In the first
(see 3.3.1), features from runs 1 — 8 were tested using four-
fold cross-validation identical to what was performed in the
classification tests. And in the second (see 3.3.2), the model
was trained on ERD values from the first eight runs and tested
by using ERD values to predict target force in the last four
runs (continuous-valued target force). To prevent the model
from predicting forces outside the physically realistic interval
of 0—100% MVC, a sigmoidal link function was used to scale
predicted grip force values so that they asymptotically
approach either limit of this interval, and the inverse of this
function was applied to target force values to stretch them over
the interval (-o0, +o0) before estimating the linear regression
model.

2.7 Statistical Analysis

Several different statistical tests were used in this study. All
tests were performed separately for each hand, under the
premise that control of grip may be asymmetric for dominant
and non-dominant hands. CV was calculated as the standard
deviation across all five windows of a given cue divided by
their mean (see section 3.1). The effect of target force on y
was assessed separately for dominant and non-dominant hands
by fitting linear and quadratic models to the pooled data and
comparing their goodness of fit (see section 3.1).
Classification accuracy is presented as a confusion matrix and

to examine where errors occurred, cumulative distribution
functions (CDFs) were used (MATLAB function ecdf). A
two-sample Kolmogorov-Smirnov (K-S) test compared the
CDFs of pooled results, stratified by hand dominance, with
chance level (see section 3.2). The effect of hand dominance
on classification accuracy was tested using two-sample #-tests
(see section 3.2). For the regression analysis (see section 3.3),
the coefficient of determination (R?) between true and
predicted force labels was computed to determine the
percentage of variance explained by the model. This value was
obtained from the total number of predictions separately for
each subject-hand combination. As the number of independent
variables increases (channels in this case), the value of R?will
increase. To penalize R? for inclusion of non-informative EEG
channels, we report the adjusted R%, which will lead to lower
values than the conventional R%. Another benefit of reporting
the adjusted R?is that it allows for comparison of results with
other studies using different electrode montages [27].

3. Results

3.1 Evidence for Gradation in the ERD with Handgrip
Force

Prior to modeling and analysis, the ERD feature vector was
extracted from the EEG in five 1-s windows during isometric
force exertion in response to each cue; each sample was
assigned the same label as the target force for the cue. To
determine if the assumption of stable force and ERD
measurements during the force exertion period was indeed
valid, we quantified the variability across the five sample
windows of applied force (Figure 4, Top), ERD strength
(Figure 4, Middle) and the spatial ERD pattern (Figure 4,
Bottom) using constant target force data (runs 1-8).

The CV of force, pooling cues for all subjects, had mean
values of 8.5, 9.1, 9.9, and 11.1% for the dominant hand and
9.0, 9.5, 10.8, and 13.8% for the non-dominant hand
corresponding to target forces of 20, 35, 50, and 65% MVC,
respectively (Note: No-Go is excluded since no grip force is
exerted). A one-way repeated measures ANOVA comparing
the CV of force for the four target forces, and performed
separately for each hand, showed that only seven of the 27
possible subject-hand combinations (14 dominant, 13 non-
dominant) had statistically significant differences ( p < 0.01),
five of which were for the non-dominant hand.
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Figure 4. Measures of variability between sample windows, pooled for all subjects, from the first eight runs. Top row:
CV of handgrip force, computed from the five 1-s windows of each cue and for each of the four target forces. Middle row:
CV of y, computed likewise over sample windows and for each target force as well as for the No-Go condition. Bottom
row: CDFs of < cosB >, which represents the average “difference” in orientation between the ERD vectors of unique pairs

of the five sample windows.

Similarly, the distributions of CV of y showed no
significant differences between the four target forces. The CV
was greatest for the No-Go condition with a mean of 34.9 and
32.6% for the dominant and non-dominant hand, respectively.
Altogether, only six of the 27 possible showed statistically
significant differences between target forces with three

combinations each from the dominant and non-dominant
hands, respectively.

The CDF of < cosf > (Figure 4, Bottom) showed strong
separation between the No-Go and four target force
conditions, with a two-sample K-S test showing statistically
significant differences in the distributions for No-Go and each
of the four target forces, with the exception of 20% MVC for
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the non-dominant hand (p = 0.024). Between target forces, the
only significant post hoc pairwise differences were for 20%
versus 35% and 20% versus 50% in both the dominant and
non-dominant hand. No-Go traces in both plots are skewed to
the left and therefore more variable in the ERD pattern than
any of the “Go” conditions.

The CDF of vy, a measure of ERD vector strength, is
presented in Figure 5 separately for each sample window and
each target force, stratified by handedness. Negative values for
vy indicate suppression of the 8§-30 Hz EEG rhythm. The No-
Go condition has grand medians (cumulative probability =
0.5) of 0.051 and -0.0459 for dominant and non-dominant
groups, which indicates slight but negligible suppression or
elevation of the SMR due to random effects, whereas median
vy for the four movement classes, in each of the five 1-s
windows, are well below zero and indicative of clear
suppression of the sensorimotor rhythm. Figure 6 (top panels)
presents a box-and-whiskers distribution of y, averaged for
each subject-hand-target force combination over all cues and
windows at that target force from runs 1-8. Each subject’s y
values were scaled by the (max-min) range over all five target
forces, which made their distributions approximately normal
(Shapiro-Wilk test; p < 0.05); the lone exception was the No-
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Go group from the dominant hand. As expected, No-Go is
mostly at or above zero while all active force classes show
SMR suppression (negative values of y) to varying degrees.
The median values appear similar to each other for the
dominant hand; however, for the non-dominant hand it
appeared lower for 35 and 50%, the middle target forces, than
for 20 and 65%, the low and high limits employed in this
study. This trend suggests that y drops from zero as the target
force increases but passes through a trough at which it may
reverse course.

To test for significant trends in y with exerted grip force,
linear and quadratic functions were fitted to the data (Figure
6, lower panels). The residual sum of squares (rSS) was
computed for each fit separately for dominant and non-
dominant hands. The rSS was lower in the quadratic fit (5.99,
6.79) than the linear fit (8.09, 8,64) for the dominant and non-
dominant hands, respectively. To compare the linear and
quadratic fits, a non-parametric Wilcoxon signed-rank test
was carried out on the sample of differences in their squared
prediction errors. The quadratic model explained the trend in
the data significantly better than the linear model for both the
dominant (p = 0.0088) and non-dominant hands (p = 0.0431).
To further test these results, the outliers in the box-and-
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Figure 5. Distribution of ERD strength by sample window and target force. Cumulative distribution functions for the y
metric, pooled across subjects for each of the five sample windows during grip force exertion and for each target force
class from the first eight runs, stratified by hand dominance. In both plots, a greater percentage of y values are positive,
or elevated, for No-Go compared to the four target forces. There is greater separation between various target forces in
the non-dominant hand, particularly for 65% MVC, and at lower percentiles of y for the other target forces.
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whiskers plot (red points in Figure 6, upper panels), which are
by definition more than one inter-quartile range away from the
nearest quartile, were excluded and the signed-rank test
repeated. This further improved the fit of the quadratic model
relative to the linear one for both dominant (p = 0.0031) and
non-dominant hands (p = 0.0292). The data corresponding to
these outliers were included in subsequent analyses since there
was no evidence of poor signal quality or other artifacts to
explain their occurrence and warrant exclusion. These
findings support the ERD reversal trend observed in Figure 6
but further experimentation is needed to prove it beyond
doubt.
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3.2 Prediction of Target Force Label Using Statistical
Classifier Models

Performance was evaluated by comparing the predicted
force labels with the true target force labels of the testing data
using various models. The analysis was performed for both
hands and the results stratified by hand dominance under the
assumption that the ability to control grip force may be
asymmetric. Models were created and tested separately for
each subject-hand combination.

Classifiers were trained and tested on separate data from
each subject. Only the first eight runs, which included four
distinct target forces (20, 35, 50, and 65% MVC) and the No-
Go condition, were analyzed. Classification accuracy is

Non-Dominant Hand
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Figure 6. Effect of target force on ERD strength. Top: The distribution of y, normalized for each subject and averaged
over all cues for each subject separately. Across target force classes in the dominant (n = 14) and non-dominant (n = 13)
hands, the trend in ERD amplitude suggests a non-monotonic dependence on effort. In general, the middle target forces
(35 and 50%) show greater suppression of the SMR than the low (20%) and high (65%) target forces. Bottom: To test
these observations, the data were fitted to linear and quadratic models and their goodness-of-fit compared. The residual
sum of squares was lower for the quadratic fit (5.99, 6.79) than the linear fit (8.09, 8.64) for the dominant (df = 69) and
non-dominant (df = 64) hands, respectively. These indicate that the non-monotonic model better approximates the

effect of exerted grip force on ERD strength.
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Figure 7. Classifications using LDA, pooled across all subjects and separated by handedness. Top: confusion
matrices of true versus predicted force target labels. Bottom: empirical cumulative distribution functions for the
pooled prediction error (blue) and randomized prediction error (dashed black). A two-sample Kolmogorov-Smirnov
test confirmed the model’s prediction error was significantly lower (p < 0.01) for both dominant and non-dominant

hand predictions.

reported by target force and handedness across subjects in
Table 1. The SVM was best at discriminating between
movement and rest, with the highest mean No-Go
classification accuracy of 76%. However, it did worse than the
other classifiers for higher target forces, with mean accuracy
ranging from 25-45%.

Due to space limitations, only analysis of LDA predictions
are presented here, though trends were similar for all three
classifiers. Classifier performance is expressed as a confusion
matrix of results, pooled over all subjects (Figure 7). True and
predicted classes are organized along rows and columns,
respectively. The grand mean prediction accuracies over all
five target force classes were 53 and 55% for dominant and
non-dominant hands, respectively. Two-sample t-tests showed
no statistically significant differences in classification
accuracy between dominant and non-dominant hands for any
of the five classes. Below each confusion matrix is the CDF
over all cues of the absolute error between true and predicted
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values of target force. For reference, the pairing of true and
predicted labels was scrambled, in a block-based manner
according to cue, and the CDF of the corresponding absolute
error computed (see traces in Figure 7 labelled “Random”).
Comparing the true and randomized sample CDFs, the
model’s prediction error was consistently and significantly
lower (to the left) according to a two-sample K-S test for both
the dominant and non-dominant hands.

3.3 Prediction of Target Force Label Using Linear
Regression Models

Relating exerted force to EEG variables using a regression
model allows force to be predicted on a continuous-valued
ordinal scale rather than in terms of discrete nominal labels
that may have no relationship with each other. Discrimination
between a relaxed, non-movement state and simple hand
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Table 1. Classification accuracy by classifier. Results are
stratified by hand dominance and presented as mean
(S.D.) in percent across subjects.

Hand
Classifier -ll-:aorfcit Dominant Dol:lnc;:;nt

No-Go 54 (10) 49 (12)

20% 42 (18) 42 (17)

oA 35% 47 (19) 60 (22)
50% 61 (21) 55 (18)

65% 63 (22) 67 (20)

No-Go 74 (10) 76 (10)

20% 62 (19) 56 (20)

SVM 35% 37 (19) 33 (25)
50% 25 (19) 28 (22)

65% 27 (22) 45 (30)

No-Go 59 (16) 57 (13)

20% 43 (16) 43 (18)

MLP 35% 45 (13) 54 (21)
50% 62 (19) 66 (19)

65% 64 (22) 69 (22)

movement has been well documented for decades. Therefore,
No-Go data were excluded from this analysis to avoid
misinterpreting differences in ERD between No-Go and “Go”
as evidence for a graded correlation between ERD and target
force. For instance, if no differences in ERD between the four
target forces existed, but they were all different and greater
from the ERD of No-Go cues, there would be an artificial
correlation.

3.3.1 Prediction of discrete-valued target forces. To first
test the feasibility of using linear regression to predict grip
force from the ERD, the discrete-valued target force data (runs
1-8) were used to train such a model and test it using a four-
fold cross-validation scheme. This was performed separately
for each subject-hand combination. From Figure 8, the mean
+ standard deviation of the adjusted R? values across subjects
is 0.22 £ 0.15 and 0.21 + 0.12 for the dominant and non-
dominant hand, respectively, indicating only slight agreement.
A two-sample t-test between the adjusted R? values for the
dominant and non-dominant hands showed no significant
difference (p >> 0.01). As expected, scrambling the
association between true and predicted values brought the
adjusted R? down close to zero. The distribution of predicted

11

target force for each of the four classes, per subject, is shown
using box plots in Figure 9. In many subjects, the predicted
value of target force appears to increase monotonically with
true target force.

3.3.2 Prediction of continuous-valued target forces. To
assess the feasibility of predicting target force values on a
continuous interval from ERD measurements with linear
regression, a model was constructed using data from all the
constant target force runs (runs 1 — 8) and tested on data from
the variable target force runs (runs 9 — 12). Predicted values
are concentrated around 45% MVC, which is equidistant from
the end points of the 10 — 80% MVC interval (not shown).
Adjusted R? values were found to be near zero for all subject-
hand combinations except for the dominant (left) hand of
Subject 7 (adjusted R? = 0.159). The R? values for the case of
equivalent testing set range (only target forces between 20 and
65% MVC) were then set aside as a separate testing set. The
adjusted R? in this set was not meaningfully different from
inclusion of 10 —20% MVC and 65 — 80% MVC targets, with
adjusted R? values near zero.

0.9
-Dominant Hand
lNon-Dominant Hand
0.8 ]
0.7

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Subject

Figure 8. Correlation of predicted and true force targets
for each subject. The adjusted R? was computed
separately for runs performed with the subject’s
dominant and non-dominant hand. The grand average R?
value was 0.22 + 0.13.
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4. Discussion

4.1 Spatial ERD Changes with Grip Force

In this study, we set out to model and characterize graded
changes in the EEG SMR associated with motor effort. We
measured grip force and ERD features during isometric
handgrip contraction to different percentages of the MVC in
healthy human subjects (n = 14). Not only did we find that
different levels of constant grip force could be classified and
their value predicted from the ERD vector, but also that
attenuation of power in the SMR mu-beta band may vary with
exerted grip force. The topographical distribution of the ERD
suggests that its amplitude and spread across the scalp vary
with target force (Figure 10, generated with code adapted from
[28]). There is some inherent variability across subjects in the
ERD pattern — as may be expected from individual differences
in the extent of mu-beta modulation, electrode placement,
measurement noise, etc. But, in general, y — a crude summary
measure of ERD strength derived from the spatial ERD vector
— seems to follow a parabolic trend, with greater SMR
attenuation for targets of 35 and 50% than for 20 and 65% of
the MVC (Figure 6). These differences clearly exceeded the
variation in the ERD over the five seconds of each cue in
which subjects maintained their grip force at the target value
(Figures 4 and 5). Although every effort was made to monitor
and regulate the subject’s behavior during the task to avoid

strain, the possibility of muscle artifact contributing to the
attenuation of the ERD at 65% MVC cannot be ruled out
altogether.

We also examined whether the ERD is lateralized: i.e.,
contralateral suppression of mu-beta power is greater than in
areas ipsilateral to the hand performing the task, which is to
be expected in normal movement. We formulated a
lateralization index (L) that measures contralateral
suppression during the handgrip task averaged over the task
performed on both hands. That is, taking symmetric channel
pairs—for instance consider C3 and C4—we compute the
average over both hands of the ERD ratio for the channel
contralateral to hand movement (C3 for right hand, C4 for left)
relative to the corresponding ipsilateral channel (C4 for right
hand, C3 for left). That is:

4)

. (ERD(C3,RH)

ERD(C4,LH)
ERD(C4,RH) )/

ERD(C3,LH)

where ERD(C3,RH) is the ERD measured at C3 for right
hand movement, ERD(C4,LH) is the ERD at C4 for left hand
movement, and so on; The ERD is averaged over all cues for
the subject, hand, and target force in question. This is similar
in form to measures of lateralization seen in the literature [29]
where positive and negative values indicate contralateral and
ipsilateral ERD respectively. L was computed in a moving 1/8-
s window at each time point relative to cue onset, averaged

Left Hand
50% 65%
0 0 0
-12.5 -125 125 g
25 -25 25 E
-37.5 375 375
Right Hand
No-Go 20% 35% 50% 65%
O\ 0 A 0 0
-12.5 -12.5 -12.5 g
25 -25 25 E
w
375 375 375

Figure 10. Topographical distribution of the ERD in a handgrip task. A colormap is presented of ERD variation with scalp
location and target force averaged across subjects separately for left-handed runs (top row, n = 14) and right-handed runs
(bottom row, n = 13) with the colour axis in units of percent. The No-Go condition, in which the subject does not perform
a handgrip contraction, shows minimal ERD, which confirms that confounding effects attributable to the visual display or
cue dynamics are unlikely. The ERD appears to get broader and deeper as the target force increases but hits a trough at

50% and reverses course thereafter.
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over all cues for that target force, and then scaled by L
similarly computed for the same symmetric channel pair, but
for the NoGo condition. That is:

L= In(Lgo/Lnogo) (5)

This normalization was done to control for baseline
lateralization associated not with movement but with visual
recognition of the cue, continued engagement in the task over
multiple cues, and other extraneous factors.

L traces relative to cue onset were computed separately for
each subject (except subject 4, whose right hand data were
corrupted) and target force. To correct for individual

A Mean L versus target force (n=13 subjects)

0 P3/P4 02
3 CP1/CP2 045
= CP5/CP6 :
X C3/c4 0.1
Q FC1/FC2 0.05
FC5/FC6
o P3/P4 02
S CP1/CP2 045
= CP5/CP6 i
e C3/C4 0.1
FC1/FC2 0.05
FC5/FC6
0 P3/P4 02
= CP1/CP2 045
= CP5/CP6 :
¥ C3/c4 0.1
Q FC1FC2 0.05
FC5/FC6

P3/P4
3 CPIICP2
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FCSIFC6

2
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5

6

P3/P4
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- CP5/CP6
< C3/C4
FC1/FC2
FCo/IFC6
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Time relative to cue onset (s)

0.2
0.15
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differences in scale, L was further normalized separately for
each subject by the difference between the 95" and 5%
percentile values of L over all target forces. Average trends
over all subjects (n=13) are shown in Figure 11 (panels A-E)
along with the cue state and mean grip force trace: from the
top, panels A-D are for 20, 35, 50, and 65% MVC,
respectively, while panel E is for all target forces pooled.
Although there is general evidence of lateralization the timing
and presentation of these phenomena are variable. However,
some common features are noted:

L versus target force (Subject 2)

P3IP4
S cpicp2 06
S cPsiCPs B
£ Cycs
Q FC1IFC2 02
FC5IFC6
PaIP4
CP1/CP2 06
CP5/CP6 = i
C3/C4
FC1/FC2 02
FC5IFC6

S CP1ICP2
S cpsicre

35% MVC

2 FC1IFC2
FC5/FC6

P3IP4
CP1/CP2 06
CP5/CP6 0s
C3(C4
FC1/FC2 02
FC5/FCB
P3/P4
CP1/CP2 06
—Jcpacpe 0
C3(C4
Fchcz 02
FC5IFCB

Tlme re\atlve to cue onset( )

5

65% MVC

Figure 11. ERD lateralization versus target force. ERD values for pairs of electrodes symmetric about the midline (e.g.,
C3/C4, P3/P4) were used to compute a lateralization index L to highlight locations and time periods in which the
contralateral ERD was greater than the ipsilateral ERD. This is plotted against time relative to cue onset and the Task
period is indicated (black line). Mean force traces (red) are overlaid as a guide to when force was exerted by the subject.
Left column (A-E): Cue-triggered averages of L over 13 subjects (subject 4 excluded) separated by target force (A-D) and
for all target forces pooled (E). Right column (F-J): Similar plots for Subject 2 alone. There is strong lateralization for P3/P4
just before movement onset (0 — 1s) followed by CP1/CP2 once force becomes stable (2.5 — 3s). Lateralization in fronto-
central channels is most evident at movement onset and offset but less so during continued force exertion. C3/C4

lateralization may vary with applied force.
movement onset (0.5-1.5s).

L is stronger at 20 and 65% than at intermediate values (35 and 50%) at
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1. In Figure 11, (panel E), P3/P4 is strongly lateralized just
before movement onset (0 — 1s) and peaks as the force
trace reaches a plateau (1-2s), soon followed by CP1/CP2
(2.5-3s).

Fronto-central lateralization (C3/C4, FC1/FC2) is most
visible at movement onset and termination but dissipates
during sustained force exertion (2-5s), indicating bilateral
ERD symmetry. This is consistent with prior knowledge
that mu-beta ERD becomes bilaterally symmetric as
movement proceeds [30], indicating bilateral ERD
symmetry. That the effect is not particularly strong may
be explained by the repetitive nature of the task, a known
phenomenon dubbed “repetition suppression” [31];
moreover, the amplitude of mu-beta ERD lateralization
during motor imagery appears inversely correlated with
task duration [29].

Lateralization in the hand area (C3/C4) may vary with
target force: L is stronger at 20 and 65% than at the
intermediate values (35 and 50%) at movement onset
(0.5-1.5s). This is further illustrated using subject 2 as an
example (Figure 11, panels F-J). The trend is reversed at
movement offset (t = 6-7s) in the same channel pairs: L is
stronger at 35 and 50% than at 20 and 65%. During
constant force exertion (t = 2-5s) the patterns are variable
but across locations L seems stronger at 35 and 50% than
at 20 and 65%. Though anecdotal, these patterns bring to
mind the trend in y with target force noted in Figure 6.

These observations fit the general picture of voluntary
motor control: movement is planned and initiated in the
premotor/motor areas of the frontal lobe related to the hand
performing the task, whereas sustained movement and
feedback control may require broader bilateral engagement.
Coordinated hand-eye movement to reach the target engages
association cortex in the parietal lobe. A more formal analysis
of spatiotemporal dynamics and the effect of target force using
dense EEG and source localization is required to verify these
crude observations, which is beyond the scope of the present
study. However, the observations are consistent with previous
studies, which note that lateralization of beta power in the pre-
movement period is associated with motor selection [32] and
may be weaker for sustained movement — as is the case in our
study — compared to brief movement [29]. Our analysis also
confirms that lateralization at movement onset gives way to
bilateral mu-beta suppression with a possible dependence on
the force being exerted, which needs to be investigated.

4.2 Prediction of Discrete and Continuous-Valued
Target Force

Three different classification techniques as well as linear
regression models were used to assess the ability to predict
graded grip force from movement-based ERD.
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A linear discriminant classifier predicted the target force
level with an average accuracy of about 54% for five distinct
classes — much greater than the theoretical chance level of
20% (see Section 3.2). Classification using SVMs was 46%
accurate (Table 1). This contrasts slightly with the results of
the study by Yong et al. in which SVMs narrowly
outperformed LDA in a similar task [33]. MLPs were also
tested due to their flexibility and growing popularity in BCI
studies [34]. Mean classification accuracy of MLPs was 56%,
comparable to LDA. However, the greater computational cost
of training MLPs as opposed to LDA may increase the latency
of prediction in a real-time BCI.

When a regression model was applied, performance was
dependent on the data used for training and testing.
Specifically, using data from runs in which the target force
was constant from cue to cue within the run (Section 3.3.1) a
regression model trained and tested with a four-fold cross-
validation scheme gave an average adjusted R’ value of 0.22
between predicted and true target force values — an indication
of low-to-moderate correlation.

Despite the promise of the regression model when used to
model and predict discrete values of grip force at four different
levels (Runs 1-8), performance was poor when these discrete-
value-based models were tested on data from the continuous-
valued target runs (Runs 9-12), when the target force value for
each cue is selected at random from 10-80% MVC and cannot
be anticipated (see Section 3.3.2). In this case, the adjusted R’
did not show any meaningful correlation between true and
predicted target forces. It is possible that not being able to
anticipate the target value led to greater oscillation and settling
time in the grip force as the target value is approached, and
that the variability in the EEG features of the test set is greater
as a consequence. In hindsight, including continuous-valued
target runs in which information about the force required in
the upcoming cue is available prior to movement onset would
have allowed this hypothesis to be tested. Further, the
regression model attempts to model force as linear in ERD,
although the presence of multiple ERD components may
confer some flexibility. It is possible that the true dependence
is nonlinear and thus not amenable to linear regression, which
would explain the modest fit.

4.3 Comparison with Previous Work on EEG-Based
Force Prediction

Several studies in the past have examined the feasibility of
using features of the EEG to distinguish between levels of
exerted motor effort. In a side arm lateral raise task, one study
found that when subjects lifted three different loads (Okg, 1kg,
and 3kg), 8-12 Hz power was not significantly different
between the 1kg and 3kg conditions [35]. However, both the
1kg and 3kg conditions had significantly lower power than the
Okg condition. That is, lifting an external load affects the EEG,
but differences between loads are not discernible. They
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hypothesized that neuronal recruitment was only minimally
elevated when lifting lkg versus 3kg. Paek et al. [36]
reconstructed force trajectories in an isometric force
production task offline, and found the strongest correlation in
the mu (8 — 13 Hz) and beta (13—-30 Hz) bands. However, they
were unable to distinguish between grip forces of 5, 10, and
15% MVC applied by the subject. It could be that this is too
narrow a range of motor effort to distinguish from the EEG.
In this study, we tested over a fairly large range, up to 65% of
the subject’s MVC (in the discrete-valued target task, runs 1-
8), where substantial recruitment of motor units and thus
significant changes in the SMR may be expected. In an online
paradigm where subjects imagined high effort (30% MVC)
and low effort (10% MVC) hand clenching, Wang et al. found
that the ERD of the mu and beta bands during motor imagery
was lowest for 30%, moderate for 10%, and highest for the
relaxed state, with an average classification accuracy of 70.9%
[37]. This was well above chance for a three-class predictor.
However, only two levels of effort above the resting state were
investigated. Our work includes four levels above rest over a
wider range of MVC and demonstrates graded modulation of
the SMR with effort. On the other hand, Wang et al. [37]
investigated ERD associated with motor imagery, performed
immediately after the actual movement to help the subject
better visualize the target force, whereas we modeled ERD
during actual force exertion. Imagery may be more directly
relevant to BCI use in an impaired population. However, there
is no way to verify that the subject has imagined ‘correctly’;
this is why we chose to analyze movement as a first step,
which allows us to confirm that the target force was reached
and maintained. Subsequent efforts could involve protocols
that  emphasize  imagery, = motor  planning, or
constrained/impaired movement.

One consequence of investigating a broader range of effort
may have been the finding that the vector ERD amplitude may
not increase monotonically with target force but reverses
course somewhere in the middle. This was unexpected, since
we initiated the study assuming that any cortical predictor of
effort in this simple motor task would vary in proportion to it
and saturate at some point. We speculate that in this specific
motor task, which involves continuous control of exerted force
at different levels, the cognitive loading and attention required
for the low and high effort targets are distinct—and perhaps
lower—compared to those in the middle, which are harder to
differentiate. This is consistent with studies that point to
different spatial patterns of alpha reactivity corresponding to
motor activation and visual attention [38]. Furthermore, the
parabolic trend seen in our data is much more significant on
the non-dominant hand compared to the dominant one; which
may again reflect on the greater engagement required when
performing the task with the non-dominant hand.
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4.4 Limitations and Future Work

One factor that may have obscured ERD trends related to
motor effort is the target force itself, which was used as a
measure of effort. The MVC can vary greatly across subjects
and even with repeated measurement; besides, the same %
MVC can reflect very different actual forces across subjects.
On the other hand, the same absolute target force can evoke
different perceptions of effort in different individuals. The
choice of which to use is therefore not trivial.

Another aspect of the design was the use of repeated cues
at the same target force within a run. This was done to limit
“noise” due to subject uncertainty in the ERD associated with
each target. The fact that force prediction using models of
variable target force runs did not perform as well as those
trained on constant force runs suggests that this is true.
However, there is evidence that repetitive motor tasks require
less engagement than random practice [39]. Hence our use of
constant target force runs could have diminished the ERD
contrast over the range of MVC investigated.

In Figure 10, the ERD appears to get broader and deeper, at
least up to a point, before saturating or reversing course. The
ability to predict target force from the ERD vector with
accuracy well above chance using conventional classifiers
(see Figure 7 and Table I) is evidence in support of these
graded changes. While the classifiers assign a relative weight
to each channel, no further analysis was performed to
highlight topographical variability. In future work, operations
such as common spatial patterns could be utilized to improve
classification [40]. Regression modeling of the effect of target
force on the y metric of ERD strength suggested a non-
monotonic trend. However, the trend is not pronounced, and
warrants further investigation. This may point to the need to
factor in spatial distributions—which y does not capture—
when considering task differences.

Further, this study examined only the particular phase of
the motor task in which grip force was controlled at a static
level (Figure 3). There may exist a distinct neural signature
prior to this phase associated with motor planning that is
predictive of the force to be exerted. In a related study, Rearick
et al. examined cortical dynamics of isometric force control
with varying degrees of precision in visual feedback [41]. The
two target force levels were 7.5 and 30% of the MVC. The
authors found significant differences in the ERD of the 8 — 12
Hz frequency band between the two force levels during the
ramp (force generation) phase but not the static phase. We did
not find predictive potential in signals from the ramp phase.
However, there was no explicit control for rate of force
generation in our study design, which may well be the key to
finding differences in graded force production. Future work
will seek to combine kinematics during hand contraction to
produce a continuous force predictor.

This work did not seek to model the dynamics of the EEG
within a cue. Additional efforts will focus on statistical
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modeling of state transitions, such as with hidden Markov
models, to better describe the temporal evolution of graded
effort in a motor task. This would also call for modifying the
protocol to randomly ordered discrete targets within a run.

Evidence of graded ERD in an isometric force production
task provides the framework for a multi-class BCI modeled on
a single motor task. This is advantageous for several reasons.
It does not require any external stimuli, manifests during
execution of an essential function of the hand and does not
require training to be able to perform the task. The variable
modulation of the SMR during the generation of different
hand grip forces offers an intuitive means for a BCI user to
generate a large number of distinct command signals. In this
study, the modelling of ERD is performed entirely offline. The
natural progression of this study would be to build an online
BCI capable of delivering near-instantaneous, EEG-based
feedback to the user. Implementation of a BCI that can
accurately decode distinct signals associated with fine motor
control has greater potential to harness neuroplasticity and
produce better rehabilitative outcomes than passive
movements alone [42].

5. Conclusion

This work demonstrates the feasibility of predicting motor
effort in a simple handgrip task from the EEG and uncovers
an interesting trend in which medium effort may produce a
more pronounced ERD than low or high effort. The accuracy
of prediction of five levels of effort was well above chance.
By highlighting graded ERD signatures associated with
isometric hand contraction, as the number of command signals
associated with this simple task could be expanded. Future
work will assess the potential to predict multiple levels of
force with a real-time BCL.
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