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Abstract 

Objective: Brain-computer interfaces (BCIs) show promise as a direct line of communication  
between the brain and the outside world that could benefit those with impaired motor function. 
The commands available for BCI operation are often limited by the ability of the decoder to 
differentiate between the many distinct motor or cognitive tasks that can be visualized or 
attempted. Simple binary command signals (e.g. right hand at rest versus movement) are 
therefore used due to their ability to produce large observable differences in neural recordings. 
At the same time, frequent command switching can impose greater demands on the subject’s 
focus and takes time to learn. Here, we attempt to decode the degree of effort in a specific 
movement task to produce a graded and more flexible command signal. Approach: Fourteen 
healthy human subjects (9 male, 5 female) responded to visual cues by squeezing a hand 
dynamometer to different levels of predetermined force, guided by continuous visual feedback, 
while the electroencephalogram (EEG) and grip force were monitored. Movement-related EEG 
features were extracted and modeled to predict exerted force. Main Results: We found that 
event-related desynchronization (ERD) of the 8–30 Hz mu-beta sensorimotor rhythm (SMR) 
of the EEG is separable for different degrees of motor effort. Upon four-fold cross-validation, 
linear classifiers were found to predict grip force from an ERD vector with mean accuracies 
across subjects of 53% and 55% for the dominant  and  non-dominant  hand,  respectively. ERD 
amplitude increased with target force but appeared to hit a trough that hinted at non-monotonic 
behavior. Significance: Our results suggest that modeling and interactive feedback based on 
the intended level of motor effort is feasible. The observed ERD trends suggest that different 
mechanisms may govern intermediate versus low and high degrees of motor effort. This may 
have utility in rehabilitative protocols for motor impairments. 
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1. Introduction 

Brain-computer interfaces (BCIs) are systems designed to 
translate brain signals into commands for external devices. 
This technology offers a communication and control pathway 
that circumvents the peripheral nervous system and holds 
considerable potential for helping individuals disabled as a 
result of neuromuscular injury or neurodegenerative disease. 
A BCI takes on the challenge of discriminating changes in the 
user’s brain signals associated with the task at hand [1]. Pre-
processing and feature extraction transform neural signals 
from the brain into measurable quantities. These features are 
then translated into command signals that directly control a 
device such as a neuroprosthesis or computer cursor, which in 
turn provide feedback to the user for continued operation.  

Today, BCIs are primarily limited to research environments 
due to usability challenges. The limited ability of classifiers to 
reliably discriminate between the EEG signatures associated 
with different tasks is a tremendous hurdle in BCI 
development; the need to juggle multiple distinct commands 
in real time requires great skill on the part of the subject, which 
can take longer to acquire  [2]. BCIs often rely on volitional 
brain activity as control signals. But such activity is usually 
modeled on simple binary tasks, for instance hand movement 
versus rest; gradations in effort or fine control related to the 
task are not explicitly modeled, but are instead left to the 
controller to handle in a goal-directed task [3-4]. It is 
interesting to speculate whether graded – as opposed to binary 
– responses will lead to improved BCI control. Here, we 
propose to model graded changes in the electroencephalogram 
(EEG) that convey the level of effort associated with 
movement. Measurable changes in brain activity can serve as 
commands that bridge the gap between intent and fine control 
and thereby play a vital role in therapeutic protocols aimed at 
recovery of function.  

Such a signal may be found within the brain’s sensorimotor 
rhythm (SMR). The SMR generally refers to characteristic 
EEG rhythms associated with sensation and movement [5]. At 
rest – i.e., the idling state – they reflect the dynamics of EEG 
potentials over the sensorimotor cortices [5-8], and are 
modulated or attenuated by movement intent, execution, or 
imagery [5], a phenomenon known as event-related 
desynchronization (ERD). Two components of the SMR – mu 
(8 – 13 Hz) and beta (13 – 30 Hz) [9] – have been widely used 
in BCI work with healthy and clinical populations [10-11]. 
Prior studies using positron emission tomography [12] and 
functional magnetic resonance imaging [13-14] have shown 
graded activation in a hand-force task within the sensorimotor 
cortex. Therefore, it is hypothesized that graded ERD signals 
associated with motor effort could be discerned in the EEG. If 
this is indeed feasible, it would offer a more information-rich 
signal for use in BCI applications.   

Several studies have investigated neural markers of graded 
movement. Movement-related cortical potentials (MRCPs) 
have been used as markers of exerted or intended force [3, 15-
16]. Jochumsen et al. demonstrated that MRCPs can be used 
to discriminate between two levels of force [17]. The peak 
amplitude of an MRCP may also encode generated force in the 
EEG [18]. The primary limitation with MRCPs is their 
considerable trial-to-trial variability [15]. MRCPs are 
typically averaged over many repetitions before their 
morphology becomes distinctive; therefore, an MRCP-based 
BCI may underperform with limited training [19]. Further, in 
cued paradigms, the MRCP can be conflated with evoked 
responses to visual stimuli [20]. An advantage of the MRCP 
is that it marks a specific phase of activity: i.e., movement 
onset. However, phase is less consequential in a sustained 
activity such as continuous force exertion, which is of interest 
here. 

Cao et al. [21] examined four different EEG frequency 
bands within the 8-45 Hz range and found reduced power at 
low compared to high handgrip force. Attenuation of the SMR 
during force exertion in a movement task hints at the 
possibility that the level of attenuation may correlate with 
force. Characterizing and quantifying the spatiotemporal 
profile of cortical SMR activity during different levels of a 
specific movement might pave the way for the use of graded 
ERDs as BCI command signals. We hypothesize that features 
of the SMR observed during controlled isometric force 
exertion are separable for different levels of force and can 
therefore be used to predict applied force. While an impaired 
individual may be unable to generate any force, let alone the 
desired value, the same SMR features may convey their 
intended effort in the motor task and serve as the basis for a 
control signal in an assistive or rehabilitative BCI therapy, for 
instance, one that involves functional electrical stimulation. 
We set various target force levels that the subject must reach 
and maintain while performing a handgrip contraction in 
response to a cue. Subjects were given continuous visual 
feedback based on their applied force. Features of the EEG 
during force exertion were extracted offline, and classification 
and regression models trained to predict the target force class 
and value, respectively, in out-of-sample data. The ability to 
predict graded motor effort from the EEG during isometric 
force production could help further our basic understanding of 
the dynamics of SMR modulation with possible implications 
for BCI development. 

2. Methods 

2.1 Subjects 

Fourteen healthy human subjects (nine male, five female) 
participated in this study after providing informed consent. 
Procedures were approved by the University of Kentucky 
Institutional Review Board in compliance with the 
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Declaration of Helsinki. Visual or neuromuscular impairment 
as well as recent injuries to the hand or forearm were specified 
as exclusion criteria. All subjects but two were right-hand 
dominant.  

2.2 Experimental Design 

A visual display presented intermittent cues to the subject 
for three phases of activity in sequence: (1) Preparation, (2) 
Task, and (3) Rest (Figure 1). This sequence was repeated 21 
times to make a run, during which EEG was recorded. In total, 
12 runs were performed in a session and each subject 
participated in exactly one session. During the experiment, 
subjects were seated approximately 1 meter in front of a 
computer display. Instructions were given to minimize any 
movement during Preparation and Rest but to perform a 
controlled handgrip contraction on a hand dynamometer 
during the Task phase. Immediate feedback was given to the 
subject in the form of a blue ring, whose diameter varied 
dynamically in proportion to the measured handgrip force 
(Figure 1). The goal was to apply just enough force for the 
blue ring to match a preset target force represented by a 

concentric dotted black ring and maintain that force level for 
the duration of the Task phase. In a subset of cues representing 
a control “No-Go” condition, subjects were directed not to 
perform the handgrip contraction during the Task phase. Five 
of the 21 cues in every run were No-Go cues, interspersed at 
random.  

 
Target forces were set to specific percentages of each 

subject’s maximum voluntary contraction (MVC) force 
measured for each hand at the beginning of the session. In the 
first eight runs, the target force was set to the same discrete 
value for every cue within that run. This was done to help the 
subject create and maintain a mental strategy for an expected 
target and perform the task consistently across cues. The target 
forces were set to 20, 35, 50, and 65% of the subject’s MVC. 
In the last four runs, the target force for each cue was randomly 
selected from a uniform distribution on a continuous interval 
between 10 and 80% of the subject’s MVC. Hence, the subject 
would not be able to anticipate the target force in each cue 
before starting to perform the task. Fatigue is an important 
factor to consider in a movement-based protocol. As depicted 
in Figure 1, runs alternated between the left and right hands, 

 

Figure 1. Schematic of testing protocol. Runs were composed of 21 cues consisting of Preparation, Task, and Rest phases. 

In five of the 21 cues, the subject was instructed not to squeeze (No‐Go); this serves as a statistical control. The diameter 

of the black rings  is set proportional to the target force and the  innermost blue ring grows or shrinks based on force 

measured by the hand dynamometer. Runs alternated between the left and right hands. The first eight runs featured 

fixed force targets (20, 35, 50, or 65% MVC), whereas the target forces varied from 10 to 80% MVC at random in each of 

the last four runs.  
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which gave subjects at least a five-minute break between runs 
on a particular hand. In the first eight runs, the target force 
alternated between a low-effort value (20 and 35% MVC) and 
a high-effort value (50 and 65% MVC) for every other run on 
the same hand (and was held constant for all cues within each 
run). The order in which the subject encountered each low-
effort value (or high-effort value) was randomized: for 
instance, one subject may encounter runs with target forces in 
the sequence 20, 65, 35, 50% MVC, while another might see 
the sequence 35, 50, 20, 65% MVC. This was done to avoid 
introducing progressive changes in the force target as a 
confounding variable. Subjects were allowed to rest between 
runs if needed.  

2.3 Data Acquisition 

Grip force was measured as an analog voltage signal by a 
hand dynamometer (HD-BTA, Vernier Software and 
Technology, Beaverton, OR). The EEG was simultaneously 
acquired using active electrodes (g.SCARABEO, g.tec 
medical engineering, GmbH, Graz, Austria) at 18 locations on 
the scalp defined by the International 10-20 positioning 
system [22] (Figure 2). The electrodes were embedded in a cap 
strapped to the subject’s head and a conductive gel was 
injected into an aperture on each electrode to reduce 
impedance and improve signal quality. The EEG was sampled 
at 256 Hz synchronously with the hand dynamometer using a 
biosignal amplifier (g.HIamp, g.tec medical engineering, 
Graz, Austria) and pre-processed with 4th order Butterworth 
bandpass (0.1 – 100 Hz) and notch (58 – 62 Hz) filters. Some 
channels were used only to detect ocular artifacts (F4) or 

evaluate signal quality during setup (PO7, POz, PO8), and 
were excluded from further analysis. Electromyography was 
performed to measure flexor carpi radialis muscle activity in 
both forearms to confirm grip onset time.  
 

2.4 Signal Processing 

Offline, all data were processed in MATLAB (release 
2017a, Mathworks, Natick, MA) using the Signal Processing 
toolbox and custom-written scripts as needed. After applying 
a common average reference, the EEG signals were sent 
through a 4th order Butterworth filter with a pass band of 8 – 
30 Hz, the EEG frequency range corresponding to the SMR. 
This signal was then squared to obtain an estimate of SMR 
band power. Using data from the cue state and hand 
dynamometer, EEG signals were segmented into their 
different phases: Preparation, Task, and Rest. For each cue, 
the mean-squared SMR power in each EEG channel was 
computed over the last five seconds of the Task period. We 
focused on this time interval, highlighted in Figure 3, to allow 
time for the subject to meet the target force and stabilize 
muscle contraction. The first cue in each run allowed the 
subject to adapt to the particular target force and was omitted 
from analysis. EEG power estimates X and time j were then 
normalized by a baseline value R (see Equation 1) to obtain a 
measure of the event-related desynchronization (ERD) [23]. 

 

𝐸𝑅𝐷௝ ൌ
௑ೕିோ

ோ
                                                                    (1)  

 
R was computed as the mean band power over the final one 

second of the Preparation phase for each cue of a given run. 
ERD is expressed as the percent change in X relative to R and 
takes on values in the interval (-100, +∞). To eliminate 
occasionally observed high amplitude spike-like artifacts in 
the EEG, a Hampel filter (hampel function in MATLAB) was 
applied to replace outliers in the ERD traces greater than six 
standard deviations from the median by the value of the 
median in a quarter-second moving window [24]. Then, the 
mean of the ERD over 1-s intervals was used as the input 
feature for force prediction. A label corresponding to the target 
force was assigned to each ERD value for use in classifier 
training and testing.  

2.5 Graded ERD Feature Analysis 

In order to verify that the ERD feature of the EEG was 
steady over the period of each cue selected for analysis, during 
which hand contraction is performed to match the stipulated 
target force, we computed the coefficient of variation (CV) – 
i.e., the standard deviation over the mean – over the five 1-s 
windows of the analysis period of the Task phase. This was 
repeated using the force signal from the hand dynamometer. 
The ERD values computed in each window form a vector with 

 

Figure 2. Scalp montage. 18 total active electrodes recorded 
EEG  (grey) with  an  ear  clip  reference  (A1)  and  ground  (AFz). 

Electrodes at F4, PO7, POz, and PO8 were excluded from feature 

extraction. 
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n = 14 spatial components, one for each EEG channel used in 
the analysis. Rather than study ERD at each location in 
isolation, the Euclidean norm (L2) of the ERD vector was 
computed after shifting each component by +100% so that it 
is contained in (0,+∞). This was then normalized by √𝑛, the 

L2 norm of the unity vector, which is equal to √14 for this 
vector space, and then the natural logarithm taken to give a 
scalar measure, gamma (γ) of ERD strength over the scalp 
(Equation 2). This method avoids averaging out focal 
contributions from specific locations that may be stronger or 
weaker than others. That is:  

 

𝛾 ൌ log ቀ
ห|ଵାாோ஽|ห

√௡
ቁ  ∈ ሾെ∞,൅∞ሿ                                     (2) 

 
γ is negative, positive, or zero depending on whether mu-

beta EEG activity is suppressed, elevated, or unchaged relative 
to the baseline period of each cue. The standard deviation and 
mean of γ over the five windows of each cue were used to 
compute the CV to estimate ERD variability in the force 
exertion period. Since identical or similar values of γ can arise 
from different spatial ERD maps – for instance, focal ERD 
troughs at C3 versus C4 for right-handed versus left-handed 
tasks, respectively – we propose an additional metric to assess 
spatial differences from one analysis window to another 

within a cue. For any pair of 1-s windows k and l, we use the 
cosine of the angle between their ERD vectors – estimated 
through their scalar product – as a measure of difference in 
spatial orientation.  

 

cos𝜃 ൌ
ாோ஽ೖ ∙ாோ஽೗

ห|ாோ஽ೖ|ห ห|ாோ஽೗|ห
                                                 (3) 

 
Positive values close to 1 suggest strong agreement 

between spatial ERD maps of the windows in question, while 
zero or negative values indicate spatial differences. With five 
windows per cue, there are ሺ ሻ  ൌ 10ଶ

ହ  unique pairs of ERD 
vectors. cos θ was computed and averaged over all unique 
pairs for each cue and independently for each subject-hand 
combination. Together, CV(γ) and < cos θ > tell us how 
variable the intensity and pattern of spatial ERD maps are 
during the motor control task performed in response to each 
cue. 

2.6 Graded Target Force Prediction from the EEG 

Movement-based BCIs typically make predictions about 
user intent and behavior using classification and regression 
modeling techniques [25]. Therefore, both types of supervised 
machine learning approaches were tested to fully evaluate the 
potential of graded ERD for force prediction. A k-fold cross-

 

Figure 3. Temporal  location of EEG data used  for  feature extraction. Top  row:  the  timing of visual cues given  to  the 

subject. Middle row: the corresponding measured force is displayed. Bottom row: EEG signals were segmented into five 

1‐second windows (blue) at the end of the Task phase. 
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validation scheme was employed for training the predictor and 
testing it out of sample. The ERD values for each subject were 
randomly divided into k = 4 folds. Data to train the model 
came from k – 1 folds and predictions were made for the 
remaining kth fold and compared with the true target forces. 
By repeating this exercise with each of the k folds as the test 
sample in turn, all of the data were tested out-of-sample. To 
reduce classification bias, the training and testing sets were 
generated using a block-based design within each fold such 
that all 1-s windows in to a particular cue were assigned 
together to either the training or test set. This method allows 
us to better assess the generalizability of the model. Data were 
analyzed separately for each subject-hand combination and 
presented according to hand dominance. Data from the left-
handed (non-dominant) runs in subject 4 were corrupt and 
therefore excluded from analysis.  

Three commonly used machine learning algorithms were 
used to classify the ERD values into target forces: linear 
discriminant analysis (LDA), the support vector machine 
(linear kernel) (SVM), and the multilayer perceptron (MLP). 
All three are computationally inexpensive, which makes them 
good candidates for use in future studies involving online 
classification [26]. 

To determine the feasibility of predicting grip force over a 
continuous interval rather than just the nominal force class, a 
linear regression model was fitted to the ERD-target force data 
(fitlm function in MATLAB). Two models were built to 
adequately test the value of a continuous predictor. In the first 
(see 3.3.1), features from runs 1 – 8 were tested using four-
fold cross-validation identical to what was performed in the 
classification tests. And in the second (see 3.3.2), the model 
was trained on ERD values from the first eight runs and tested 
by using ERD values to predict target force in the last four 
runs (continuous-valued target force). To prevent the model 
from predicting forces outside the physically realistic interval 
of 0 – 100% MVC, a sigmoidal link function was used to scale 
predicted grip force values so that they asymptotically 
approach either limit of this interval, and the inverse of this 
function was applied to target force values to stretch them over 
the interval (-∞, +∞) before estimating the linear regression 
model.  

2.7 Statistical Analysis 

Several different statistical tests were used in this study. All 
tests were performed separately for each hand, under the 
premise that control of grip may be asymmetric for dominant 
and non-dominant hands. CV was calculated as the standard 
deviation across all five windows of a given cue divided by 
their mean (see section 3.1). The effect of target force on  γ 
was assessed separately for dominant and non-dominant hands 
by fitting linear and quadratic models to the pooled data and 
comparing their goodness of fit (see section 3.1). 
Classification accuracy is presented as a confusion matrix and 

to examine where errors occurred, cumulative distribution 
functions (CDFs) were used (MATLAB function ecdf). A 
two-sample Kolmogorov-Smirnov (K-S) test compared the 
CDFs of pooled results, stratified by hand dominance, with 
chance level (see section 3.2). The effect of hand dominance 
on classification accuracy was tested using two-sample t-tests 
(see section 3.2). For the regression analysis (see section 3.3), 
the coefficient of determination (R2) between true and 
predicted force labels was computed to determine the 
percentage of variance explained by the model. This value was 
obtained from the total number of predictions separately for 
each subject-hand combination. As the number of independent 
variables increases (channels in this case), the value of R2 will 
increase. To penalize R2 for inclusion of non-informative EEG 
channels, we report the adjusted R2, which will lead to lower 
values than the conventional R2. Another benefit of reporting 
the adjusted R2 is that it allows for comparison of results with 
other studies using different electrode montages [27]. 

3. Results 

3.1 Evidence for Gradation in the ERD with Handgrip 

Force 

Prior to modeling and analysis, the ERD feature vector was 
extracted from the EEG in five 1-s windows during isometric 
force exertion in response to each cue; each sample was 
assigned the same label as the target force for the cue. To 
determine if the assumption of stable force and ERD 
measurements during the force exertion period was indeed 
valid, we quantified the variability across the five sample 
windows of applied force (Figure 4, Top), ERD strength 
(Figure 4, Middle) and the spatial ERD pattern (Figure 4, 
Bottom) using constant target force data (runs 1-8). 

The CV of force, pooling cues for all subjects, had mean 
values of 8.5, 9.1, 9.9, and 11.1% for the dominant hand and 
9.0, 9.5, 10.8, and 13.8% for the non-dominant hand 
corresponding to target forces of 20, 35, 50, and 65% MVC, 
respectively (Note: No-Go is excluded since no grip force is 
exerted). A one-way repeated measures ANOVA comparing 
the CV of force for the four target forces, and performed 
separately for each hand, showed that only seven of the 27 
possible subject-hand combinations (14 dominant, 13 non-
dominant) had statistically significant differences ( p < 0.01), 
five of which were for the non-dominant hand.  
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Similarly, the distributions of CV of γ showed no 
significant differences between the four target forces. The CV 
was greatest for the No-Go condition with a mean of 34.9 and 
32.6% for the dominant and non-dominant hand, respectively. 
Altogether, only six of the 27 possible showed statistically 
significant differences between target forces with three 

combinations each from the dominant and non-dominant 
hands, respectively.  

The CDF of < cosθ > (Figure 4, Bottom) showed strong 
separation between the No-Go and four target force 
conditions, with a two-sample K-S test showing statistically 
significant differences in the distributions for No-Go and each 
of the four target forces, with the exception of 20% MVC for 

 

Figure 4. Measures of variability between sample windows, pooled for all subjects, from the first eight runs. Top row: 

CV of handgrip force, computed from the five 1‐s windows of each cue and for each of the four target forces. Middle row: 

CV of γ, computed likewise over sample windows and for each target force as well as for the No‐Go condition. Bottom 

row: CDFs of < cosθ >, which represents the average “difference” in orientation between the ERD vectors of unique pairs 

of the five sample windows.  
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the non-dominant hand (p = 0.024). Between target forces, the 
only significant post hoc pairwise differences were for 20% 
versus 35% and 20% versus 50% in both the dominant and 
non-dominant hand. No-Go traces in both plots are skewed to 
the left and therefore more variable in the ERD pattern than 
any of the “Go” conditions.  

The CDF of γ, a measure of ERD vector strength, is 
presented in Figure 5 separately for each sample window and 
each target force, stratified by handedness. Negative values for 
γ indicate suppression of the 8-30 Hz EEG rhythm. The No-
Go condition has grand medians (cumulative probability = 
0.5) of 0.051 and -0.0459 for dominant and non-dominant 
groups, which indicates slight but negligible suppression or 
elevation of the SMR due to random effects, whereas median 
γ for the four movement classes, in each of the five 1-s 
windows, are well below zero and indicative of clear 
suppression of the sensorimotor rhythm. Figure 6 (top panels) 
presents a box-and-whiskers distribution of γ, averaged for 
each subject-hand-target force combination over all cues and 
windows at that target force from runs 1-8. Each subject’s γ 
values were scaled by the (max-min) range over all five target 
forces, which made their distributions approximately normal 
(Shapiro-Wilk test; p < 0.05); the lone exception was the No-

Go group from the dominant hand. As expected, No-Go is 
mostly at or above zero while all active force classes show 
SMR suppression (negative values of γ) to varying degrees. 
The median values appear similar to each other for the 
dominant hand; however, for the non-dominant hand it 
appeared lower for 35 and 50%, the middle target forces, than 
for 20 and 65%, the low and high limits employed in this 
study. This trend suggests that γ drops from zero as the target 
force increases but passes through a trough at which it may 
reverse course.  

To test for significant trends in γ with exerted grip force, 
linear and quadratic functions were fitted to the data (Figure 
6, lower panels). The residual sum of squares (rSS) was 
computed for each fit separately for dominant and non-
dominant hands. The rSS was lower in the quadratic fit (5.99, 
6.79) than the linear fit (8.09, 8,64) for the dominant and non-
dominant hands, respectively. To compare the linear and 
quadratic fits, a non-parametric Wilcoxon signed-rank test 
was carried out on the sample of differences in their squared 
prediction errors. The quadratic model explained the trend in 
the data significantly better than the linear model for both the 
dominant (p = 0.0088) and non-dominant hands (p = 0.0431). 
To further test these results, the outliers in the box-and-

 

Figure 5. Distribution of ERD strength by sample window and target force. Cumulative distribution functions for the γ 

metric, pooled across subjects for each of the five sample windows during grip force exertion and for each target force 

class from the first eight runs, stratified by hand dominance. In both plots, a greater percentage of γ values are positive, 

or elevated, for No‐Go compared to the four target forces. There is greater separation between various target forces in 

the non‐dominant hand, particularly for 65% MVC, and at lower percentiles of γ for the other target forces.  
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whiskers plot (red points in Figure 6, upper panels), which are 
by definition more than one inter-quartile range away from the 
nearest quartile, were excluded and the signed-rank test 
repeated. This further improved the fit of the quadratic model 
relative to the linear one for both dominant (p = 0.0031) and 
non-dominant hands (p = 0.0292). The data corresponding to 
these outliers were included in subsequent analyses since there 
was no evidence of poor signal quality or other artifacts to 
explain their occurrence and warrant exclusion. These 
findings support the ERD reversal trend observed in Figure 6 
but further experimentation is needed to prove it beyond 
doubt.  

3.2 Prediction of Target Force Label Using Statistical 

Classifier Models 
Performance was evaluated by comparing the predicted 

force labels with the true target force labels of the testing data 
using various models. The analysis was performed for both 
hands and the results stratified by hand dominance under the 
assumption that the ability to control grip force may be 
asymmetric. Models were created and tested separately for 
each subject-hand combination.   

Classifiers were trained and tested on separate data from 
each subject. Only the first eight runs, which included four 
distinct target forces (20, 35, 50, and 65% MVC) and the No-
Go condition, were analyzed. Classification accuracy is 

 

Figure 6. Effect of target force on ERD strength. Top: The distribution of γ, normalized for each subject and averaged 

over all cues for each subject separately. Across target force classes in the dominant (n = 14) and non‐dominant (n = 13) 

hands, the trend in ERD amplitude suggests a non‐monotonic dependence on effort. In general, the middle target forces 

(35 and 50%) show greater suppression of the SMR than the low (20%) and high (65%) target forces. Bottom: To test 

these observations, the data were fitted to linear and quadratic models and their goodness‐of‐fit compared.  The residual 

sum of squares was lower for the quadratic fit (5.99, 6.79) than the linear fit (8.09, 8.64) for the dominant (df = 69) and 

non‐dominant  (df = 64) hands,  respectively. These  indicate  that  the non‐monotonic model better approximates  the 

effect of exerted grip force on ERD strength.  
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reported by target force and handedness across subjects in 
Table 1. The SVM was best at discriminating between 
movement and rest, with the highest mean No-Go 
classification accuracy of 76%. However, it did worse than the 
other classifiers for higher target forces, with mean accuracy 
ranging from 25-45%.  

Due to space limitations, only analysis of LDA predictions 
are presented here, though trends were similar for all three 
classifiers. Classifier performance is expressed as a confusion 
matrix of results, pooled over all subjects (Figure 7). True and 
predicted classes are organized along rows and columns, 
respectively. The grand mean prediction accuracies over all 
five target force classes were 53 and 55% for dominant and 
non-dominant hands, respectively. Two-sample t-tests showed 
no statistically significant differences in classification 
accuracy between dominant and non-dominant hands for any 
of the five classes. Below each confusion matrix is the CDF 
over all cues of the absolute error between true and predicted 

values of target force. For reference, the pairing of true and 
predicted labels was scrambled, in a block-based manner 
according to cue, and the CDF of the corresponding absolute 
error computed (see traces in Figure 7 labelled “Random”). 
Comparing the true and randomized sample CDFs, the 
model’s prediction error was consistently and significantly 
lower (to the left) according to a two-sample K-S test for both 
the dominant and non-dominant hands.  

 

3.3 Prediction of Target Force Label Using Linear 

Regression Models 

Relating exerted force to EEG variables using a regression 
model allows force to be predicted on a continuous-valued 
ordinal scale rather than in terms of discrete nominal labels 
that may have no relationship with each other. Discrimination 
between a relaxed, non-movement state and simple hand 

 

Figure  7.  Classifications  using  LDA, pooled  across  all  subjects  and  separated  by handedness.  Top:  confusion 

matrices of true versus predicted force target labels. Bottom: empirical cumulative distribution functions for the 

pooled prediction error (blue) and randomized prediction error (dashed black). A two‐sample Kolmogorov‐Smirnov 

test confirmed the model’s prediction error was significantly lower (p < 0.01) for both dominant and non‐dominant 

hand predictions. 
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movement has been well documented for decades. Therefore, 
No-Go data were excluded from this analysis to avoid 
misinterpreting differences in ERD between No-Go and “Go” 
as evidence for a graded correlation between ERD and target 
force. For instance, if no differences in ERD between the four 
target forces existed, but they were all different and greater 
from the ERD of No-Go cues, there would be an artificial 
correlation.   

3.3.1 Prediction of discrete‐valued target forces.  To first 
test the feasibility of using linear regression to predict grip 
force from the ERD, the discrete-valued target force data (runs 
1-8) were used to train such a model and test it using a four-
fold cross-validation scheme. This was performed separately 
for each subject-hand combination. From Figure 8, the mean 
± standard deviation of the adjusted R2 values across subjects 
is 0.22 ± 0.15 and 0.21 ± 0.12 for the dominant and non-
dominant hand, respectively, indicating only slight agreement. 
A two-sample t-test between the adjusted R2 values for the 
dominant and non-dominant hands showed no significant 
difference (p >> 0.01). As expected, scrambling the 
association between true and predicted values brought the 
adjusted R2 down close to zero. The distribution of predicted 

target force for each of the four classes, per subject, is shown 
using box plots in Figure 9. In many subjects, the predicted 
value of target force appears to increase monotonically with 
true target force. 

3.3.2 Prediction of continuous‐valued target forces. To 
assess the feasibility of predicting target force values on a 
continuous interval from ERD measurements with linear 
regression, a model was constructed using data from all the 
constant target force runs (runs 1 – 8) and tested on data from 
the variable target force runs (runs 9 – 12). Predicted values 
are concentrated around 45% MVC, which is equidistant from 
the end points of the 10 – 80% MVC interval (not shown). 
Adjusted R2 values were found to be near zero for all subject-
hand combinations except for the dominant (left) hand of 
Subject 7 (adjusted R2 = 0.159). The R2 values for the case of 
equivalent testing set range (only target forces between 20 and 
65% MVC) were then set aside as a separate testing set. The 
adjusted R2 in this set was not meaningfully different from 
inclusion of 10 – 20% MVC and 65 – 80% MVC targets, with 
adjusted R2 values near zero.  
   

Table 1. Classification accuracy by classifier. Results are 

stratified  by  hand  dominance  and  presented  as mean 

(S.D.) in percent across subjects. 

  Hand 

Classifier 
Target 
Force 

Dominant 
Non‐

Dominant 

  No‐Go  54 (10)  49 (12) 

LDA 

20%  42 (18)  42 (17) 

35%  47 (19)  60 (22) 

50%  61 (21)  55 (18) 

65%  63 (22)  67 (20) 

  

SVM 

No‐Go  74 (10)  76 (10) 

20%  62 (19)  56 (20) 

35%  37 (19)  33 (25) 

50%  25 (19)  28 (22) 

65%  27 (22)  45 (30) 

  

MLP 

No‐Go  59 (16)  57 (13) 

20%  43 (16)  43 (18) 

35%  45 (13)  54 (21) 

50%  62 (19)  66 (19) 

65%  64 (22)  69 (22) 

 

Figure 8. Correlation of predicted and true force targets 

for  each  subject.  The  adjusted  R2  was  computed 

separately  for  runs  performed  with  the  subject’s 

dominant and non‐dominant hand. The grand average R2 

value was 0.22 ± 0.13. 



Journal XX (XXXX) XXXXXX  Haddix et al  

 

  12   
 
 

   

 

Fi
gu

re
 9
. 
M
o
d
e
l 
p
re
d
ic
ti
o
n
s 
fo
r 
e
ac
h
 d
is
cr
e
te
 t
ar
ge

t 
cl
as
s 
o
b
ta
in
e
d
 f
ro
m
 a
 l
in
e
ar
 r
e
gr
e
ss
io
n
 m

o
d
e
l 
e
st
im

at
e
d
 f
ro
m
 d
o
m
in
an

t 
h
an

d
 r
u
n
s 
fo
r 
ea

ch
 s
u
b
je
ct
 a
n
d
 

p
o
o
le
d
 a
cr
o
ss
 a
ll 
su
b
je
ct
s 
(b
o
tt
o
m
 r
ig
h
t)
. E

ac
h
 b
o
x 
p
lo
t 
re
p
re
se
n
ts
 t
h
e 
d
is
tr
ib
u
ti
o
n
 o
f 
p
re
d
ic
ti
o
n
s 
fo
r 
o
n
e 
o
f 
th
e 
co
n
st
an

t‐
va
lu
ed

 M
V
C
 t
ar
ge

ts
. 

 



Journal XX (XXXX) XXXXXX  Haddix et al  

 

  13   
 
 

4. Discussion 

4.1 Spatial ERD Changes with Grip Force 

In this study, we set out to model and characterize graded 
changes in the EEG SMR associated with motor effort. We 
measured grip force and ERD features during isometric 
handgrip contraction to different percentages of the MVC in 
healthy human subjects (n = 14). Not only did we find that 
different levels of constant grip force could be classified and 
their value predicted from the ERD vector, but also that 
attenuation of power in the SMR mu-beta band may vary with 
exerted grip force. The topographical distribution of the ERD 
suggests that its amplitude and spread across the scalp vary 
with target force (Figure 10, generated with code adapted from 
[28]). There is some inherent variability across subjects in the 
ERD pattern – as may be expected from individual differences 
in the extent of mu-beta modulation, electrode placement, 
measurement noise, etc. But, in general, γ – a crude summary 
measure of ERD strength derived from the spatial ERD vector 
– seems to follow a parabolic trend, with greater SMR 
attenuation for targets of 35 and 50% than for 20 and 65% of 
the MVC (Figure 6). These differences clearly exceeded the 
variation in the ERD over the five seconds of each cue in 
which subjects maintained their grip force at the target value 
(Figures 4 and 5). Although every effort was made to monitor 
and regulate the subject’s behavior during the task to avoid 

strain, the possibility of muscle artifact contributing to the 
attenuation of the ERD at 65% MVC cannot be ruled out 
altogether. 

We also examined whether the ERD is lateralized: i.e., 
contralateral suppression of mu-beta power is greater than in 
areas ipsilateral to the hand performing the task, which is to 
be expected in normal movement. We formulated a 
lateralization index (L) that measures contralateral 
suppression during the handgrip task averaged over the task 
performed on both hands. That is, taking symmetric channel 
pairs—for instance consider C3 and C4—we compute the 
average over both hands of the ERD ratio for the channel 
contralateral to hand movement (C3 for right hand, C4 for left) 
relative to the corresponding ipsilateral channel (C4 for right 
hand, C3 for left). That is: 

 

𝐿 ൌ ቀ
ாோ஽ሺ஼ଷ,ோுሻ

ாோ஽ሺ஼ସ,ோுሻ
൅ ாோ஽ሺ஼ସ,௅ுሻ

ாோ஽ሺ஼ଷ,௅ுሻ
ቁ 2⁄                                         (4) 

 
where ERD(C3,RH) is the ERD measured at C3 for right 

hand movement, ERD(C4,LH) is the ERD at C4 for left hand 
movement, and so on; The ERD is averaged over all cues for 
the subject, hand, and target force in question. This is similar 
in form to measures of lateralization seen in the literature [29] 
where positive and negative values indicate contralateral and 
ipsilateral ERD respectively. L was computed in a moving 1/8-
s window at each time point relative to cue onset, averaged 

 

Figure 10. Topographical distribution of the ERD in a handgrip task. A colormap is presented of ERD variation with scalp 

location and target force averaged across subjects separately for left‐handed runs (top row, n = 14) and right‐handed runs 

(bottom row, n = 13) with the colour axis in units of percent. The No‐Go condition, in which the subject does not perform 

a handgrip contraction, shows minimal ERD, which confirms that confounding effects attributable to the visual display or 

cue dynamics are unlikely. The ERD appears to get broader and deeper as the target force increases but hits a trough at 

50% and reverses course thereafter.  
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over all cues for that target force, and then scaled by L 
similarly computed for the same symmetric channel pair, but 
for the NoGo condition. That is: 
𝐿෨ ൌ lnሺ𝐿ீ௢/𝐿ே௢ீ௢ሻ                                                           (5) 
This normalization was done to control for baseline 

lateralization associated not with movement but with visual 
recognition of the cue, continued engagement in the task over 
multiple cues, and other extraneous factors.  
𝐿෨ traces relative to cue onset were computed separately for 

each subject (except subject 4, whose right hand data were 
corrupted) and target force. To correct for individual 

differences in scale, 𝐿෨ was further normalized separately for 
each subject by the difference between the 95th and 5th 
percentile values of 𝐿෨ over all target forces. Average trends 
over all subjects (n=13) are shown in Figure 11 (panels A-E) 
along with the cue state and mean grip force trace: from the 
top, panels A-D are for 20, 35, 50, and 65% MVC, 
respectively, while panel E is for all target forces pooled. 
Although there is general evidence of lateralization the timing 
and presentation of these phenomena are variable. However, 
some common features are noted: 

 

Figure 11. ERD lateralization versus target force. ERD values for pairs of electrodes symmetric about the midline (e.g., 

C3/C4,  P3/P4) were used  to  compute  a  lateralization  index 𝑳෨   to highlight  locations  and  time periods  in which  the 

contralateral ERD was greater than the ipsilateral ERD. This is plotted against time relative to cue onset and the Task 

period is indicated (black line). Mean force traces (red) are overlaid as a guide to when force was exerted by the subject. 

Left column (A‐E): Cue‐triggered averages of 𝑳෨  over 13 subjects (subject 4 excluded) separated by target force (A‐D) and 
for all target forces pooled (E). Right column (F‐J): Similar plots for Subject 2 alone. There is strong lateralization for P3/P4 

just before movement onset (0 – 1s) followed by CP1/CP2 once force becomes stable (2.5 – 3s). Lateralization in fronto‐

central channels  is most evident at movement onset and offset but  less  so during  continued  force exertion. C3/C4 

lateralization may vary with applied force.   𝑳෨   is stronger at 20 and 65% than at  intermediate values (35 and 50%) at 

movement onset (0.5‐1.5s).  
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1. In Figure 11, (panel E), P3/P4 is strongly lateralized just 
before movement onset (0 – 1s) and peaks as the force 
trace reaches a plateau (1-2s), soon followed by CP1/CP2 
(2.5-3s).  

2. Fronto-central lateralization (C3/C4, FC1/FC2) is most 
visible at movement onset and termination but dissipates 
during sustained force exertion (2-5s), indicating bilateral 
ERD symmetry. This is consistent with prior knowledge 
that mu-beta ERD becomes bilaterally symmetric as 
movement proceeds [30], indicating bilateral ERD 
symmetry. That the effect is not particularly strong may 
be explained by the repetitive nature of the task, a known 
phenomenon dubbed “repetition suppression” [31]; 
moreover, the amplitude of mu-beta ERD lateralization 
during motor imagery appears inversely correlated with 
task duration [29]. 

3. Lateralization in the hand area (C3/C4) may vary with 
target force: 𝐿෨ is stronger at 20 and 65% than at the 
intermediate values (35 and 50%) at movement onset 
(0.5-1.5s). This is further illustrated using subject 2 as an 
example (Figure 11, panels F-J). The trend is reversed at 
movement offset (t = 6-7s) in the same channel pairs: 𝐿෨ is 
stronger at 35 and 50% than at 20 and 65%. During 
constant force exertion (t = 2-5s) the patterns are variable 
but across locations 𝐿෨ seems stronger at 35 and 50% than 
at 20 and 65%. Though anecdotal, these patterns bring to 
mind the trend in γ with target force noted in Figure 6. 

 
These observations fit the general picture of voluntary 

motor control: movement is planned and initiated in the 
premotor/motor areas of the frontal lobe related to the hand 
performing the task, whereas sustained movement and 
feedback control may require broader bilateral engagement. 
Coordinated hand-eye movement to reach the target engages 
association cortex in the parietal lobe. A more formal analysis 
of spatiotemporal dynamics and the effect of target force using 
dense EEG and source localization is required to verify these 
crude observations, which is beyond the scope of the present 
study. However, the observations are consistent with previous 
studies, which note that lateralization of beta power in the pre-
movement period is associated with motor selection [32] and 
may be weaker for sustained movement – as is the case in our 
study – compared to brief movement [29]. Our analysis also 
confirms that lateralization at movement onset gives way to 
bilateral mu-beta suppression with a possible dependence on 
the force being exerted, which needs to be investigated. 

 

4.2 Prediction of Discrete and Continuous‐Valued 

Target Force 

Three different classification techniques as well as linear 
regression models were used to assess the ability to predict 
graded grip force from movement-based ERD.  

A linear discriminant classifier predicted the target force 
level with an average accuracy of about 54% for five distinct 
classes – much greater than the theoretical chance level of 
20% (see Section 3.2). Classification using SVMs was 46% 
accurate (Table 1). This contrasts slightly with the results of 
the study by Yong et al. in which SVMs narrowly 
outperformed LDA in a similar task [33]. MLPs were also 
tested due to their flexibility and growing popularity in BCI 
studies [34]. Mean classification accuracy of MLPs was 56%, 
comparable to LDA. However, the greater computational cost 
of training MLPs as opposed to LDA may increase the latency 
of prediction in a real-time BCI.  

When a regression model was applied, performance was 
dependent on the data used for training and testing. 
Specifically, using data from runs in which the target force 
was constant from cue to cue within the run (Section 3.3.1) a 
regression model trained and tested with a four-fold cross-
validation scheme gave an average adjusted R2 value of 0.22 
between predicted and true target force values – an indication 
of low-to-moderate correlation.  

Despite the promise of the regression model when used to 
model and predict discrete values of grip force at four different 
levels (Runs 1-8), performance was poor when these discrete-
value-based models were tested on data from the continuous-
valued target runs (Runs 9-12), when the target force value for 
each cue is selected at random from 10-80% MVC and cannot 
be anticipated (see Section 3.3.2). In this case, the adjusted R2 

did not show any meaningful correlation between true and 
predicted target forces. It is possible that not being able to 
anticipate the target value led to greater oscillation and settling 
time in the grip force as the target value is approached, and 
that the variability in the EEG features of the test set is greater 
as a consequence. In hindsight, including continuous-valued 
target runs in which information about the force required in 
the upcoming cue is available prior to movement onset would 
have allowed this hypothesis to be tested. Further, the 
regression model attempts to model force as linear in ERD, 
although the presence of multiple ERD components may 
confer some flexibility. It is possible that the true dependence 
is nonlinear and thus not amenable to linear regression, which 
would explain the modest fit. 

4.3 Comparison with Previous Work on EEG‐Based 

Force Prediction 

Several studies in the past have examined the feasibility of 
using features of the EEG to distinguish between levels of 
exerted motor effort. In a side arm lateral raise task, one study 
found that when subjects lifted three different loads (0kg, 1kg, 
and 3kg), 8-12 Hz power was not significantly different 
between the 1kg and 3kg conditions [35]. However, both the 
1kg and 3kg conditions had significantly lower power than the 
0kg condition. That is, lifting an external load affects the EEG, 
but differences between loads are not discernible. They 
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hypothesized that neuronal recruitment was only minimally 
elevated when lifting 1kg versus 3kg. Paek et al. [36] 
reconstructed force trajectories in an isometric force 
production task offline, and found the strongest correlation in 
the mu (8 – 13 Hz) and beta (13–30 Hz) bands. However, they 
were unable to distinguish between grip forces of 5, 10, and 
15% MVC applied by the subject. It could be that this is too 
narrow a range of motor effort to distinguish from the EEG. 
In this study, we tested over a fairly large range, up to 65% of 
the subject’s MVC (in the discrete-valued target task, runs 1-
8), where substantial recruitment of motor units and thus 
significant changes in the SMR may be expected. In an online 
paradigm where subjects imagined high effort (30% MVC) 
and low effort (10% MVC) hand clenching, Wang et al. found 
that the ERD of the mu and beta bands during motor imagery 
was lowest for 30%, moderate for 10%, and highest for the 
relaxed state, with an average classification accuracy of 70.9% 
[37]. This was well above chance for a three-class predictor. 
However, only two levels of effort above the resting state were 
investigated. Our work includes four levels above rest over a 
wider range of MVC and demonstrates graded modulation of 
the SMR with effort. On the other hand, Wang et al. [37] 
investigated ERD associated with motor imagery, performed 
immediately after the actual movement to help the subject 
better visualize the target force, whereas we modeled ERD 
during actual force exertion. Imagery may be more directly 
relevant to BCI use in an impaired population. However, there 
is no way to verify that the subject has imagined ‘correctly’; 
this is why we chose to analyze movement as a first step, 
which allows us to confirm that the target force was reached 
and maintained. Subsequent efforts could involve protocols 
that emphasize imagery, motor planning, or 
constrained/impaired movement.  

One consequence of investigating a broader range of effort 
may have been the finding that the vector ERD amplitude may 
not increase monotonically with target force but reverses 
course somewhere in the middle. This was unexpected, since 
we initiated the study assuming that any cortical predictor of 
effort in this simple motor task would vary in proportion to it 
and saturate at some point. We speculate that in this specific 
motor task, which involves continuous control of exerted force 
at different levels, the cognitive loading and attention required 
for the low and high effort targets are distinct—and perhaps 
lower—compared to those in the middle, which are harder to 
differentiate. This is consistent with studies that point to 
different spatial patterns of alpha reactivity corresponding to 
motor activation and visual attention [38]. Furthermore, the 
parabolic trend seen in our data is much more significant on 
the non-dominant hand compared to the dominant one; which 
may again reflect on the greater engagement required when 
performing the task with the non-dominant hand. 

4.4 Limitations and Future Work 

One factor that may have obscured ERD trends related to 
motor effort is the target force itself, which was used as a 
measure of effort. The MVC can vary greatly across subjects 
and even with repeated measurement; besides, the same % 
MVC can reflect very different actual forces across subjects. 
On the other hand, the same absolute target force can evoke 
different perceptions of effort in different individuals. The 
choice of which to use is therefore not trivial. 

Another aspect of the design was the use of repeated cues 
at the same target force within a run. This was done to limit 
“noise” due to subject uncertainty in the ERD associated with 
each target. The fact that force prediction using models of 
variable target force runs did not perform as well as those 
trained on constant force runs suggests that this is true. 
However, there is evidence that repetitive motor tasks require 
less engagement than random practice [39]. Hence our use of 
constant target force runs could have diminished the ERD 
contrast over the range of MVC investigated. 

In Figure 10, the ERD appears to get broader and deeper, at 
least up to a point, before saturating or reversing course. The 
ability to predict target force from the ERD vector with 
accuracy well above chance using conventional classifiers 
(see Figure 7 and Table I) is evidence in support of these 
graded changes. While the classifiers assign a relative weight 
to each channel, no further analysis was performed to 
highlight topographical variability. In future work, operations 
such as common spatial patterns could be utilized to improve 
classification [40]. Regression modeling of the effect of target 
force on the γ metric of ERD strength suggested a non-
monotonic trend. However, the trend is not pronounced, and 
warrants further investigation. This may point to the need to 
factor in spatial distributions—which γ does not capture—
when considering task differences.   

Further, this study examined only the particular phase of 
the motor task in which grip force was controlled at a static 
level (Figure 3). There may exist a distinct neural signature 
prior to this phase associated with motor planning that is 
predictive of the force to be exerted. In a related study, Rearick 
et al. examined cortical dynamics of isometric force control 
with varying degrees of precision in visual feedback [41]. The 
two target force levels were 7.5 and 30% of the MVC. The 
authors found significant differences in the ERD of the 8 – 12 
Hz frequency band between the two force levels during the 
ramp (force generation) phase but not the static phase. We did 
not find predictive potential in signals from the ramp phase. 
However, there was no explicit control for rate of force 
generation in our study design, which may well be the key to 
finding differences in graded force production. Future work 
will seek to combine kinematics during hand contraction to 
produce a continuous force predictor. 

This work did not seek to model the dynamics of the EEG 
within a cue. Additional efforts will focus on statistical 
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modeling of state transitions, such as with hidden Markov 
models, to better describe the temporal evolution of graded 
effort in a motor task. This would also call for modifying the 
protocol to randomly ordered discrete targets within a run.  

Evidence of graded ERD in an isometric force production 
task provides the framework for a multi-class BCI modeled on 
a single motor task. This is advantageous for several reasons. 
It does not require any external stimuli, manifests during 
execution of an essential function of the hand and does not 
require training to be able to perform the task. The variable 
modulation of the SMR during the generation of different 
hand grip forces offers an intuitive means for a BCI user to 
generate a large number of distinct command signals. In this 
study, the modelling of ERD is performed entirely offline. The 
natural progression of this study would be to build an online 
BCI capable of delivering near-instantaneous, EEG-based 
feedback to the user. Implementation of a BCI that can 
accurately decode distinct signals associated with fine motor 
control has greater potential to harness neuroplasticity and 
produce better rehabilitative outcomes than passive 
movements alone [42]. 

5. Conclusion 

This work demonstrates the feasibility of predicting motor 
effort in a simple handgrip task from the EEG and uncovers 
an interesting trend in which medium effort may produce a 
more pronounced ERD than low or high effort. The accuracy 
of prediction of five levels of effort was well above chance. 
By highlighting graded ERD signatures associated with 
isometric hand contraction, as the number of command signals 
associated with this simple task could be expanded.  Future 
work will assess the potential to predict multiple levels of 
force with a real-time BCI. 
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