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Multitouch Pressure Sensing With Soft
Optical Time-of-Flight Sensors

Ji-Tzuoh Lin™, Christopher A. Newquist™, and Cindy K. Harnett

Abstract—This article reports on optical time-of-flight (ToF)
as a detection mode for soft optical deformation sensors. In this
work, low-cost miniature light detection and ranging (LiDAR)
chips recently developed for consumer mobile device applications
perform real-time optical reflectometry at cm scales in soft
optical waveguide networks. Our methods complement exist-
ing work by capturing spatial information that is lost with
amplitude-only measurements. We demonstrate its application in
a multitouch button system capable of extracting displacement
values from soft optical switches with average error in the
range of 100-200 microns on 1.75 mm of the switch travel.
Because making reliable electronic connections to soft materials
is a challenging task, we focus on minimizing connector count.
In a tracking application, we find the centroid of an object on a
three-point supported plate using three optical pressure switches
connected to a single LiDAR sensor.

Index Terms— Multiplexing, optical time-domain reflectome-
try, optical waveguides, pressure measurement, tactile sensors.

I. INTRODUCTION
OFT and flexible surfaces with a human-like sense of
touch will lead to spatially aware robotic limbs, wearable
devices capable of measuring subtle health changes, and
medical prostheses that provide feedback to the user [1]-[3].
These applications motivate researchers to investigate ever
softer and stretchier touch-sensitive materials [4]-[8].

Our own everyday sense of touch creates high expectations
for force sensitivity, response speed, spatial resolution, and
multitouch recognition in pressure-mapping sensors. Such fea-
tures typically come at the cost of a high electronic connection
count [9]. The instrumentation and measurement community
has addressed the sensor density problem on two fronts: 1) by
inventing new pressure transduction modes that pack spatial
and amplitude information into a single sensing channel,
including piezoelectric time-domain reflectometry in films [10]
and cables [11] and 2) by improving multiplexing and data
interpretation methods to extract higher spatial resolution from
sparser arrays of sensors. Those approaches include electrical
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impedance tomography in low-density edge-fed impedance
sensor arrays [12], and data analysis methods that embed
knowledge about the spatial arrangement of the sensors [13].

A. Reducing Connector Count in Soft Systems

Toward the goal of reduced connector count, researchers in
robotics and human-computer interaction have made progress
in high-dimensional pressure- and deformation-mapping appli-
cations by applying machine learning to multifrequency capac-
itive sensors [14], and to inter-fiber signals from an optical
fiber bundle in translucent foam [15]. Another group simulated
paths for liquid metal-filled stretch sensors, then pruned the
paths that gave redundant information about the deformations
they wanted to detect [16]. Still, others have investigated fiber-
like sensing materials with internal structures as alternatives
to edge-driven matrix-style sensor grids for signal localization:
optoelectronic printable filaments that report the location of a
laser on a 3-D printed surface [17], conductive fibers braided
to create multiple intersections for capacitive radial position
detection [18] as user input devices [19], and soft electronic
fibers with resistive contact location and multiple force ranges
for a pressure mapping application [20].

For soft materials, the connector problem is acute. Soft
connector technology lags far behind that for conventional
rigid circuit boards and glass touchscreens, largely because
the hard-to-soft materials junction is prone to stress
concentration and connector failure. Even with a mature
connector technology, increasing the sensor density creates
a data management problem independent of the materials
system. Biological nervous systems are a daunting inspiration;
mammalian bodies contain thousands of sensory receptors
in a single limb alone [21]. However, they also offer some
guidance: long-distance communication from the sensor to the
cortex is made robust by encoding signals in the timing and
frequency of neural spikes [22], [23] and doing processing
near the sensor reduces communication complexity [24].
Methods that combine spatial and pressure data into a few
channels to reduce both the connection count and the central
processing requirements will help expand the capabilities of
these emerging soft materials systems.

B. Time-of-Flight (ToF) Methods

Timing the reflection of an optical, acoustic, or elec-
tronic pulse is a measurement modality that combines spa-
tial information (the flight time) with amplitude information
(the intensity of the returning pulse). The single-point nature
of ToF methods has already led to low connector count
deformation mapping in some soft, flexible, and stretchable
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TABLE I
POLYMER OPTICAL WAVEGUIDE STRAIN MAPPING METHODS
Wavegl‘ude Transduc‘tmn Spatial Measurement Source/detector size Reference
material mechanism category scheme
Thermoplastic Light loss at . Optical time . .
urethane fiber deformation site Multipoint domain analysis Chip scale source and detector (This paper)
e . Chip scale detector,
Cast urethane Light injection at .Qqasp Wavelquth distributed LED source with (37]
waveguide deformation site distributed analysis .
integrated color filters
Perfluoro graded Brillouin Brillouin optical
index plastic - Distributed | correlation domain Optical benchtop [38]
. scattering
optical fiber reflectometry
Perfluoro graded Rayleigh A Swept-wave .
index POF scattering Distributed interferometry Optical benchtop 39]
Polycarbonate, Fiber Bragg Multipoint Wavelength Spectrometer (Laptop-scale [40] (polycarbonate),
CYTOP POFs grating (FBG) P analysis modules available) [41] (CYTOP)

domains. Acoustic ToF methods developed for waveguide
length measurement [25] were adapted to soft tubes for
human-computer interaction devices [26], and acoustic ToF
data was analyzed by machine learning methods to detect
the configurations of hollow soft robotic fingers [27]. In the
electronic signal realm, single-point time-domain reflectom-
etry has been applied to wires on stretchable surfaces to
capture information about strain [28]. In this article, we use
light distance and ranging (LiDAR) chips designed for mobile
devices to extract spatial and pressure information from all-
polymer soft optical waveguide networks undergoing mechan-
ical deformation. Because the focus of this article is on low
connector count, experiments use a single LiDAR sensor
consisting of one emitter/receiver pair [Fig. 1(a)] connected
to a soft optical waveguide or network.

The instrumentation and measurement community has
contributed to the calibration, precision, and reliability
of LiDAR systems using both modeling and hardware
approaches [29]-[33]. The majority of LiDAR applications
are in free space object detection and ranging, but in this
article, the LiDAR signal travels through a solid, optically
transmissive soft fiber. Optical fiber sensing methods, whether
in conventional glass fibers or in softer materials, offer fast
response speed, wavelength multiplexing using passive filters,
and performance modification with dopants such as fluo-
rophores and resonant nanoparticles.

C. Optical Waveguide and Fiber-Based Methods

Unlike free-space camera or laser scanning methods for
shape capture, optical fiber methods can perform high-speed
measurements in embedded formats and in hidden structures,
including locations obscured by opaque liquids, smoke, and
fog. Toward pressure mapping, fiber Bragg grating (FBG)
methods induce sensitivity to small changes in refractive index
for chemical [34], pressure [35], and shape detection [36]
while encoding spatial information in the reflected wavelength.
While FBG fibers are not yet made from elastomeric materials

b. Time-of-
flight data
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Fig. 1. (a) Miniature LiDAR sensors measure flight times in cm-scale soft
optical waveguides. (b) Multitarget histogram data. (c) Applications for soft
sensors that combine spatial and pressure data.

capable of extreme deformation, polymer FBGs are emerging.
Table I summarizes these and other methods for mapping
mechanical strains with polymer optical waveguides, including
polymer optical fibers (POFs).

Pressure mapping methods in extreme deformation environ-
ments have long been dominated by electronic sensors. Soft
optical sensors have two key advantages versus soft electronic
sensors made from conductive elastomeric composites: lower
temperature sensitivity, and immunity to electromagnetic inter-
ference. The materials are deformable and often intrinsically
stretchable, with similar mechanical properties to wearable
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TABLE II
CHARACTERISTICS OF THERMOPLASTIC URETHANE FIBER MATERIAL IN THIS WORK
Numerical Diameter Refractive | Wavelength Extinction | Tensile % tensile Shore
aperture (mm) index dispersion coefficient | modulus elongation hardness
(visible) (ps’km per nm) (dB/cm) (MPa) before break
1.18 1.75 1.55 34 (typical) [57] 0.097 7.8 508 95A

stretch fabrics and soft robotic systems. Other advantages
include the ability to send and receive signals across an air
gap (common to capacitive sensors but not resistive ones),
operation at infrared wavelengths that pass through tissue
for biocompatible [42] and implantable [43] applications, and
all-polymer construction that will not corrode when exposed to
water. When the material is soft, mechanically induced color
changes can even provide passive user feedback [44].

For these reasons, soft optical sensors are an increasingly
active research area. In our earlier previous work on soft
optical sensors [45], [46] and in that of others [3], [42], [43],
[47]-[52]the transmitted light intensity is measured with a
photodiode or other amplitude-based optoelectronic sensor on
one end of the waveguide. The light source on the opposite
end, or in a side-coupled LED or waveguide for encoding
spatial data by time or wavelength multiplexing [37], [50], [53]
is typically a light-emitting diode controlled by a digital
output. While amplitude measurements are lightweight and
straightforward, they have the drawback (in common with
resistive sensors) that the transmitted signal is an inte-
grated measurement. It combines stretching losses caused by
increased absorption and scattering over a lengthened optical
path, bending losses, and pressure-induced losses where wall
deformations cause light to escape from the waveguide. Some
of the spatial information in the amplitude signal is lost.
Recently our group applied LiDAR sensors to stretchable
optical fiber sensors [54], decoupling bending from stretching
by using ToF to determine the length of the stretched fiber
to within 1% independent of signal amplitude, but not yet
investigating the spatial origin of the signal.

D. Multitouch Pressure Sensing With ToF in a Soft,
Branched Optical Network

In this work, we apply the optical ToF approach to spatial
mapping and, thanks to a low-cost consumer LiDAR sensor
that reports a histogram of amplitude-versus-time [Fig. 1(b)],
demonstrate combined pressure and location sensing with
multitouch capability. Since most LiDAR chips report signal
amplitude as well as flight time, the amplitude-based soft
optical sensor systems recently reviewed in [55] and [56] will
work with them, adding a new ToF data channel and, with
many chips, an ambient-light data channel that can measure
light originating from other sources than the ToF pulse. The
novelty and contribution of this work are the simplicity of the
source and detector compared to other methods in Table I, and
construction from soft polymeric materials.

Our work in the rest of the article consists of experi-
ments with ToF optical measurements in a multitouch button

network. The following sections describe how ToF histograms
were extracted from a commercial LiDAR chip, the design and
characterization of pressure switches made from soft optical
materials, and data analysis methods. The switch network is
then demonstrated in a modular soft optical system capable of
tracking an object’s centroid based on its weight distribution
on a multisensor plate using only three contact points and a
single optoelectronic sensor.

II. METHODS
A. Sensor Chip and Interfacing Method

The LiDAR chip used in this work is a multitarget
distance sensor (VL53L3CX, ST Microelectronics, Inc).
This 2.4 x 4.4-mm module launches an optical pulse
from its 940-nm laser, detects the returning light with an
avalanche photodiode, and produces a histogram of ToF data
[Fig. 1(b)]. A Nucleo microcontroller board (P-NUCLEO-
53L3A2, ST Microelectronics, Inc.) drives the LiDAR chip
and sends multitarget ranging results to a computer using a
graphical user interface (GUI) to display object distances and
signal intensities. Raw histogram data is not available in the
GUI, but is available from the Nucleo through its low-level
serial interface. Each bin in the ToF histogram corresponds to
approximately 20-cm travel in air; 24 bins give it a range of
1 cm—5 m. During a ranging event, statistics are collected
from several thousand pulses, and centroids are calculated
for histogram features from large numbers of pulse power
detection events, allowing for better than 20-cm resolution.
The manufacturer’s stated time/distance resolution is 6.6 ps
(1 mm) and ranging accuracy is 3% depending on ambient
light and target reflectance.

B. Design and Characterization of Soft Optical
Pressure Switch Networks

A commercially available clear, 1.75-mm diameter thermo-
plastic polyurethane (TPU) 3-D printing filament was used
as a soft waveguide to bring signals from the LiDAR chip
to the switch network. This material (Clear BUILD series
TPU, Matter Hackers, Inc., Lake Forest, CA, USA) has a
Shore hardness of 95 A, making it highly flexible. Its index
of refraction was 1.55 + 0.02 in the visible, determined by
immersion in index-matching liquids. We measured the fiber’s
attenuation at 0.097 dB/cm with a 940-nm LED source via the
cutback test (Fig. S1). This waveguide is transmissive enough
for the LiDAR chip to detect pulses through roundtrip path
lengths of up to 1.8 m. Table II summarizes the specifications
of this material. For this diameter of fiber at 940 nm, the fiber
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(a) Soft optical pressure switch illustration and (b) photograph with laser. (c) Calibration curves for three switches. (d) and (e) Branched optical

switch network components and layout. (f) Optical power in the three key histogram bins for each fully closed switch in the network.

is strongly multimode with approximately 2 x 10° guided
modes [45]. While multimode fibers are subject to modal
noise, the large diameter of these plastic optical fibers ensures
that even if the fiber and source are slightly misaligned, most
of the light is still launched along the center core, reducing
modal noise [58].

All-polymer pressure-sensitive optical fiber switches were
created from soft 3-D printed black TPU “normally open”
fiber holders [Fig. 2(a) and (b)] that align two cut,
1.75-mm diameter TPU fiber faces when fully pressed (both
black and clear filaments were Matter Hackers BUILD
series TPU).

The dependence of transmitted intensity versus switch dis-
placement is plotted for three switches in Fig. 2(c), along with
a “circle overlap” model based on the fractional overlap area of
two 1.75-mm diameter circles as the center-to-center distance
varies from 1.75 mm (one full fiber diameter) to O (perfectly
aligned). The moving circles represent the two fiber faces as
the switch translates from open to closed. While this simple
2-D geometric model captures the general shape of the switch
responses, a 3-D ray optics simulation (COMSOL Ray Optics)
with 1 mm end-to-end separation more closely represents the
steep slope of the curve at the center of the displacement range
seen in two of the switches.

Variations in end-to-end separation during assembly and
other manufacturing differences can create different intensity-
versus-distance profiles within a batch of switches. To get
displacements from optical intensity, we fit a 4th-degree poly-
nomial to the individual switch calibration data in Fig. 2(c)

and inverted it to calculate the displacement for a given switch
based on its measured intensity signal.

Switch networks were created using plastic optical fiber
1-to-3 splitters [Fig. 2(d)] and couplers (Industrial Fiberoptics
POF Coupler 1 x 3 IF 543 and IF CS4, respectively). Three
switches were placed on paths of three different lengths
[Fig. 2(e)] intended to create three distinct features in the ToF
histogram. Total path lengths were 115, 146, and 167 cm. The
two ends of the network were connected to the LiDAR sensor
using a 3-D printed black plastic housing.

C. Testing Methods

1) Individual Switch Testing: Force versus displacement
was characterized for individual switches by pressing them
with a force probe (DFS20, NexTech, Inc.) and collecting
intensity readings using a power meter (PM-100D, ThorLabs,
Inc.) and 940-nm infrared LED source.

2) Multitouch Button Network Testing: For characterizing
the multitouch button network, we used the Nucleo’s low-
level serial interface with Python code that accesses the serial
port, to get access to unprocessed ToF histogram data from
the VL53L3CX multitarget sensor. The network in Fig. 2(e)
had “targets” at fixed locations with varying “reflectivity”
controlled by switch closure, while the Nucleo’s factory-
designed ranging algorithms are meant to find peaks from
targets at unknown locations. In this experiment, spatial infor-
mation was captured in the sense of a lookup table, where
24 different flight time bins, each corresponding to a ~20-cm
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light travel distance in air, are assigned to signals traveling
specific distances from emitter to sensor. Plotting the raw
histogram data allowed us to identify the key histogram bin
associated with each switch.

To test the multitouch pressure measurement capabilities of
the button network, we used three independent servomotors
(Fig. S2) to depress the soft optical switches of Fig. 2 over
a range of 10-12 displacements between 0 and 1.75 mm [the
full diameter of the optical channel in Fig. 2(a)]. The Python
program captured histogram data and showed real-time results
picked from three key histogram bins out of the 24 available
bins. During testing, the three servos were simultaneously run
to adjust each of the three switches to a new displacement
value. The positions were held for 2 s, and intensity data were
recorded from the three key bins, along with the known servo
positions. Switches were adjusted in random combinations of
vertical displacements, and a total of 3605 data points were
recorded for evaluation.

3) Object Tracking Plate Fabrication and Testing: In an
application-oriented demonstration of the triple sensor net-
work, we placed the three pressure switches at 120° angles
supporting a plate (Fig. S3). When an object was placed on the
plate, the distribution of force on the three switches depended
on the object’s location on the plate. To interpret the three
key histogram bin readings as object locations, the video was
collected and analyzed to compute the centroid of the rolling
object. The general setup for object tracking is demonstrated
in supplementary movie M1.

D. Modeling and Data Analysis Methods

1) Interference Removal Method: In the triple sensor net-
work, although each switch dominates one bin in the his-
togram, some signal gets into neighboring bins because the
laser pulse has a finite width and undergoes dispersion as
it moves through the network. Because of this interference,
reading the unknown pressure values from the three buttons
is not as simple as reading a single intensity value from a
specific flight time bin. Basis vectors [Fig. 2(f)] were therefore

Measured vertical displacement, mm

Measured vertical displacement, mm

(a) Switch displacements predicted from dominant bin value; (b) displacements with interference removed; and (c) error analysis.

collected for each switch by fully pressing the switch while
leaving the other two switches closed. These vectors were then
used to construct a matrix M to disentangle the pressure signal
on each button from multipress data, with the intensity values
in each chart in the top row of Fig. 2(f) forming consecutive
rows of M. The three corrected intensity values I. were then
computed as

I, =ILM™! (1)

where I, is the vector of received intensity values in the three
key histogram bins. The corrected intensity result is scaled
between 0 (not pressed) to 1 (maximally pressed). This value is
used to index into the displacement-versus-intensity calibration
curves in Fig. 2(c) and predict a corrected displacement value
for each switch.

2) Object Tracking Analysis Method: Real-time object
tracking was implemented by making a lookup table from
training data where the object was placed on the tracking plate
at known (x, y) locations. During a tracking run, the three key
histogram intensities were used to find the best match in the
training data, and the matching (x, y) value was reported as the
object’s centroid. To generate the training data, optical sensor
readings and overhead video were recorded simultaneously
using a Raspberry Pi computer. The Python computer vision
library Open CV was used to extract centroid values for an
object (an apple) on the random training events that were
collected in a training file structured as a Python dictionary.
Each entry consisted of the received power amplitudes in
the three sensors’ key histogram bins, along with the video
centroid as a pixel coordinate pair.

In the tracking application, the location was predicted in
real-time by dictionary lookup of the nearest match, defined
as the (x,y) location having the least difference of the sum of
absolute values on each of the three sensors’ signals in the
dictionary

3
Index{x, y} = Index{ min| > abs(S; = i) [{.  (2)
1
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Here, §; is the reading of the ith key histogram bin, S;; is
the reference sensor reading in the dictionary, min denotes the
least value of all the calculated absolute values, and the index
points to the location at (x,y).

The plate had a radius of 9 cm, meaning that each of the
2000 random training points represented an average area of
0.127 c¢cm or a circle of radius 2 mm. Therefore, the best-case
resolution of this lookup table method is approximately 2 mm.
The predicted location was plotted live along with the apple’s
image and centroid on the plate.

III. EXPERIMENTAL RESULTS
A. Individual Switch Results

Force versus transmitted intensity results for the individual
switches while in the network are shown in Fig. S4. The
force required to fully align the fibers for maximum light
transmission was 12 N, with a minimum detectable force
of I N.

B. Multitouch Button Network Results

Multitouch displacement data predicted from intensity read-
ings for more than 10 000 individual switch settings are
presented in Fig. 3(a), coded by the dominant bin for switches
1-3 and plotted against the known displacement value for that
switch. For each plotted data point, the other two switches are
at random displacements. The plots in Fig. 3(a) and (b) show
the average value of the predicted displacement, with standard
deviation error bars. Fig. 3(b) applies the interference removal
method of (1) to correct for received power put into the bin by
other switches, for example, where Switch 1 adds counts to
the bin for Switch 2 (Fig. 2(f), the center plot in the top row).
This linear regression helps put Switch 2 and 3 closer to the
perfect-fit line running diagonally across Fig. 3(b), compared
to Fig. 3(a), where predicted positions for Switch 2 and 3
appear high above their known values, especially at the ends
of the range.

More quantitatively, Fig. 3(c) shows that the interference
removal algorithm improves root mean square (rms) displace-
ment error over most of the range for all but Switch 1.
Switch 1, on the shortest path, transmits the highest intensity
signal and its bin has almost no input from the other buttons,
so the interference removal algorithm does little to improve
on the result obtained directly from the dominant bin. For all
switches over all but the last 0.25 mm of the pressure range,
the rms error of the corrected value is less than ~15% of
the full range (1.75 mm). This result also contains error from
fluctuations in received power intensity and error from the
vibration of the servo motors during tests, which will not be
corrected by the interference removal algorithm.

C. Object Tracking Demonstration

Fig. 4 shows the results from correlating the video centroid
of an object [an apple, Fig. 4(a)] with the signals from the
three-switch pressure plate. In Fig. 4(b), the video and sensor-
predicted centroids are plotted as white and cyan dots, respec-
tively, as the apple is rolled around on the plate. The average
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centroid predicted from optical sensor network compared with video.

distance difference between video and sensor-predicted cen-
troids along the trajectory of Fig. 4 was 9.1 pixels. With a
span of 160 pixels across the 18-cm diameter plate, the average
tracking error was approximately 1 cm.

Sources of this tracking error include light overlapping
the key histogram bin as discussed earlier, hysteresis in the
switches’ elastic properties, errors in the determination of
the centroid locations introduced by the lighting conditions
for the apple, and time latency between the moving images
and the three switch signals.

We also observed that the optical switches worked in water
(index of refraction ~1.33), which has a lower refractive
index than the TPU fiber core. The switch was pressed while
submerged in a beaker, and real-time histograms showed a
response similar to that in air.

IV. CONCLUSIONS AND FUTURE WORK

In this article, we demonstrated multitarget optical ToF
sensing of lengths and deformations in soft structures with
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a single-point optical sensor. The all-polymer sensor elements
offer promise for wearable, washable shape capture systems
and touch-sensitive robotic skins, and the ability to perform in
water illustrates a key advantage of optics versus electronics.
Such systems may be a good match to underwater, damp,
or messy environments, including robotic grip and balance
sensors for handling materials in food, beverage, and medical
applications.

Challenges remain in several areas: quickly and uniformly
assembling connectors onto the ends of soft waveguides,
increasing the optical transmission of soft materials, devel-
oping new soft optical materials that can control inter-fiber
light transmission in response to pressure for force-sensitive
touchpads, improving the sampling rate (currently 30 Hz) for
high-speed applications, and improving the spatial resolution
of ToF histogram data for finer-grained deformation mapping.
Although a 30-Hz sampling rate means the system is limited
to low-speed applications, the sensor is vibration tolerant
because each measurement averages results from several thou-
sand sub-microsecond laser pulse periods during the sampling
period.

Currently, to obtain simultaneous displacement data for the
three switches in the multitouch button network experiments,
the fiber network lengths needed to be separated by at least
20 cm so two switches would not dominate the same histogram
bin. Separations were made even longer than that to reduce
interference from pulse broadening. Meter-scale fiber lengths
may work for robotic limb sensors when coiled, but are unde-
sirable for smaller-scale touchpads, grip sensors, and skins.
Higher spatial resolution LiDAR sensors will help shrink the
sensor size. Driven by augmented reality applications and
by a market where LiDAR chips are already installed in
billions of consumer devices, chipmakers continue increasing
the bandwidth and resolution of their products while keeping
chip size and power consumption small.

To return to a biological inspiration, doing some signal
processing near the sensor helps minimize communication
traffic and allows the cortex to be organized by function rather
than by exact sensor location. For these soft optical sensors,
the local processing could be electronic, but there are also
possibilities for mechanical deformations to shift new branches
into the network, changing the structure and meaning of the
ToF data.
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