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Abstract

Agricultural irrigation accounts for nearly 70% of global freshwater withdrawal. Among irrigation
practices, contour-levee cascade irrigation is of particular interest as it is water-intensive and
widely used in many rice production regions. Despite its significant environmental implications,
no study has quantified the distribution of contour-levee irrigation. One major challenge of remote
sensing-based contour-levee field detection is how to accurately identify the thin and curved levee
lines whose appearance varies dramatically in different fields. This paper presents a new deep
network-based method that jointly optimizes semantically meaningful features to quantify the
contour-levee fields. This new method uses a bi-stream encoder-decoder architecture to capture
spectral information and gradient features. To maintain gimage gradient sharpness, a skip
connection approach is employed to facilitate gradient propagation across long-range connections.
Moreover, the new method uses deep supervision to generate more informative features from the
earlier hidden layers and superpixel segmentation to reduce classification noise as a post-
processing step. By testing against 41 images across 10 Arkansas counties, the average accuracy
was 86.23% and the method achieved 15%-17% improvement over benchmark methods. The
results show that IrrNet-Bi-Seg maintains good transferability and is thus promising for larger-

scale applications.
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1. Introduction

Irrigated agriculture represents 20% of cultivated land and accounts for 40% of global crop
production (UNESCO, 2014) and nearly 70% of freshwater withdrawals globally (Molden et al.,
2007). Effective water resources management requires accurate quantification of irrigation water
usage and efficiency, which are synergistically related to the irrigation method and land form
(Hsiao et al., 2007). A natural focus for advancing this goal is a spatially explicit accounting of
fields using the contour-levee irrigation strategy—the most water-intensive yet widely used
method by some major crops, such as rice and soybean (Massey et al., 2017). In contour-levee
fields, water flows by gravity from upper to lower fields, and levees are used to maintain
inundation to control weed growth. Thus, an excessive amount of water is drained off by gravity
and wasted (Massey et al., 2018; Vories et al., 2005). The irrigation application rate for contour-
levee fields is 8%-14% or 46-57% higher than some newer flooding methods, such as straight
levee or zero grade, respectively (Henry et al., 2016; Massey et al., 2017; Reba and Massey, 2020).
Knowing the distribution of contour-levee fields is a fundamental step to assess their impact on
the regional hydrological cycle and is critically important to provide stakeholders information to

understand and manage water resources and other sustainability metrics (Moreno-Garcia et al.,

2021).

Historically, irrigated land area is reported through the Irrigation and Water Management Survey,
but this tabular data is less informative about its spatial distribution. Remote sensing technique can
demarcate the extent of irrigated lands at various scales (Ketchum et al., 2020; Pervez and Brown,
2010; Thenkabail et al., 2009; Xie et al., 2021), but methods to classify irrigation types are
underdeveloped due to the complex visual characteristics of different geometry, photometry, and
texture in various irrigation types. The center pivot is widely mapped because its simple and
distinct large circular shape is easily captured by satellite or aerial images (Rundquist et al., 1989;
Yan and Roy, 2014). Despite the significant ecological and environmental implications of contour-
levee irrigation, its spatial distribution is rarely known. The major challenges are that different
contour-levee fields pose distinct image color and texture, and the levee appearance (e.g., spacing
between levees and levee width) varies dramatically in different fields. Traditional pixel-based
methods thus have difficulty incorporating textural features (e.g., contour-levee) in making

predictions (Jawak et al., 2015). Object-based image analysis is also not viable as field contours



are diverse in shape and would require repeated tests and trials in parameter optimization (Yang

etal., 2019).

The integration of deep learning (DL) and very-high-resolution images have emerged as a
promising solution considering their combined ability to optimize semantically meaningful feature
extraction and classification (Mi and Chen, 2020). Here, we present a novel DL approach named
IrrNet-Bi-Seg for the automatic detection of contour-levee agricultural fields with the following
highlights. First, it used pre-trained model to reduce the effort of developing a large training dataset
for classification on new images. Second, its bi-stream network architecture fused both spectral
and textural information. Third, skip connection and deep supervision are incorporated in the deep
multilayer network to address the gradient vanishing challenge. Fourth, image segmentation was
used in the post-processing to suppress classification noise. Using this approach, we provide a
comprehensive assessment of the distribution of contour-levee irrigation for the state of Arkansas,
which also tests whether a generalized DL model developed and calibrated at a local scale is
suitable for application at a larger scale or in a different region. This first study of its kind is of
great importance to evaluating the environmental, ecological, and societal impacts of this prevalent
irrigation system type, and to providing stakeholders and managers information to better

understand and manage water resources.

2. Study area and data

2.1 Study area

Our study area is the Mississippi Alluvial Plain (MAP) region of Arkansas (Figure 1). This highly
productive agricultural region encompasses nearly 14 million acres of cropland across 27 counties
(Figure 1, “USDA/NASS 2020 State Agriculture Overview for Arkansas,” 2020). In particular,
Arkansas is the top US rice producer and approximately half of its total rice acres use contour-
levee irrigation (Wilson and Branson, 2004). The dry season coincides with the rice-growing
season, which usually starts from late March to mid-May and lasts till mid-August to mid-October
(Liang et al., 2019). As a result, irrigation has surged in demand. Between 1992 and 1997, the
irrigated area increased by 438,553 hectares (Reba and Massey, 2020). Given the projected

changes in drought frequency and crop water needs (Yang et al., 2019) and large uncertainty in



the distribution and timing of water availability (Gosling and Arnell, 2016), irrigation water use

will increasingly compete with natural ecosystem and municipal water needs in this region.
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Figure 1. The Lonoke County, Arkansas, and the 27 Arkansas counties covering the Mississippi
Alluvial Plain region. Lonoke County was seamlessly cropped into numbered image tiles and

overlain on the 2015 Cropland Data Layer. Edge tiles with no valid pixel values are not mapped.

2.2. High-resolution aerial NAIP imagery



A typical field usually only has 3 to 10% of the land in levees that are 28 to 33 cm wide (California
Rice Production Workshop, 2018). Due to their thin serpentine nature, levee features can barely
be visualized on medium or coarse-resolution satellite images (Figure S1). We used the United
States Department of Agriculture (USDA) National Agriculture Imagery Program (NAIP) aerial
imagery acquired during the agricultural growing season of 2015 at a 1 m resoluiton to discern
field-level details (free access at https://datagateway.nrcs.usda.gov/). Because no significant
increase in accuracy was found when DL algorithms trained on multispectral images were applied
over their natural-color counterpart (Salamati et al., 2012), we used the three natural color bands
(Red, Green, and Blue) to reduce data volume and increase transferability to other data sources..
We cropped the image covering Lonoke into 149 tiles at the dimension of 5000X5000 pixels
leading to each image capturing 25 km? (Figure 1). For the entire MAP region, there are 4,229

image tiles.

3. Proposed Method
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Figure 2. Proposed deep learning and image segmentation fused system detection workflow

(IrrNet-Bi-Seg).

3.1. Training sample selection, label annotation, and augmentation

We used manual annotation to build a training database of irrigation practice types following
previous protocols (Liang et al., 2016). Because contour-levee irrigation is strongly associated
with rice and soybean cultivation, we selected 16 representative tiles from Lonoke County (Figure
1)—the largest rice production county in Arkansas and 99% of its irrigated croplands use surface
flooding irrigation (Dieter et al., 2018). For test samples, we picked 41 tiles from 11 counties in

Arkansas’s MAP region for an independent assessment.



To boost annotation efficiency, we used a web-based image annotation tool Label4RS based upon
an open-source program Label Studio (Tkachenko et al., 2020) (Supplementary File 1). Contour-
levee fields display curved lines with irregular intervals that seem to resemble a topographical
pattern (Figure S1). All other irrigation systems (e.g., straight-levee, center-pivot, and zero-grade),
non-irrigated and non-agricultural lands are considered as background. The annotation started with
boundary delineation of contour-levees fields by wall to wall examination. Fields that were
difficult to classify were revisited by a second analyst. Three rounds of annotation and quality
control were conducted independently. The agreement between different annotations was
measured by the Cohen Kappa score (Cohen, 1960). The average Cohen Kappa score across all

annotated images is 0.84, which indicates high annotation reliability (Artstein and Poesio, 2008).

The labeling process identified 23.75% of the total pixels as contour-levee fields and the
rest (76.25%) as background. Because the class distribution is skewed that could induce a
class-imbalance problem, we rotated the original image tiles every 5 degrees from 0 to 180
degrees to generate additional images with different views. Sub-sample images at 300x300
size were then extracted using a sliding window strategy. The window was convolved over the
images with a stride of 40 pixels and the region encompassed by the window was selected. We
generated more than 1.7 million samples out of the 16 image tiles and we took an equal number
of samples from each class to balance the data distribution. A total of 200,000 were randomly

selected to train the model.

3.2 Two-stream convolutional neural network IrrNet-Bi
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Figure 3. The bi-stream convolutional neural network architecture of IrrNet-Bi.

3.2.1 Bi-stream encoder-decoder convolutional network IrrNet-Bi

To overcome the challenge in field levee recognition caused by variation of image color and
texture from irrigation scheduling, crop type, and varied levee appearance, a bi-stream CNN
IrrNet-Bi that processes RGB images and image gradients is implemented (Figure 3). The RGB
stream takes the color image as the input, whereas the other stream uses image gradients from the
intensity. Both streams have encoder and decoder layers, and shared convolution layers are used
to share feature maps. In the encoder network, the RGB and image gradients data are first
processed through two convolutional layers, the results of which are concatenated and passed to
the next layer, allowing feature incorporation from each stream and reduce the feature map’s
dimensionality. The outcomes of this convolution layer feed to the next units of both streams.
Supplementary File 2 gives two examples to demonstrate how bi-stream data fusion benefits the

process.

Gradient vanishing, where a deep multilayer network fails to propagate useful updates to the layers
near the input of the network, is a common challenge in DL (Ronneberger et al., 2015). We

employed skip connections to facilitate gradient propagation across deep layers by passing the



outputs from three levels of the encoder to the decoder (Figure 3). The combined usage of low-
level features from the encoder and high-level features of the decoder allows the integration of
both detailed and abstract features, leading to more accurate predictions (Huang et al., 2018;

Ronneberger et al., 2015).

Another key improvement in IrrNet-Bi is deep supervision, which provides an integrated loss
function as a means to directly supervise the earlier hidden layers, rather than only the output layers
(Xie and Tu, 2015). This step forces the decoder to generate more informative features in a way
that the final output mask balances information from earlier and later input layers. At each of the
four prediction stages in the decoder, the feature maps generated by both streams are concatenated
and then processed by the next convolutional layer (Figure 3). Due to the size variance of the first
three predicted masks, a bilinear upsampling is used to match the mask size with the size of the
annotated image. Finally, the predicted masks are compared against the annotated image to

calculate the overall loss.

3.2.2 Loss function
The loss function C is a weighted summation of the individual loss at all stages, comparing the
generated prediction with the annotated masks (Eq.1):

C=Y_,4%xXT(GM)+L, (1)
where G is the annotated mask for a given image; M; is the output at the ith stage of the decoder;
A; is the weight associated with the output for each level of prediction in the decoder; I'(*) is a

Softmax cross-entropy function for binary classification (Eq.2):
1
LG, M) = Z —(G(x,y) xlog(M;(x,y)) + (1 = G(x,y)) X log(1 = M;(x,y))) (2)
xy

where N is the total number of pixels; G(x,y) is the annotated label at (x,y) pixel, i.e., one for
contour-levee fields and zero for background; M;(x, y) are the predicted probability of contour-
levee for the pixel at (x,y). The weight 4; is decided empirically. To regularize the network
parameters, L2-norm is used:

Ly = Ap X Ll wi ) 3)
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where Ay is the regularization coefficient, empirically set to 10~ here, that controls the amount of
contribution of the L2-norm; w; is the weight parameters. The weights of the network are

initialized randomly.

3.3 Superpixel-enhanced post-processing

Given the detailed spatial information contained in the NAIP imagery that can cause large variation
of spatial structures, a post-processing superpixel segmentation step is introduced to reduce
classification noise and to sharpen field boundaries. We tested four mainstream image
segmentation techniques, separately: simple linear iterative clustering (Achanta et al., 2010), quick
shift (Vedaldi and Soatto, 2008), Felzenswalb and Huttenlocher (Felzenszwalb and Huttenlocher,
2004), and compact watershed (Neubert and Protzel, 2014). We downsized the original
50005000 resolution to 100x100, 200x200, 300x300, 400x400, and 500x500 using bilinear
interpolation to suppress fine details. Note that the downsized images are only used for image
segmentation and not for the IrrNet-Bi model. We used the shape elongation term E(S) to remove
superpixels with elongated shapes to avoid false-positive predictions (Stojmenovié¢ and Zunié,
2008). The detailed process is provided in Supplementary File 3. For each superpixel, a majority
voting evaluation is performed among the pixel-wise DL predictions to generate the final

classification IrrNet-Bi-Seg.

3.4. Performance Evaluation

We evaluated model performance in four ways. We first used ten-fold validation to estimate the
skill of a new model on unseen data using the 16 training tiles. Then, we used the 41 independent
test image samples to provide an unbiased estimate of the final tuned model. A set of pixel-level
accuracy metrics were used, including Accuracy, Precision, Recall, F1, Specificity, and Balanced
Error Rate (BER), as described in the Supplementary File 4. Moreover, we evaluated the network
without the inclusion of image gradient stream—Ieaving only the RGB stream as the input feature
(named as IrrNet-RGB-Seg model). Finally, we adopt two benchmark methods including Random
Forest (RF) and FCN-ATR-SKIP for comparison. RF (Breiman, 2001) is often established as a
baseline model in land cover mapping (e.g., Liang et al., 2016). FCN-ATR-SKIP is a fully

convolutional network that is made of atrous convolutional layers and exploits contextual
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information (Mboga et al., 2020), which has proven robustness to poor radiometric quality and
could be suitable for the NAIP images that lack atmospheric and radiometric corrections. We

trained and tested both RF and FCN-ATR-SKIP models in the same way as IrrNet-Bi-Seg model .

4. Results

4.1 Evaluation of image segmentation performance

After performing a visual comparison of the image segmentation results generated by four different
methods on a series of downscaled images, the Felzenswalb and Huttenlocher algorithm achieved
the best results on the downscaled 12.5 m resolution image (Supplementary File 3). By testing
on 41 independent test tiles, the slightly increased Accuracy from 0.83 to 0.86 indicated overall

improvement of IrrNet-Bi-Seg over IrrNet-Bi, though the difference is not significant using a
paired t-test at the significance level of 0.05 (Figure 4). Precision, which quantifies how well the
contour-levee fields have been classified, has significant improvement from an average of 0.49 to
0.61. The other metrics, other than Specificity, do not show significant differences in the values.
However, these results should not imply that the superpixel processing does not affect the mapping
results, which are discussed in the next section. The non-significant changes in metric values could
derive from their calculation on a pixel basis. While superpixels can remove some falsely classified
pixels if most of their pixels were correctly classified, errorous superpixels can add false positive
pixels. Overall, the number of corrected pixels slightly surpasses the number of miscorrected pixels,

as evidenced by the marginally increased accuracy values.
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using 41 independent test samples. The bottom and top of the box are the first and third quantiles,
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and the band inside the box is the median. Asterisks on top of the accuracy group indicate that the
difference between the means of IrrNet-Bi and IrrNet-Bi-Seg accuracy values is statistically

significant. *: p-value <0.05; **: p-value <0.01;.

4.2 Performance evaluation and benchmark comparison

The 16-fold cross-validation reported the mean accuracy of 0.90, mean BER at 0.17, and F'/ score
of 0.75 (Table 1). The relatively high accuracy and low error imply that IrrNet-Bi-Seg can
generally perform well when used to make predictions on data not used during the training phase,
which was further confirmed by the independent accuracy assessment. Image gradient stream
benefited the model, as evidenced by the increased values of all five accuracy metrics and
decreased BER from IrrNet-RGB-Seg to IrrNet-Bi-Seg. The degree of improvement is also
positively associated with the amount of levels (Supplementary File 5), which suggested that
images with larger area coverage of contour-levee fields will likely to have increased accuracy
with the inclusion of gradient steam. Finally, compared to RF and FCN-ATR-SKIP, respectively,
our method improved 15% and 17% in accuracy and reduced 53% and 48% in BER. The
consistently high accuracy of our model is suggested with the considerably low rate of BER at 0.33.
Moreover, the improvement in precision (of 18% and 5.3%) and in recall (1.1% and 19.8%) also

confirm the superior performance in this application.
Table 1. Performance comparison of random forest, FCN-ATR-SKIP, and IrrNet-Bi-Seg based on

the 16-fold validation and accuracy assessment using 41 independent test samples. The average

values of each metric alongside the standard deviation were reported.

16-fold validation

IrrNet-Bi- 0.90+0.07 0.17+0.09 0.80+0.11 0.73+0.18 0.75+0.15 0.94+0.05
Seg

Independent test
Random 0.76 £0.07 0.44+0.09 021+0.18 0.29+0.23 0.21+0.16 0.82+0.08
Forest

13



FCN-ATR-
SKIP
IrrNet-RGB-
Seg
IrrNet-Bi
IrrNet-Bi-
Seg

0.81+0.09

0.81£0.09

0.83 +£0.08
0.86 = 0.08

0.44 +0.09

0.39+0.11

0.35+0.10
0.34+0.13

0.25+0.02

0.40 £0.28

0.49+0.26
0.61 +0.29

0.25+0.21

0.29 +0.22

0.36 £ 0.20
0.37+0.27

0.21+0.17

0.29 +0.22

0.39+0.20
0.41+0.28

0.88 +0.09

0.92 £0.05

0.93 +£0.04
0.96 + 0.04

Visualization of selected results shows how our model achieves the best match to the reference

(Figure 5). In contrast to RF and FCN-ATR-SKIP, our model demonstrates a meticulous

segmentation of contour-levee fields with a homogeneous prediction for the crop fields. IrrNet-Bi

produced less pixelated prediction and more agglomerated patches that depict the crop fields more

realistically. The remaining isolated small patches that are most likely due to misclassification

were further removed by the superpixel post-processing.
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Figure 5. Comparison of contour-levee field predictions generated from IrrNet-Bi, IrrNet-Bi-Seg,
and the two benchmark methods RF and FCN-ATR-SKIP. NAIP column displays the 50005000
NAIP images at which those models are tested. The reference column represents all the annotated

labels. All red pixels indicate the contour-levee fields and green pixels are backgrounds.

4.3 Application: state-wide contour-levee field mapping

We predicted the contour-levee fields for the 27 agricultural counties in Arkansas (Figure 6a). To
better understand how the contour-levee system is used for rice cultivation and how it stands out
among other irrigation methods, we calculated the latitudinal distribution of contour-levee fields,
rice fields derived from the 2015 CDL, and irrigated land area derived from the 2015 LANID
product. We summarized total acreage of contour-levee fields, rice fields, irrigated lands, and
irrigated rice fields by county (Figure 6¢). The data of irrigated lands and irrigation by crop types
were acquired from the Crop Acreage Data in the year 2015 (USDA Farm Service Agency, n.d.).

Across the latitudinal gradient, the distribution of contour-levee fields shares a similar pattern as
the rice field coverage distribution (Figure 6b). At the higher latitude (north of 35.5°N), the
coverage of contour-levee fields is slightly lower than that of rice fields. Whereas in the lower
latitude regions (south of 34.5°N), the two curves almost coincide. The high overlap between rice
and contour-levee fields implies that, despite the higher water consumption, contour-levee
irrigation is still the most dominant method in rice cultivation in the State of Arkansas. Besides
rice, other crops such as soybean may also use contour-levee irrigation, which may result in their
small acreage differences. The latitudinal distribution of our predicted contour-levee fields also
follows the trend of the total irrigated land acreage. At the county scale, Poinsett, Cross, Arkansas
County are the top three with the highest coverage of contour-levee fields (Figure 6¢). A more in-

depth spatio-temporal analysis will be conducted in future studies.
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Figure 6. a) The IrrNet-Bi-Seg predicted contour-levee field map for the Mississippi Alluvial Plain

of Arkansas ; b) The latitudinal gradients in the area of contour-levee fields, rice fields, and

irrigated lands in the mapped area of a). The x-axis is in km? per 0.1 decimal degree band; c) The

total area of contour-levee fields, rice fields, irrigated lands, and irrigated rice fields, by county.

5. Discussion and perspectives

This is the first field-scale, contour-levee irrigation type mapping activity by using a DL algorithm

on high-resolution aerial imagery, and achieved satisfactory results based on the following

observations: 1) The 16-fold validation showed overall accuracy of 0.90; 2) The independent test

achieved an average accuracy of 0.86, demonstrating model generalizability and transferability; 3)
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IrrNet-Bi-Seg achieved 15% and 17% accuracy improvement over the benchmark methods; 4) Our

latitudinal and county analysis is consistent with the reported USDA data.

Several improvements enhanced the model performance. The bi-stream network design fuses
spectral information and the boundary pattern captured by gradients. Skip connection and deep
supervision addresses the gradient vanishing problem. A previous study suggested that the deep
supervision enhanced CNN model not only prevented overfitting but extracted features more
transparently and outperformed several state-of-the-art methods by 2-7% (Muhammad et al., 2018).
Finally, superpixel-based majority voting suppressed noise generated in the IrrNet-Bi prediction.
This is critical to many agricultural applications that require accurate boundary depictions for

making parcel-based crop or water management decisions (Cheng et al., 2020).

This work has made advances in both agricultural and remote sensing fields. One immediate
application is that the work can justify focusing conservation programs in regions with the greatest
proportional presence of contour-levee fields, such as Craighead, Poinsett, and Cross Counties
(numbered 8, 12, 13 in Figure 6). Such public- or private-sector programs could incentivize or
otherwise encourage adaptation of water-saving irrigation pactices such as land-leveling, multiple
inlet polypipe, or furrow irrigation (Massey et al., 2018; Reba and Massey, 2020). This work also
suggests the future advancement of DL and remote sensing integration from a few perspectives: 1)
it highlights the pressing need for standard training datasets that are customized for specific
application needs; 2) remote sensing applications should align more closely with decision making
activities. This work, in particular, will enable local (e.g., municipal) and regional (e.g., state and
watershed) water and agricultural management organizations, which may not otherwise have
sufficient and consistent data resources to estimate irrigation system type, to make better decisions
that influence regional water ability. 3) it presents many challenging tasks from some important

aspects of remote sensing, as follows.

1) Varying levee spacing. Depending on field slope, levee spacing can vary from a very
compact to a highly sparse form (Table 2a). In rare cases, the widest levee spacing exceeds the
sliding window size of this study (300300 pixels), leaving no line pattern in those captured views

will certainly contain. We plan to adopt a multi-scale architecture, with inputs centered on the
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original input image but containing more geographic context. By aggregating features from various

scales, the model may create a more informative set of features for model training.

Table 2. Illustration of four major challenges in irrigation practice mapping.

Dense Sparse Low High

Multi-class Tractor path Clear

2) Vague representation of contour lines. Levee visibility is a decisive factor in recognizing

the irrigation system. Because the NAIP program acquires leaf-on imagery, the visibility of
contour lines is impacted by high crop biomass (Table 2b). Problems arise when the trace of the
levees is imperceptible and can barely be detected due to its similarity in color to the field. Image
enhancement may be adopted in future to strengthen the levee pattern. Higher weights may be
given to the single gradient stream to weaken the influence of spectral information.

3) Multiple patterns in one field caused degraded annotation accuracy and model
performance. One typical example is the co-presence of tractor trails with the levees when
harvesting occurs earlier than the image acquisition dates (Table 2c). Additionally, some
previously contour-levee fields were converted to furrow irrigation, yet levee traces are still

distinct (Table 2¢ right). Intensive field land modification associated with the high rotation rate of
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rice also adds complexity to the pattern interpretation. About 72% of the state’s rice acreage will
be rotated into soybeans and will likely to be modified to furrow, center-pivot, or straight-levee
(Kebede et al., 2014). In a follow-up study, we plan to incorporate existing information on crop
cover type and irrigation status maps to support annotation and modeling.

4) Better boundary detection methods for improved superpixel quality. We demonstrated
the superiority of integrating superpixels for improved model performance. However, in some
cases where the segmented superpixels are inaccurate, the errors are propagated into prediction
(Table 2d). These undesirable shapes may not significantly decrease accuracy but limit the use of
such mapping products in applications that require precise crop field boundaries. We plan to apply
advanced techniques, such as Conditional Random Field, which considers the spatial relations

between the labeled pixels modeled in form of a graph.

6. Conclusion

A comprehensive understanding of agriculture-induced water consumption is critical to meet the
growing need for agricultural products amid increasing competition with industry and
municipalities. In this work, we proposed IrrNet-Bi-Seg that integrates augmented training
samples, skip connection, deep supervision, and superpixel post-processing, which, together,
provides new perspectives on using DL approaches for crop irrigation type mapping. With this
method structure, field-scale mapping of the contour-levee fields in the MAP region of Araksans
was accomplished. Given the size and coverage, this work could be adapted for larger-scale studies

and be tested for multiple irrigation type mapping.
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