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Abstract 

 
Agricultural irrigation accounts for nearly 70% of global freshwater withdrawal. Among irrigation 

practices, contour-levee cascade irrigation is of particular interest as it is water-intensive and 

widely used in many rice production regions. Despite its significant environmental implications, 

no study has quantified the distribution of contour-levee irrigation. One major challenge of remote 

sensing-based contour-levee field detection is how to accurately identify the thin and curved levee 

lines whose appearance varies dramatically in different fields. This paper presents a new deep 

network-based method that jointly optimizes semantically meaningful features to quantify the 

contour-levee fields. This new method uses a bi-stream encoder-decoder architecture to capture 

spectral information and gradient features. To maintain gimage gradient sharpness, a skip 

connection approach is employed to facilitate gradient propagation across long-range connections. 

Moreover, the new method uses deep supervision to generate more informative features from the 

earlier hidden layers and superpixel segmentation to reduce classification noise as a post-

processing step. By testing against 41 images across 10 Arkansas counties, the average accuracy 

was 86.23% and the method achieved 15%-17% improvement over benchmark methods. The 

results show that IrrNet-Bi-Seg maintains good transferability and is thus promising for larger-

scale applications.  

 

Keywords: remote sensing; deep learning; irrigation practice; agriculture water conservation  
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1. Introduction 
Irrigated agriculture represents 20% of cultivated land and accounts for 40% of global crop 

production (UNESCO, 2014) and nearly 70% of freshwater withdrawals globally (Molden et al., 

2007). Effective water resources management requires accurate quantification of irrigation water 

usage and efficiency, which are synergistically related to the irrigation method and land form 

(Hsiao et al., 2007). A natural focus for advancing this goal is a spatially explicit accounting of 

fields using the contour-levee irrigation strategy—the most water-intensive yet widely used 

method by some major crops, such as rice and soybean (Massey et al., 2017). In contour-levee 

fields, water flows by gravity from upper to lower fields, and levees are used to maintain 

inundation to control weed growth. Thus,an excessive amount of water is drained off by gravity 

and wasted (Massey et al., 2018; Vories et al., 2005). The irrigation application rate for contour-

levee fields is 8%-14% or 46-57% higher than some newer flooding methods, such as straight 

levee or zero grade, respectively (Henry et al., 2016; Massey et al., 2017; Reba and Massey, 2020). 

Knowing the distribution of contour-levee fields is a fundamental step to assess their impact on 

the regional hydrological cycle and is critically important to provide stakeholders information to 

understand and manage water resources and other sustainability metrics (Moreno-García et al., 

2021). 

 

Historically, irrigated land area is reported through the Irrigation and Water Management Survey, 

but this tabular data is less informative about its spatial distribution. Remote sensing technique can 

demarcate the extent of irrigated lands at various scales (Ketchum et al., 2020; Pervez and Brown, 

2010; Thenkabail et al., 2009; Xie et al., 2021), but methods to classify irrigation types are 

underdeveloped due to the complex visual characteristics of different geometry, photometry, and 

texture in various irrigation types. The center pivot is widely mapped because its simple and 

distinct large circular shape is easily captured by satellite or aerial images (Rundquist et al., 1989; 

Yan and Roy, 2014). Despite the significant ecological and environmental implications of contour-

levee irrigation, its spatial distribution is rarely known. The major challenges are that different 

contour-levee fields pose distinct image color and texture, and the levee appearance (e.g., spacing 

between levees and levee width) varies dramatically in different fields. Traditional pixel-based 

methods thus have difficulty incorporating textural features (e.g., contour-levee) in making 

predictions (Jawak et al., 2015). Object-based image analysis is also not viable as field contours 
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are diverse in shape and would require repeated tests and trials in parameter optimization (Yang 

et al., 2019).  

 

The integration of deep learning (DL) and very-high-resolution images have emerged as a 

promising solution considering their combined ability to optimize semantically meaningful feature 

extraction and classification (Mi and Chen, 2020). Here, we present a novel DL approach named 

IrrNet-Bi-Seg for the automatic detection of contour-levee agricultural fields with the following 

highlights. First, it used pre-trained model to reduce the effort of developing a large training dataset 

for classification on new images. Second, its bi-stream network architecture fused both spectral 

and textural information. Third, skip connection and deep supervision are incorporated in the deep 

multilayer network to address the gradient vanishing challenge. Fourth, image segmentation was 

used in the post-processing to suppress classification noise. Using this approach, we provide a 

comprehensive assessment of the distribution of contour-levee irrigation for the state of Arkansas, 

which also tests whether a generalized DL model developed and calibrated at a local scale is 

suitable for application at a larger scale or in a different region. This first study of its kind is of 

great importance to evaluating the environmental, ecological, and societal impacts of this prevalent 

irrigation system type, and to providing stakeholders and managers information to better 

understand and manage water resources.  

 

2. Study area and data 
 
2.1 Study area 
 

Our study area is the Mississippi Alluvial Plain (MAP) region of Arkansas (Figure 1). This highly 

productive agricultural region encompasses nearly 14 million acres of cropland across 27 counties 

(Figure 1, “USDA/NASS 2020 State Agriculture Overview for Arkansas,” 2020). In particular, 

Arkansas is the top US rice producer and approximately half of its total rice acres use contour-

levee irrigation (Wilson and Branson, 2004). The dry season coincides with the rice-growing 

season, which usually starts from late March to mid-May and lasts till mid-August to mid-October 

(Liang et al., 2019). As a result, irrigation has surged in demand. Between 1992 and 1997, the 

irrigated area increased by 438,553 hectares (Reba and Massey, 2020). Given the projected 

changes in drought frequency and crop water needs (Yang et al., 2019) and large uncertainty in 
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the distribution and timing of water availability (Gosling and Arnell, 2016), irrigation water use 

will increasingly compete with natural ecosystem and municipal water needs in this region.  

 
Figure 1. The Lonoke County, Arkansas, and the 27 Arkansas counties covering the Mississippi 

Alluvial Plain region. Lonoke County was seamlessly cropped into numbered image tiles and 

overlain on the 2015 Cropland Data Layer. Edge tiles with no valid pixel values are not mapped.   

      

2.2. High-resolution aerial NAIP imagery 
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A typical field usually only has 3 to 10% of the land in levees that are 28 to 33 cm wide (California 

Rice Production Workshop, 2018). Due to their thin serpentine nature, levee features can barely 

be visualized on medium or coarse-resolution satellite images (Figure S1). We used the United 

States Department of Agriculture (USDA) National Agriculture Imagery Program (NAIP) aerial 

imagery acquired during the agricultural growing season of 2015 at a 1 m resoluiton to discern 

field-level details (free access at https://datagateway.nrcs.usda.gov/). Because no significant 

increase in accuracy was found when DL algorithms trained on multispectral images were applied 

over their natural-color counterpart (Salamati et al., 2012), we used the three natural color bands 

(Red, Green, and Blue) to reduce data volume and increase transferability to other data sources.. 

We cropped the image covering Lonoke into 149 tiles at the dimension of 5000×5000 pixels 

leading to each image capturing 25 km2 (Figure 1). For the entire MAP region, there are 4,229 

image tiles. 

 

3. Proposed Method 
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Figure 2. Proposed deep learning and image segmentation fused system detection workflow 

(IrrNet-Bi-Seg).  

 

3.1. Training sample selection, label annotation, and augmentation 

We used manual annotation to build a training database of irrigation practice types following 

previous protocols (Liang et al., 2016). Because contour-levee irrigation is strongly associated 

with rice and soybean cultivation, we selected 16 representative tiles from Lonoke County (Figure 

1)—the largest rice production county in Arkansas and 99% of its irrigated croplands use surface 

flooding irrigation (Dieter et al., 2018). For test samples, we picked 41 tiles from 11 counties in 

Arkansas’s MAP region for an independent assessment.  
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To boost annotation efficiency, we used a web-based image annotation tool Label4RS based upon 

an open-source program Label Studio (Tkachenko et al., 2020) (Supplementary File 1). Contour-

levee fields display curved lines with irregular intervals that seem to resemble a topographical 

pattern (Figure S1). All other irrigation systems (e.g., straight-levee, center-pivot, and zero-grade), 

non-irrigated and non-agricultural lands are considered as background. The annotation started with 

boundary delineation of contour-levees fields by wall to wall examination. Fields that were 

difficult to classify were revisited by a second analyst. Three rounds of annotation and quality 

control were conducted independently. The agreement between different annotations was 

measured by the Cohen Kappa score (Cohen, 1960). The average Cohen Kappa score across all 

annotated images is 0.84, which indicates high annotation reliability (Artstein and Poesio, 2008).  

 

The labeling process identified 23.75% of the total pixels as contour-levee fields and the 

rest (76.25%) as background. Because the class distribution is skewed that could induce a 

class-imbalance problem, we rotated the original image tiles every 5 degrees from 0 to 180 

degrees to generate additional images with different views. Sub-sample images at 300×300 

size were then extracted using a sliding window strategy. The window was convolved over the 

images with a stride of 40 pixels and the region encompassed by the window was selected. We 

generated more than 1.7 million samples out of the 16 image tiles and we took an equal number 

of samples from each class to balance the data distribution. A total of 200,000 were randomly 

selected to train the model. 

 

3.2 Two-stream convolutional neural network IrrNet-Bi 
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Figure 3. The bi-stream convolutional neural network architecture of IrrNet-Bi.  

 

3.2.1 Bi-stream encoder-decoder convolutional network IrrNet-Bi 

To overcome the challenge in field levee recognition caused by variation of image color and 

texture from irrigation scheduling, crop type, and varied levee appearance, a bi-stream CNN 

IrrNet-Bi that processes RGB images and image gradients is implemented (Figure 3). The RGB 

stream takes the color image as the input, whereas the other stream uses image gradients from the 

intensity. Both streams have encoder and decoder layers, and shared convolution layers are used 

to share feature maps. In the encoder network, the RGB and image gradients data are first 

processed through two convolutional layers, the results of which are concatenated and passed to 

the next layer, allowing feature incorporation from each stream and reduce the feature map’s 

dimensionality. The outcomes of this convolution layer feed to the next units of both streams. 

Supplementary File 2 gives two examples to demonstrate how bi-stream data fusion benefits the 

process. 

 

Gradient vanishing, where a deep multilayer network fails to propagate useful updates to the layers 

near the input of the network, is a common challenge in DL (Ronneberger et al., 2015). We 

employed skip connections to facilitate gradient propagation across deep layers by passing the 
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outputs from three levels of the encoder to the decoder (Figure 3). The combined usage of low-

level features from the encoder and high-level features of the decoder allows the integration of 

both detailed and abstract features, leading to more accurate predictions (Huang et al., 2018; 

Ronneberger et al., 2015). 

 

Another key improvement in IrrNet-Bi is deep supervision, which provides an integrated loss 

function as a means to directly supervise the earlier hidden layers, rather than only the output layers 

(Xie and Tu, 2015). This step forces the decoder to generate more informative features in a way 

that the final output mask balances information from earlier and later input layers. At each of the 

four prediction stages in the decoder, the feature maps generated by both streams are concatenated 

and then processed by the next convolutional layer (Figure 3). Due to the size variance of the first 

three predicted masks, a bilinear upsampling is used to match the mask size with the size of the 

annotated image. Finally, the predicted masks are compared against the annotated image to 

calculate the overall loss.  

 

3.2.2 Loss function 

The loss function 𝐶 is a weighted summation of the individual loss at all stages, comparing the 

generated prediction with the annotated masks (Eq.1): 

 𝐶 =  ∑ 𝜆𝑖
4
𝑖=1 × Γ(𝐺, 𝑀𝑖) + 𝐿𝑟                                                           (1) 

where 𝐺 is the annotated mask for a given image; 𝑀𝑖 is the output at the 𝑖th stage of the decoder; 

𝜆𝑖 is the weight associated with the output for each level of prediction in the decoder; Γ(∙) is a 

Softmax cross-entropy function for binary classification (Eq.2): 

 Γ(𝐺, 𝑀𝑖) =  
1

𝑁
 ∑ −(𝐺(𝑥, 𝑦)

𝑥,𝑦

× log( 𝑀𝑖(𝑥, 𝑦)) + (1 − 𝐺(𝑥, 𝑦)) × log (1 − 𝑀𝑖(𝑥, 𝑦))) (2) 

where 𝑁 is the total number of pixels; 𝐺(𝑥, 𝑦) is the annotated label at (𝑥, 𝑦) pixel, i.e., one for 

contour-levee fields and zero for background; 𝑀𝑖(𝑥, 𝑦) are the predicted probability of contour-

levee for the pixel at (𝑥, 𝑦). The weight 𝜆𝑖  is decided empirically. To regularize the network 

parameters, L2-norm is used:  

𝐿𝑟 =  𝜆𝑅 × ∑ 𝑤𝑖
2𝑁

𝑖=1                                              `               (3) 
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where 𝜆𝑅 is the regularization coefficient, empirically set to 10-5 here, that controls the amount of 

contribution of the L2-norm; 𝑤𝑖  is the weight parameters. The weights of the network are 

initialized randomly.  

 

3.3 Superpixel-enhanced post-processing 

Given the detailed spatial information contained in the NAIP imagery that can cause large variation 

of spatial structures, a post-processing superpixel segmentation step is introduced to reduce 

classification noise and to sharpen field boundaries. We tested four mainstream image 

segmentation techniques, separately: simple linear iterative clustering (Achanta et al., 2010), quick 

shift (Vedaldi and Soatto, 2008), Felzenswalb and Huttenlocher (Felzenszwalb and Huttenlocher, 

2004), and compact watershed (Neubert and Protzel, 2014). We downsized the original 

5000×5000 resolution to 100×100, 200×200, 300×300, 400×400, and 500×500 using bilinear 

interpolation to suppress fine details. Note that the downsized images are only used for image 

segmentation and not for the IrrNet-Bi model. We used the shape elongation term E(S) to remove 

superpixels with elongated shapes to avoid false-positive predictions (Stojmenović and Žunić, 

2008). The detailed process is provided in Supplementary File 3. For each superpixel, a majority 

voting evaluation is performed among the pixel-wise DL predictions to generate the final 

classification IrrNet-Bi-Seg.  

 

3.4. Performance Evaluation 

We evaluated model performance in four ways. We first used ten-fold validation to estimate the 

skill of a new model on unseen data using the 16 training tiles. Then, we used the 41 independent 

test image samples to provide an unbiased estimate of the final tuned model. A set of pixel-level 

accuracy metrics were used, including Accuracy, Precision, Recall, F1, Specificity, and Balanced 

Error Rate (BER), as described in the Supplementary File 4. Moreover, we evaluated the network 

without the inclusion of image gradient stream—leaving only the RGB stream as the input feature 

(named as IrrNet-RGB-Seg model). Finally, we adopt two benchmark methods including Random 

Forest (RF) and FCN-ATR-SKIP for comparison. RF (Breiman, 2001) is often established as a 

baseline model in land cover mapping (e.g., Liang et al., 2016). FCN-ATR-SKIP is a fully 

convolutional network that is made of atrous convolutional layers and exploits contextual 
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information (Mboga et al., 2020), which has proven robustness to poor radiometric quality and 

could be suitable for the NAIP images that lack atmospheric and radiometric corrections. We 

trained and tested both RF and FCN-ATR-SKIP models in the same way as IrrNet-Bi-Seg model .  

 

4. Results 

4.1 Evaluation of image segmentation performance 

After performing a visual comparison of the image segmentation results generated by four different 

methods on a series of downscaled images, the Felzenswalb and Huttenlocher algorithm achieved 

the best results on the downscaled 12.5 m resolution image (Supplementary File 3). By testing 

on 41 independent test tiles, the slightly increased Accuracy from 0.83 to 0.86 indicated overall 

improvement of IrrNet-Bi-Seg over IrrNet-Bi, though the difference is not significant using a 

paired t-test at the significance level of 0.05 (Figure 4). Precision, which quantifies how well the 

contour-levee fields have been classified, has significant improvement from an average of 0.49 to 

0.61. The other metrics, other than Specificity, do not show significant differences in the values. 

However, these results should not imply that the superpixel processing does not affect the mapping 

results, which are discussed in the next section. The non-significant changes in metric values could 

derive from their calculation on a pixel basis. While superpixels can remove some falsely classified 

pixels if most of their pixels were correctly classified, errorous superpixels can add false positive 

pixels. Overall, the number of corrected pixels slightly surpasses the number of miscorrected pixels, 

as evidenced by the marginally increased accuracy values. 

 
Figure 4. Boxplots displaying the accuracy assessment reported by IrrNet-Bi and IrrNet-Bi-Seg 

using 41 independent test samples. The bottom and top of the box are the first and third quantiles, 
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and the band inside the box is the median. Asterisks on top of the accuracy group indicate that the 

difference between the means of IrrNet-Bi and IrrNet-Bi-Seg accuracy values is statistically 

significant.*: p-value <0.05; **: p-value <0.01;.  

 

4.2 Performance evaluation and benchmark comparison  

The 16-fold cross-validation reported the mean accuracy of 0.90, mean BER at 0.17, and F1 score 

of 0.75 (Table 1). The relatively high accuracy and low error imply that IrrNet-Bi-Seg can 

generally perform well when used to make predictions on data not used during the training phase, 

which was further confirmed by the independent accuracy assessment. Image gradient stream 

benefited the model, as evidenced by the increased values of all five accuracy metrics and 

decreased BER from IrrNet-RGB-Seg to IrrNet-Bi-Seg. The degree of improvement is also 

positively associated with the amount of levels (Supplementary File 5), which suggested that 

images with larger area coverage of contour-levee fields will likely to have increased accuracy 

with the inclusion of gradient steam. Finally, compared to RF and FCN-ATR-SKIP, respectively, 

our method improved 15% and 17% in accuracy and reduced 53% and 48% in BER. The 

consistently high accuracy of our model is suggested with the considerably low rate of BER at 0.33. 

Moreover, the improvement in precision (of 18% and 5.3%) and in recall (1.1% and 19.8%) also 

confirm the superior performance in this application.   

 

Table 1. Performance comparison of random forest, FCN-ATR-SKIP, and IrrNet-Bi-Seg based on 

the 16-fold validation and accuracy assessment using 41 independent test samples. The average 

values of each metric alongside the standard deviation were reported. 

Model Accuracy BER Precision Recall F1 Specificity 

16-fold validation 

IrrNet-Bi-

Seg 

0.90 ± 0.07 0.17 ± 0.09 0.80 ± 0.11 0.73 ± 0.18 0.75 ± 0.15 0.94 ± 0.05 

Independent test 

Random 

Forest 

0.76 ± 0.07 0.44 ± 0.09 0.21 ± 0.18 0.29 ± 0.23 0.21 ± 0.16 0.82 ± 0.08 
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FCN-ATR-

SKIP 

0.81 ± 0.09 0.44 ± 0.09 0.25 ± 0.02 0.25 ± 0.21 0.21 ± 0.17 0.88 ± 0.09 

IrrNet-RGB-

Seg 

0.81 ± 0.09 0.39 ± 0.11 0.40 ± 0.28 0.29 ± 0.22 0.29 ± 0.22 0.92 ± 0.05 

IrrNet-Bi 0.83 ± 0.08 0.35 ± 0.10 0.49 ± 0.26 0.36 ± 0.20 0.39 ± 0.20 0.93 ± 0.04 

IrrNet-Bi-

Seg 

0.86 ± 0.08 0.34 ± 0.13 0.61 ± 0.29 0.37 ± 0.27 0.41 ± 0.28 0.96 ± 0.04 

 

Visualization of selected results shows how our model achieves the best match to the reference 

(Figure 5). In contrast to RF and FCN-ATR-SKIP, our model demonstrates a meticulous 

segmentation of contour-levee fields with a homogeneous prediction for the crop fields. IrrNet-Bi 

produced less pixelated prediction and more agglomerated patches that depict the crop fields more 

realistically. The remaining isolated small patches that are most likely due to misclassification 

were further removed by the superpixel post-processing.  
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Figure 5. Comparison of contour-levee field predictions generated from IrrNet-Bi, IrrNet-Bi-Seg, 

and the two benchmark methods RF and FCN-ATR-SKIP. NAIP column displays the 5000×5000 

NAIP images at which those models are tested. The reference column represents all the annotated 

labels. All red pixels indicate the contour-levee fields and green pixels are backgrounds.  

 

4.3 Application: state-wide contour-levee field mapping  

 
We predicted the contour-levee fields for the 27 agricultural counties in Arkansas (Figure 6a). To 

better understand how the contour-levee system is used for rice cultivation and how it stands out 

among other irrigation methods, we calculated the latitudinal distribution of contour-levee fields, 

rice fields derived from the 2015 CDL, and irrigated land area derived from the 2015 LANID 

product. We summarized total acreage of contour-levee fields, rice fields, irrigated lands, and 

irrigated rice fields by county (Figure 6c). The data of irrigated lands and irrigation by crop types 

were acquired from the Crop Acreage Data in the year 2015 (USDA Farm Service Agency, n.d.).  

 

Across the latitudinal gradient, the distribution of contour-levee fields shares a similar pattern as 

the rice field coverage distribution (Figure 6b). At the higher latitude (north of 35.5oN), the 

coverage of contour-levee fields is slightly lower than that of rice fields. Whereas in the lower 

latitude regions (south of 34.5oN), the two curves almost coincide. The high overlap between rice 

and contour-levee fields implies that, despite the higher water consumption, contour-levee 

irrigation is still the most dominant method in rice cultivation in the State of Arkansas. Besides 

rice, other crops such as soybean may also use contour-levee irrigation, which may result in their 

small acreage differences. The latitudinal distribution of our predicted contour-levee fields also 

follows the trend of the total irrigated land acreage. At the county scale, Poinsett, Cross, Arkansas 

County are the top three with the highest coverage of contour-levee fields (Figure 6c). A more in-

depth spatio-temporal analysis will be conducted in future studies.       
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Figure 6. a) The IrrNet-Bi-Seg predicted contour-levee field map for the Mississippi Alluvial Plain 

of Arkansas ; b) The latitudinal gradients in the area of contour-levee fields, rice fields, and 

irrigated lands in the mapped area of a). The x-axis is in km2 per 0.1 decimal degree band; c) The 

total area of contour-levee fields, rice fields, irrigated lands, and irrigated rice fields, by county.  

 

5. Discussion and perspectives 

This is the first field-scale, contour-levee irrigation type mapping activity by using a DL algorithm 

on high-resolution aerial imagery, and achieved satisfactory results based on the following 

observations: 1) The 16-fold validation showed overall accuracy of 0.90; 2) The independent test 

achieved an average accuracy of 0.86, demonstrating model generalizability and transferability; 3) 
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IrrNet-Bi-Seg achieved 15% and 17% accuracy improvement over the benchmark methods; 4) Our 

latitudinal and county analysis is consistent with the reported USDA data.  

    

Several improvements enhanced the model performance. The bi-stream network design fuses 

spectral information and the boundary pattern captured by gradients. Skip connection and deep 

supervision addresses the gradient vanishing problem. A previous study suggested that the deep 

supervision enhanced CNN model not only prevented overfitting but extracted features more 

transparently and outperformed several state-of-the-art methods by 2-7% (Muhammad et al., 2018). 

Finally, superpixel-based majority voting suppressed noise generated in the IrrNet-Bi prediction. 

This is critical to many agricultural applications that require accurate boundary depictions for 

making parcel-based crop or water management decisions (Cheng et al., 2020).  

 

This work has made advances in both agricultural and remote sensing fields. One immediate 

application is that the work can justify focusing conservation programs in regions with the greatest 

proportional presence of contour-levee fields, such as Craighead, Poinsett, and Cross Counties 

(numbered 8, 12, 13 in Figure 6). Such public- or private-sector programs could incentivize or 

otherwise encourage adaptation of water-saving irrigation pactices such as land-leveling, multiple 

inlet polypipe, or furrow irrigation (Massey et al., 2018; Reba and Massey, 2020). This work also 

suggests the future advancement of DL and remote sensing integration from a few perspectives: 1) 

it highlights the pressing need for standard training datasets that are customized for specific 

application needs; 2) remote sensing applications should align more closely with decision making 

activities. This work, in particular, will enable local (e.g., municipal) and regional (e.g., state and 

watershed) water and agricultural management organizations, which may not otherwise have 

sufficient and consistent data resources to estimate irrigation system type, to make better decisions 

that influence regional water ability. 3) it presents many challenging tasks from some important 

aspects of remote sensing, as follows.  

 

1) Varying levee spacing. Depending on field slope, levee spacing can vary from a very 

compact to a highly sparse form (Table 2a). In rare cases, the widest levee spacing exceeds the 

sliding window size of this study (300×300 pixels), leaving no line pattern in those  captured views 

will certainly contain. We plan to adopt a multi-scale architecture, with inputs centered on the 
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original input image but containing more geographic context. By aggregating features from various 

scales, the model may create a more informative set of features for model training. 

 

Table 2. Illustration of four major challenges in irrigation practice mapping.  

a. Levee spacing b. Levee visibility 

Dense Sparse Low High 

    

c. Co-existing  field patterns d. Boundary detection 

Multi-class Tractor path Clear Vague 

    
 

2) Vague representation of contour lines. Levee visibility is a decisive factor in recognizing 

the irrigation system. Because the NAIP program acquires leaf-on imagery, the visibility of 

contour lines is impacted by high crop biomass (Table 2b). Problems arise when the trace of the 

levees is imperceptible and can barely be detected due to its similarity in color to the field. Image 

enhancement may be adopted in future to strengthen the levee pattern. Higher weights may be 

given to the single gradient stream to weaken the influence of spectral information.   

3) Multiple patterns in one field caused degraded annotation accuracy and model 

performance. One typical example is the co-presence of tractor trails with the levees when 

harvesting occurs earlier than the image acquisition dates (Table 2c). Additionally, some 

previously contour-levee fields were converted to furrow irrigation, yet levee traces are still 

distinct (Table 2c right). Intensive field land modification associated with the high rotation rate of 
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rice also adds complexity to the pattern interpretation. About 72% of the state’s rice acreage will 

be rotated into soybeans and will likely to be modified to furrow, center-pivot, or straight-levee 

(Kebede et al., 2014). In a follow-up study, we plan to incorporate existing information on crop 

cover type and irrigation status maps to support annotation and modeling.   

4) Better boundary detection methods for improved superpixel quality. We demonstrated 

the superiority of integrating superpixels for improved model performance. However, in some 

cases where the segmented superpixels are inaccurate, the errors are propagated into prediction 

(Table 2d). These undesirable shapes may not significantly decrease accuracy but limit the use of 

such mapping products in applications that require precise crop field boundaries. We plan to apply 

advanced techniques, such as Conditional Random Field, which considers the spatial relations 

between the labeled pixels modeled in form of a graph.  

 

6. Conclusion 
 

A comprehensive understanding of agriculture-induced water consumption is critical to meet the 

growing need for agricultural products amid increasing competition with industry and 

municipalities. In this work, we proposed IrrNet-Bi-Seg that integrates augmented training 

samples, skip connection, deep supervision, and superpixel post-processing, which, together, 

provides new perspectives on using DL approaches for crop irrigation type mapping. With this 

method structure, field-scale mapping of the contour-levee fields in the MAP region of Araksans 

was accomplished. Given the size and coverage, this work could be adapted for larger-scale studies 

and be tested for multiple irrigation type mapping.  
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