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Ixodes scapularis and Ixodes pacificus are the predominant vectors of multiple
human pathogens, including Borrelia burgdorferi, one of the causative agents
of Lyme disease in North America. Differences in the habitats and host prefer-
ences of these closely related tick species present an opportunity to examine
key aspects of the tick microbiome. While advances in sequencing technologies
have accelerated a descriptive understanding of the tick microbiome, molecular
and mechanistic insights into the tick microbiome are only beginning to emerge.
Progress is stymied by technical difficulties in manipulating the microbiome and
by biological variables related to the life cycle of Ixodid ticks. This review high-
lights these challenges and examines avenues to understand the significance
of the tick microbiome in tick biology.

The hematophagous arthropod microbiome
There is increasing interest in determining the role of the microbiomes of hematophagous arthropod
vectors of disease in pathogen acquisition and transmission as well as in the life cycle of the vector
itself. Of particular interest has been the arthropod gut microbiome, since acquiring and utilizing a
bloodmeal is central to the life cycle of the vector and hinges on the physical and functional integrity
of the gut. Further, pathogens acquired by the vector most often have to transit through the gut
and this brings the vector, the microbiome, and the pathogen into close proximity, a crucible of inter-
actions that may impact vectorial capacity. Hematophagous (see Glossary) arthropods have a re-
stricted diet, feeding predominantly on vertebrate blood. Comparison of the microbiomes of
different hematophagous arthropods demonstrates that dietary bloodmeal is not the only determinant
of their composition [1] and that the composition of the microbiome is broadly related to specific ar-
thropod genera. In hematophagous arthropods the microbiome composition is also determined by
whether they are obligate or facultative blood-feeders [2]. Obligate blood-feeders, such as ticks,
bed bugs, and tsetse flies, have evolved to rely on microbial endosymbionts to supplement several
B vitamins – such as biotin, folate, and riboflavin – that are deficient in blood [2,3]. Thus, in obligate
feeders, we observe a convergent evolution or cocladogenesis [2,3] that favors associations with
microbial endosymbionts – such as Wigglesworthia in tsetse flies, Wolbachia in bed bugs, and
Rickettsia, Francisella, Candidatus Midichloria, or Coxiella-like symbionts in ticks – that encode anal-
ogous functions critical to circumvent nutritional deficiencies in the bloodmeal [2,3]. These endosym-
bionts reside in bacteriocytes associated with the gut or with reproductive organs [2,3]. Facultative
blood feeders, such as mosquitoes, obtain their nutrients from additional food sources and do not
appear to demonstrate nutritional dependence on specific bacteria [4].

Eubacterial organisms in the microbiota of hematophagous arthropods have been shown to have
significant effects on arthropod evolution and ecology [1]. It is important to note that themicrobiome
also includes viral and eukaryotic microbes [2,3]. Although examination of the virome and eukary-
otic microbiome has been hampered by cumbersome analysis and bioinformatic pipelines, techno-
logical advancements are providing the momentum to describe the viromes and eukaryotic
microbiomes of arthropod vectors to enhance our understanding of the arthropod microbiome in
further detail [5–9]. Functional understanding of arthropod microbiota has largely come from
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studies on hematophagous dipteran and hemipteran insect vectors of disease. Important functions
associatedwith the arthropodmicrobiome include the production ofB vitamins [2,3],manipulation
of reproductive behaviors – including cytoplasmic incompatibility [10], parthenogenesis, and male
killing – and protection of the host against infection by pathogens and parasites [11–13], possibly
via modulation of innate immune responses [14–17].

Ticks are obligate blood-feeding members of the phylum Arthropoda, class Arachnida, subclass
Acari, and are evolutionarily distant from the class Insecta; they transmit human and livestock
pathogens worldwide [18]. The two primary families of tick species are Ixodidae (hard ticks)
and Argasidae (soft ticks) and a monospecific family, Nuttalliellidae [19]. The feeding habits of
hard and soft ticks vary significantly, with hard ticks feeding once in each developmental stage
on a limited number of hosts, and soft ticks feeding on several different hosts at more frequent
intervals [20]. While hard and soft ticks harbor microbiomes of varying complexities [21], a
detailed understanding of their composition, role in tick biology, and vectorial capacity is only
beginning to emerge. This review focuses on I. pacificus and I. scapularis, two Ixodes species
that are endemic to North America [22]. These ticks transmit multiple human pathogens [18],
and indeed these pathogens represent frequent microbial residents of the tick microbiome.
This review dwells only on the nonpathogenic components of the microbiome and summarizes
our current understanding of the bacterial microbiome of these tick species; it highlights the
knowledge gaps that remain to be bridged in order to achieve a functional understanding of
the tick microbiome.

Ixodes scapularis and Ixodes pacificus
I. scapularis and I. pacificus are the principal vectors ofB. burgdorferi, one of the causative agents
of Lyme disease in the USA [22]. I. scapularis is endemic to the Northeast, upper Midwest of the
USA, and southeastern parts of Canada. I. pacificus is endemic predominantly to the west coast
of the USA. In addition to B. burgdorferi, both species have also been known to carry Anaplasma
phagocytophilum (which causes human anaplasmosis), Babesia microti, the agent of babesiosis
[18], and Borrelia miyamotoi which causes a relapsing-fever-like disease [23]. I. scapularis also
serves as a vector of Powassan virus that causes encephalitis [24], Borrelia mayonii, that causes
Lyme disease, and Ehrlichia eauclairensis, a minor causative agent of ehrlichiosis [25]. I. pacificus
has been shown to carry spotted fever group Rickettsia [26], although there is no reported trans-
mission of Rickettsia from I. pacificus to vertebrate hosts. Both I. scapularis and I. pacificus larval
and nymphal stages tend to feed on small- to medium-sized mammals, birds, mice, squirrels,
deer, and humans; notably, I. pacificus also feeds on lizards [27]. Differences in host preferences
and geographic distributions between these two species significantly influence their microbiome
compositions (Figure 1) and offer novel opportunities to gain mechanistic insights into tick–
microbiome interactions.

Opportunities for acquisition of microbiota
Despite their comparatively long life spans, I. scapularis and I. pacificus have limited and discrete op-
portunities to acquire or lose microbes over their life span. The first opportunity for establishing the
microbiome is seeded from the adult female tick to her offspring through transovarial transmission.
After that, ticks can also acquire microbes from their environment and from blood feeding on verte-
brate hosts. Before and after feeding to repletion on a vertebrate host, I. scapularis and I. pacificus
ticks come into direct contact with soil microbes. Bacterial entry into the tick is predominantly through
transovarial, oral, or cuticular routes. The majority of the soil microbiome is comprised of
Acidobacteria, with bacteria from the phyla Verrucomicrobia, Bacteroidetes, Alphaproteobacteria,
Gammaproteobacteria,Deltaproteobacteria,Betaproteobacteria,Plantomycetes, andActinobacteria
seen at lower relative abundances [28] and some of these have been found to be associated with the
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Glossary
B vitamins: water-soluble vitamins
synthesized by microorganisms. Folate
and biotin are examples of this class of
eight vitamins.
Bacteriocytes: specialized giant cells
observed in certain arthropods that
harbor endosymbionts. Endosymbionts
provide nutrients such as vitamins and
amino acids to the host.
Endosymbionts: microorganisms that
live within the body cells of another
organism. They may or may not live in
specialized cells of the host organism,
and there may or may not always be a
mutualistic relationship. Endosymbionts
may be transferred vertically (fromparent
to offspring) or horizontally (free living
symbionts are acquired by the host
organism from the environment).
Hematophagous: feeding on
vertebrate hosts to obtain blood as the
predominant source of nutrition.
IMD pathway: a conserved immune
signaling pathway in arthropods that is
involved in the activation of antibacterial
responses predominantly towards
Gram-negative bacteria.
JAK/STAT pathway: a conserved
signaling pathway found in arthropods
and mammals; it is involved in key
events, including immunity, cell division,
repair, and remodeling. The main
components of this pathway include a
transmembrane receptor that engages
with signals in the external milieu, an
intracellular Janus kinase (JAK) that is
associated with the transmembrane
receptor, and signal transducer and
activator of transcription (STAT) proteins.
Microbiome: a community of
microorganisms that inhabit a specific
niche, such as within an animal host; it
includes commensal as well as
mutualistic and parasitic organisms.
Transovarial transmission:
transmission of microorganisms through
oocytes from mother to offspring.
Upd: a secreted protein, encoded by
the upd gene in Drosophila, that
activates the JAK/STAT signaling
pathway by binding to the
transmembrane receptor of the
JAK/STAT pathway.
16S rRNA: ribosomal RNA component
of the 30S small subunit of the
prokaryotic ribosome.



tick microbiome [29]. There has been ongoing debate as to whether these shared soil bacteria are
environmental contaminants or whether they constitute an important part of the intrinsic tick
microbiome [30]. The microbiome of the mammalian skin plays a vital role in shaping mammalian
immunobiology [31]. Therefore, we must be careful not to dismiss the role of microbiota on the
surface of ticks.

In a field experiment, Couper et al. [32] directly tested the influence of environmental exposure
time on the I. pacificus microbiome by placing larval I. pacificus in field enclosures buried in the
soil for different amounts of time, ranging from 0 to 6 weeks, and found that field-exposed larvae
acquire microbial richness. This was also supported by another study on I. scapularis that
coupled microbiome analysis with midgut immunostaining; it found that some taxa isolated
from external wash samples were also detected internally – such as Bacillus, Enterobacteriaceae,
and Pseudomonas [33]. Further, laboratory-reared I. scapularis and I. pacificus display distinct
microbiomes compared to field-collected ticks and are generally characterized by lower microbial
diversity – presumably due to a more sterile environment compared to field-collected ticks
[15,21,34,35].

Host blood meal and tick microbiome
The intimate relationship between Ixodes spp. and their blood-meal hosts prompted investiga-
tions onwhether the host influences the tick'smicrobiome. Several studies found that there is little
correlation between host skin or blood and the microbiomes of hard ticks such as I. scapularis
and Dermacentor variabilis [35–37]. Instead, those studies found that the most important factor
in structuring tick microbiomes was tick species [36]. When the microbiomes of D. variabilis
and I. scapularis that fed on two rodent blood-meal hosts – prairie voles (Microtus ochrogaster)
and white-footed mice (Peromyscus leucopus) – were analyzed, the overwhelmingly dominant
factor influencing microbiome composition was the tick species [37]. The study of Landesman
et al. [38] indicates that host species can also affect overall microbiome composition as well as
the relative proportion of the endosymbiont, Rickettsia buchneri. The life history of I. pacificus
may be well suited to address this question because its dominant blood-meal host is not a rodent
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Figure 1. Microbiome composition and distribution map of Ixodes pacificus and Ixodes scapularis. I. pacificus and I scapularis, the two vectors of Lyme
disease in the USA, with the most commonly reported blood-meal hosts for juvenile and adult stages of the tick. Summaries of major eubacterial components of the
adult tick microbiomes are displayed in the pie charts for each tick species. Illustration created by Ms Mona Luo.
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but a reptile [39–41], the western fence lizard (Sceloporus occidentalis). This species is Borrelia
refractory [42], meaning that infected I. pacificus feed on S. occidentalis are cleared of their
B. burgdorferi infections [42]. It is perhaps because of this unusual property of S. occidentalis
that Swei and Kwan [43] observed that nymphal I. pacificus that fed on lizards as larvae had
significantly lower microbiome species richness and higher relative abundance of the rickettsial
endosymbiont compared to ticks that fed on Peromyscus mice as larvae. A recent study of
several species of hard ticks found that generalist ticks that feed on diverse hosts have more
diverse microbiomes than nest-dwelling or one-host tick species [44]. These findings suggest
that the host bloodmeal does have an impact on the composition of the tick microbiome, due
perhaps to as-yet undefined factors in the bloodmeal that may modulate it directly or indirectly
by regulating the tick's innate immune responses.

Interstadial changes in the microbiome
How the tick’s microbiome changes throughout its life is not well characterized. The transmission
of obligate endosymbionts, a core component of the tick microbiome, from one generation to the
next and between tick life stages is a well-documented phenomenon in hard ticks [45,46]. In
I. scapularis, the most commonly reported endosymbiont to date is R. buchneri [47–50].
Meanwhile, I. pacificus is frequently, and potentially ubiquitously, associated with Rickettsia
genomospecies G021 which clusters closely with R. buchneri based on several folate-synthesis
loci [51]. Rickettsia genomospecies G021 is distinct from the spotted fever group Rickettsia
genomospecies G022 observed by Phan et al. in I. pacificus [26]. The importance of rickettsial
endosymbionts is believed to lie in the nutritional benefit they provide to the tick, particularly of
B vitamins, such as folate, that ticks lack from having a strictly hematophagous diet [52]. Gillespie
et al. [53] have shown that the genome of R. buchneri encodes two functional biotin operons not
observed in other rickettsial species. R. buchneri, the predominant endosymbiont of I. scapularis
[54], may therefore be unique in having the potential to provide biotin in addition to folate to the
tick host. Many microbiome studies have documented a pattern of increasing relative abundance
of endosymbionts through development of Ixodes spp. from larva, to nymph, to adult stages
[35,47,55–57]. Rickettsia accumulation by adult female ticks is thought to be an adaptation to
facilitate transovarial transmission of the endosymbiont to eggs, underlining the importance of
endosymbionts to tick survival and development [46,51,58]. It is worth noting that I. pacificus
and I. scapularis are associated with rickettsial endosymbionts but not with Coxiella or
Francisella-like endosymbionts observed in other tick species [59] (Table 1). The biological

Table 1. Bacterial endosymbionts of selected hard-tick vectors of human diseases in the USA
Tick vector Predominant endosymbionts Localization Refs

Ixodes scapularis Rickettsia buchneri Ovaries, salivary glands, guts [98,99]

Ixodes pacificus Rickettsia buchneri-like (GO21) Ovary, midgut [34,100]

Ixodes ricinus Candidatus Midichloria, Francisella,
Spiroplasma, Rickettsia

Ovaries, trachea, salivary
glands, Malpighian tubules

[73,101]

Dermacentor
andersoni

Rickettsia peacockii, Rickettsia belli,
Francisella spp., Arsenophonus spp.,

Salivary glands, guts [102]

Amblyomma
americanum

Coxiella-like, Rickettsia spp.a Ovaries, Malpighian tubules,
salivary glands, muscles, gut

[103,104]

Amblyomma
maculatum

Francisella-like endosymbiont and
Candidatus Midichloria mitochondrii

Salivary glands, gut, ovaries [105,106]

Haemaphysalis
longicornis

Coxiella-like, Francisella-like Malpighian tubules and ovaries [107,108]

aAmblyomma americanum also harbors Rickettsia amblyommatis, a potential pathogen [109].
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significance of this preferential association of rickettsial endosymbionts with I. scapularis and
I. pacificus is not understood.

In multiple studies of I. scapularis that examined the relative abundance within sequenced 16S
rRNA amplicons, adult female ticks were observed to exhibit a higher proportion of Rickettsia
endosymbionts than males and to have lower microbiome diversity as measured by Shannon
diversity or overall richness [35,47,55,56]. However, Tokarz et al. performed detailed qPCR
analysis of male and female ticks separately and did not observe significant differences in bacterial
abundance between male and female I. scapularis [47]. In contrast to I. scapularis, I. pacificus
males and females have more similar microbiome profiles based on species diversity and the pro-
portions of Rickettsia endosymbiont [34]. Looking to other Ixodes species, Ixodes ricinus resem-
bles I. scapularis in exhibiting a higher relative abundance of Rickettsia in female ticks relative to
males [60], but other species, such as Ixodes ovatus and Ixodes persulcatus, exhibited higher
alpha diversity and lower relative abundance of endosymbionts in female ticks [61]. Thus, there
is evidence that the patterns of overall microbial diversity and the relative abundance of a key
endosymbiont at the adult stage can vary depending on the species of tick and the methods
used for quantification. When drawing conclusions on general patterns across life stages it is
also important to distinguish between field- and laboratory-collected ticks and to identify the
stage of blood feeding (i.e., questing or engorged ticks) [62]. When ticks are sampled from
their host at various stages of engorgement, the Rickettsia endosymbiont dominates the tick
microbiome because it replicates prolifically during blood feeding [36,45].

In another study that examined several hard-tick species, Chicana et al. [44] reported similar pat-
terns of reducedmicrobiome species richness and diversity through life stages of both I. pacificus
and two Dermacentor species (D. occidentalis and D. variabilis). At the same time, the relative
abundance of the dominant endosymbiont abundance increased along life stage development
in several of the species examined [44]. On average, adult stages had 50% of larval richness,
while nymphs had intermediate levels of richness. This pattern may be due to competitive inter-
actions between the components of the tick microbiome or could reflect the gradual loss of tran-
sient, environmentally acquiredmicrobes typically associated with the larval stage [32]. There was
no evidence of competition between microbial species based on checkboard score (C-score)
analysis which compares the co-occurrence of operational taxonomic units (OTUs) with random
simulations of microbiome community assembly [32]. The loss of species through time within a
single life stage suggests that environmental microbes can assimilate into the tick microbiome
but that host filtration through immune or physiological processes may remove the vast majority
of microbes [32,33]. Gene function analysis of microbiomes through the duration of this experi-
ment did not find functionally different microbiomes here or in another study [62], suggesting
that the tick microbiome is functionally stable and potentially redundant [32,63].

Geographic changes and regional patterns in microbiome composition
Thus far, there has been limited evidence of microbiome structuring in I. scapularis or I. pacificus
based on habitat or region [37,44] but investigation of microbiomes across a broader spatial scale
has not been systematically attempted (Box 1). A comparative genomic study of six Ixodid tick
species has suggested the importance of ecogeographical fauna on the distribution of patho-
genic bacteria in ticks [64]. Consideration of the spatial scale in designing microbiome experi-
ments will be important in future studies to draw more general conclusions [65]. Rickettsia
species, the most commonly reported endosymbionts in I. scapularis and I. pacificus
microbiomes, are not observed in equal abundance in ticks from all geographic regions
[36,37,44,56,66]. In the southeastern USA, Rickettsia spp. were not common in I. scapularis
and, instead, an uncharacterized member of the family Enterobacteriaceae was the most
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common element of the microbiome, and while some specimens had low abundance, some
samples had no measurable reads corresponding to Rickettsia [56]. Meanwhile, in Canada,
Rickettsia was more common in the Atlantic region (New Brunswick and Nova Scotia) but further
west in Ontario, members of the families Pseudomonadaceae and Enterobacteriaceae appear to
be themost abundant elements in the I. scapularismicrobiome [66]. Some of this geographic var-
iation may be traced to genetic history or life-cycle differences in the tick population. Although
I. scapularis is considered to be one species from the southeast and north through the upper
Midwest and eastern Canada, there are considerable life-cycle differences between populations
of I. scapularis in the northeast versus the southern Atlantic coast, including different questing
modality [67], and host associations [68]. I. scapularis from the northeastern USA tends to
quest above the leaf litter, feed on small mammals and shrews, and is more likely to attach to peo-
ple. Genetic analyses suggest that there is some genetic structuring that limits gene flow from the
northern and southern populations of I. scapularis in the eastern USA [69,70] whichmay influence
reported microbiome differences. A detailed comparative genomic study [64] also highlighted the
multifactorial impact of ecogeographic fauna on the bacterial distribution in ticks. Therefore, stud-
ies that examine the alignment of tick population genetics with microbiome profiles could help to
shed new light on microbial diversity in ticks from different regions (Box 1).

Disparities in assessing the composition of microbiomes
An important decision in the preparation of amplicon-based microbiome libraries is the selection
of the gene target. Most microbiome analyses use amplicon-based methods targeting the 16S
rRNA region because it is highly conserved in prokaryotes but also has several regions of
hypervariability, termed V1–V9. Of the nine hypervariable regions, V1, V3, and V4 were the
most informative [56,66] while V9 gave the least reliable estimates of diversity [71,72]. Most tick
microbiome studies focus on the V3 and V4 regions, making cross-study comparisons more fea-
sible. Metagenomic sequence analysis [64], and metatranscriptomic RNA-seq approaches in
combination with metaproteomic approaches are also being utilized to obtain a comprehensive
description of the microbiota [73].

There is considerable debate on the complexity of the composition of the microbiome in Ixodes
species, with some reporting tens of different genera [60,74,75] and some reporting significantly
less diversity [33,76]. It is critical to understand that the tick microbiome is influenced at themacro
(population) and micro (organ/tissue) level in the context of biotic and abiotic factors [56,65,77].
The external surface of ticks can be contaminated by environmental microbes and cloud our
assessment of bona fide members of the microbiome [33], and stringent surface sterilization
protocols – including bleach, hydrogen peroxide, and 70% ethanol – may be required [17,78].
Despite stringent surface sterilization, Couper et al. [32] identified likely contaminants such as
Propionibacterium, a common resident on human skin. Whether these bacteria should be

Box 1. Addressing disparities in the composition of tick microbiomes
The disparate compositions of the Ixodesmicrobiome observed by different studies could be explained in part by technical
and sample processing differences. Even with a unified protocol, differences may be observed due to the differential impact
of biotic and abiotic factors on the tick. Careful assessment of the microbiome's composition under different conditions may
help to resolve the inconsistencies.

(i) A systematic assessment of seasonal variations in the composition of the microbiome may serve as a prologue to
how climate change may impact the tick's microbiome.

(ii) A systematic analysis of the composition of the tick's microbiome in the context of geographic variations, ecology,
and host preference may reveal source(s) of variation.

(iii) A detailed examination of genetic changes in Ixodes ticks may reveal a correlation with the composition of the
microbiome.
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discarded as contaminants or regarded as transient, yet relevant, passengers, remains a
conundrum. Instead of using whole ticks, dissection of specific tissues – such as guts, or salivary
glands – in conjunction with robust visualization strategies, pooling multiple low-input samples
[33], adding internal positive controls [79], and incorporating negative controls [80–82], may
also help to clarify the true composition of the tick microbiome. Analysis of core taxa (defined
as occurring at more than 5% of sequence reads in a majority of the samples) in the tick
microbiome can be employed to assess important taxa that constitute a consistent and important
presence [83].

Microbiome–tick immunome interactions
There is general consensus that the Ixodesmicrobiome is composed predominantly of rickettsial
endosymbionts [33,54,78,84], and members of other bacterial genera – such as Enterococcus,
Pseudomonas, Staphylococcus, Lysinibacillus, and Bacillus – occur at much lower abundance
[32,33,76]. Bacterial members that associate with the tick, even if transiently and in much lower
abundance, may impact the tick and the pathogens it harbors directly, or indirectly. A study in
2014 demonstrated that the microbiome plays an important role in facilitating B. burgdorferi
colonization of the tick gut [15]. I. scapularis larvae raised in sterile containers associated with a
significantly decreased relative abundance of Acinetobacter spp., Brevibacterium spp.,
Lysinibacillus spp., and Staphylococcus spp. compared to that in normal laboratory-reared
ticks. Dysbiosed larvae were also less effectively colonized by B. burgdorferi compared to larvae
raised in normal containers. The microbiome was suggested to impact the Janus kinase/signal
transducer and activator of transcription (JAK/STAT) pathway of the tick and to modulate the
peritrophic matrix (PM), a key component of gut barrier integrity [15]. The PM was shown to pro-
vide an effective barricade against luminal contents as spirochetes colonized the gut epithelium
[15]. Ross et al. [33] showed that B. burgdorferi lacks interbacterial effector immunity genes
that would be critical for it to survive in a polymicrobial milieu, indicating the need for
B. burgdorferi to escape the gut lumen and take cover under the PM. Consistent with this ratio-
nale, the abundance of Pseudomonas, Bacillus, or Enterobacteriaceae was negatively correlated
with B. burgdorferi abundance [85].

The JAK/STAT pathway is an evolutionarily conserved and key signaling pathway invoked in
repair and remodeling of the gut epithelial cells and in activating immune responses in arthropods
[86,87]. The tick genome encodes all the key components of this pathway [88] except Upd
(unpaired), a cytokine-like molecule, released upon damage to the epithelial cells, that is essential
for activation of the JAK/STAT pathway [89]. The observation that the tick gut microbiota modulates
the JAK/STAT pathway [15] raises the possibility that bacterial components may also activate this
pathway either by serving as Upd surrogates or by other mechanisms that remain to be understood.
The study of Chou et al. has shown that I. scapularis–microbiota associations are ancient [90] and
that, during the course of evolution, I. scapularis likely co-opted and domesticated a type VI
secretion amidase effector gene (Dae2) from one of its gut-associated bacteria to protect itself
from invading bacteria, including B. burgdorferi. A recent study by Hayes et al. [91] has shown
that tick salivary Dae2 has broad spectrum antibacterial activity and is delivered into the bite
site during feeding. Dae2 acts on skin commensal bacteria, such as Staphylococcus spp., to
pre-empt their entry into the tick gut. RNAi-mediated silencing of Dae2 resulted in an increased
abundance of skin-resident Staphylococcus in the gut and impaired tick feeding. Effector molecules
such as these antimicrobial peptides may control the abundance of environmental bacteria that
enter the tick and tick gut from the soil, bloodmeal, or even the host skin (Figure 2). This may explain
the relatively simple microbiome of the tick relative to the complex microbiomes of the environment,
including soil and host skin that the tick intimately associates with during its off-host and on-host
phases, respectively.
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I. scapularis has also been shown to express proteins such as IAFGP (Ixodes antifreeze
glycoprotein). IAFGP was originally identified as an antifreeze protein that was increased in
A. phagocytophilum-infected ticks [92] and was suggested to provide a survival advantage
during overwintering of nymphal ticks. Careful analysis revealed that IAFGP was also an antibac-
terial protein that effectively impaired bacterial biofilm formation [93]. Abraham et al. [94] showed
that increased IAFGP expression during A. phagocytophilum acquisition from the mammalian
host altered the composition of the tick-gut microbiota. This, in turn, resulted in compromised
barrier integrity, facilitating the exit of A. phagocytophilum from the gut to the salivary glands
[94]. While the integrity of the peritrophic matrix was critical for successful B. burgdorferi coloni-
zation [15], the converse was invoked in A. phagocytophilum infection [94]. This suggests that
the composition of the microbiota may also determine the frequency and success of coinfections
with these bacterial pathogens in endemic areas. Demonstrating a thematic pattern in controlling
the composition of the microbiota in the tick gut, it was observed that tick feeding induced the
expression of a protein of I. scapularis with a Reeler domain, known as PIXR, that inhibits the for-
mation of Gram-positive bacterial biofilms [76]. Abrogation of PIXR function by antibodies, or by
RNAi-mediated silencing, resulted in increased biofilm formation, altered microbiome composi-
tion, and impaired B. burgdorferi colonization of the tick. PIXR abrogation-mediated changes in
the composition of the gut microbiome had no impact on the JAK/STAT pathway [76] nor on the
integrity of the PM, invoking other interactions between microbiota and tick that influence
B. burgdorferi colonization and remain to be deciphered.

The immunodeficiency pathway, or IMD pathway, is an evolutionarily conserved innate immune sig-
naling pathway that activates the transcription factor NF-kB, leading to the expression of antimicrobial
peptides that predominantly control Gram-negative bacteria in arthropods [95]. Key components of
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Figure 2. Environmental encounters that facilitate the acquisition of microbiota. Ixodes scapularis and Ixodes
pacificus come into contact with environmental bacteria, including soil microbiota, during their off-host phase, and with
vertebrate skin microbiota during feeding. Defense responses of hemocytes (H) in the hemolymph, such as phagocytosis
and the production of antimicrobial peptides, may thwart some of these microbiotas from infecting the tick. Salivary
defense responses, including antimicrobial peptides secreted by the salivary glands (SG), may prevent skin microbiota
from infecting the tick. Immune responses of the gut may also control microbiota that enter the gut. The stand-off
between microbiota and the tick helps to modulate the immune milieu, barrier integrity, nutrient status, tick biology, and
consequently the vectorial capacity. Broken arrow indicates transovarial transmission of specific microbiota that inoculates
eggs laid by mated females. Illustration created by Biorender.com.
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the canonical IMD pathway are not represented in the I. scapularis genome [88]. This may seem an
evolutionary adaptation to maintain critical Gram-negative bacteria, such as Rickettsia [54], in the
tick and to avoid inadvertent activation of the IMD pathway. However, Shaw et al. [96] showed
that, despite lacking several components of the IMD pathway, including PGRPLC, that plays a
critical role in sensing the diaminopimelic acid (DAP)-type peptidoglycans that decorate Gram-
negative bacterial cell walls, the IMD pathway in Ixodes is functional, and is activated by infection-
derived lipid components of bacteria, including B. burgdorferi and A. phagocytophilum. As a better
understanding of the unique IMD pathway of the Ixodes tick unfolds, we may gain new insights into
microbiota that may or may not have adapted to this unusual IMD pathway.

Tokarz et al. [8] and Sakamoto et al. [7] have used unbiased deep sequencing to characterize the
virome of several tick species, including I. scapularis, and they show that viruses of the families
Bunyaviridae, Rhabdoviridae, and Chuviridae are predominant members of the tick microbiome.
Detailed and targeted studies will be required to understand interactions between these viruses,
the bacteria in the microbiome, and tick immune pathway/s (Box 2). Importantly, to make prog-
ress in our understanding of the tick microbiome, and its unique interactions with its microbial
partners, we must develop robust tools to generate germ-free ticks and gnotobiotic ticks – this
remains a major challenge in this field (Box 2). Kurlovs et al. [97] utilized various antibiotics, includ-
ing ciprofloxacin, to reduce rickettsial endosymbiont levels in I. pacificus and observed no impact
on fecundity or egg hatching. In recent studies, Oliver et al. [98] similarly used microinjection and
artificial feeding strategies to introduce the antibiotic ciprofloxacin into female I. scapularis to
effectively eliminate R. buchneri from the tick microbiome. Interestingly, their initial studies also
suggest that R. buchneri elimination has no impact on fecundity and tick development, raising
questions regarding the role of this endosymbiont in tick reproduction and development and
paving the way for determining the vectorial competence of R. buchneri-deficient ticks.

Concluding remarks
The long life cycle of the tick, variations in developmental stage, age, and gender of ticks, and the
spatial distribution of ticks, present disparatemicrobiome compositions and confound conclusive
determination of the bona fide members of the tick microbiome. The core tick microbiome is sim-
ple, and the reported diversity of bacterial genera in the tick microbiome likely represents transient
associations with bacteria in the environment, including from soil, leaf litter, host skin, or a host
blood meal. These transient microbial associations are under surveillance by tick innate immune
responses and are cleared by effector molecules such as antibacterial peptides, or the microbes
are potentially excreted due to the absence of cognate adhesins to engage with the tick gut.
Nevertheless, it is in the context of this constant friction with environment-associated microbes
that ticks also encounter tick-transmitted pathogens of human disease. Increased immune
surveillance may clear the environmental microbes, but this is likely to be energetically costly for
the tick and must warrant careful fine-tuning of the immune responses. Presumably, tick-borne

Box 2. Tools for manipulating the tick's microbiome
In order to obtain a mechanistic understanding of the impact of specific bacteria on tick biology it will be critical to improve
strategies to robustly manipulate the tick's microbiota.

(i) As artificial/membrane feeding systems for feeding ticks becomemore amenable for routine use in many laboratories,
strategies for generating ticks with little or no environmentally acquired microbiota may be feasible simply by adding
combinations of antibiotics to the medium. Given the long life cycle of ticks, long-term maintenance will require germ-
free isolators in conjunction with artificial membrane feeding systems.

(ii) Optimizing robust strategies for generating gnotobiotic ticks, and developing the ability to add and remove specific
microbiota and correlate the cause and effect of specific microbiota on tick biology, will be further important
milestones. This will facilitate the discovery of biocontrol strategies for preventing tick-borne diseases.
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Outstanding questions
Pathogens such as B. burgdorferi are
stably maintained, unlike environmental/
transient bacteria that appear to be
cleared. What are the mechanisms that
drive this differential infection of ticks?

Does the microbiome composition
change when specific tick innate
immune pathways are impaired or
abrogated?

Does the microbiome composition
change in the context of specific tick-
borne pathogens under similar envi-
ronmental exposures?



pathogens have evolved ways to suppress, circumvent, or even co-opt these immune
responses. Indeed, this highlights a fundamental difference between these transient microbial
passengers and the stable pathogenic microbial inhabitants that survive through the tick’s
developmental stages, and it raises important questions about tick–microbe interactions (see
Outstanding questions). The time is ripe to direct scientific efforts to unravel a functional and
mechanistic understanding of the tick microbiome, albeit transient, and its interactions with the
tick, and implicit in this is also the understanding of how tick-borne pathogens are sustained
and transmitted.
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