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ABSTRACT: We continue the study of real-time replica wormholes initiated in [1]. Previously,
we had discussed the general principles and had outlined a variational principle for obtaining
stationary points of the real-time gravitational path integral. In the current work we present
several explicit examples in low-dimensional gravitational theories where the dynamics is
amenable to analytic computation. We demonstrate the computation of Rényi entropies in
the cases of JT gravity and for holographic two-dimensional CFTs (using the dual gravita-
tional dynamics). In particular, we explain how to obtain the large central charge result for
subregions comprising of disjoint intervals directly from the real-time path integral.
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1 Introduction

Real-time computation of correlation functions, both time-ordered and out-of-time-order, as
well as density operator matrix elements and their moments, in any quantum system either
with or without dynamical gravity, requires the use of a suitable timefolded contour, with
segments of forward and backward evolution. One often however eschews the use of such
contours, relying instead on computations in the Euclidean domain, and then analytically
continuing the answers thus obtained into the real-time domain (see e.g., [2, 3] for non-
gravitational theories as well as the more recent analysis in gravitational context in [4]), a
strategy that works well when the quantum evolution is not subject to non-analytic sources.
While this is strategy is efficient in extracting information about the non-perturbative aspects
of the theory, it does not lend insight into the physical dynamical evolution directly.

These issues have been well appreciated in the context of quantum field theory for many
decades, but have come to fore with recent analyses of new semiclassical configurations that
address the black hole information problem. Inspired by the Euclidean path integral argu-
ments [5-8] that helped derive the static holographic entanglement entropy formula [9] and
its quantum generalization [10], recent investigations in low-dimensional gravity theories have
argued for the contribution of replica wormhole saddles [11, 12] in the gravitational path inte-
gral. For a review of these developments in the context of the black hole information problem,
see [13]. Furthermore, as argued for in [14] such replica wormhole configurations are quite
generic in the Euclidean formalism.

Motivated by these developments, and by earlier efforts [15] to derive the covariant holo-
graphic entanglement entropy prescription of [16], in a companion paper [1] we outlined the
general formalism for understanding the stationary phase approximation of the real-time grav-
itational functional integral. In addition, connections to the black hole information problem
and baby universes have also been discussed recently in [17]. Our goal in this current paper is
to exemplify the formal discussion in [1] with some concrete examples. For technical reasons
our examples will rely on gravitational dynamics in low dimensions, especially in 2 and 3
spacetime dimensions, where one can write down explicit geometries that provide the appro-
priate stationary points. It should however be clear from our discussion that the construction
can in principle be carried out, at least numerically, in higher-dimensions with dynamical
gravitational degrees of freedom.

The specific class of problems we study herein are those that correspond to computation
of Rényi entropies in holographic field theories in low dimensions, specifically AdSs and AdSs.
We recall that in the field theory one is instructed to consider path integral contours of the
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Figure 1: An illustration of the real-time contours for the computation of the density matrix p(t) (left) and traces
of its powers (Tr(p(t)3) on right) . The past boundary condition is supplied by the prescribed initial state po and
the direction of time evolution is explicitly indicated by the arrows.

form illustrated in Fig. 1. Reduced density matrices p ,(t) associated with spatial subregions
A on a Cauchy slice X, are obtained by sewing together the ket and bra parts along the
complementary domain A, leaving open the parts along A. Traces of powers of p,(t) are
computed by taking n-copies of the geometry and cyclically gluing the parts associated with
A across the copies in a replica Z,, symmetric manner. This boundary geometry provides the
asymptotic boundary conditions for our AdS gravity dual, which we seek to determine. In
what follows we will adhere to the terminology of [1] referring to the n-fold replica boundary
geometry as the branched cover spacetime B,,, its dual bulk gravity stationary phase solution
as the covering space geometry, M,, and the quotient of the bulk geometry by the Z,, replica
symmetry as the fundamental domain, M\n = My /7y,

The boundary and bulk spacetimes are composed of elementary building blocks which
are the ket (B and MX) and bra components (B” and MP), which we indicate with k and b
superscripts, respectively. We will be interested in computing the Rényi (or swap) entropy,
which will be obtained from the stationary phase evaluation of the gravitational path integral.
The n'" Rényi entropy will be given by

1 Z[By) 1
(n) — =~ nl) = _
S - log (Z[B]”) n—l(In nl),

SerlMa] Bulidean (1.1)

I, == —log Z[B,] =
) {—i Ser[Mp] Lorentzian

where B = By. The Lorentzian action with the general time-ordering necessary to compute



replica path integrals takes a Schwinger-Keldysh form:
Sgr[Mn] = Sgr [Mn] - Sgr[Mn] ) (12)

where we have forward evolution for the ‘kets’ (k) and backward evolution for the ‘bras’ (b),
resulting in the relative sign above. As argued in [1] (and earlier in [15, 17]), the on-shell
action I, in the Lorentzian context is real, and is given by

=2 (kM) = 50 = 2 [im(ShM]) —n Im(sEIMD], (13
where M = M;. While the general arguments for these statements were presented in our
companion paper [1], we will verify these statements explicitly in some specific contents herein.

The examples we discuss in the bulk of the paper are the following. In §2 we examine
the computation of Rényi entropy in an excited state with a localized dilaton excitation in
Jackiw-Teitelboim (JT) gravity [18, 19]. This provides a concrete context to contextualize
the general discussion of [1] and understand the geometry in some detail. To orient the reader
we present both the Euclidean approach as well as the real-time computation, for the state
we consider will be time-reversal symmetric, thereby providing a further check on the results
we obtain. In §3 and §4 we then turn to examples in 2d CFTs starting first with the case of
a single-interval in §3. This example has been well studied both in field theory and gravity
and we again use it to provide an illustration of the geometry of the real-time gravitational
solution. In §4 we then turn to a more interesting case, that of two disjoint intervals in a
CFT on Rb1. We first begin by illustrating the geometry and the computation of the second
Rényi entropy when the two intervals lie on a fixed time slice, and subsequently generalize to
the case when the intervals are relatively boosted with respect to each other. We conclude
with a brief discussion of other interesting avenues to explore in §5.

We include in the appendices various technical details that enter into our calculations.
Appendix A computes the Lorentzian on-shell action for a semi-infinite interval in a 2d CFT
using a Rindler regulator to contrast with the discussion in the main text. In Appendix B we
give further details for the evaluation of the Lorentzian on-shell action for disjoint intervals
supplementing the discussion in §4.2.2. Appendix C is a quick overview of the Schottky
construction of the covering space geometry (both on the boundary and in the bulk) for the
computation of second Rényi entropy for 2 disjoint intervals. For this case we present an
explicit evaluation of the Euclidean action from the bulk solution in Appendix D (as far as
we are aware this computation has not hitherto been reported in the literature). Finally,
Appendix E summarizes some familiar sign conventions and useful identities that we employ
in the course of our calculation.

2 A toy model in 2d gravity

As our first example, we will consider a two dimensional scenario and examine the real-time
contours for computing moments of the density matrix. The particular example we pick is the



ground state of JT gravity. In Euclidean signature one may prepare this state by considering
the thermal AdSy geometry with the Euclidean time identified with period 8 and taking
B8 — oo. For finite f we may also slice open this geometry to expose the thermofield double
(or Hartle-Hawking) state |[TFD(f)) at temperature 7 = 37! at time ¢t = 0 (which we can
think of as a pure entangled state of two quantum systems, one on each asymptotic boundary
of the Lorentzian geometry). If we focus on one of the boundaries we end up with a thermal
density matrix p, (t = 0) at temperature § by the usual thermofield double construction.
The entropy we compute may be viewed as the thermal entropy of this density matrix in
the limit # — oo or equivalently as the entanglement entropy between the two boundaries
[20-22]. For earlier investigations of entanglement entropy in JT gravity see [23, 24] and [25]
which computes the subleading corrections and discusses a Lorentzian interpretation of the
Euclidean replica trick.

We will focus on computing the moments Tr (p;‘(t = 0)) at f§ = oo. The geometry
computing this is obtained by stringing together n-copies of that preparing p, (t = 0) cyclically
and gluing them together. Once again in Euclidean signature we know the resulting spacetime:
the n-fold replica geometry is thermal AdSs, albeit now with a thermal circle that is n times
larger [5].

As described in [1] once one has the ansatz for the geometry M, which is dual to the
n-fold replica, we can either work in the covering space, or take a replica Z, quotient and
work in a single fundamental domain ./T/l\n = M, /Z,,. In the present example the covering
spacetime M, is simply AdSs. When we take the Z,, quotient we will obtain the fundamental
domain M\n which has a fixed point of the Z, action at the locus v = {& =t = 0}. We will
describe below the real-time geometry, delineating the various domains of interest, and then
proceed to compute the on-shell action. To help orient the reader given that the configuration
is time-reversal symmetric about ¢ = 0 (in fact it is globally static), we will describe both the
Euclidean and the Lorentzian constructions and computations therein.

Before proceeding, it is worth recording the actual answer for the moments of the ground
state density operator are not all that illuminating. The ground state entropy in JT grav-
ity is set by the value of the dilaton, and since there is a finite large S limit it gives
Tr(p(t)") = Tr(p(t)). Nevertheless, the example is instructive to consider, as it provides
for useful illustration of the general issues encountered in real-time replica geometries which
are easy to discern and intuit.



2.1 The Hartle-Hawking state in JT gravity

The two-dimensional JT gravity is a dilaton-gravity theory with the following action in

Lorentz signature:!

JT ¢0 2 — —
Ser = [/de\/;gR+2/Bd:U\/77K}

167G N
4 1
167G N

ESU+S¢7

[/;foimNR+ﬂ)+?L\ﬁq¢U(_D}’ (2.1)

where Sy is the topological 2d gravity action and Sy the dilatonic contribution. The classical
equations of motion obtained by varying the dilaton and metric demand

R+2=0, (VuVy —gw) 9 =0, (2.2)

respectively. We now proceed to solve these in Euclidean signature where the geometries are
familiar and thence explain the Lorentz counterparts.

2.1.1 Replicas in Euclidean signature

The thermofield double state where the Euclidean time coordinate ¢, has period 3 is simply
thermal AdSs by virtue of the first equation in (2.2). The n-fold replica is likewise the same
geometry albeit now with the thermal circle being n-times larger.

Covering space: It is useful to write down the geometry using the Poincaré disc model,
and parameterize the Euclidean covering space M,, by complex coordinates z, Z as
4dzdz dr? + Jpr?dr?

ds® = =4 =rel™/m 2.
T T - z2) 1-rm2 7' (2:3)

with the identification 7 ~ 7 + 27 n on the Poincaré disc to account for the n-fold cover.

A general solution for the dilaton can be easily written down:?

¢_

—1_22[a,(1+z2)—ia0(2—2)+a+(2—|—2)] (2.4)

The covering space is an n-fold branched cover over a single Euclidean-AdSs geometry; we
will require that the fields respect the replica Z,, symmetry which acts by 7 — 7 + 27w. The

"We will only quote explicitly the Lorentz signature action for the gravitational dynamics. The Euclidean
action is given by Sgb; = —Sg with the Lagrangian density evaluated on the appropriate signature metric in
both cases; see Appendix E.1. The overall negative sign is consistent with the general intuition the Euclidean
action is the Hamiltonian for imaginary time evolution.

2The easiest way to obtain the solution is to view Euclidean-AdS» as a hyperboloid embedded in R*'. The
embedding coordinates are {Xo, X+1} with the mapping
L Z2—Z _1+2z z+Zz

-1 —, —1 X =
1—2z2z

Xo = =
0 1—2z’ 1— 2z

to the Poincaré model. It is easy to see that (2.2) requires ¢ = a— X_1 + oo Xo + a4 Xi1.
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Figure 2: The Poincaré disc geometry dual to the thermofield double (or Hartle-Hawking) state of JT gravity and
its n-fold replica depicted here for n = 3. We have shaded the single fundamental domain obtained by taking the
replica quotient and indicated the interior boundary at 7 = € one introduces while computing the on-shell Euclidean
action contribution from a single fundamental domain.

dilaton solution (2.4) will be admissible only it is invariant under z — ze?™/™. This forces
a4 = a9 = 0 and thus the solution for the dilaton in covering space AdSsy is simply

1+ 2z
ai’
1—2z2z

6= (2.5)

where we have renamed a_ — « for simplicity.

A single fundamental domain: The Z,, replica symmetry acts on this geometry by 7 —

2mi/n

T + 2w, or equivalently as z — ze . Consequently, we can let v = 2" be coordinates on a

single fundamental domain AdSy/Z,. On the quotient space the metric and dilaton are then

given by
1-—n
4 (vo) = Zd 2 2d 2
d82 = (UU) QdUdQ_} =4 % y (26&)
2<1_ ,;) n?(1 —r?)
n (vD)n
1
1 v)n
b= aip)l (2.6b)
1— (vo)n

We have depicted the replica geometries of interest in Euclidean signature in Fig. 2. In what
follows we will find it more convenient to use a Cartesian chart for the fundamental domain,
so will let {v, 0} ={z +it,,x —it,}.

2.1.2 Lorentz signature replicas
In Lorentz signature we work with coordinates {¢, 2} with light-cone like combinations z* =
x4+t which are adapted to be positive in the spacelike domain as they will be natural analytic

continuations of Euclidean variables. The metric in the covering space is that of AdS» itself,
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Milne wedge

Figure 3: The domains in the Lorentzian geometry dual to a single fundamental domain M,.. We have indicated
both the ‘ket’ and ‘bra’ components of the spacetime M* and M® which are each a copy of the AdS, geometry past
of the Cauchy slice at t = 0. The geometry .K/l\n has a fixed point locus of the replica Z,, action at the splitting
surface 7. The ket and bra geometries are real in the Rindler wedges, regions spacelike separated from «, but are
complex in the Milne wedge, the causal past of ~.

with no identifications. It is more interesting to examine the geometry in a single fundamental
domain. Owing to the time translational symmetry of the background, we may analytically
continue and obtain the metric and dilaton profiles on M, to be:

5 ditdi™ (2.7a)

p=a——7. (2.7b)

The metric and dilaton profile in (2.7) clearly solves (2.2). However, it remains to fix the
value of . Since we wish to model the ground state, we should impose a positive frequency
condition as described in [1]. But (2.7) is not positive frequency, so the only allowed solution
is @ = 0 for which ¢ = 0 everywhere. This is somewhat degenerate in our description, but
we can certainly study the limit o — 0 for all replica numbers n. Note that this is in fact
precisely the way in which our Euclidean analysis was performed.

One can add excitations to this state by allowing for time-dependent sources to be turned
on in the real-time evolution. In this example one can give a clear picture of the positive-
frequency boundary conditions necessary to define the initial state pg. Let us consider this for
finite «, after which we can again take the limit & — 0. A massless scalar field ®, by virtue
of its conformal invariance satisfies the standard wave equation (—9? + 02)® = §(t — tg, ) in
the AdSs geometry. The solution in the presence of the source term will be given by

1 _e—iw(t—to)—ikzx
d(t,x) = — | ————-—dwdk. 2.8
() 277/ —w? + k2 « (2:8)
The positive frequency mode here can be isolated by an ic prescription; we pick the w = —|k|

pole when integrating over w. The result is the familiar retarded solution for the scalar field



(v is the Euler-Mascheroni constant)

@@Jﬁzwsgmt—m)(;kg(@—¢@2—a?)+v). (2.9)

We will not be considering excitations of the thermofield double state for simplicity, but the
above analysis makes clear that we can easily add additional fields coupled gravitationally
and study their effects.

Let us examine the Lorentzian geometry: the metric (2.7a) describes the metric on the
‘ket’ part of a single fundamental domain which we denote as M¥, see Fig. 3. As described in
[1] the cyclic Z,, replica symmetry together with the CPT symmetry that exchanges the bra
and ket M* <+ M? requires that the geometric configurations be real in the homology wedge
which is the region of spacetime spacelike separated from the fixed point locus ~, also referred
to as the splitting surface [1]. Since the fixed point locus = in the present case is at x =t = 0,
the homology wedges are the past Rindler wedges |z| > [¢t| with ¢ < 0. This is ensured in

+ are both positive in the right Rindler wedge,

(2.7) by the choice of analytic continuation: Z
and both negative in the left Rindler wedge. However, the solution is complex in the Milne
wedge, the causal past of v where 2= > 0 and + < 0. Additionally, we need to choose a to
be real owing to the Zs symmetry at ¢ = 0. This may be achieved by our choice of the initial
state.

We can exhibit a manifestly real form of the configuration in the right Rindler wedge by

the following coordinate transformation:
t=(np)"sinht,, x=(np)"cosht,, pERspandt, <O0. (2.10)
which maps (2.7) into

272 2 5.2
n=dp® — p=dt;,
(1 —n2p?)2

1 2 2
p=a- 0P (2.11)

ds* =4
s 1—n2p

One can pass to the other wedges by effectively rotating t,, by a phase as we cross the past
horizon of ~, with the result,

left Rindler wedge : ¢t = (np)" sinht, , x = —(np)" cosht,, peRspandt, <0,
lower Milne wedge : ¢ = —(inp)" cosht,,, z = (inp)" sinht,,, p€R>pandt,, € R.
(2.12)
2.2 The Rényi entropy computation

Now that we have our replica spacetime we need to evaluate the on-shell action. We will
first do so in the Euclidean setting just to remind ourselves of the expected answer, and then
proceed with the real-time computation.



2.2.1 Euclidean action calculation

The on-shell Euclidean action we need to evaluate is

I _ -—8E _ —50—545
Z=e =e % |on—shell =€ ‘

(2.13)

on-shell *

Recall that the counter-terms are designed to make the action finite, and recall also that our
limit o — 0 sends ¢ — 0 everywhere. Thus lim, oS4 = 0. It thus remains only to evaluate
the contribution from Sj.

The boundary conditions we need are that the radial coordinate is cut-off at r = r, and
the proper length of the boundary thermal circle is 3/e with the boundary value of the dilaton
being ¢y = do/e.

In this example it is simplest to work in the covering space, where Sy can be trivially
evaluated. One simply notes that the Gauss-Bonnet theorem gives us the gravitational con-
tribution to be the Euler character of a disc, and hence

$o Po

So‘on-shell = _167TGN X 4w = _4GN . (214)

One can also directly verify this result by computing the Einstein-Hilbert and Gibbons-

Hawking terms in Sy separately with a radial cut-off at r. and the thermal periodicity as

. .. 1472 .
required. One has the extrinsic curvature K = 2+T e for the constant r = r. slice and thus
(&

_ ¢0 / 9 /
SO’on—shell - 167Gy M, d :E\/gR“‘ 2 5, dx \F)/K

b0 / 4r dr 2rc 1472 /QW
___ %o _arar oy 49 “TTe d 2.15
167rGN>< 0 n(l—rQ)QX( )+ 1—r22nr, % 0 r (219)

_ %o
4Gy’

In principle there is a further contribution from the dilaton action (the Schwarzian term).
For the thermofield double state at 8 — oo however this can be checked to vanish at tree
level (Schwarzian fluctuations will give the near-extremal result [22]).

Let us also check the result directly by working in a single fundamental domain. We
will again use the Gauss-Bonnet theorem, but we will be careful to excise the contribution
from the cosmic brane, the singular codimension-2 locus of the replica Z, symmetry fixed
point at » = 0. The fastest way to proceed is to excise a disc D, of radius r = € around
the origin. One then computes Sy in terms of the Euler character of the resulting annulus
and the contribution from the inner boundary term at r = e which is another copy of the



Gibbons-Hawking term now on a circle of radius e. To wit,

= —n(50)fund

B / de\/§R+2/dxﬁK—2/ dz vVh K
167TGN -/(/l\n B r—e

9 1 2 2 27 (216)
_ n Qg 0—9 € _1+n%e / dr
167Gy 1 —n2e? 2ne 0

SO ’on-shell

_ %o
4GN
where we used the fact that the Euler characteristic of the annulus vanishes and K = —%

on the regulating surface at r = e (note the change in orientation of the normal gives us an
extra negative sign).

With the on-shell action at hand we can compute the n'" Rényi entropy for the thermofield
double (Hartle-Hawking) state. Since I,, = I it immediately follows from (1.1) that

(n) _ _%0
S Gy

(2.17)

which is the promised temperature independent answer.
2.2.2 Lorentzian action calculation

yo ¥

%

OUe

Rindler wedge

Milne wedge

Figure 4: The geometry in the vicinity of the splitting surface ~ in the Lorentzian geometry dual to a single
fundamental domain M,,. We have excised a neighbourhood U, of ¥ with boundary OU. to regulate the contribution
from the fixed point locus. We take Ol. to be parametrized by an arbitrary curve 3% = U(%7) in the z* plane.

Let us now compute the result for the on-shell action in Lorentz signature. Again, the
limit @« — 0 sends ¢ — 0 at all points, so we should understand S, as vanishing in the
limit. To compute the gravitational contributions, we will work in a single fundamental
domain. Recall that the metric on M\n is given by (2.7). We will organize the computation
as follows: M\n has two components M¥ corresponding to the forward evolution of the ket
and M? corresponding to the backward evolution of the bra. The direction of time evolution

,10,



being reversed in the two, one needs to compute as described in (1.3)

—~ 1
SF%WM%:EP%W—SQJ — I, = —in 8™ =20 Im(SE fa) - (2.18)

We can thus focus on computing the imaginary part of Sé:r’fu

plementing this computation, we will organize the pieces in the following manner: we first

nq from the ket. In im-

excise a region U, around #* = 0, the fixed point locus 4 with boundary OU.. This cut-
off region with the topology of a disc, intersects the Cauchy slice at ¢t = 0 on two corners
‘y}, respectively, as depicted in Fig. 4. We will take dU, to be parameterized by a function
T = U(27). We can implement the Gauss-Bonnet theorem on the lower-half plane after
excising U, provided we include a boundary term at the excision surface QU, and the corner
terms where this cut-off region meets the Cauchy surface at ¢ = 0. Specifically, focusing on
the gravitational contribution of the JT action (2.1) we have

So = %o {/ d2x\/—gR+2/d:c\/—'yK}
167TGN M B

®o /
_ dry—2 | deVEE - Seomer|
167Gy X o, zVh corne

(2.19)

with x being the Euler character. The bulk term encoded in x does not give any imaginary
contribution — these are completely subsumed into the Gibbons-Hawking term on the Cauchy
slice and the corner term. We will evaluate these in turn.

To facilitate the computation for the metric (2.7a) let us write the prefactor as o(Z%,27)
and compute the extrinsic curvature of the surface OU.. Given the normal vector

Uu(z-) o 1 0
N p— —_— —
" O o 0it \oU(i)di’ (220)
one finds: . 5 5
K=——— [JU”— U’ ( ~U_ - U’ ~U+>] ) (2.21)
2 (U/ 0)5 0T 0T

Factoring in the induced measure vh = v/o U’ we end up with the Gibbons-Hawking contri-
bution evaluating to

" 1 1
2/ dm\/ﬁK:/d:z— <U—8°gU+U’8 Oga) =Ty +T_+T,, (2.22)
Ue

U’ 0T~ ozt

where we have chosen to split the integrand and label the three integrals as Tp+ for con-
venience. We now note the following Tp, which is an integral of our cut-off function U(Z7)
alone, can be seen to be purely real. We can pick for instance a smooth function and realize
that the integral is over some domain of the form: ~ € [—d,z, + ] with z, being a zero
locus of U(x) and 6 > 0. Important to this argument is the fact that the integrand can be
made a regular function of 7. Furthermore,

T, = / dot 01089 (2.23)

oit

— 11 —



which is obtained by a &~ <+ & swap from T_ and we record that o(Z~,Z")) is a symmetric
function. We will see below that Im(7_ + 77 ) = 2Im(7_), so we will simply focus on its
evaluation for now.

Plugging in the conformal factor o from (2.7a) we have

T_:—/d@m?g":/ A (S — (2.24)
0T~ nT- 1— (#+i )

We see that the integral over £~ has a pole at the origin which needs to be accounted for. We

will do so using an ie regulator and defining the integrand by a principal value prescription.

Recall,
1

T =+ e

= Pé Fimd(z). (2.25)

The natural choice of the contours is such that z= — Z~ + ie [1]. We then have

T :% /dgz— [P;_ $z’7r5(56_)] <1+”_ 1 (U(:i‘)-’f_) ) ’ (2.26)

e Im(T) = —%(n .

3=

In evaluating the integral we have finally restricted to the cut-off surface and used the smooth-
ness of U(z) to obtain the final result. The evaluation of 7'y proceeds similarly with the ie
prescription reading now 2+ — T —ie. The relative sign of the ie implies that the imaginary
part from 7_ is doubled, so that

Im [2 dx \/EK} =2or <1 - 1> : (2.27)
U n

The final piece we need is the corner term where the spacelike Cauchy surface f]t intersects
with the chosen cut-off OU.. As explained in [1] this contribution arises when the regulator
surface OU, does not intersect the Cauchy surface orthogonally.? For our purposes we simply
need to know that the integral of the extrinsic curvature along the boundary in two dimensions
is the same as adding up the infinitesimal rotation angles of the normal n#. At the corner the
boost angle associated with the normal vector jumps by a factor i § as originally computed in
[28]. Specifically, at each corner 4= we get a contribution from the relative boost that arises
in going from the ket to the bra component M¥ of M\n4

/\/—hK — cosh™? (nk : n*g) =i g (2.28)

3We pause to note here that these contributions have been discussed earlier in [26] (in the context of
applications to black hole entropy computations) and were treated in full generality quite elegantly in [27].
We also note its use in the holographic entanglement entropy computations in [15].

4There is a useful heuristic for this calculation which underlies the complex Gauss-Bonnet theorem employed
in [29] — the cut-off surface has to pass from the timelike Milne region to the spacelike Rindler region and each
crossing involves a i3 jump in the normal (see also [26]). This is the piece we pick up in the corner contribution
if we have a non-orthogonal intersection at the Cauchy slice; see Appendix A of [1] for a brief discussion.
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We have two corners v+ with opposing orientations and hence

Im(Seorner) = Im (2/+ V-hK 42 \/TLK) =2r. (2.29)
e

Ye
Adding all the contributions from (2.27) and (2.29), we get the full Lorentzian action,

b0 %o

I ——92n—20 1 _ .
n "TorGy 1Gx

[2 VhEK + Scomer} = (2.30)
e

This indeed is the expected answer for one immediately recovers from the above the result
for the n'® Rényi entropy obtained from the Euclidean computation (2.17).

3 Rényi entropies in 2d CFTs: A single interval

As our next example we will examine the much studied example of a single-interval Rényi
entropy in the vacuum state of a two dimensional conformal field theory on the plane. This
computation which was first carried out in [30] and re-examined in [31] exploits the fact
that the computation of the Rényi entropies can either be viewed as the computation of the
partition function on a n-folded branch cover, or equivalently as the correlation function of
Z,, twist operators. The key point is that the n-fold branched cover of the complex plane is
a genus-zero Riemann surface which can be uniformized by a simple map.

To be concrete let us consider the CFTy on RY! and let A be a codimension-1 spacelike
region on some Cauchy surface with 9.4 comprising of two-points a; = (0,0) and as = (to, o)
with tg < 2p. The CFT computation gives (§ is a UV regulator)

n 1 T 1
S = — log Tr(ph) = T, 108 (Tu(a1) T-n(az))

3.1)
c 1 lag — a1 |? c 1 x3 — 13 (
S T D Pl R SR .

12( +n> Og( 52 AT R

Here 7,, 7_, are the Z, twist operators and we have exploited the fact that the partition

function on the n-fold cover B,, can be mapped to a two-point function of these twist operators.

We would like to reproduce this answer from a gravity computation. We will take the

bulk theory to be Einstein-Hilbert gravity in AdSs which has by the classic analysis of [32]

an asymptotic Virasoro symmetry with central charge ¢ = ?é%%jvs. We will use this relation
1.5

explicitly and rewrite the strength of the gravitation interaction 16671:%1%1\7 = 51 C-

3.1 The boundary replica geometry

Let us first examine the boundary replica geometry in Euclidean signature obtained by Wick
rotating ¢ — —it,.° The original geometry B is the complex plane with coordinates {v =

SWe will set £pqs = 1 in most of our analysis below, but will quote the result in terms of the dimensionless
CFT central charge.

SFor any tp < zo we can pick a Cauchy surface of R"! to be defined by % = % — its normal is a timelike
vector: xo % + to %, We can Wick rotate this vector and obtain the Euclidean spacetime of interest. It is
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x+it,, v =x—it,}, and hence the branched cover replica space B, is topologically a sphere,

with branch points at a; and ag where it has a conical excess given by 27(n — 1). Let z be
o

v—g; ’

a uniformization map to the smooth covering space, which itself is a complex plane with

= (=) i

In the z-plane the n-sheets of the branched cover are mapped to n wedges with opening angle

the complex coordinate on the covering space. The complex structure on B, defines

coordinate z defined by

27” as depicted in Fig.2. The uniformization map can be viewed as a conformal transformation
since
2 2 1 laz — a1|2
dzdz = Q°dv dv, Q= 5 - (3.3)
n 1—1 1+1
(v—a1) " n(v—ag) "

ai

real
real

real
complex complex
real
Figure 5: Causal domains on the boundary ket spacetime B* for a two dimensional field theory with the region A
taken to be a spacelike segment of a boosted Cauchy slice. We indicate the regions where the resulting metric is

real and complex, respectively. In general the metric is not guaranteed to be real in regions that are in the causal
past of the entangling surface 0.A which here comprises of the two points a1 and as.

The passage to Lorentz signature can be achieved by the inverse Wick rotation and in

terms of our light-cone coordinates #+ = z + ¢, the metric is
2 ~b g
—a dz™ dx
ds® = |a2 ) 1’ T 1 1, 1 11 1,1 (3'4)
n (T= —a1)2 20 (T~ —ag)22n (Tt —ay)2 2 (2t —ag)2tom

Note that the Wick rotation is carried out with respect to the time-coordinate on the base
space B where the physical quantum fields reside. The Lorentzian metric on B,,/Z,, is not real
everywhere: it is complex in regions that lie in the causal past of 0.A. For the present example

simpler to visualize the case when to = 0. However, for the SL(2) invariant CFTy vacuum, all foliations by
slices of constant —% + % are equivalent by the underlying boost invariance.
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this is the domain that is timelike separated from one endpoint, but spacelike separated from
the other as depicted in Fig. 5.7

In arriving at this answer we have used the Euclidean construction of the branched
cover as a crutch, but one can verify this directly by taking n-copies of the ket and bra
spacetimes with the replica gluing conditions. A simple way to see this is to consider a
conformal transformation which makes A a semi-infinite interval, mapping in the process its
past domain of dependence to a Rindler wedge of the resulting Minkowski spacetime (on B)
[33]. The n-fold cover is obtained by gluing the Rindler wedges of A cyclically across the
replica bras and kets (while those of A€ are glued together within the bra-ket combination
of each replica copy). The combination of Z,, replica symmetry and the Zy CPT-conjugation
swapping bras and kets, ensures that the resulting spacetime has a real Lorentz signature
geometry in the Rindler wedges, but not necessarily so in the Milne wedges [1]. The example
above makes this manifest.

3.2 The bulk Rényi geometries

Given the boundary geometry B,, we are tasked with constructing the bulk dual M,,. We will
first describe the geometry in Euclidean signature and then outline the Lorentzian description.
The covering space geometry M,, is simply AdSs, since the z-plane is a copy of C. It is more
interesting to examine the geometry of the fundamental domain M\n where the boundary has
the conical singularities associated with the branch points.

We will proceed by exploiting the fact that the Fefferman-Graham expansion converges in
AdS;3 (since all geometries are locally diffeomorphic to AdSs3). Using the general results of [34]
one can write the metric dual to the state of interest in terms of the boundary stress tensor
data (this was used by [35] to compute holographic Rényi entropies in AdS3). The physical
state we are considering on one fundamental domain of the CF'T is the state obtained by acting
on the vacuum with the twist operators (which thence create the appropriate monodromy
around the branch points).

The standard Fefferman-Graham expansion in AdS3 with boundary metric v;; and p
being the Fefferman-Graham radial coordinate, is given as [34]

2
ds® = Z/;? ; [(1 - g Tr(T)) 5.k + gTi’“} Vh [(1 - g ﬂ(T)) o+ ng]} dz' dz? . (3.5)
Working in the complex coordinates v, v the geometry takes the form:
2 dp” | dvdy 1 [Ty dvd — Ty dv* — Ty dv?]
42 p 2 (3.6)
+ £ [(Too Too + T25) dvds — 2Ty (Lo dv? + Ty )]

ds

" As noted in [1] the boundary conditions at the asymptotic AdS boundary are specified by a real boundary
metric (with conical singularities at the entangling surface). The reason for the complex metric in (3.4)
is because we have made a specific choice for the boundary conformal frame which is related to the real
boundary metric by a complex Weyl factor. We have analytically continued the Euclidean boundary geometry
(3.3) obtained via the uniformization and it is this choice that is responsible for the complex Weyl factor.
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For the case of interest we need to know the boundary stress tensor, which is easily
obtained by the conformal map (3.2). One has the result given in terms of the Schwarzian
map for the diagonal components, viz.,

Ty = Sch(z v)—l <1—1> jaz — a1 |”
S i nf (o= a)*o — )t (3.7)
as — a
Ty = Sch(z,0) = 3 <1 - n2> G —|aj)2(u1’— e
The off-diagonal term is instead given by the conformal anomaly term:
Toy = —20,00 logQ =7 {(1 - ;) §(Jv —a|) + (1 + i) o(Jv — a2|)] . (3.8)

Plugging in these expressions into (3.6) we obtain the metric on a single fundamental domain
Mn in Euclidean signature.

One can exhibit the fact that the Euclidean geometry on M,, is smooth by constructing
an explicit diffeomorphism (see [36]) from the (p,v,v) coordinates above to a new set of
coordinates (&,y,7). All we need is for this diffeomorphism to act as the desired conformal
transformation implementing the uniformization. Explicitly, we have

VP« p Q2 0;log Q

= s = Z + ; 39
. 1+ p0210. log Q| Y 1+ p0210. log Q| (3.9)
which maps the metric on the covering space to the standard Poincaré metric:
d€? + dydy

27

On this covering space the replica Z,, symmetry acts as z — e » z or equivalently y — e Y.
The fixed points of the symmetry are the branch points v = a7 and v = as on the boundary,
and a bulk locus « which in this particular case is a geodesic that connects the two boundary
points. In the regular (§,y,y) coordinates this is the geodesic that connects the north and
south poles of the boundary Riemann sphere.

The Lorentzian geometry on the ket part, M¥, of a single fundamental domain ]/\/[\n can
be obtained from the above. One might naively think this is simply an analytic continuation
of the (v, ) coordinates. However, we should exercise some care since the naive analytic
continuation of the T,z component of the stress tensor which has delta function sources would
indicate that we have shockwaves propagating along the past-light cones of the branch points.
This is incorrect and inconsistent with the boundary conditions of the variational problem
described in [1]. The single fundamental domain has a fixed point locus from the replica
Zy, action, and a complex metric in the causal past of 0A, but no singularities along the
light-cone. Instead the correct metric in real-time is one where we Wick rotate T, — T5- z-
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and Tz — Ts+3+ but define the analytic continuation of T, — Ts-;+ to only have delta
function singularities at the fixed point locus. To wit, (with T_4 = T;-;+ etc)

T = omi {(1 - ;) 5 — ar)8(it —ar) + (1 + i) 57 — az)3(F — an)| |
=3 (1 - nl> G —|Zf>2_<§cl|2— @) 3.1)

T _ 1 1 1 |CL2 — a1|2
T n?) (it —a)2 (@t —ag)?’
in terms of which we can parameterize the bulk real-time metric on M* as

dp?  ditdi~ 1
ds? = 47’)2 TR 5 (FT di™ d&™ + T (d77)% + Ty (di*)?)
p p (3.12)

+ (T Ty +T2,) ditde = 2Ty (T (d37)” + T (d2F)%)].

The choice of analytic continuation made in (3.11) is really a question of correctly in-
terpreting the codimension-2 delta functions therein. One can justify this by an integral
representation in momentum space. We recall that the T component is determined by the
conformal factor € since

T7+ = 2878+ log Q(i‘—i_vi_)

1 B -
=2 <1 - ) 0_04 log\/ (2~ — a1)(Z+ — ay) (3.13)

n

+2 (1 + ;) D_0y log /(5= — az) (@t — ay).

We need to define the argument of the logarithm by analytic continuation, which we do by
using a Fourier transform trick. Consider the following regulated integral which in Euclidean
space, X = (z,t,), provides the standard integral representation of the modified Bessel func-
tion of the second kind Ky(x) = — log(|x|) + constant:®

1 ipX
log(|x]) = — lim — /d2 _

m—0 27 P |p’2 + m2
: 1p-x
— — lim — /d2p R (3.14)
m—0 27 p? +m?2 —ie

Using the last line of the expression above it can be checked that one does recover (3.11) from
(3.13).

8The Pauli-Villars mass term here is introduced to remove the IR divergence. We are also allowing for a
constant shift which will not affect the analysis.
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3.3 Rényi entropies from gravity

We will now outline the computation of the Rényi entropies from the bulk geometries con-
structed in §3.2. We will first revisit the computation in Euclidean signature as before just
to set the stage and then proceed to describe how the Lorentzian computation works. The
logic we follow will roughly parallel the discussion in §2.2 though we now have to deal with
the fact that the geometry in a single fundamental domain is more complicated.

3.3.1 Euclidean on-shell action in a fundamental domain

We will compute the Rényi entropies using (1.1). As remarked above, we carry out the
computation of I, in a single fundamental domain and then scale it up to the covering space.
In evaluating the fundamental domain action, as explained in [5], we need to ensure that we do
not include the contribution from the cosmic-brane, i.e., from the delta-function singularities
arising as a result of taking the quotient. We thus want to evaluate

I, = SEIM,] = nl, = n SE[M,] . (3.15)
cosmic brane excised
We will start by outlining the contributions to SgEr [/Wn] and then note the pieces that we need
to remove to excise the cosmic brane contribution.

The on-shell action in gravity has three distinct contributions: a bulk term from the
Finstein-Hilbert action, a boundary Gibbons-Hawking term, and finally boundary countert-
erms necessary to regulate the divergences. For definiteness we will regulate the spacetime
by cutting-off the radial coordinate at p = p. and thence take the limit p. — 0 at the end of
the computation. Denoting the induced metric on the cut-off timelike boundary B. by v,.
we have the action as the sum of the aforementioned three contributions:

1

SELMA] =~ e [/xz de\/g?(R+2)+2/BC\ﬁK—/BC ﬁ(szlong)]. (3.16)

We can evaluate each of these in turn. Firstly, since R = —6 it follows that the bulk
contribution can be evaluated explicitly to be

/ﬂn &z /g (R+2) = —4/@ NG

B _ [P 1 Te(T) det(T)
= / dvdv /C dp [pz + 1p + 16 (3.17)
11T g f}
= — dvdv | — — log — — A/ [Tw]”] -
/ [pc 4 Pe Lol

In this expression p, is the value of p at the origin of AdSs. In the Fefferman-Graham chart
this is the point where the determinant of the metric vanishes. Explicitly one finds

(3.18)

Px = : .
Te(T) + \/ Te(T)? — 4 det(T)
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The boundary terms follow easily once we note that K = —7 p 8\;{ + 2 evaluated at
p = pc and that the curvatures of the induced metric on the cut-off boundary are related to

the stress tensor. One has

o e (G )

=2 / dvd@—.
B. Pec

The counterterm piece evaluates to

(3.19)

/B dzx\ﬁ(2+7Rlogpc)—/dvdv (1_TT(T)

o (1+ logpc)> . (3.20)

Putting the pieces together we find

SEIM,] = — 2; dvd [TELT) (1+logp*)+\/]Tvvl2}. (3.21)

Now as remarked we need to exclude the contribution from the cosmic brane. In the
form written above in (3.21) this term is completely isolated in the contribution to Tr(7T).
Dropping these terms will in fact suffice to extract for us the part that is the cosmic-brane

I, = /| Twol? . 22
~5in dvdv \/ |Tyy) (3.22)

We can evaluate this integral using the explicit form of the stress tensor quoted in (3.7). One

. c 1 ~ (az —ay)?
I, =——(1- dvdv
A8 ( n2)/ lv—ai*|v — ap)?

—_ < <1_7112>/dvd176vQ6vQ, Q(v,v) = log

cd 1
T (1 - n?) {55 TP, Qa’”'Q}

excised action. As a result:

has

(3.23)

This integral has been evaluated by using the fact that Q(v,v) is a Green’s function on the
plane with sources at a; and as. Massaging the integral and integrating by parts, we find
source d-function contributions and the above boundary terms. We discard the former since
the conical singularities on B,,/Z, also ought not be included in the cosmic-brane excised
action. This leaves us with a contour integral around each branch point which we have
evaluated with a UV regulator 4. Finally, from (1.1) and (3.15) we obtain on using I = 0,
the expected answer (3.1) of the n*™ Rényi entropy, viz.,

" n N c 1 as —
S — [In ~ 11} =5 (1 + n) log [2 a1l (3.24)

n—1 1)
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3.3.2 Lorentzian on-shell action in a fundamental domain

Let us now turn to the computation of the on-shell action for the real-time geometry (3.12).
The on-shell Lorentzian action we need is given by (2.18) which we rewrite here for convenience
as

I, = —i Sh[M,] = —in [S’“ [M,] — S&Wn]]

gr
=2nIm (Sgr,fund> .

cosmic-brane excised ( 3.2 5)

We will as before focus on the ket part of the geometry and try to directly isolate the imaginary
part of the on-shell Lorentzian action. In fact, we have already computed the various pieces
hitherto in the Euclidean context and we can simply take the contributions from (3.17),
(3.19), and (3.20) and continue {v,v} — {Z~,Z"}. We would now find prior to excising the
cosmic-brane contribution the following integral to evaluate:

_ Tr(T
S M) = [ azdzt [—ri)(1+10gp*)—|— T,.T _|. (3.26)
7

where the stress tensor components are given in (3.11). In writing this expression we have
performed the radial integral and converted the computation of the on-shell action into an
integral over the boundary directions alone. This is somewhat different from the basic phi-
losophy outlined in [1], so let us pause a moment to record them.

The evaluation of the on-shell action with a neighbourhood of the cosmic brane excised
is easiest to implement in coordinates which are adapted to the brane. In the present case
the locus is a curve in three dimensions. We pick coordinates y' tangent to the brane and a
Gaussian normal chart in the normal plane (which is locally R'!). The regulator around the
brane then is a simple matter of excising a disc shaped domain in the normal plane.

However, this coordinate chart which is adapted to « is not the Fefferman-Graham chart
used in (3.12). This may a-priori seem surprising since the normal plane for each fixed p
is parameterized by #* and the cosmic brane is located at the same coordinate positions in
this Minkowski plane. This is misleading, since the range of p is constrained to lie within
the interval p € [p., p«] and the right-end point p, is a non-trivial function of #* from
(3.18). In our coordinates, the radial direction in the normal R*! plane is an admixture of
the Fefferman-Graham radial coordinate p and a timelike combination made up from .
Adapting coordinates to the cosmic brane locus is in principle possible, but quite messy, since
the stress tensor is a non-trivial function of z+.

Rather than attempt to convert this to the Gaussian normal chart in the neighbourhood
of ~v, we will instead demonstrate a direct way to compute the on-shell action in Lorentz
signature. Our starting point is the integral in (3.26) and we first excise a neighbourhood of
the cosmic brane. This removes the piece Tr(7T") which only has delta function support on ~

91f the boundary stress tensor is constant, then the transformation is straightforward, and can be inferred
from the BTZ solution.
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owing to (3.11). Dropping this piece in the excised geometry we have

c o
Serfund = 5= / di~ dit /Ty T-—
247 t<0

= 48% (1 — le) (a2 —a1)? 3(a1,a2), (3:27)
. B di~ dit
Ia1,a) = /KO G —a)@Et —a)@ —a)@ —a2)

We need to evaluate thus the integral J defined above and extract an imaginary piece from
it. As a warm up consider first the simpler case of a semi-infinite interval, where as — oo
and a1 = 0 which will serve to exemplify the general case. We have then

az—00 Ttz

dzt dx~
Jpatttine = 1M a2 3(0,a2) = /<0 % (3.28)

which the reader will recognize bears a close resemblance to the integral we computed in
§2.2.2. We will proceed similarly here using an i prescription to pick out the projection onto
the vacuum state of the CFT. It will be convenient to introduce an IR cut-off L which will
enter the answer for the semi-infinite interval. We integrate up on M¥ up to a UV cut-off
restricting |Z7| > ¢ and obtain

Fhatttine = Hm- lim [jlcft +J,..+3J

5—0 L300 strip right:|

' dfz_] (3.29)

|

where we have used (2.25) and as before analytically continued = — £~ + ie while 2+ —
7T —ie. We see then that the imaginary parts as before add from the first and third integrals
which leads to the final result

_ k _c 1 L ¢ 1 L
nl, oo =2nIm(Sg fng) = 8. (1 - n) 4mnlog — 5= 12 ( n) log 5 (3.30)

which one can check leads to the correct Rényi entropy (3.1).1°

ONote that the result appears to be missing a factor of 2, but this is consistent since in the limit of a
semi-infinite interval we only pick up the contribution from one branch point. We evaluate the integral a
different way in Appendix A to double check this factor.
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Armed with this understanding it is now clear how to evaluate the integral J(a;, a2). We
again introduce UV and IR regulators § and L, respectively, and break up the integration
range t < 0 into five domains

D=D9UDyUD3UD

strips ? x (331)
R

Three of the domains are analogous to the regions to the left and right of the fixed point in
the half-line case considered above. They are demarcated by constant T lines: D : 27 €
(—L,a1 —6), D, : 21 € (a1 + d,a2 — §) and D3 : &7 € (a2 + 6, L) and Z~ runs up from z*

to some IR cut-off value L. We also now have two strips © once we excise the triangular

strips

domains around the fixed points at a; and as. We will as before consider the contributions
from each region separately. Writing 3 =77 +Jo +J3 +7J we have

strips

- a1—9 da+ L di-
e /L (@t —a1)(@t — az) /ﬁ (= —a1)(T~ — a2)

1 /“1—5 dzt [ 73 L=ar gz P L=ax d:%2]
lag —a1] J_p  (@FF —a)(@F —a2) Ft—ay Tp Ft—ay Ty

(3.32)

where we have taken partial fractions introducing ; = &~ — a; and used the principal value
prescription. This term has no imaginary part as should be clear from the fact that we are
in the left homology wedge in ©. Similarly we can evaluate the contribution from ®3 to be
purely real, for

3y = / ' dz* / - di
’ arts (TT —a1)(@t —az) Jz+ (T7 —a1)(@” — ag)

1 L dit it —a
T T+ T+ log o a
lag — a1] Jay4s (@1 —a1)(@F — az) It —ay

(3.33)

where we have dropped terms that vanish as L — co. We do pick up imaginary parts from
the region ®9 and the strips. The region ®9 picks out the contribution from the right branch
point at as as

3y = / = dit / L di~
o a1+0 (@t —a1)(@ —a2) Jz+ (T~ —a1)(@ —a)

2m as —a
= 5 log a2 1 (3.34)
|ag — a1 0
1 az-9 dz+ it —a L=az gz
4+ — — {log <) +P -2 ]
lag — a1] Jo 45 (T —a1)(@F — az) L-—a Ft—ay Ty
The final contribution comes from the strips which lie a distance a; +9 around Z= = 0. These

do give non-vanishing imaginary contributions as one of the strips captures the left branch
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point. To wit,

a+9 dit L di~
A _ _ _ _
strips /al§ (T —a1)(Tt — az) /t11+6 (T~ —a1)(T~ —a2)

+ / e dit / L di~
az—s (@ —a1)(@F —a2) Jo,q6 (7 —a1)(@ —a2)

. (3.35)
2mi ! lag — a1]
= o
o —ail’ 00
1 o dit @2 dy —
_p/ ff[p/ AT g lez—al
lag — a1 _s It a T —ap )
Putting together all the contributions we find
as — aq

Im(sgr,fund) =dm log W7 (336)

which as one can readily verify leads to the expected result for the Rényi entropy (3.1). At
various points above we have taken the interval to lie on the t = 0 slice in Rb! for illustrative
purposes. This is however unnecessary, and the result holds for any boosted slice, owing to
the boost invariance of the vacuum state of the CFT.

4 Rényi entropies in 2d CFTs: Disjoint intervals

The examples we have discussed thus far comprise of situations where the entropies are
computed at a moment of time symmetry. While we see that even in these examples the
real-time computations require a careful analysis, we now turn to an example where time
reflection symmetry is explicitly broken (in a controllable manner). We explore the Rényi
entropy for a 2d CFT in its vacuum state on the plane, with the region A taken to be the
disjoint union of N intervals.

In the Euclidean set-up the computation of the n'" Rényi entropy requires us to compute
the CF'T partition function on a n-sheeted branch cover of the plane with 2N branch points.
This is a genus (n — 1)(N — 1) surface, albeit one at a special point in moduli space since
the moduli are specified by 2N — 3 parameters (using conformal invariance to fix 3 points).
Unfortunately, one does not have readily available partition functions for generic 2d CFTs on
higher genus Riemann surfaces.

Nevertheless one can make progress in certain circumstances. For instance, the problem
was first analyzed using replica methods in CFT in [37] for free 2d CFTs for which the higher
genus partition functions are available. One can likewise study large ¢ holographic CFTs.
In fact, the first non-trivial computations of holographic Rényi entropies were undertaken
in [38], who analyzed the N = 2 example for large ¢ CFTs and explicitly demonstrated the
holographic entanglement entropy phase transition. Subsequently, [39] analyzed the problem
in detail in the gravitational context, constructing the dual gravitational solutions as handle-
body geometries, and evaluated the on-shell action to extract the answer. A complementary
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CFT analysis using properties of Virasoro vacuum blocks was also concurrently given in [40].
We will adapt the discussion of [39] to the real-time setting after reviewing the ingredients
of Schottky uniformization that enter the computation in Euclidean signature. We will keep
our discussion general in the main text, though for ease of presentation we will use the 279
Rényi entropy n = 2 for N = 2 intervals to illustrate the general arguments.'!

4.1 Rényi from Schottky uniformization

We give a quick overview of the Schottky uniformization exploited in [39] to compute the
holographic Rényi entropies for disjoint intervals. For the vacuum entanglement entropy of
N intervals A = Ui]\il (agi—1, a2;), we must compute the partition function on the n-fold cover
B, n branched over the N intervals. The manifold B, y is a compact Riemann surface of
genus (N — 1)(n — 1) with complex structure

N
n_ vV — a2i—1
z _£{<U_a%>. (4.1)

Following [39] we will assume that the dominant bulk saddles are replica Z,, symmetric han-
dlebodies.

A Riemann surface of genus g can be constructed by starting with the Riemann sphere
C and quotienting it by a Schottky group I' C PSL(2, C), which is a discrete subgroup freely
generated by g loxodromic elements, constrained such that the closure of the set of fixed
points A of its action is not the entirety of C. The Riemann surface is ((NI/ I' with C = C — A.
Operationally, one picks 2g non-intersecting circles {€;, él}, lets the generators ; of I' act
by mapping the interior of the disc bounded by €; to the exterior of the disc bounded by €;,
along with ~;(&;) = ¢,;. The quotient operation then cuts out the 2¢g discs to the interior of
these circles and identifies the circles themselves, thus creating the handles.

This construction on the Riemann sphere extends to the bulk of Euclidean AdS3 where
the PSL(2,C) map acts as on the coordinates (&,y,y) as

(ay+b)(cy+ d) + acé?
lcy +d|? + [c]? €2

§
ey +d? + |c[* €

;o &=

(22
y— € PSL(2,C). (4.2)
cd
The quotient acts smoothly in the bulk (because I" has loxodromic elements). However, given
a choice of I" which determines the Schottky uniformization of B, x there may be multiple
bulk geometries. These are handlebodies where g commuting cycles of B, y smoothly pinch
off in the bulk.

To determine all the bulk handlebodies that respect the replica Z,, symmetry, we need
to decide which cycles are contractible. Around any single branch point, which is a localized
source of stress-energy (see e.g., (3.7)), we know the inverse map y = 7~ (v) of the quotient

"Details of the geometry for N = n = 2 are given in Appendix C. In Appendix D we explicitly evaluate the
on-shell action in Euclidean signature for this case. In the bulk of our discussion we will sidestep the evaluation
of the Rényi entropies, concentrating on obtaining its variation with respect to one of the endpoints.
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7 : C+— C/T, has local solutions (v — a;)2 2n, where we coordinatize C with {v, v} as before.
However, around a loop € that contains two or more branch points one picks up a monodromy
M(€) € PSL(2,C).

— T
\ al v a2 as a4

(a) W)

Figure 6: The choices of cycles around which we can impose trivial monodromy to construct the dual handlebody.
(a) trivial monodromy around the two cycles that circle the branch cut, denoted by €4, which corresponds to the
disconnected RT surface in the limit n — 1; (b) trivial monodromy around the cycle that circles around both branch
cuts and the cycle that passes through the branch cuts and laces through all the n sheets, denoted by €., which
corresponds to the connected RT surface in the limit n — 1.

For example with N = 2, the region A = A; U A2 = (a1,a2) U (a3, a4), the boundary
manifold for n = 2 is a genus 1 Riemann surface, a torus. There are two distinct bulk
geometries that should be considered as the dual handlebody — we either let the a-cycle of
the torus shrink smoothly, or let the b-cycle shrink. The two choices can equivalently be
characterized by the choice of cycles around which we impose trivial monodromy as depicted
in Fig. 6.

To solve the monodromy problem, we realize that the map y(v) satisfies

_ _ X Ay bi
{y(v)), U} = T(U) » Tvv(v) = Z (U — Cbi)2 + s (43)

v — a;
i=1 v

where T'(v) is the source of the stress-energy on a single sheet arising from the branch structure
and A,, is the conformal weight of the defect

A, = % <1 _ ;) (4.4)

This stress-energy is yet to be fully determined, parameterized as it is by a set of accessory
parameters, p;, which carry information about the covering space topology. Once we solve
for these parameters we should have the necessary information to determine the geometry.
One proceeds by solving an auxiliary homogeneous linear differential equation for a func-
tion ¢ (v), from whose linearly independent solutions, v 2(v), one can recover y(v), viz.,

_ ¢i(v)
Pa(v)

V) + 5 T () =0, y(0) (45)
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We have 2N accessory parameters p;. To fix them, consider one sheet of the Riemann surface
which is a copy of a sphere with 2N punctures. Let € = {Cy,a = 1,... N} be the set of
cycles which contain an even number of punctures. The accessory parameters are fixed by
demanding that the solution has trivial monodromy around v = oo and around the remaining
N —1 independent cycles C,. The absence of monodromy around v = oo gives three relations:

2N 2N 2N 2N
D=0, Y opai=-2NA,, D paf =28, a (4.6)
i—1 i—1 i—1 i—1

By replica symmetry one has actually specified the (n —1)(/N — 1) cycles on B,, ;y which have
trivial monodromy. Demanding these cycles be contractible in the bulk we have completed
the specification of a smooth handlebody.

Note that once we have specified the set of monodromies we fix the accessory parameters,
since this suffices to characterize the covering space Riemann surface topology. This implies
that T'(v) in (4.3) is now completely determined. This will be sufficient for us to understand
the computation of the dual geometry, and in particular the on-shell action.

While the accessory parameters were introduced here to solve the uniformization problem,
physically they specify the stress-energy source on a single sheet necessary to build up the
Riemann surface. As a result, it should be no surprise to learn that they directly determine
the on-shell action of gravity, and thus the Rényi entropies. For a given collection of cycles €
which are contractible one has the result (4.7) obtained in [39] (using results of [41])

cn

0 gt _ —7)1)1-@. (4.7)

) — minf g™ 9
S m@ln{SQ b da; ¢ 6(n—1

where € represents the different sets of choices of cycles which can be made contractible. We
present the details for N = n = 2 in Appendix C where the branched cover is a torus.

We will broadly content ourselves with obtaining the variation of the Rényi entropy with
respect to the endpoint, viz., the second expression in (4.7). There is one special case where
Sén) itself is directly computable, which is the second Rényi entropy for two disjoint intervals
N = n = 2. In Appendix D we evaluate the on-shell action of gravity (for the connected
phase) to obtain S directly, cf., (D.17). We will return to this issue in §4.2.3.

4.2 The action from a single fundamental domain

Let us assume that one has solved the monodromy problem and thus determined the accessory
parameters by picking a set of contractible cycles. Furthermore, recall that we can use the
Fefferman-Graham expansion quite effectively to compute the bulk geometry, cf., (3.6) and
(3.12) for the Euclidean and Lorentzian signature metrics, respectively. We also know that
the computation of the on-shell action in these coordinates is straightforward and one obtains
the final results quoted in (3.21) and (3.26), respectively.

Inspired by their simplicity we can address the problem as follows. Focus for the present
on the Euclidean geometries where in the wv-plane corresponding to a single sheet of the
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Riemann surface, we have a set of branch points, which are a source of stress-energy. The
stress tensor is parameterized in terms of the accessory parameters p;. Once we solve the
monodromy problem and fix these p; we have determined on a single sheet the local sources
of energy-momentum that we need to turn on to construct the Riemann surface. With
this knowledge we can immediately compute the on-shell action using (3.21) in Euclidean
signature.

As a quick check, let us look back at the single-interval case discussed in the main text.

We have two branch points, and a single choice of cycle €; which encircles both branch points.
Ap
as—aq
quoted in (3.7) which we used to compute the on-shell action in (3.23). In fact we will borrow

It is trivial to check that p; = —py = 2 are fixed uniquely, and thus we recover T'(v)

extensively from the one-interval analysis for general n, N below.

4.2.1 The Euclidean computation

We start with the assumption that we have been given the stress tensor on a single funda-
mental domain (4.3). This stress tensor is localized on the branch points and excising the
sources at these loci, we have to evaluate (3.22), i.e.,

[,=—-¢ dvdt \/Tyw Trs (4.8)

“2ir S,

where R, is a domain of the complex v-plane with infinitesimal discs D of size € around each
of the branch points v = a; excised. We will attempt to evaluate not this integral, but rather
its derivative with respect to the branch point location, viz.,

0 fn _ ¢ / dvd /Tﬁﬁ 0Ty, + /Tvv 0T
Ga,» 4871 Re Tm, 8(11' Tm-, 8@2'

where the boundary term arises from the variation of the discs D§ about v = a;.

+ boundary term, (4.9)

To evaluate the variation of I,, with respect to the location of the branch points we are
going to employ a trick which will reduce the calculation as in the single-interval case to
the evaluation of contour integrals on the boundaries of the discs about each branch point,
Cs = 0D5. To facilitate this analysis let us first introduce a function T which satisfies:

0,T(1,0) = VT,  05T(v,7) = \/Tis. (4.10)

We can formally write it as a contour integral

‘I(u,@)z/c \/TTUvar/C VT dv = t(v) + (D). (4.11)

To define T completely we need to specify the integration contour C. It will however transpire
that we will only care about the fact that this contour gets close to the branch points at a;.
By a local analysis in the neighbourhood of each branch point we may deduce that

\/An 7
+ b +
v—a;  2VA,

0T = s { Ow—a;)|, (4.12)
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and similarly for 05T. Here s; = +1 is a sign, 5% = 1, which will drop out in our final answer.
Integrating these up we have the local behaviour near v = a;

T(v,0) = s; [VAnlog|v — ai)* — Ci({a;}) + (v4+7—2a;)+ (’)(\U — ai|2>] (4.13)

zr
with undetermined constants C;({a;}).

While the local analysis thus gives an estimate for the function T, the function is as yet
undetermined owing to the information hidden in the constants C; which as indicated above
depend on the locations of the branch points. It is this dependence that makes the explicit
evaluation of I,, quite tricky to obtain (though see Appendix D for the N = n = 2 case). We
will see that these constants will drop out in our evaluation of the derivatives %fn Given
the estimate (4.13), we may immediately compute the derivatives with respect to the branch
point locations a; obtaining

07 1 1 pi ac;
da; s [\/7 <U_ai +U—Gi> + \/Fn] dij — s 9a; + O(Jv — a4]) (4.14)

Note that the derivative of the accessory parameter with respect to the branch point has been

ignored as it is of order v — aj;.

We will now argue that these local estimates will suffice to compute the variation of the
on-shell action with respect to the branch points. One has under the variation of a branch
point, a bulk and a boundary contribution that we will study independently, and write (cf.,
Appendix E.2)

8jn _ bulk bdy
da; [I + 1 }
0T 0T
bulk _
7z = / dv dv Da; <3v 81}) (4.15)
bdy _ 9, 97 97
;77 =2 51% dv 90 %

Consider first the bulk integral. Using the fact that by definition 7 is a sum of a holo-
morphic and an anti-holomorphic piece (4.11), we may rearrange the derivatives in the bulk
integral, write it as an integral of a total divergence, and convert it to a boundary integral

0 (0T 0T\ 8 (0T T
bulk _ oTy | 0 o7
L= /R dvdv [av <8ai m) o (aai 81})}

oT 8‘3’ 0T 0T
=1 Z ?g [8% v 8@1 (%dv]

over the circles C5:

(4.16)
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We may now deduce using (4.13) and (4.14) that
87876&1——825]5 [(v Ag%— An—i— b )(5z‘j+ 8Cj+---][ Bn by
¢ — U

_l’_

e Oa; Ov J : v—a; A, da; v—a;  2vA, e
(3 aC;
= —2m <2pi 5@‘ + /A, aa5> .
(4.17)
Putting together the complex conjugate contribution yields
2N
3 oC;
R = —ar | Spi+ VA, 2. 4.1

The boundary term may be evaluated directly to give

z})dy:—2z‘§£ dv[vAn L) +---H”A"+ by
e;

+] =27 p;. (4.19)

v—ai+2\/An v—a;  2VA,

Hence we have

- 2N
oI, ¢ 00,
" =—p A —L|. 4.20
o g | Pt VA ; e (4.20)
To complete the argument we need to deduce the value of 2351 %—2, which we may do

by judiciously combining t and T. We use the fact that the product a% 0,7 dies off as v™2 at
large v to deduce

ot
0:§£ OpT
fol=a Oai
=—Z§1§ An | B )5y LG VB B
- < [\v—aq 2VA,) Y2 0a; | |v—a;  2VA,

VA, % ac;
j=1

(4.21)

— —97i | »
T\ Pt 2 Oa;

2N 50
J — _9n.
= VALY o = 2P
7j=1
The asymptotic behaviour thus constrains the derivatives of the constants C; allowing us

to evaluate the quantity we want without detailed knowledge of these constants themselves.
Consequently, we have as our final result:

ol, c
= Iy 4.22
90~ 67 (4.22)
This indeed reproduces the result quoted in (4.7) for
0 n 0 n
S — — I —L]|=————cDp;. 4.23
da; n—1 8ai[ 1 6(n—1) cp (4.23)
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4.2.2 The Lorentzian computation

One reason for our going over the Euclidean computation in some detail was to simplify
the ingredients to obtain the result directly in Lorentz signature. We will continue with the
computation in a single fundamental domain, and exploit the Fefferman-Graham form of the
metric (3.12) and distill the computation of the action as in the one-interval case to evaluating
an integral of the form (3.26). In making these observations we are assuming that the form
of the boundary stress tensor on a single fundamental domain is known, i.e., one has solved
the corresponding monodromy problem. Note that the latter is strictly a non-gravitational
computation and thus can be carried out in Euclidean signature, and the result used to set-up
the boundary conditions for our Lorentzian gravitational analysis.

In the process of deriving (3.26) we have integrated over the bulk radial coordinate and
thus have a purely boundary integral to evaluate. As explained earlier in §3.3.2 this method
is conceptually different from the way we set-up the computation of the action in [1] where
we adapted coordinates to the cosmic-brane in the bulk. While that analysis makes it easier
to see where the imaginary part of the Lorentzian action arises from (viz., from the normal
bundle to the splitting surface), we found the chart adapted to the cosmic brane hard to relate
to the coordinates induced by the Schottky construction. All told the final result for the stress
tensor is a function of the location of the end-points of our regions a; and the stress tensor
is parameterized by both a; and the accessory parameters p;(a;). The contribution from the
trace of the stress tensor in (3.26) is delta-function localized at the entangling surfaces (i.e.,
at IT = ¥~ = q; if the intervals are all at t = 0) and should be dropped in the computation
of the cosmic-brane excised action. We are then left with evaluating

C ~— ~
Sgryfundzﬁ /ﬂz dz=dit /T T__ (4.24)

with

2N
- A, i\aj
()= [@_ ~et jp_(_ i] 7
(4.25)

T (&) 3 {( Bn__ Pile) ]

CZ‘"" — ai)Q §:+ — a;

Once again we refrain from evaluating (4.24) but will take inspiration from the Euclidean
computation and evaluate its variation of its imaginary part with respect to a;, i.e.,

) c 0 .
" Im(S% funa) = i o ( o /R Az dzT /T,y T__> (4.26)

The region R is a part of the space with ¢ < 0 with neighbourhoods U around each a; excised.

Even before we set out to compute (4.26) let us convince ourselves that the general
arguments of [1] suffice to give us the desired result. To infer this let us look back to the
Euclidean computation described in §4.2.1 and note that the final result (4.22) indicates that
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Figure 7: The domain of integration R for (4.26) is the lower half space ¢t < 0 with half-discs U? around each a;

removed. The imaginary contributions to Biai Im(Sgryfund) arise from the causal past of a;.

the variation of the stress tensor integral, 8%1- [ dvdv\/Ty, Ty, evaluates simply to 47 p;. We
view this result as saying that the local contribution arises from the Euler character which
changes because of the source of energy-momentum tensor at the branch points.

To motivate this interpretation we recall again that we have carried out the integral over
the radial coordinate and are left with an integral along the boundary directions to evaluate
in (4.8). On the contrary, [1] used a Gaussian normal chart adapted to the splitting surface to
argue for the use of the complex Gauss-Bonnet theorem for the bulk Einstein-Hilbert action
(supplemented by boundary terms). Continuing to carry out the integration as we have done,
when we consider the variation of the bulk action with respect to the parameter a; we isolate
the section of the splitting surface that is anchored at a; on the boundary.

This can be understood as follows: variation with respect to a; is a pure boundary
term from the bulk perspective since one is evaluating the change of the on-shell action with
respect to modified boundary conditions. Even if we had carried out the computation using
the Gauss-Bonnet theorem adapting coordinates to the splitting surface, we would have only
picked up the contribution from the vicinity of the boundary — there would have been no
bulk integral to compute. The essential upshot of the Euclidean calculation is that the net
variation is localized in the vicinity of the branch point at a;. The simplicity of the result
suggests a natural interpretation based on the above: there is a local contribution to the
Euler character set by p;.

Given this interpretation, we can deduce that one indeed obtains the expected result for

Sk

gr,fund’ viz.,

24?7[- 880,1 Im(Sgr,fund) = —2mp;, (427)
by invoking the complex version of Gauss-Bonnet theorem. Let us see this in a bit more detail.
An imaginary contribution to (4.24) can arise because of the singularities at 2+ = 7~ = q;
which extend into the bulk along the splitting surface. The precise value of this imaginary
part depends on the terms in the metric involving the accessory parameters p;. These, by
themselves, are hard to isolate in the on-shell action directly (see below). However, they
can be straightforwardly extracted by considering the variation with respect to an endpoint

a;. In the process of taking the variation we effectively localize the computation to the
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neighbourhood of the branch point. In fact, in the Fefferman-Graham parameterization of
the bulk geometry, the terms of interest are completely localized onto a neighbourhood of the
branch point at the boundary of the spacetime.

With this picture in mind, one can trace the imaginary part to the contribution from
the cut-off surfaces around the a; at the asymptotic boundary of the spacetime. Suppose,
for example, we take the cut-offs to be half-discs Uf as illustrated in Fig. 7. This choice (or
indeed any other cut-off choice), will intersect the past light-cone from a;. Indeed, the local
structure is dictated completely by these light-cone crossings. The complex Gauss-Bonnet

theorem would suggest that we pick up a factor of —27¢ from such crossings. For &q%%
using the Fefferman-Graham coordinate chart we can deduce that there is no bulk radial
integral to perform along the splitting surface. However, from the earlier Euclidean analysis
one learns that the contribution to the Euler characteristic is augmented by the local source
of stress energy , which is captured by p;. Putting these pieces together one is thus led to the
final result quoted in (4.27).

One can understand the localized nature of the contribution by referring back to the
one-interval computation in §3.3.2 (which was also reduced to computing an integral along
the boundary). There we had carried out the integral over the domain R directly after having
used the fact that the accessory parameters p; and p are fixed to be p1 = —pa =2 - QA_"al. In
that case we obtained imaginary contributions from light-cone crossings (using the principal

value prescription) leading to (3.36). One can readily check that this result agrees with (4.27).
In the evaluation of the gravity action itself we see parts where the imaginary parts cancel
— for example in the domain ©; in (3.32) which is crossed by the past directed light-rays
from both a; and ag. Such partial cancellations do not occur in the variation B%i Im(Sgnfund)
which is another reason to consider it.

We emphasize the use of the complex Gauss-Bonnet theorem in the evaluation of the
(4.26) as it illustrates quite generally the moral of the discussion in [1]. One can of course check
that these statements hold by choosing an explicit regulator. For instance, in Appendix B we
employ the light-cone regulators following the one-interval discussion. At the end of the day
we find indeed

08% Im(Sgr,fund) = *122 pi — a; = m cp; -

(4.28)

4.2.3 Generalizations

We can use the mnemonic that the variation of the action with respect to the end-points
gives an imaginary contribution to the Lorentz signature on-shell action as in (4.28) for more
general configurations. For instance, while we have explicitly carried out the integrals when
all the intervals are taken to lie at ¢ = 0, we can more generally take the regions to be spacelike
regions on an arbitrary boundary Cauchy slice. In this case the accessory parameters p; are
complex even in Euclidean signature. We expect that they should analytically continue to
real accessory parameters in Lorentz signature and lead to real stress-energy sources, and real
values for the entropies.
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To see this in a particular example, consider the case of two intervals N = 2, one relatively
boosted with respect to the other. In Euclidean signature, working with the invariant cross-
ratio x, the boost corresponds to rotating the finite interval (0, x), allowing x to have a non-
zero imaginary part. For example, for n = 2, the branched cover geometry for the computation
of the second Rényi entropy is a torus with a general complex structure and the dual geometry
is the rotating BTZ black hole in a suitable conformal frame.!? This rotation has no effect
on the monodromy differential equation which did not require any assumption of the reality,
nor does it affect our conditions to determine the accessory parameter by demanding trivial
monodromy around certain cycles. The main difference is that with x complex, the accessory
parameter p, is likewise manifestly complex. The entropies are nevertheless real; this implies
that we should integrate up (4.28) along a suitable contour choice to obtain the physically
relevant real answers.

In the Lorentzian context, our analytic continuation v — £~ should be accompanied by
X — x~ for x being rotated in the Euclidean time direction (as usual we treat x and X as
independent in the analytic continuation). The restriction to spacelike intervals demands that
Xz > Xt > 0. With this choice the accessory parameter p, is real in Lorentz signature, as is
therefore the source of energy-momentum necessary to construct the branched cover geometry.
The computation of the on-shell action proceeds as before, and the result for the variation
of the entropies with respect to the accessory parameters is manifestly real. Integrating with
respect to x~ leads to the expected real answers for the entropies.

There is one limiting case to consider of our example, viz., the limit y — 1 whence
X~ = xy —t, — 1. The interval A; has left endpoint at (¢t,z) = (0,0) and right endpoint at

XJF%, XJF%), while Ay runs from (0,1) to infinity. Now as x~ — —1, the two intervals
start to approach null separation. In the limit there is no spacelike surface containing both
intervals and we should see this in the result, cf., [42]. Indeed, focusing on the SL(2,C)
invariant mutual Rényi information (MRI), cf., (C.4) which is a function of x alone, purity
of the global state demands that

1 X
IM) =IM1—x)+= (141 4.2
(x) =X+ (14 )log T (4.29)
In Euclidean signature (4.29) implies that 1™ diverges as y — 1, for using 1 (0) = 0 we
have .
1™ (x) ~ _% <1+n> log(1 —x), l1-xx1 (4.30)

Equivalently, this divergence can also be seen in the accessory parameter — from (C.12) we
find that p, ~ ﬁ as X — 1 in the connected phase (which dominates in this regime). This
holds under the analytic continuation x — x~ and is the signature of the intervals failing to

be on a common Cauchy slice. We expect that the result of the two interval case generalizes

12This can be seen directly from the analysis in Appendix C: the cross-ratio x is complex if one of the
end-points is displaced in real-time, and the complex structure 7(x) then is no longer purely imaginary.

— 33 —



to arbitrary intervals, with divergences encountered when the intervals enter into each other’s
causal domains.

One interesting generalization to consider is to directly evaluate the on-shell action
Im(Sgr’fund) itself. As mentioned earlier, we have been able to carry out the evaluation
of the bulk Euclidean action, Sg, for the case n = N = 2. The reader can find a detailed
account of the computation in Appendix D. We work in the Fefferman-Graham gauge (in a
suitable boundary conformal frame), evaluate the bulk action with a suitable cut-off of the
radial coordinate (see Fig. 11), and exploit some useful incomplete elliptic function integral
identities. The mechanics of this computation being highly adapted to the Euclidean setting,
we were unable to translate it directly to the Lorentzian context, in particular, were unable
to extract the desired imaginary pieces from the light-cone crossings. It should be possible to
do better by working in a bulk coordinate chart adapted to the splitting surface as envisaged
in [1].

Alternately, one could at least see how to integrate up (4.7) (the latter is blind to the
spacetime signature, compare the Lorentzian (4.28) and Euclidean results (4.23)) to obtain
the Rényi entropy S . As mentioned above for generic intervals with relative boosts this will
require understanding an appropriate contour prescription. For two disjoint intervals with
the intervals on a time symmetric slice (real cross-ratio x) this was carried out numerically
in [39], see Figure 5 of that paper. We note that the expressions for the accessory parameters
themselves are quite simple when the intervals are far separated (for instance, for N =n = 2
from (C.12) we have p, ~ —6:3—4 x for x < 1), but since the Rényi entropies are not invariant
under change of conformal frame, one should pass again to working with the MRI I(™ which
likewise has a simple variation, %I @ (x) ~ g1 X for small . If we consider relatively boosted
intervals then x becomes complex. However, as we noted above, the accessory parameters
are expected to be real in Lorentz signature and one should be able to obtain Im(Sgnfund)
without too much trouble. Moreover, this observation suggests that the contour prescription
for computing the on-shell action with complex x in Euclidean signature should be inherited
from the Lorentzian geometry.

5 Discussion

We have exemplified the general discussion of [1] with some explicit low-dimensional examples,
demonstrating a first-principles evaluation of stationary points of the real-time gravitational
path integral. In particular, the on-shell action for these configurations was evaluated directly
in Lorentz signature and shown to agree with the result obtained by analytically continuing
the Euclidean saddle-point computations to real-time.

While our investigations were confined to analysis of the Rényi or swap entropies in simple
states (thermofield double in JT-gravity and the vacuum state in AdSs), it is clear that the
principles outlined in [1] hold more generally. The essential point is that the contributions
to the gravitational path integral are localized and isolated by suitable use of the complex
Gauss-Bonnet theorem. In particular, entropies can be extracted by performing the analysis
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in Euclidean signature and thence analytically continuing the parameters to the real-time
domain (say by moving the entangling surfaces appropriately). While this has been the modus
operandi for computations of von Neumann and Rényi entropies both in field theory and
gravity thus far, our results demonstrate the rationale behind the agreement. In particular,
they lend support to the recent investigations in the gravitational context for the evolution of
the fine-grained von Neumann entropy in the context of the black hole information problem.

There are several directions that would be interesting to pursue in the future. It would
for instance be helpful to understand the evolution of entropies following a quantum quench
directly in Lorentz signature. These were first investigated in two dimensional CFTs in [2, 3]
and studied in holography using properties of Virasoro conformal blocks in [43]. Reanalyzing
the results of the latter discussion directly in real-time would pave the way for more general
gravitational analysis such as the fine grained entropies in black hole collapse (which has been
discussed in [44]).

Of direct relevance to the black hole information problem would be to construct the
real-time replica wormholes relevant to obtaining the Page curve from an evaporating black
hole (even in a simple model). This investigation will be aided by computation of the bulk
quantum corrections to the entropies which we have not attempted to do here.

Ideally, it would be useful to extend the gravitational computations to higher dimensional
scenarios with dynamical gravitational degrees of freedom. The non-trivial aspect here would
be to deal with the gravitational backreaction. Developing numerical techniques to determine
complex geometries for the class of real-time boundary value problems would greatly facilitate
such explorations.
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A A Rindler regulator for on-shell action of the semi-infinite interval

In this appendix we provide an alternate calculation to that given in §3.3.2 for the Rényi
entropy of a semi-infinite interval from the Lorentzian on-shell action in a single fundamental
domain. The calculation in the main text used a small polygonal cut-off around the branch
point with an e prescription. The imaginary part of the action then came from the principal
value prescription. Here we will instead evaluate the Lorentzian action in Rindler coordinates
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with cut-off surfaces of constant Rindler radius. The imaginary part of the action now comes
from the excursion into the Euclidean time direction as we pass between the different wedges.

S

=T T

Figure 8: Left: integration contour in the complex t, -plane. Right: boundary spacetime R for t < 0 with
cut-offs (blue) at Rindler radius r = §. The t, contour (orange) has an excursion into the Euclidean time domain
(dashed) as it passes between wedges.

We start with the Lorentzian action after integration over the bulk coordinates which is

given by (3.27) and (3.28). In particular, we want to evaluate J which we rewrite here

half-line

dz T dx~
J alt-line :/t o % (A.l)
<

for the reader’s convenience:

We transform to Rindler coordinates (t, p) and impose cut-offs at some very small Rindler
radius p = 0. Recall that to pass between wedges we shift t in the imaginary direction by 7.
We require that the time contour be continuous so we must include the integration along this
imaginary direction from 0 to ¢5. Therefore, the time contour for t, is given by

Cr = [0, ~T]U [—T, T+ zg} U [—T+ ig,T + zg} U [T + ig,T+ m] U[T + im,in], (A.2)
where we have put in some large time cut-off T'. The contour is depicted in Fig. 8.

The integral giving J is now trivial:

half-line

L

Jpottrine = 2 lim dt, / dr = 2milog <L> . (A.3)
T—o00 Cr s T 1)

This agrees with the result from §3.3.1. In particular, it verifies that there is a missing factor

of 2 if one only considers the branch point at the origin. This way of doing the calculation

makes it manifest how the imaginary part of the Lorentzian action gives the Euclidean action

because the imaginary part comes from an explicit integration over Euclidean time.
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al a2 a3 aq

W—v— "

T

Figure 9: The domain of integration R for (4.26) is the lower half space ¢ < 0 with triangular regions U around
each a; removed. This choice is particularly convenient for the light-cone like coordinates Z* that we work with,

since the boundaries of the region R lie at constant &+ = a; F 4.

B Lorentzian action for disjoint interval Rényi entropies

To evaluate the integral in (4.26) directly we consider the lower half of the (x,t) plane (¢ < 0)
and use the past directed light-rays from = = a; £ J to carve out little triangular regions
which we excise, see Fig. 9. Thus,

2N
R = <R1’1 N{(z,b)t < 0})\ Jw
Y (B.1)

w = {(i+,i_)‘i+€(ai—5,ai+5) & i~ <a;+6 & T -3 <0}.

(2

For future use let us also define the boundaries of Uf as

U ={3" =a;,— 8, 3 €la; — ,a; + ]}

(B.2)
U ={i" =a;+06, & €la;i + 0,a; — ]}

where we have specified the ranges consistent with the orientation of the boundaries.
To compute the integral we will introduce a function T(Z",2~) whose light-cone deriva-
tives give the two terms in the integrand

0_%(it,27)=T-_, 04T (3T, 27) = /Tyt (B.3)

We will content ourselves with local behaviour near the sources a; which are given by the
Lorentzian analog of (4.13)

T(xT,37) =s; [\/Emg (27 —a)@" —a;)] —Ci+ 2\]/927(5:— + 2t —2a;) -
~ o An i

0 O 1 1 Di 801
7 = —si |[VAr | = + = + 0ij —8i — +-,
8045(33 ) § [ (m—ai :U*—al-> VA, An] 17 da;

(B.4)
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where the ellipses denote higher order terms in the local expansion about z+ =~ = a;.
We therefore have to evaluate

%Sgr,fund = Sur [Tbuk + Tbay]
0

Tpulk = /gg di~ dit P

(0% 9, %) (B.5)

a;

Tbay = / dz”0_-% 0+.%
ot

n / dito_T 0,3
Ft=a;—96 ou;

i_:aﬂr&

Let us first evaluate the boundary integral which is straightforward as we have to compute
contributions of the form

a+9 An j An i
ﬁbdyz/ ol B e S - RIS - S S
a3 7 —a;  2/A, —d 2VA,
a;—08 . .
T T [ i |

(B.6)

5 T aA, F_a 2yA,

We see that the only part that contributes is the one where the terms align, i.e., only from

i+d

1 = 7, since this is the only situation when the integral has a non-vanishing imaginary part
from the principal value prescription. Therefore, keeping track of the orientation of the
boundary we find the two terms add to give
~ An o pi A, pi
Im(dey) = —T |:_5 + 5 — T T + 5 = —Tp;. (B?)
The bulk terms can be evaluated along similar lines. We first exchange the order of
integration and use the fact that 0,0_% has no support in the region of integration: it is
localized at the branch points following the same chain of logic that led to the first line of
(3.11). Hence,

jbulk — / dx~ dfi—i_af (6%‘3 8+T) + 8+ (aai‘l 8,‘I)
R

2N
> [/ Azt 0,,% a+‘3:+/ di™ 0, 0%
oy

N +
= au

(B.8)

It is now straightforward to use (B.4) and compute each of the terms in the above. For
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instance we have to compute integrals of the form:

—/aj_éd:ﬁ[(\/F"Jrf/Tn +pj> 5z'j+80j+--'][~m + -2 +]

a;+6 ) Tt —aq; daj; Tt —a;  2VA,
:iw[?éij+%ij+?6ij]+~--

L o ] [
:m[ggcsij+%if—?5¢j]+

(B.9)

where we have only indicated explicitly the imaginary parts that arise from the principal
value prescription. The terms combine nicely together to give

3p; 2N 90,
~ - il I — .
Im(Tpuk) = 27 5 +VA, ]Zl 90, | = T Di (B.10)
where we finally used (4.21).

Putting it all together we have the expected result from the Lorentzian replica computa-
tion, viz., (4.28). As noted earlier this was to be expected owing to the contributions arising
from the regions where the metric becomes complex.

C The second Rényi entropy for two intervals: Geometry

In this appendix we give explicit details for the 2-interval second Rényi entopy. We focus on
the Schottky construction on the boundary and the determination of the bulk handlebody
geometries. We will use these results in Appendix D to compute the on-shell action of the
gravitational dual.

C.1 The boundary geometry

The boundary manifold has a complex structure

5 (v—ar)(v—a3) 22_M
T —amw—a) T T =y (C.1)

where we have used a Mobius transformation to set a; = 0, ag = x, a3 = 1, and a4 — o0,

respectively. In particular, we have

_ (a1 — a2)(as — a4)
X = (a1 — az)(as —aa) (C.2)

The modulus of the torus is given in terms of the elliptic integral, cf., (C.15),

CK(1-x)

T(x) =1 Ko (C.3)
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which implies that a modular transform 7 < —% corresponds to the exchange x <> 1 — y.
Note however, that the Rényi entropy is not invariant under SL(2,C) transformations
which we used to gauge fix a;. On the contrary the mutual Rényi information defined by

(2) _ o (2 (2)
Latons =Sa, ¥ 54, = Sajua, (C.4)

is invariant under SL(2,C). Using the purity of the vacuum state one can relate I (1 — x)
to I (). The swap x < 1 — x which is achieved by ay <+ a4 exchanges the two choices of
cycles, € > €.. One can use Schottky uniformization'? to directly determine [39]

1) = max {187 00, 1) 00 }

_ c g 1 —x s c s 1 —x s 1
__mw{_i2bg<2 X2>_WGCTWL_i2bg<2 X2>*ﬁ60TW).

(C.5)

This result was first derived in [38] and leads to the aforesaid phase transition since Ig) (x)
dominates for y < %

As explained above, one could construct directly the covering space handlebody, and
recover from it the on-shell action for the geometry. A direct evaluation of on-shell action
turns out to be formidable even for the case of the 2"d Rényi entropy for two-intervals. We
were however able to derive (C.5) directly by computing the gravitational action in Euclidean
signature. As this computation has not been reported in the literature we present it in
Appendix D. However, we found it somewhat cumbersome to manipulate for the real-time
analysis, so we resorted to a different approach in the main text.

C.2 The Euclidean handlebodies

For N =2 and n = 2 the monodromy problem relies on the following differential equation

1 1 1 1 2 pyX(x—1)
” il I _ — X =0. (C6
0+ 3| (G ot o) T Do 0 (9
In writing this expression we have gauge fixed the branch points using (C.2) and set p, = —p»

and set n = 2 after using the relations in (4.6). While the natural map on the cover is (C.1),
for solving (C.6) it will be useful to introduce a new elliptic coordinate 7(v); see (C.13) and

one has

N[

rewrite (C.6) using the conformal transformation properties of ¢)(v) and T'(v). Under v — f(v)
f

v = (5) e, Tw- <a> Ty +{f.v} (1)

This implies that the monodromy equation can be brought to the form of a standard differ-
ential equation

() 2K () <x =

2 ) T TP - 1)> P(n) =0. (C.8)

13We explain the elements underlying the Schottky uniformization calculation in §4.1 and derive the result
by explicitly evaluating the on-shell gravitational action in Euclidean signature in Appendix D.
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This has solutions in terms of simple exponentials if we also reparameterize the accessory

parameter as
1 2—-x w2 9
pu— . C-9
PTG [ d T aw(eE” (©9)

Altogether we find that the desired solution to the inverse map (v) is given by

j(v) = e2Pn) (C.10)

To complete the solution we need to fix p, by computing the monodromies around the two
possible choices of cycles: the disconnected one €; and the connected one €, in Fig. 6.
For two intervals the second Rényi entropy computation leads to the following stress

energy on a single sheet (using Ag = %):
3/1 1 1 2 Py X (x —1)
T =—-|— — — . C.11
=3 (Fr Tt ey ) ey O

To complete its specification we fix p, by computing the monodromies around the two possible
choices of cycles €; and €, in Fig.6. One finds:

sz—z = Py S - {Q—X—H ]

2 € dx(x—1) 2K(x)?]’
. 2
C27(x)

where 7(x) is the modulus of the torus and is defined in (C.3).

(C.12)

Pe Dx

2
QZ4MX-U[2_X+2KG—XV}’

These are given in (C.12) as a function of the cross-ratio x.

The torus elliptic map: The elliptic map from the complex v plane to the torus is

T v d¢
=360 Ve ono (€49

We can either invoke Legendre integral definition of the incomplete elliptic function'# or the
inverse Jacobi elliptic sine (denoted sn(z,m)) amplitude, and write

n(v) = % F (arcsin<\/z> , x) - K7(rx) sn! (arcsin(\/z>, x> (C.14)

which fixes the function in the principal domain v € [0, x]. For the other domains we analyt-

ically continue past the cuts which are at (0, x) and (1,00). The normalization factor is the
complete elliptic integral of the first kind

2 df u
K(z) = / —=F <—,x) . (C.15)
0 V1-xsin?6 2
“We define K (x) to be the incomplete elliptic integral of the first kind as in (C.15). The definition differs
from some traditional forms, which define the integral in (C.15) as F/(%,/x); see for example [45, Eq. 19.2.4].
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D The second Rényi entropy for two intervals: Euclidean on-shell action

In this appendix we evaluate the on-shell gravitational action in Euclidean signature for the
second Rényi entropy for two intervals. We will compute the action of the covering space
M using the Schottky construction outlined in §4.1. The action was evaluated numerically
for higher Rényi entropies (n > 2) in [39] and here we will evaluate it analytically for n = 2.
From this we can extract the second mutual Rényi information and thus derive (C.5).

For definiteness we will focus on the choice of cycles €., but the other choice of cycles
follows similarly. We previously obtained the coordinate g(v) for the Schottky domain of
the boundary torus (C.10). For the purposes of evaluating the action, it is nicer to use a
different coordinate for the Schottky domain which is related to g(v) in (C.10) by a PSL(2, C)
transformation.!> We choose our new coordinate y(v) to diagonalize the monodromy around
a1 which gives

y(v) = tanh(7p.) tanh (p.n(v)) . (D.1)

To keep future expressions legible we also introduce a parameter x, encoding the complex
structure via

Xs = y(x) = tanh®(mpc), (D.2)

where we have used 7(x) = 7. The fundamental domain Dygy of the Schottky quotient is the
exterior of the two discs bounded by the circles €4, @1 which we have illustrated in Fig. 10.
The generator of the Schottky group identifies these two circles as discussed previously. The
replica symmetry acts simply on the fundamental domain described by the y(v) coordinate:
y(v) = —y(v).

We construct the bulk geometry by filling in the cycles €.. The bulk geometry has the
standard Poincaré metric

_dE? +dydy
=

with the fundamental domain in the bulk obtained by extending the boundary circles, whose

ds? (D.3)

radius is £ = 172X5 , into hemispheres and identifying these hemispheres by the action of the
Schottky group, as illustrated in Fig. 11.
D.1 On-shell gravitational action

We now proceed to evaluate the Euclidean gravitational action for the metric (D.3) on the
bulk fundamental domain Dy . We need to evaluate the action

SE[My)] :_mleN UM de\/g(R+2)+2/BC\FyK—2/BC ﬁ]. (D.4)

The boundary curvature counterterm in (3.16) is absent here since the torus is flat.

5 This is not strictly a PSL(2, C) transformation because the determinant is not equal to 1, but the Schottky
construction is only defined up to an overall scaling, which we have chosen such that y(1) = 1.
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Y

......... Zy replica sym.

-1 —Xs Xs 1 j

Figure 10: Left: one sheet of the boundary geometry B3 2 with the generator L; of the Schottky group corresponding
to non-trivial monodromy around the cycle containing one of the branch cuts. Right: the image of B2 2 in the
y-plane with the two circles €1, €; identified by the action of the Schottky group and their interiors removed to
give the fundamental domain. The upper and lower y-plane are related by the Zo replica symmetry with each
corresponding to a sheet of Bs s.

We will use Fefferman-Graham coordinates (p, v,v) to define the cut-off surface because
these give a simple way to extract the contribution from the branch points. The contribution
comes from the conformal factor between the (&, y,y) coordinates and the Fefferman-Graham
coordinates, cf., (3.3). The transformation between the coordinates is given by

e ¥ e=%% 05
§= \/ﬁ 2 y=w-+ & dd 2 (D5)
1+ pe 2#0.¢| 1+ pe 2#0.¢|

where we set Q2 = e~ % in (3.9) and have

— 1o 7T\/Epc 1
o lg[ 2K00 oo~ D(v— )

We define the cut-off surface by p = p. which describes a non-trivial cut-off surface B, in

sech(pon(v)) sech(pei(@)| . (D.6)

Poincaré coordinates described by & = &.(y, y) restricted to Dyy.
The three contributions to the action can be evaluated directly. We find

dg
5737

LAl - 20,050) . (0D

Sen[Ma] = /

d3x\/§(R+2)=—2/ dy dij
Mo Mo

e

SeuiMal =2 [ viK =2 [ dydy(
Be Be p

C

e2®

Set[Ma] = 2/ \ﬁ—/ dy dy ( +4\8y<p\2> )
Be Be Pc
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§= fc(ya g)

Ly

Figure 11: The bulk fundamental domain of the Schottky construction consisting of two hemispheres excised from
AdS3 with their boundaries identified by the action of the Schottky group. The bulk coordinate ¢ is cut off by the
surface £ = &:(y,7) (green).

In deriving the boundary quantities we used

1 1 1
Yyy = ? (aygc)Z ) Vg = ? (61750)2 ) Vg = 72 <|ay£ ‘ + >

(D.8)
K=2 (2gcayaggc — 409,6.> + 1)

The boundary integrals above are straightforward, but the bulk integral in Sgy has two
distinct contributions: one contribution comes from the region of the bulk below the cut-
off surface and the other comes from the region below the hemispheres. Picking 6 to be the

azimuthal coordinate around the hemisphere (whose radius we recall is 1_2XS ) we can evaluate
the two contributions and obtain

d¢ U 1 / 1 ]
SM:—2/dd = — dydy ———5 +2 dydy =— =3
EH[ 2] yay == 63 ; yay gc(y, ) hemi v ghemi(ya y)2
~ €2g0 9 2m Teut—off (0) r
__[/cdydy<pc ygo|>—|—2/0 d@/o drm (D.9)
) 62"0 ) 2 Pe
:—[/ dydy(pC y@‘>+2/0 do (2¢—log<€2>>],

Putting all of the pieces in (D.7) together we see that the leading divergences cancel as

they must and the Euclidean action (D.4) becomes
5 1 - 9 27
SEMs) = —— | [ dydy (yaysol + 2ayaggo) +2 | dhg+ dmlog(f) — 2rlog(pe) | .
87TGN B. 0

(D.10)

We will evaluate each of these terms in turn.
The first term in (D.10) can be computed very similarly to the one interval case (3.23)
where we integrate by parts to reduce the integral to the contributions from the boundaries of
the domain. There are boundary terms from the circles {€, Q~f1} in the y-plane and boundary
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terms from the discs D? of radius 0 that we cut out around each branch point a; in the
v-plane. Finally, there are boundary terms from the IR cut-offs in the y- and v-planes. We
thus find:

3 2
/3 dy dj|Oyel? = 5> §5s08|vso+ / 40 0d,gly—s + S
e i=1"a 0

~— \ 3 2 2 2
= —7log [< TPe vXs ) soch”(m pe) esch (ch)] / df o + Sir ,
0

2K (\)V6 x(1—=x)
(D.11)

where the contribution from the boundaries in the v-plane has a factor of 2 owing to the two
sheets of Ba 2 and in the last line we have used the fact that 0,¢|,—¢ = —1/£. The term labeled
StR is the contribution from large radius region in the y or v-planes, and in particular includes
the contribution from the branch point ay. We evaluate these separately in Appendix D.3 as
they are involved, but quote here the final result:

257 P,

SR =7 [log (K(X) '(SXS) + 2 log(pc) + 3log(as) — 8 log(Ry) | » (D.12)

where we are meant to take the limit R,, aq — oc.
The second term in (D.10) reduces to a sum of localized delta functions as in the one-
interval case and thus vanishes,

/ dydyay(?ygo:Z/ 05 dv Dy — ”/ dv dv 5 (Jo])+6 (v — 1)+6 (Jv — x]) = 0.

(D.13)
The third term in (D.10) turns out to be formidable. We use various elliptic function identities
to evaluate it in Appendix D.2 and find when all the dust settles the result

2T 3
22 P, 9
df o = 4rlo cosh(mp.) | — 4n“p,. D.14
/0 v g ( K(x) o )> ’ (B14)

Plugging all of these pieces into (D.10), we arrive at our final answer for the Euclidean
action: 9
e c c c
Sgb;[Mﬂ = —?Pc + i) log (52X(1 - X)) + 1 log(as) — 3 log(Ry). (D.15)

To obtain the Rényi entropy, we need to normalize by the gravitational action of the sphere
Sg [M]. However, one needs to be careful because we have chosen a particular IR regular-
ization scheme to deal with the fact that we placed one of the branch points at infinity (this
is the same as the regularization scheme used in [46]). As a result, the action on the sphere
is no longer unity like in the single interval case, instead one finds

c Pe c
ShIMy] = G los (RQ) — 3 (D.16)
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The second Rényi entropy for two intervals is thus (using p. from (C.12))

S% o, = SEIMa] — 28E[M]
(D.17)

me c 2¢c ¢ c

= —i—— + — log (6%x(1 — 4+ - -1 .

600 T 128 (0"x(1 = x)) + 5+ log(as) — S log(pc)

We emphasize that this only gives the second Rényi entropy for the connected phase 1/2 <

x < 1. For the second mutual Rényi information I(®) we need the second Rényi entropy for

the single interval using our choice of regularization and thus it will differ from (3.24). It is
given by

c c c c
Sffi) = —log (5%\6122‘ - a2171|) — 5 log(2) — < log(pe) + 5 (D.18)

4 3 6 3

We thus arrive at the second mutual Rényi information (with the regulators 6, a4, p. canceling)

c 1—x LT 1
1P (y) = — 15 log <28 " ) —i—z€cm- (D.19)

This is in complete agreement with the result (C.5) obtained from the accessory parameter

(in the connected phase). The disconnected case proceeds along similar lines with p. — pg.

D.2 Hemisphere integral

We now turn to the calculation of the integral of ¢ = —log §2 along the azimuthal angle of the
hemisphere appearing in (D.10). To do this, we first need to rewrite the coordinate y along
the semi-circles given by the intersection of the circles ¢, ¢, with the upper-half y-plane.
These semi-circles are the images of the intervals [y + i€, 1 + i¢] and [x — i€, 1 — €] in the
v-plane, respectively; see Fig. 10. In the interval v € [y, 1], the torus elliptic map'® is given
by continuing (C.14) outside the principal domain,

n(v +ie) = £ + ZK(X) sn 1 (O(v),1 - x), (D.20)
with
sin® = =X v= X (D.21)
(1—x)v’ 1—(1-x)sin?20° '

Using this the map y(v) in the interval v € [x, 1] then takes the form

_ Exs tid(v)

y(v £ ie) = tanh(7 p.) tanh (pen(v)) = L £iC(0) (D.22)

where we have defined a new map ((v) using the addition formula, viz.,

¢(v) = tanh(7 p.) tan (ip.(m — n(v))) = tanh(7 p.) tan <I7(T(]J;) sn~! (©(v),1 - X)) . (D.23)

5We find it useful to employ Jacobian notation cf., [45, Sec. 22.1], to avail of various identities. A useful
reference for elliptic function properties is [47].
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This gives the desired description of the semi-circle. Note that we can invert ©(() and write

sin® = sn(w, 1 — x), w = QK(;_” coth(mpe) ((v). (D.24)

Armed with these definitions we can evaluate ¢(v) in the interval v € [y, 1] to be

plv) = — log <Z%g > ~ log <W> . (D.25)

Likewise, the azimuthal angle as a function of v is

0(v) = tan* <C(i§§v—)1> (D.26)

V=V

The desired integral thus becomes

/02”d9<p—2/07rd0<p—_4/xldv (C(g;(ﬁl) log (W) (D.27)

Evaluating the argument of the logarithm we find it convenient to split integral into two
pieces, one of which can be integrated directly, leading to

2 3 .
/ df ¢ = 27 log <8K(X> cosh” (m pc) sinh (m Pc)> —4n%p. + I(x), (D.28)
0

TPc

with

!

1
T(y) = 4/}( v 1542 log (\/v(l o) — x)) . (D.29)
To evaluate Z(x) we evaluate the integrand in terms of Jacobi elliptic functions:

v(l —v)(v— =X .
\/ ( )( X) (17(17X) sin2 @)5 dn3(w,1—x)

(1-x)cosOsin®  x(1 —x)sn(w,1 —x)en(w,1—x)

., (D.30)

where we have used the relations sn?(z,m) + cn®(z,m) = 1 and msn?(z,m) +dn?(z,m) = 1,
TWw

and w is defined above in (D.24). The integral changing variables to w, with @ = 5 DL is

Z(x) = 2mlog (x(1 — x)) + T (1 — x)

T(x) = 2m coth(r pc) /K(z) " sec? @ b <sn(w, z) en(w, x)) (D.31)
- K@ 0 coth®(7 pe) + tan? @ dn®(w, z) '

We can now exploit the fact that Jacobian elliptic functions have an infinite product repre-

sentation:
1 oo ~
1 1-92 2n 2 an
sn(w, ) = 2(%) sin w 2qf1 cos( 1?) + qi —
x L1 —2¢" 7 cos(2w) + gz
n=1
1 oo -
1— 1 1+2¢2" cos(2 "
en(w, z) = 2((@%) cos W + 23: cos( ij) + qi?an (D.32)
x o 126" cos(2w) + gx

1 ﬁ 1+2¢2 1 cos(2w) + gin 2
1-2 q%”_l cos(2w) + qé”_Q'
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where ¢, = ¢™7(®) is the elliptic nome. These products inside the logarithm become an infinite
sum of logarithms and a change of variables to tan(w) allows for a straightforward evaluation
of the resulting integrals. Once the dust settles, we arrive at

1601 1— th 1 + 2n+1 1— 2n+1 1 + 22
I(x) = mlog B x( X) coth”(r pc) + 4772 log h- Tox q; x
(coth(mp.) +1)4 q1,X 1- ql,x I—q”

(D.33)
which can be simplified using (D.32) evaluated at special values of w to give
3,3
7 p2 sech (7 p.) csch(m pe)
Z(x) = 2w log ( - . D.34

Inserting this result into (D.28) gives the result (D.14) quoted earlier.

D.3 IR divergences

The final ingredient in our computation is the evaluation of the long-distance contributions
encoded in Str, which originate from several different places and we will discuss each of them
in turn.

e Firstly, the integration by parts of the ‘kinetic term’ for ¢ in (D.11) contributes. Imposing
large radius cut-offs R, and R, in the y- and v-planes, respectively, we obtain the following
boundary contributions to (D.11)

27 1 2T
li o v TY¥I|r= Y do Y |r=
P Ry 00rplr=r, + 2/0 Ry00r¢lr=r,
o o (D.35)
= 1 2 vy — 5 == 1 4 - 2 3
odm 2 [ ae(r0) — [T dopR0) =t ame(R) = 2mp(R,)
using the fact that d,¢|.—r, = 2/R, and 0,¢|,=r, = —2/R,. Furthermore, ¢ becomes

angle independent in the infinite radius limit (as we shall see later).

e The second contribution comes from working in Poincaré coordinates which misses an extra
term coming from the curvature of the y sphere (which is pushed off to infinity in these
coordinates). To find this extra term, we pass to global coordinates with metric

dg¢? R, > dydy

ds? = 52 R’ (—5) S (D.36)
3 & Ry) (By+yP?)

which recovers the Poincaré metric for R, — oo. One finds the extra contribution by

computing the Einstein-Hilbert action with this metric in global coordinates and comparing

to Einstein-Hilbert action in Poincaré coordinates (D.7). One thus finds the missing term

to be

lim — /d g (g (P g lim — log [ 22 L (R,

1 — | — = — | ——

ryoo 817Gy | VY R g2 B\ R2) T 7)) T RS aGy P\ R2) 26N T
(D.37)
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e The third and final contribution, requires careful analysis of the contribution to the action
from the branch point a4 which we have sent to infinity. This was discussed in Appendix
D of [39] for the case n > 2. The main challenge with obtaining this contribution is that
when we set ay = oo, we have y(aqs = 00) = 00 so we cannot distinguish the contribution of
the branch point from the contribution of the sphere curvature at y = oo discussed above.
We give an analytic estimate for n = 2 below.

To understand the a4 contribution, we deform the map ¥ slightly so that a4 does not
map to infinity, instead y(aq) = y4 > 1 with some point vy, &~ a4 on one sheet such that
Y(vso) = 00. This will allow us to separately find the contribution from a4 and from the
sphere curvature (D.37). We will then take the limits y4 — oo followed by ag — 0.

Now that a4 is finite, we can use that y(v) is a power series in (v — a4)% near a4 by the
Schottky construction to write

D=

y(v) =ya+ pa (v —as)2 + O(v — aq) . (D.38)

Therefore, the contribution of a4 to the integral of the ‘kinetic term’ for ¢ evaluated in (D.11)

M4
— 55 @Oy = mlog (’ 1’> . (D.39)
aq 2¢e2

We next find the behavior of y and ¢ at R, and R,,. Since we only put v, on one sheet, y(v)

is given by

must have an order one pole at this point so near vy, (with residue v4,), we have

Voo . . ’VOO |
~ 1 R,)=1 1 — . D.40

y(v) UV — Voo - R;Lnoo(p( y) Rylinoo Og( RZ ) ( )
Recall that the accessory parameters are chosen such that y is regular at v = co. It is not
branched at this point since a4 is finite, thus near v = oo

(0) = g+ — T p(Ry) = Tim log [ - (D.41)

4 = Yo v RU—>00S0 v Ry—o0 & ],uoo| ' '

Having extracted all the necessary contributions from a4, R,, and R,,, we can now take the
desired limits y4 — oo and then agy — oo. From (D.39) and plugging (D.40) and (D.41)
into (D.35) and (D.37), one finds that the contribution to the action from the newly defined

parameters is
1
1 Vo |p1a]?
EG=——log| ——— | . D.42
4GN 8 ( |,uoo‘2 ( )

We need to understand the behavior of these three parameters when we take the desired
limits. To take the limit y4 — oo (or equivalently as — v ), we use that y is 2-branched at
a4 to write the inverse function v(y) near y, as

4 2
ys (1 1>
vy%a%—(—, D.43
W)~ a2 (- (D.43)
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where we fixed the coefficient of the quadratic term by comparison with (D.38). One can then
extract from (D.43) the relation between v, and yy4, pg by taking y large and then y4 — oo

with the result 5

V=V = lim (v—a4) = ve= —2%. (D.44)
Y4 —00 IJ/4

Furthermore, observe that in the limit y4 — oo the behavior of y near a4 is given by

2
lim y(v) = 194

S (D.45)
ba—ro0 lpal (v —aq)?

Taking the limit a4 — oo we can find the relationship between Z—% and s as follows. We
compute the residue at v = oo of y(v)? using (D.41) and equate it to the limit ay — oo of
the residue at v = ay of y(v)? using (D.45). We repeat the same procedure for the function
y(v)?/v and then plug the latter equation into the former. The final result is

2
lim |peo| = lim M. (D.46)
as—r00 ag—oo0 2 |,u,4|

This completes the analysis of the parameters in & in the desired sequence of limits, in
particular we can write the argument of the logarithm in terms of a4, y4, and pg. We want to
compute the latter two parameters from the analytic solution for y(v) (D.1). However, this
was obtained by solving the monodromy problem which assumed that ay = oo. The function
y(v) is regular at v = oo for finite a4, but this is no longer the case when a4 = 0o so that the
map is 2-branched at v = co with the following behavior

y(v) = fig V2. (D.47)

Taking the limit a4 — oo and then v — oo in (D.45) and comparing to (D.47) gives

2
ii= lim Y4l
a1—00 ag |pua|

(D.48)

Finally, it remains to find an explicit expression for ji4 from (D.1). Using (C.13), one
finds for small §

n(1> :m—L\/ﬂo(a

Nlw

I

5 K(x) 5 TpVo T e
(D.49)
Therefore,
1 8 1 ai K(x) /X5
S =- log | — = —— log (6 . (D.50)

Putting all of this together, we find the total contribution from the long-distance pieces:

SR =m llog (K(X) ‘(SXS) + 2 log(pc) + 3log(as) — 8 log(Ry) | - (D.51)
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E Actions, signs, and all that

We collect here some useful facts about actions and signs that the reader might find helpful
in checking various details of the paper.

E.1 Signs of gravitational action

The Lorentzian gravitational action S which enters in the path integral measures as ¢ for

standard time-ordered scattering computations, or as (55 =52) g given by

Ser = Sgr = 1 [/ d*e /=g (R+d(d—1))+2 /ddx V=K + Sct (E.1)
167G N

The Euclidean path integral on the other hand is defined to be one with a real measure e Sur
which in turn can be obtained by analytic continuation. When we Wick rotate ¢t — —it, we
pick end up picking a factor of —i from the integration measure, which combined with the ¢
in the quantum weighting, gives +1. A more straightforward statement is that the Euclidean
action should correspond to the Euclidean Hamiltonian and generically be positive definite.

This is why one defines:

Sk = —167T1GN [/dd“m\/g(Rer(d— 1) +2 /d%ﬁfusct] (E.2)

The evaluation of the functional integral is supposed to give a generating function (or a

partition function), Z which in turn is expressed as a free energy (to pick up the connected
components). We usually define therefore

Z=el= / [Dg] e Z=ec1 :/ [Dyg] e Sa (E.3)
L E

In thermodynamic systems I = BF where F is the free energy, which for sensible thermal
systems is negative F' = E — T'S. This is necessary for positivity of entropy and for the
usual intuition that systems with lower free energy dominate the canonical ensemble (since
S = —g—g using dF = —SdT'). This implies I < 0 (it is negative of the pressure). A saddle
point or stationary phase evaluation of the above path integrals then gives:

I=5E I =—iSg =—i(Sh — S2) =2Im(SE) (E.4)

8T |on-shell ’

These statements can be checked for the planar-Schwarzschild-AdSs black hole which
does define a sensible thermodynamic system for the dual CFT plasma. With a UV cut-off
at r = r. in Schwarzschild coordinates one finds:

/d% ViR 12) = 204 — 1)

2 /d4x ﬂK:8T§—4Ti (E.5)
Set = —6r7 + 371
giving Sgb;‘on_sheu =1= —r4+ which is the expression that correctly reproduces the pressure

of the dual plasma.
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E.2 Complex integral identities

In our evaluation of the I,, in Euclidean signature for N-intervals we made use of two identities
which we quote here in generality. First, consider an integral 7

I:/TMMmmmZi §(v,v) dv A do (E.6)
€ :RG

over a domain R, of the complex plane defined by excising discs D centered at a;
Re = C\ (U;D5) (E.7)

If one wishes to consider the variations of the integral with respect to the locations a; then
not only should one consider the explicit variation of the integrand but also account for the
variation of the domain R.. The latter is a boundary integral and the general result we need
is

0
8ai

T—i / O s vydundi+id Fwvydi-id Fw.w)d  (ES)
. Oai oD oD

Another relation we have employed is the Stokes’ theorem on the Dolbeault complex (d =
0+ 0). For a holomorphic f(v) we have

i/(avﬂv)wvf(m) dv/\dz‘;:i/ d(fdz‘)—fdv):i/ (jdo—fdv)  (E9)
R R OR
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