Survey of Transient Execution Attacks

Wenjie Xiong
Dept. of Electrical Engineering
Yale University
wenjie.xiong@yale.edu

ABSTRACT

Transient execution attacks, also called speculative execution at-
tacks, have drawn much interest in the last few years as they can
cause critical data leakage. Since the first disclosure of transient
execution attacks in January 2018, a number of new attack types
or variants have been demonstrated in different processors. A tran-
sient execution attack consists of two main components: transient
execution itself and a covert channel that is used to actually ex-
filtrate the information. Transient execution is caused by funda-
mental features of modern processors that boost performance and
efficiency, while covert channels are unintended channels that can
be abused for information leakage, resulting from sharing of the
micro-architecture components. Given the severity of the transient
execution attacks, they have motivated computer architects in both
industry and academia to rethink the design of the processors and
to propose hardware defenses. To help understand the transient
execution attacks, this paper summarizes the phases of the attacks
and the security boundaries that are broken by the attacks. This
paper further analyzes possible causes of transient execution and
different types of covert channels. This paper in addition presents
metrics for comparing different aspects of the transient execution
attacks (security boundaries that are broken, required control of the
victim’s execution, etc.) and uses them to evaluate the feasibility
of the different attacks — both the existing attacks, and potential
new attacks suggested by our classification used in the paper. The
paper finishes by discussing the different mitigations at the micro-
architecture level that have so far been proposed.

KEYWORDS

Transient Execution, Speculative Execution, Timing Channels, Covert
Channels, Secure Processor Architectures

1 INTRODUCTION

In the past decades, computer architects have been working hard
to improve the performance of computing systems. Different op-
timizations have been introduced in the various processor micro-
architectures to improve the performance, including pipelining,
out-of-order execution, and branch prediction [50]. Some of the
optimizations require aggressive speculation of the executed in-
structions. For example, while waiting for a conditional branch to
be resolved, branch prediction will predict whether the branch will
be taken or not, and the processor begins to execute code down
the predicted control flow path before the outcome of the branch is
known. Such speculative execution of instructions causes the micro-
architectural state of the processor to be modified. The execution
of the instructions down the incorrect speculated path is called the
transient execution — because the instructions execute transiently

Jakub Szefer
Dept. of Electrical Engineering
Yale University
jakub.szefer@yale.edu

and should ideally disappear with no side-effects if there was mis-
speculation. When a mis-speculation is detected, the architectural
and micro-architectural side effects should be cleaned up - but it is
not done so today, leading to a number of recently publicized tran-
sient execution attacks [20, 61, 69, 80, 97, 108, 110, 118] that leak
data across different security boundaries in computing systems.

Today’s processor designs aim to ensure the execution of a
program results in architectural states as if each instruction is
executed in the program order. At the Instruction Set Architec-
ture (ISA) level, today’s processors behave correctly. Unfortunately,
the complicated underlying micro-architectural states, due to dif-
ferent optimizations, are modified during the transient execution,
and the various transient execution attacks have shown that data
can be leaked from the micro-architectural states. For example,
timing channels can lead to information leaks that can reveal some
of the micro-architectural states which are not visible at the ISA
level [49, 73, 104, 137]. Especially, the micro-architectural states of
a processor are today not captured by the ISA specification, and
there are micro-architectural vulnerabilities that cannot be found
or analyzed by only examining the processor’s ISA.

Besides focusing on pure performance optimization, many pro-
cessors are designed to share hardware units in order to reduce
area and improve power efficiency. For example, hyper-threading
allows different programs to execute concurrently on the same
processor pipeline by sharing the execution and other functional
units among the hardware threads in the pipeline. Also, because
supply voltage does not scale with the size of the transistors [82],
modern processors use multi-core designs. In multi-core systems,
caches, memory-related logic, and peripherals are shared among
the different processor cores. Sharing of the resources has led to
numerous timing-based side and covert channels [49, 73, 104, 137]
— the channels can occur independent of transient execution, or
together with transient execution, which is the focus of this survey.

Transient execution combined with covert channels results in
transient execution attacks which can compromise the confidential-
ity of the system. As shown in Figure 1, during such attacks, the
secret or sensitive data is available during transient execution - this
differentiates the transient execution attacks from conventional
covert channel attacks where the data is assumed to be always
available to the sender, not just during transient execution!. After
the secret data is accessed during transient execution and encoded
into a covert channel, the secret data can be later extracted by the
attacker from the covert channel.

A number of transient execution attack variants has been demon-
strated, e.g., Spectre [2, 14, 25, 61, 62, 74, 99, 106], Meltdown [1, 20,

! There are also attacks using the timing difference in transient execution, e.g., [34-
36, 36, 54]. These attacks are still conventional covert channel attacks, where the
timing difference comes from the prediction units. Thus, these attacks are not in the
scope of this paper, but are listed in Section ??.

Setup Phase:

Transient Execution Phase:

Instruction triggering
) transient execution
| I
E §|l 1.LoadSecret ||
2 g mmm e 1
S g‘ | 2. Encodeto |
Setup = I

speculation window

Decoding Phase:

Speculation
primitive

Disclosure

decode from the
covert channel

@ Covert Channel
Disclosure primitive

time

Figure 1: Phases of transient execution attacks.

60, 69], Foreshadow [108, 118], LazyFP [102], Micro-architectural
Data Sampling (MDS) [80, 97, 110], Load Value Injection (LVI) [109].
These attacks have been shown to allow data leaks across differ-
ent security boundaries, e.g., system privilege level, SGX enclave,
sandbox, etc. The transient execution attacks have been assigned 9
Common Vulnerabilities and Exposures (CVE) IDs out of 14 CVE
IDs that correspond to vulnerabilities about gaining information
on Intel products in 2018, and 4 out of 9 in 2019, according to the
CVE Details database [3]. These attacks also affect other vendors,
such as AMD or Arm, for example.

In addition, these attacks have raised a lot of interest, and moti-
vated computer architects to rethink the design of processors and
propose a number of hardware defenses [12, 37, 58, 59, 95, 127] - this
survey summarizes the attacks and the hardware defenses, while
software-based defenses are summarized in existing work [20].

1.1 Outline and Contributions

This paper provides a survey of existing transient execution attacks
from Jan. 2018 to July 2020. We start by providing background on
the micro-architectural features that lead to the attacks. We then
define the transient execution attacks and summarize the phases
and attack scenarios. We analyze the types of transient execution
and covert channels leveraged by the transient execution attacks
to show the root causes of these attacks. In the end, we discuss
the mitigation strategies for the transient execution and covert
channels. The contributions of this survey are the following:

e We summarize different attack scenarios and summarize the
security boundaries that are broken by the attacks.

e We provide a taxonomy of the existing transient execution
attacks by analyzing the causes of transient execution that
they leveraged, and we propose metrics to compare the fea-
sibility of the attacks.

e We summarize and categorize the existing and potential
timing-based covert channels in micro-architectures that can
be used with transient execution attacks, and also propose
metrics to compare these covert channels.

o We discuss the feasibility of the existing attacks based on
the metrics we propose.

e We compare the different mitigation strategies that have
been so far designed at the micro-architectural level in vari-
ous publications.

2 TRANSIENT EXECUTION ATTACK
SCENARIOS

We define transient execution attacks as attacks that access data
during transient execution and then leverage a covert channel to
leak information. The phases of these attacks are shown in Fig-
ure 1. Although not indicated in the “transient execution attacks"
name, covert channels are an essential component of the transient
execution attacks, because the micro-architectural states changed
during transient execution are not visible at the architectural level,
and are only accessible by using a covert channel to learn the state
change (and thus the secret). In this section, we summaries the at-
tack scenarios, e.g., the attacker’s goal, the location of the attacker,
etc.

2.1 Attacker’s Goal: Breaking Security
Boundaries

There are many security boundaries (between different privilege
levels or security domains) in a typical processor, as shown in
Figure 2. The goal of the attacker of the transient execution attacks
is to cross the security boundaries to obtain information related to
the victim’s protected data. In Figure 2, we categorize the possible
privilege levels or security domains where the attack can originate
and wherefrom it is trying to extract data as follows:

(1) Across user-level applications: The attacker and the vic-
tim are two separate user applications, and the attacker pro-
cess tries to learn the memory content of another process,
e.g., [14] demonstrates how an attacker process learns the
private key when a victim OpenSSH server process is run-
ning in.

User-level program attacking the kernel: The attacker
runs in the user level and wants to read the privileged data
of the kernel, e.g., [69] demonstrates an attack that allows
an unprivileged application to dump kernel memory.
Virtual machine attacking another virtual machine:
The attacker and the victim resides in two different guest
virtual machines, e.g., [14] shows it is possible for an attacker
VM to learn the private key of OpenSSH server in the victim
VM.

Virtual machine attacking the hypervisor: The attacker
is a guest OS and the victim is the host hypervisor, e.g., [61]
demonstrates an attack against KVM that leaks hypervisor’s
memory when the attacker has full control of the OS inside
a VM.

—
)
~

4)

! || sex || sand
|| |[Enclave| | box i
1 i |
| 1 App- 1 App. 2 ;
; v oS |
| 0s(VM1) ¢ (VM 2);
i Hypervisor 3

Figure 2: Security boundaries in computer systems that are broken
by transient execution attacks.

(5) Attacking the victim running inside an enclave: The
victim runs inside a security domain protected by some hard-
ware scheme, e.g., SGX enclaves [26], XOM [66], Aegis [103],
Bastion [23], Sanctum [27] or Keystone [63], and the attacker
code runs outside of it, e.g., [25] demonstrates such an attack
that retrieves secret from inside the SGX enclave.

(6) Across security domains protected by software: The
victim runs inside the security domain protected by some
software scheme, e.g., sandboxes in JavaScript, and the at-
tacker code runs outside of it, as shown in [61].

All of the security boundaries listed above are broken by one or
more of the existing transient execution attacks. The attacks have
been shown to be able to retrieve coherent data, as well as non-
coherent data. Details will be discussed in Section 3.4, especially in
Table 2.

2.1.1 Attacks Targeting Coherent and Non-Coherent Data. We
categorize all the data in the processor state into coherent data
and non-coherent data. Coherent data are those coherent with
the rest of the system, e.g., data in caches are maintained by cache
coherence protocol. Coherent data can be accessed by its address.
Non-coherent data are temporarily fetched into micro-architectural
buffers or registers, are not synchronized with the rest of the system,
and may not be cleaned up after use, e.g., data in the STL buffer.
Thus, non-coherent data may be stale. Non-coherent data that is left
in the buffer can be of a different privilege level or security domain,
so the attacker will break the security domain when accessing the
non-coherent stale data. Some attacks [2, 102] focus on attacking
buffers to retrieve such non-coherent data, which in turn breaks
the security boundaries.

2.2 Phases of the Attack

As shown in Figure 1, we divide the transient execution attacks
into three phases:

Setup Phase: The processor executes a set of instructions that
modify the micro-architectural states such that it will later cause
the transient execution of the desired code (called disclosure gadget)
to occur in a manner predictable to the attacker. An example is
performing indirect jumps to a specific address to “train” the branch
predictor. The setup can be done by the attacker running some code
or the attacker causing the victim to run in a predictable manner so
that the micro-architectural state is set up as the attacker expects.

Transient Execution Phase: The transient execution is actu-
ally triggered in this phase, and the desired disclosure gadget exe-
cutes due to the prior training in the setup phase. The piece of code

that accesses and transmits secret into the covert channel is called
disclosure gadget, following the terminology in [107]. The instruc-
tions belonging to the disclosure gadget are eventually squashed,
and the architectural states of the transient instructions are rolled
back, but as many of the attacks show, the micro-architectural
changes caused by the disclosure gadget remain, so secret data can
be later decoded from the covert channel. This phase can be either
executed by the victim or by the attacker.

Decoding Phase: The attacker is able to recover the data via the
covert channel by running the attacker’s code or by triggering the
victim’s code and observing the behavior or result of the execution.

During an attack, the Setup Phase and the Transient Execution
Phase cause the transient execution of the disclosure gadget to
occur. Then, the Transient Execution Phase and the Decoding Phase
leverage the covert channel to transmit data to the attacker. Thus,
the Transient Execution Phase is critical for both accessing the
secret and encoding it into a channel.

2.3 Transient Execution by the Victim vs. the
Attacker

Each phase listed above can be performed by the attacker code or by
the victim code, resulting in eight attack scenarios in Figure 3. When
a phase is performed by the victim, the attacker is assumed to have
the ability to trigger the victim to execute the disclosure gadget.
We categorize the attacks based on who is executing transiently to
encode the secret into the covert channel.

2.3.1 Victim is Executing Transiently. If the victim is the one
who executes transiently, as shown in Figure 3 (a—d), the victim is
triggered to execute a disclosure gadget that encode some secret
into the covert channel during transient execution, and the attacker
obtains the secret by decoding the data from the covert channel. In
this scenario, the attacker is assumed to be able to control or trigger
the execution of the disclosure gadget in the victim’s codebase. The
attacker can do this by calling some victim functions with certain
parameters. For example, in SGXpectre [25], the attacker can launch
the target enclave program.

Different from the conventional side and covert channels, here,
the encoding phase is executed transiently, and thus, the attack can-
not be detected by simply analyzing the software semantics of the
victim code. This attack vector leverages the difference between the
expected semantics of software execution and the actual execution
in hardware and is a fundamental problem in current computer
architectures.

There are two options for preparing for the transient execution
(i.e., setup phase). First, if the hardware component that causes
transient execution, e.g., the prediction unit, is shared between the
attacker and the victim, then the attacker’s execution can manipu-
late the prediction unit to trigger the disclosure gadget in the victim
code to execute transiently, as shown in Figure 3 (c,d). The second
option is that the attacker triggers a setup gadget in the victim
codebase to set up the transient execution, as shown in Figure 3
(a,b). For the first option, the attacker is required to share the pre-
diction unit with the victim and to prepare some code to set up
the hardware to lure the victim into desired transient execution.
For the second option, the attacker is required to understand the

» @ e » @O [4

c)

[4 @ | 4

>
E Victim Attacker Victim Attacker Victim Attacker Victim Attacker
2

2

© Setup <==Trigger Setup <==Trigger Setup Setup
[

Qo Transient . Transient . Transient X Transient X

£ execution: || <~ Trigger execution: || <~ Trigger execution: || <~ Trigger execution: <= =Trigger
=R eiatanneui | I I ateancui | I I Sttt | I I S

8 Encode to Encode to Encode to | Encode to

2 _covert chan. | _covert chan. _covert chan. | { covert chan. |

i

£ Decode from || 4 —Trigger Decode from Decode from || __ ~Trigger Decode from
s covert chan. covert chan. covert chan. covert chan.
<

e.g., Netspectre[99]
Spectre V4[2]

e.g., Spectre V1[16,61,99,106],

e.g., Spectre[61,106], SGXPECTRE[25],
SMoTherSpectre[14], ret2spec[74],
Sepectre Returns[62], LVI[109]

o @ ®e » O ® - O ® » O [4
>
£ [V
o Victim Attacker Victim Attacker Victim Attacker Victim Attacker
w
c
o
':n Setup <~=Trigger Setup <==Trigger Setup Setup
c
= Transient Transient Transient Transient
3 execution: execution: execution: execution:
TR Y " uuvuuso vt 1 B I | Spupuuauyuuunl 1 S I R f SPSpuuvabuyeouu () E I S S
u><_| Encode to Encode to Encode to Encode to
= _covert chan._| ~covertichan. | ~covertchan. ~covertichan. |
[}
~
o Decode from || «— —Trigger Decode from Decode from N Decode from

<«

g covert chan. 99 covert chan. covert chan. Trigger covert chan.
<

e.g., Meltdown[9,60,69,106], LazyFP[102],
Foreshadow([108,118], MDS[80,97,110]

Figure 3: Possible scenarios of transient execution attacks: a-d) the attacker triggers part of the victim code to execute transiently to leak
secret through the covert channel, or e-h) the attacker executes transiently to access data that she does not have permission to access and

encodes it into the covert channel.

victim’s code and be able to trigger the setup gadget to execute with
a controlled input, e.g., by calling a function of the victim code.

Decoding data from the covert channel can be done by the at-
tacker code, as shown in Figure 3 (b,d), or by the victim code, as
shown in Figure 3 (a,c). For the second case, the attacker may di-
rectly query a decoding gadget in the victim code and leverage the
results of the decoding gadget the infer information through the
covert channel, or the attacker may trigger the execution of the
decoding gadget and measure the time or other side effect of the
execution.

2.3.2 Attacker is Executing Transiently. As shown in Figure 3 (e
h), the attacker can directly obtain the secret in transient execution.
The attacker will then encode the data into a covert channel and
decode it to obtain the secret in the architectural state, such as in her
memory. The attacker can also launch different software threads
for the setup or the decoding phases. The attacker’s code shown in
Figure 3 (e-h) might be in different threads, even on different cores.

During the attack, the attacker directly obtains the secret during
transient execution, and thus, the attacker should be able to have a
pointer to the location of the victim data. There might be only the
attacker code running, or the attacker and the victim running in
parallel. When there is only the attacker code running, the victim’s
protected data should be addressable to the attacker or the data
is in some register in the hardware, i.e., the attacker should have
a way to point to the data. In Meltdown [69], the attacker code
first loads protected data by its virtual address to register and then

transfers the data through a covert channel. When the attacker and
the victim are running concurrently, the attacker should be able
to partially control the victim’s execution or synchronize with the
victim execution. For example, in Micro-architectural Data Sam-
pling (MDS) attacks [80, 97, 110], the attacker needs to synchronize
with the victim execution to extract useful information from the
non-coherent data of the victim in the buffers.

In micro-architectural implementations, transient execution al-
lows the attacker to access more data than it is allowed in the
architecture (ISA) level. Thus, this type of attack is implementation-
dependent and does not work on all the CPUs, e.g., Meltdown [69],
Foreshadow [108, 118], MDS [80, 97, 110], are reported to work on
Intel processors.

Similar to the case when the victim is executing transiently, the
setup phases and decoding phases can also be done by the victim,
resulting in four attack scenarios in Figure 3 (e-h). However, in the
current known attacks, the attacker always sets up, triggers the
transient execution, and decodes from the channel, which is more
practical.

2.3.3 Feasibility of the Attack Scenarios. The required number of
gadgets in the victim codebase to be triggered and required sharing
in different transient execution scenarios is summarized in Table 1.
In addition, Figure 3 shows the attack scenarios demonstrated in
different publications. In a practical attack, it is desired to have
most phases to be executed by the attacker’s code and less required
sharing of hardware.

Table 1: Required Control of Victim Execution in Different Attack Scenarios.

Number Sharing .
. L . Sharing
. Transient . of Victim Required .
Scenario Setup . Decoding . Required
C . Execution Gadgets during
in Figure 3 Phase Phase . for Covert
Phase to be Transient e
. . . +« | Channel
Triggered Execution
a Victim Victim Victim 2-3 No No
b Victim Victim Attacker 1-2 No Yes
c Attacker Victim Victim 2 Yes No
d Attacker Victim Attacker 1 Yes Yes
e Victim Attacker Victim 2 Yes Yes
f Victim Attacker Attacker 1 Yes No
g Attacker Attacker Victim 1 No Yes
h Attacker Attacker Attacker 0 No No

* The number shows the number of different code gadgets in the victim’s codebase to be triggered by the attacker.
We assume the decoding gadget is different from the disclosure gadget. The setup gadget may or may not be the
same code as the disclosure gadget, so the two gadgets can be counted as either 1 (same) or 2 (different) gadgets,
giving a range of gadgets required, as show in the fifth column of the table.

** Here, we refer to sharing of hardware between the attacker and the victim. In addition, the attacker (or the
victim) could also have multiple software threads running and sharing hardware between the threads. We assume
colocation between the each party’s threads is possible, and do not list that here.

In most of the existing attacks, the attacker completes setup
and decoding steps, as shown in Figure 3 (d,h), because they use
less gadgets in the victim codebase and are more practical for the
attacker. Attack scenarios (a,b) in Figure 3 are also demonstrated
that have less requirement of shared hardware. In Spectre V1, since
the victim disclosure gadget can be reused as the setup gadget for
training the predictor, triggering victim to run the setup phase does
not require additional effort for the attacker, and thus, Figure 3 (b)
is also practical. The attacker can also use the victim’s code to
complete both setup and decoding steps, as shown in Figure 3 (a).
In this case, the attacker can launch the attack remotely [99].

Scenarios (c) and (e-g) in Figure 3 require more gadgets in the
victim code and are not demonstrated in the publications so far.
However, if the attacker has the ability to trigger the victim to
execute certain gadgets (as required by some of the attacks already),
those scenarios are still feasible and should be considered when
designing mitigations.

3 TRANSIENT EXECUTION

Transient execution is the phenomenon where code is executed
speculatively, and it is not known if the instructions will be commit-
ted or squashed until the retirement of the instruction or a pipeline
squash event. Upon the squash, not all the micro-architectural side
effects are cleaned up properly, causing the possible transient exe-
cution attacks. Hence, all causes of pipeline squash are also causes
of transient execution and need to be understood to know what
cause transient execution attacks to occur. In this section, we first
discuss all possible causes of transient execution, then we propose
a set of the metrics to evaluate feasibility of the transient execution
attacks.

3.1 Causes of Transient Execution

The following is an exhaustive list of possible causes of transient
execution (i.e., causes of pipeline squashing).

Mis-prediction: The first possible cause of transient execution
is mis-prediction. Modern computer architectures make predic-
tions to make full use of the pipeline to gain performance. When
the prediction is correct, the execution continues and the results
of the predicted execution will be used. In this way, predictions
boost performance by executing instructions earlier. If the predic-
tion is wrong, the code (transiently) executed down the incorrect
(mis-predicted path) will be squashed. There are three types of
predictions: control flow prediction, address speculation, and value
prediction.

(1) Control Flow Prediction: Control flow prediction predicts
the execution path that a program will follow. Branch prediction
unit (BPU) stores the history of past branch directions and targets
and leverages the locality in the program control flow to make
predictions for future branches. BPU predicts whether the branch
is to be taken or not (i.e., branch direction) by using pattern history
table (PHT), and what is the target address (i.e., branch or indirect
jump target) by using branch target buffer (BTB) or return stack
buffer (RSB). The implementation details of PHT, BTB, and RSB in
Intel processors will be discussed in Section 3.6.1.

(2) Address Speculation: Address speculation is a prediction
on the address when the physical address is not fully available yet,
e.g., whether two addresses are the same. It is used to improve
performance in the memory system, e.g., store-to-load (STL) for-
warding in the load-store queue, line-fill buffer (LFB) in the cache.
The implementation details of STL and LFB in Intel processors will
be discussed in Section 3.6.2.

(3) Value Prediction: To further improve the performance,
while the pipeline is waiting for the data to be loaded from mem-
ory hierarchy on a cache miss, value prediction units have been
designed to predict the data value and to continue the execution
based on the prediction. While this is not known to be implemented
in commercial architectures, value prediction had been proposed
in the literature [67, 68].

Table 2: Data Leaked by the Transient Execution Attacks.

Coh. Data** Non-
o
Cause.s of Example & coh. N
Transient - N Data
. Attacks s = £ 9
Execution 2 5 3 3 x
g = 15
T 2 g 8 =
g 2 5 2 é =1
<~ s X & [%5] 3
Ctrl PHT Spectre V1 [16, 61, 99, 106] R B B X R K u]
g Fl BTB Spectre V2 [14, 25, 61] R B R R B R O
g °W | rsB Spectre V5 [62, 74] B B B ® ® R | O
ks
- STL Spectre V4, LVI [2, 109] R B R R B R 4
Viet & Addr.
ietim & “ | LFB LVI [109] R B X R R K 4
Executes —— -
. Value | no commercial implementation
Transiently - =
Exception LVI [109] X B X R R K 4
Interrupts no known attack
Load-to-load reordering | no known attack
- Ctrl * no known attack
2 Flow
3 addr | STL Fallout [80] O O O O o o =
£ " | LFB RIDL, ZombieLoad [97, 110] 0O 0o oo o ®
Attacker Value | no commercial implementation
Executes PF-US | Meltdown (V3) [69, 106] O O ® O O O u}
Transient] PF-P Foreshadow (L1TF) [108,118] | R ® ® K K 0O O
Y Exception PF-RW | V1.2 [60] O O 0O O O K o
NM LazyFP [102] O o o o o o R
GP V3a[1] O O ® O O O o
Interrupts no known attack
Load-to-load reordering | no known attack

® indicates that the attack can leak the protected data; O indicates that the attack cannot leak the data.

* indicates all hardware components that cause the corresponding transient execution, we combine them in the
same row because the data leaked in the attacks are the same.

**Coh. Data is short for coherent data, Non-coh. Data is short for non-coherent data.

Exceptions: The second possible cause for transient execution
to occur are exceptions. If an instruction causes an exception, the
handling of the exception is sometimes delayed until the instructing
is retired, allowing code to (transiently) execute until the exception
is handled. There are a number of causes of exceptions, such as a
wrong permission bit (e.g., present bit, reserved bit) in Page Table
Entry (PTE), etc. A list of all the exception types or permission bit
violations is summarized in [20]. In addition, Xiao et al. developed
a software framework to automatically explore the vulnerabilities
on a variety of Intel and AMD processors [122].

Sometimes the exceptions are suppressed due to another fault,
e.g., nested exceptions. For example, when using transactional mem-
ory (Intel TSX [4]), if a problem occurs during the transaction, all
the architectural states in the transaction will be rolled back by a
transaction abort, suppressing the exception that occurred in the
middle of the transaction [97, 110]. Another way is to put the in-
struction that would cause exception in a mis-predicted branch. In
this survey, even if the exception is suppressed later, we categorize
the attack to be due to exceptions.

Interrupts: The third possible cause for transient execution is
(external) interrupts. If a peripheral device or a different core causes
an interrupt, the processor stops executing the current program,
saves the states, and transfers control to interrupt handler. In one

common implementation, when stoping execution, the oldest in-
struction in the ROB will finish execution, and all the rest of the
instructions in the ROB will be squashed, the instructions that were
executed after the oldest instruction (but end up being squashed)
are executed transiently. After the interrupt is handled, the current
program may continue the execution, i.e., the instructions that are
squashed will be fetched into the pipeline again.

Load-to-Load Reordering (Multi-Core): The fourth possible
cause for transient execution is load-to-load reordering. Current x86
architectures use the total store order (TSO) memory model [100].
In TSO, all observable load and store reordering are not allowed
except store to load reordering where a load bypasses an older
store of a different address. To prevent a load to load reordering,
if a load has executed but not yet retired and the core receives a
cache invalidation for the line read by the load, the pipeline will
be squashed. Transient execution occurs between the instruction
issue and when the load-to-load reordering is detected.

3.2 Causes of Transient Execution in Known
Attacks

Not all transient execution can be leveraged in an attack, and Table 2
shows the causes of transient execution in existing attacks. Mis-
prediction is leveraged in Spectre-type attacks, e.g., [61]. Address
speculation is leveraged in MDS attacks [80, 97, 110] and LVI [109].

Exceptions of loads or stores are leveraged in Meltdown attacks [69],
Foreshadow attacks [108, 118], and LVI [109], etc. Other types of ex-
ceptions, interrupts, and load-to-load reordering are not considered
to be exploitable. Because the instructions that get squashed due
to exceptions, interrupts and load-to-load, are legal to be resumed
later on, and no extra data is accessible to the attacker during the
transient execution.

The sample codes of different variants are shown in Figure 4. The
victim code should allow a potential mis-prediction or exception to
happen. In Spectre V1 [61], to leverage PHT, a conditional branch
should exist in the victim code followed by the gadget. Similarly,
in Spectre V2 [61] and V5 [62, 74], the victim code should have
an indirect jump (or a return from a function) that uses BTB (or
RSB) for prediction of the execution path. In Spectre V4 [2], to use
STL, the victim code should have a store following a load having
potential address speculation. In LVI [109], a load that triggers a
page fault (accessing trusted_ptr) will forward non-coherent data
in the store buffer which is injected by a malicious store (xarg_copy
= untrusted_ptr), and then, the secret data addressed by the
injected value (x*untrusted_ptr) is leaked. In Meltdown [69], the
attacker code should make an illegal load to cause an exception. In
MDS attack [80, 97, 110], a faulty load (value=*(new_page)) will
forward non-coherent data in the buffer.

3.3 Metrics for Causes of Transient Execution

If the attacker wants to launch a transient execution attack, the
attacker should be able to cause transient execution of the disclosure
gadget in a controlled manner. We propose the following metrics
to evaluate the different causes of transient execution:

e Security Boundaries that are Broken: This metric indicates
the security boundaries that are broken during the transient execu-
tion attacks - this will be discussed in Section 3.4.

e Required Control of the Victim’s Execution: This metric
evaluates whether the attacker needs to control the execution of
victim code — details will be discussed in Section 3.5.

¢ Required Level of Sharing: This metric evaluates how close
the attacker should co-locate with the victim and whether the
attacker should share memory space with the victim to trigger
the transient execution in a controlled manner — details will be
discussed in Section 3.6.

e Speculative Window Size: This metric indicates how many
instructions can be executed transiently - the speculation window
size will be discussed in more detail in Section 3.7.

3.4 Security Boundaries that are Broken

As discussed in Section 2.1, the attacker’s goal is to access the
coherent or non-coherent data across the security boundaries in
the system. Table 2 lists the type of data and the security bound-
aries across which the data can be leaked in the known transient
execution attacks, assuming all the instructions in the disclosure
gadget can execute transiently and the covert channel can transmit
information to the attacker.

If the victim is executing transiently, the disclosure gadget can
read any coherent data that the victim could access architecturally,
even if the semantics of the victim code do not intend it to access
the data [61]. Hence, in these attacks, the attacker can break the

isolation between the victim and the attacker and learn data in the
victim’s domain. For example, SWAPGS instruction is a privileged
instruction that usually executed after switching from user-mode
to kernel-mode. If SWAPGS is executed transiently in the kernel-
mode in the incorrect path, kernel data can be leaked [16]. When the
victim is executing transiently, the attacker can also learn the non-
coherent data (for example, stale data) and also data that depends
on non-coherent data (e.g., data in an address that is depended on
non-coherent data). For example, in Spectre V4 [2], stale data that
contains the address of the secret data in the store buffer is for-
warded to the younger instructions transiently, and the disclosure
gadget accesses and transmits the secret data to the attacker. As
another example, in LVI attack [109], the attacker injects malicious
value through buffers, such as STL or LFB, causing a victim’s tran-
sient execution that depends on a value controlled by the attacker
and potentially leaks the value in address controlled by the attacker.

If the attacker is executing transiently, transient execution allows
the attacker to access illegal data directly. As shown in Table 2, the
security boundaries that are broken depend on the causes of tran-
sient execution. In some processor implementations, even if a load
causes an exception due to permission violation, the coherent data
might still be propagated to the following instructions and learned
by the attacker. For example, in Meltdown [69], privileged data is
accessible transiently to an unprivileged user even if the privileged
bit in the page table is set. In L1 terminal fault (L1TF) [118], secret
data in the L1 cache is accessible transiently even if the present bit
in the page table is not set. In Table 2, the attacks leveraging excep-
tions are categorized by the cause of the exception, e.g., page fault
(PF), and the related permission bit. Non-coherent data present
in the micro-architecture buffers (e.g., Line Fill Buffers (LFB) or
store buffer (STB)) can sometimes be accessed by the attacker in
transient execution [80, 97, 110]. In addition, in CROSSTALK [91],
a hardware buffer called staging buffer is discovered. The staging
buffer is for some type of off-core reads, e.g., RDRAND instruction
that requesting DRNG (Digital Random Number Generator), CPUID
instruction that read from MachineSpecific Registers (MSRs). The
staging buffer is shared across cores, and thus, the CROSSTALK
paper demonstrated a cross-core attack where the victim fetch some
data from RNG, and the attacker then learn the random number in
the stage buffer during transient execution.

3.5 Required Control of the Victim’s Execution

For the attacks leveraging mis-prediction, (mis-)training is a es-
sential setup step to steer the control flow to execute the desired
disclosure gadget. The (mis-)training can be part of victim code,
which is triggered by the attacker, as shown in Figure 3 (b) and
Table 1. In the example of Spectre V1, the attacker can first pro-
vide inputs to train the branch predictor (i.e., PHT) to execute the
gadget branch, because in this way the training code will always
share the branch predictor with the attack code. In this case, the
attacker should be able to control the execution of victim code.
The (mis-)training code can also be a part of the attacker’s code
and run in parallel with the victim code, as shown in Figure 3 (d),
e.g., in Spectre V2. Then, it is required that the attacker’s training
thread and the victim’s thread should be co-located to share the
same prediction unit (e.g., BTB). Further, to share the same entry

Spectre V1:
The attacker trains the PHT
to execute disclosure gadget.

Spectre V2:

The attacker trains the
BTB to jump to the
disclosure gadget.

Spectre V5:

The attacker pollutes the
RSB, to return to disclosure
gadget after Funl.

Spectre V4:

The attacker delays the
address calculation
causing speculation.

struct array *arrl = ...;
struct array *arr2 = ...;
unsigned long offset = .

if (offset < arrl_len) {

sec = arrl[offset];

value2 = arr2[sec*c];}

L

TRGT:

jmp LEGITIMATE_TRGT

movzx eax, byte [rdi]
shl rax, @Ch

mov al, byte [rax+rsi]

main: Call Funl char * ptr = sec;

char **slow_ptr = *ptr;
Funl: ... clflush(slow_ptr)

ret *slow_ptr = pub;

movzx eax, byte [rdi] |[value2 = arr2[(*ptr) *c];

shl rax, @Ch

mov al, byte [rax+rsi]

(AY/H

Meltdown:

RIDL (MDS):

The attacker injects a
untrusted value to the

The attacker accesses the
address in rcx to cause a

The attacker reads data in
the buffer transiently

victim’s transient execution exception.

*arg_copy = untrusted_arg;
\\untrusted_arg is in the
buffer now

Retry:
array[**trusted_ptr * 4096];

\\victim suffers a page
fault for trusted_ptr
\\untrusted_arg is forwarded,
to trusted_ptr as the base
address for dereference

jz retry

(rcx = address lead
to exception)

mov al, byte [rcx]

shl rax, Oxc

Mov rbx, qword [rbx + rax]

char value = *(new_page);
\\Speculatively load
secret from a buffer

char *entry_ptr = buffer
+ (1024 * value);
\\Calculate the
corresponding entry

*(entry_ptr);
\\Load that entry into
the cache to encode

Figure 4: Example code of transient execution attacks. Code highlighted in orange triggers transient execution. Code highlighted in yellow

with dashed frame is the disclosure gadget.

of the prediction unit, if the prediction unit is indexed by physical
address, the attacker and the victim should also share the same
memory space to share the entry, which will be discussed in the
next subsection.

For the attacks that leverage exceptions, the instructions that
follow the exception will be executed transiently, and thus, no
mis-training is required, but the attacker needs to make sure the
disclosure gadget is located in the code such that it is executed after
the exception-causing instruction.

3.6 Required Sharing during Transient
Execution

As shown in Table 1, in some scenarios, the setup code and the
disclosure gadget are run by different parties, e.g., Figure 3 (c-f), or
in attacker’s different software threads, e.g., Figure 3 (g-h). These
cases require that the setup code shares the same prediction unit
(entry) with the disclosure gadget. One common attack scenario is
that the attacker mis-trains the prediction unit to lure the execution
of the disclosure gadget of the victim, e.g., Figure 3 (d). Hardware
sharing can be as follows:

e Same thread: The attacker and the victim (if both of them
executing) or the attacker’s software threads (if only the
attacker is executing) are running on the same logical core
(hardware thread) in a time-sliced setting, and there might
be context switches in between.

e Same core, different thread: The attacker and the victim
(if both of them executing) or the attacker’s threads (if only
the attacker is executing) are running on different logical
cores (hardware threads) through simultaneous multithread-
ing (SMT) on the same physical core.

e Same chip, different core: The attacker and the victim (if
both of them executing) or the attacker’s threads (if only the

attacker is executing) are on different CPU cores, but are
sharing LLC, memory bus, and other peripheral devices.

e Same motherboard, different chip: The attacker and the
victim (if both of them executing) or the attacker’s threads
(if only the attacker is executing) share memory bus and
peripheral devices.

Some prediction units have multiple entries indexed by address,
and in that case, the attacker needs to share the same entry of the
prediction unit with the victim during the setup. To share the same
entry, the attacker needs to control the address to map to the same
predictor entry as the victim. The address space can be one of the
following:

o In the same address space: In this case, the attacker and
the victim have the same virtual to physical address mapping.

e In different address spaces with shared memory: In
this case, the attacker and the victim have different virtual to
physical address mappings. But some of the attacker’s pages
and the victim’s pages map to the same physical pages. This
can be achieved by sharing dynamic libraries (e.g., 1ibc).

e In different address spaces without shared memory:
The attacker and the victim have different virtual to physical
address mapping. Further, their physical addresses do not
overlap.

In the following, we discuss the level of sharing required to trig-
ger transient execution of disclosure gadget for an attack leveraging
mis-prediction. In particular, the scenario depends on the imple-
mentation, and thus, we discuss each of the prediction units in Intel
Processors in detail.

3.6.1 Control Flow Prediction: To predict the branch direction,
modern branch predictors use a hybrid mechanism [33, 55, 77, 79,
101]. One major component of the branch predictor is the pattern
history table (PHT). Typically, a PHT entry is indexed based on

Table 3: Level of Sharing and (Mis-)training the Prediction Unit on Intel Processors.

N ““0‘3’ . . co‘e o‘&‘a
Prediction & ‘6@@“ 8@;@‘ o
Unit R g 2 o
PO ¢ ° &
& s
PHT [36, 60] f(virtual addr) f(virtual addr) - -
Ctrl Flow BTB [35, 61] f(virtual addr) f(virtual addr)* - -
RSB [74] not by address® - - -
STL [54, 80] f(physical addr) ¢ - - -
Addr. LFB [97, 110] not by address not by address - -
Other?
Value no commercial impl.

“~" indicates the prediction unit is not possible to be trained under the corresponding sharing setting; Otherwise, the prediction
unit can be trained and “f(virtual addr)" indicates the prediction unit is indexed by a function of the virtual address, “f(physical
addr)" indicates the prediction unit is indexed by a function of the physical address, and “not by address" indicates the prediction
unit is not indexed by addresses.

2 Conflicting results are presented in different publications [35, 61].

b Most OSes overwrite RSBs on context switches.

¢ STL is possible after context switch, but not on SGX enclave exit.

d1n [97], it is indicated that there could be other structures which forward data speculatively.

some bits of the branch address, so a branch at a certain virtual
address will always use the same entry in the PHT. In each entry of
the PHT, a saturating counter stores the history of the prior branch
results, which in turn is used to make future predictions.

To predict the branch targets, a branch target buffer (BTB) stores
the previous target address of branches and jumps. Further, a return
instruction is a special indirect branch that always jumps to the
top of the stack. The BTB does not give a good prediction rate on
return instructions, and thus, return stack buffer (RSB) has been
introduced in commercial processors. The RSB stores N most recent
return addresses.

In Intel processors, the PHT and BTB? are shared for all the
processes running on the same physical core (same or different
logical core in SMT). The RSB is dedicated to each logical core
in the case of hyper-threading [74]. Table 3 shows whether the
prediction unit can be trained when the training code and the
victim are running in parallel in different settings. The results are
implementation-dependent and Table 3 shows the result from Intel
processors.

The prediction units sometimes have many entries, and the at-
tacker and the victim should use the same entry for mis-training.
The attacker and the victim will use the same entry only if they are
using the same index. When the prediction unit is indexed by vir-
tual address, the attacker can train the prediction unit from another
address space using the same virtual address as the victim code. If
only part of the virtual address is used as the index, which is shown
as f(virtual addr) in Table 3, the attacker can even train with
an aliased virtual address, which maps to the same entry of the
prediction unit as the victim address. The RSB is not indexed by
the address, rather it overflows when many nested calls are made,
and this creates conflicts when there are more than N nested calls,
and will cause mis-prediction.

2In [35], the authors did not observe BTB collision between logical cores. However, it
is demonstrated that the attacker can mis-train the indirect jump of a victim when
they are two hyper-threads sharing the same physical core in [61]. Thus, we think
BTB is shared across hyper-threads in some of the processors.

3.6.2 Address Speculation: One of the uses of address specula-
tion is in the memory disambiguation to resolve read-after-write
hazards, which are the data dependencies between instructions in
out-of-order execution. In Intel processors, there are two known
uses of address speculation. First, loads are assumed not to con-
flict with earlier stores with unknown addresses, and speculatively
store-to-load (STL) forwarding will not happen. When the address
of a store is later resolved, the addresses of younger loads will be
checked. And if store-to-load forwarding should have happened
and data dependence has been violated, the loads will be flushed,
and the new data is reloaded from the store, as shown in the at-
tacks [2, 94]. Second, for performance, when the address of a load
partially matches the address of a preceding store, the store buffer
will forward the data of the store to the load speculatively, even
though the full addresses of the two may not match [80]. In the end,
if there is mis-prediction, the load will be marked as faulty, flushed,
and reloaded again.

Another use of address speculation is in conjunction with the
line-fill buffer (LFB), which is the buffer storing cache-lines to be
filled to the L1 cache. LFB may forward data speculatively without
knowledge of the target address [97, 110]. Address speculation may
also be used in other hardware structures in Intel processors, as
indicated in [97].

To trigger address speculation, the availability of the address
should be delayed to force the hardware to predict the address. One
way is to make the address calculation depends on some uncached
data, as in Spectre V4 [2]. Another way is to use a newly mapped
page, so that the physical address is available only after OS handles
the page-in event, as in [110]. In an extreme case, the speculation
can even be caused by a NULL pointer or an invalid address, and
then the error is suppressed in the attacker code, as in attack [97].
In STL, the entries are indexed by a function of physical addresses.
In this case, the training code needs to share memory space with
the victim to achieve an attack.

Step 1:
Sender

Step 2:
Receiver

Shared Resource:
e.g., port or logic

Receiver measures
baseline execution
time.

(Sending 0)
Sender

Shared Resource:
e.g., port or logic

No contention, and the
receiver’s request gets
processed.

(Sending 1)

Receiver Sender Receiver
Shared Resource:

e.g., port or logic

Contention on the resource,
and the receiver’s request
gets delayed.

Figure 5: Steps for the sender and the receiver to transfer information through volatile covert channels. The yellow box shows the shared
resource. The solid (dashed) arrow shows the shared resource is (is not) requested or used by the corresponding party.

3.6.3 Value Prediction: There is no commercial processor that
implement value prediction yet. Thus, there are no known exploits
that abuse value prediction. However, similar to control flow pre-
diction, if the predictor is based on states that are shared between
different threads and not cleaned up during context switch, the
prediction can be hijacked by the attacker.

3.7 Speculative Window Size

To let an attack happen, there should be a large enough speculative
window for the disclosure gadget to finish executing transiently, as
shown in Figure 1. The speculative window size is the window from
the time the transient execution starts (instruction fetch) to the
time the pipeline is squashed. In attacks leveraging predictions, the
speculative window depends on the time the prediction is resolved.
In a conditional branch, the time depends on the time to resolve
the branch condition; in indirect jump, this depends on the time to
obtain the target address; and in address speculation, this depends
on the time to get the virtual and then the physical address. In [75],
a tool called Speculator is proposed to reverse engineer the micro-
architecture using hardware performance counters. The results
of the Speculator show the speculative window of branches that
depend on uncached data is about 150 cycles on Intel Broadwell,
about 300 cycles on Intel Skylake, and about 300 cycles on AMD
Zen, and the speculative window of STL is about 55 cycles on
Intel Broadwell. In attacks leveraging exceptions, the speculative
window depends on the implementation of exceptions. To make
the speculative window large enough for the disclosure gadget,
the attacker can delay the obtaining of the result of the branch
condition or the addresses by leveraging uncached loads from main
memory, chains of dependent instructions, etc.

4 COVERT CHANNELS

Transient execution enables the attacker to access the secret data
transiently, and a covert channel® [104] is required for the attacker
to eventually obtain the secret data in architectural states. There
is a distinction between conventional channels where the encoding
happens in software execution path, and transient execution chan-
nels where the encoding phase is executed transiently. Here, we
focus on covert channels that can be used in transient attacks —
these can also be used as conventional covert channels.

3The channel is considered a covert channel, not a side channel [61], because the
attacker has control over the disclosure gadget, which encodes the secret.

There are two parties in a covert channel: the sender and the
receiver. In the covert channels, the sender execution will change
some micro-architectural state and the receiver will observe the
change to extract information, e.g., by observe the execution time.

4.1 Assumptions about Covert Channels

This survey focuses on covert channels that do not require physical
presence and which only require attacker’s software (or software
under the attacker’s control) to be executing on the same system
as the victim. Thus, we do not consider physical channels, such as
power [39], EM field [76], acoustic signals [10, 40], etc. There are
certain physical channels that can be accessed from software and
not require physical presence, such as temperature [123]. However,
thermal conduction is slow and the bandwidth is limited.

Any sharing of hardware resources between users could lead to a
covert channel between a sender and a receiver [114]. The receiver
can observe the status of the hardware with some metadata from
the covert channel, such as the execution time, values of hardware
performance counters (HPC), system behavior, etc.

The most commonly used observation by the receiver of the
covert channels is the timing of execution. In today’s processors,
components are designed to achieve a better performance, and thus,
the execution time contains information about whether certain
hardware unit is available during execution (e.g., port), whether
the micro-architectural states are optimal for the code (e.g., cache
hits or misses), etc. To observe the hardware states via timing, a
timer is needed. In x86, rdtscp instruction can be used to read a
high-resolution time stamp counter of the CPU, and thus, can be
used to measure the latency of a chosen piece of code. When the
rdtscp is not available, a counting thread can be used as a timer [98].

The receiver can also gain information from hardware perfor-
mance counters (HPCs). HPCs have information about branch pre-
diction, cache, TLB, etc, and have been used in covert channel at-
tacks [36]. However, HPCs must be configured in kernel mode [28],
and thus, are not suitable for unprivileged attackers.

The receiver can further observe the state of the hardware by the
system behaviors. In Prime+Abort attack [31], for example, TSX
can be exploited to allow an attacker to receive an abort (call-back)
if the victim process accessed a critical address.

In other cases, several covert channels are used in series. Here,
for transient execution attacks, we only consider channels where
the receiver can decode data architecturally. For example, in the
Fetch+Bounce covert channel [94], first, the secret is encoded into

Table 4: Known Covert Channels in Micro-architecture.

Level of
Sharing
T e
[-
g 5] s Required
Covert Channel Type - = 8 8 Bandwidth Time Resolution
s § & o
E 5 & g of the Receiver
- % —5' S (CPU cycles)
E g & B
iE3 g
v g 8
E &
g 1]
. Execution Ports [6, 14, 114] R X O O not given 50 vs. 80
Volatile L .
FP division unit [38] R ®R O O ~70kB/s 314 vs. 342
Covert .
Channels L1 Cache Ports [81, 132] R ® O O not given 36 vs. 48
Memory Bus [121] X B B R ~700 B/s 2500 vs. 8000
AVX2 unit [99] R ® O O >0.02B/s 200 vs. 550
PHT [36] R X O O not given 65 vs. 90
BTB [35, 117] X X O O not given 56 vs. 65
. STL [54] R O O O not given 30 vs. 300
Persistent ;
Covert TLB [42, 52, 94] R ® O O ~5kB/s per set 105 vs. 130°
Channels L1, L2 (tag, LRU) [59,124,125] |® ® O O |~1MB/s per cache entry 5vs. 15P
LLC (tag, LRU) [19, 73] OO0 R O ~0.7MB/s per set 500 vs. 800
Cache Coherence [106, 130] 0O O ® R |~1MB/s per cache entry 100 vs. 250¢
Cache Directory [129] OO0 X O ~0.2MB/s per slice 40 vs. 400
DRAM row buffer [88] OO0 R R ~2MB/s per bank 300 vs. 350

® indicates that the attack is possible to leak the protected data; O indicates that the attack cannot leak the data.
2 Depending on the level of TLB used, the required time resolution varies. The biggest one is shown.

b Shows the time resolution for covert channel use L1 cache.

resolution varies. The biggest one is shown.

the TLB states, which affect the STL forwarding, and then a cache
Flush+Reload covert channel is used to observe the STL forwarding
results. The first channel can only be observed by instructions
in transient execution and the states will be removed when the
instruction retires. We only consider the second covert channel
to be critical for transient execution attack because it allows the
attacker to observe the secret architecturally.

4.2 Types of Covert Channels

We categorize the covert channels into volatile channels and per-
sistent channels. In volatile channels, the sender and the receiver
share the resource on the fly, no states are changed, e.g., sharing a
port or some logic concurrently. The sender and the receiver have
contention when communicating using this type of channel. In
persistent channels, the sender changes the micro-architectural
states, and the receiver can observe the state changes later, e.g.,
change of cache state. Although the states may be changed later,
we call them persistent channels to differentiate from the volatile
channels. The persistent covert channels will be discussed in the
next subsection.

4.3 Volatile Covert Channels

In a volatile covert channel, there is contention for hardware between
the sender and the receiver on the fly, and thus, the two should run
concurrently, for example, as two hyper-threads in SMT processors,
or running concurrently on two different cores. Another scenario

¢ Depending on the setup, the required time

is that the sender and the receiver are two part of code in the same
software thread that their instructions are scheduled to execute
concurrently due to OoO [38]. As shown in Figure 5, the receiver
first measures the baseline execution time when the sender is not
using the shared resource. Then, the sender causes contention on
the shared resource or not depending on the message to be sent,
while the receiver continues to measure the execution time. If the
execution time increases, the receiver knows the sender is using
the shared resource at the moment.

Execution units, ports, and buses are shared between the hyper-
threads running concurrently on the same physical core, and can
be used for covert channels [6, 14]. There is also a covert channel
leveraging the contention in the floating point division unit [38].
L1 cache ports are also shared among hyper-threads. In Intel pro-
cessors, L1 cache is divided into banks, and each cache bank can
only handle a single (or a limit number of) requests at a time.
CacheBleed [132] leverages the contention L1 cache bank to build
a covert channel. Later, Intel resolved the cache bank conflicts is-
sue with the Haswell generation. However, MemJam [81] attack
demonstrates that there is still a false dependency of memory read-
after-write requests when the addresses are of the same L1 cache
set and offset for newer generations of Intel processors. This false
dependency can be used for a covert channel. As shown in Table 4,
the covert channel in execution ports and L1 cache ports can lead
to covert channels within the same thread when the sender and
the receiver code are executed in parallel due to OoO and between
hyper-threads in SMT setting.

Memory bus serves memory requests to all the cores using the
main memory. In [121], it is shown that the memory bus can act
as a high-bandwidth covert channel medium, and covert channel
attacks on various virtualized x86 systems are demonstrated.

4.4 Persistent Covert Channels

In a persistent channel, the sender and the receiver share the same
micro-architectural states, e.g., registers, caches, etc. Different from
volatile covert channels, the state will be memorized in the system
for a while. And the sender and the receiver do not have to execute
concurrently. Depending on whether the state can only be used
by one party or can be directly accessed by different parties in the
system, we further divide the persistent channels into occupancy-
based and encode-based, as shown in Figure 6.

4.4.1 Occupancy-based Persistent Covert Channels. To leverage
occupancy-based covert channel, the user needs to occupy the
states (e.g., registers, cache, or some entries) or data to affect the
execution.

e Eviction-based Persistent Channels: In this channel, the sender
and the receiver will compete and evict the other party to oc-
cupy some states to store their data or metadata to (de-)accelerate
their execution. One example of the eviction-based channel is the
Prime+Probe attack [45, 86, 87, 126, 129]. The receiver first occu-
pies a cache set (i.e., primes). Then, the sender may use the state
for her data or not, depending on the message to be sent. And in
the end, the receiver reads (i.e., probes) her data that were used to
occupy the cache set in the first step to see whether those data are
still in the cache by measuring the timing, as shown in the first
row of Figure 6. Other examples of the eviction-based channel are
cache Evict+Time attack [13, 86], the covert channel in DRAM row
buffer [88].

Another possible contention is that the sender needs to use the
same piece of data (e.g., need exclusive access to the data for write),
and thus, the receiver’s copy of data can be invalidated. Some state
is used for tracking the relationship of data in different components,
which can cause the data in one component to be invalidated. For
example, cache coherency policy can invalidate a cache line in
a remote cache, and thus, it results in a covert channel between
threads on different cores on the same processor chip [106, 130].
Cache directory keeps the tags and cache coherence state of cache
lines in the lower levels of cache in a non-inclusive cache hierarchy
and can cause eviction of a cache line in the lower cache level (a
remote cache relative to the sender) to build a covert channel [129].

o Reuse-based Persistent Channels: In this channel, the sender
and the receiver will share some data or metadata, and if the data
is stored in the shared state, it could (de-)accelerate both of their
execution. The cache Flush+Reload attack [44, 131] transfers infor-
mation by reusing the same data in the cache. The receiver first
cleans the cache state. Then, the sender loads the shared data or not.
And in the end, the receiver measures the execution time of loading
the shared data, as in Figure 6. If the sender loads the shared data in
the second step, the receiver will observer faster timing compared
to the case when the sender does not load the shared data. There
are other reuse-based attacks, such as Cache Collision attack [17]
and the cache Flush+Flush attack [43].

Prediction units can also be leveraged for such covert channels
due to a longer latency for mis-prediction. For example, PHT [34,
36, 134], BTB [35, 117], and STL [54] have been demonstrated to be
usable for constructing covert channels. For example, when sharing
BTB, the sender and the receiver use the same indirect jump source,
ensuring the same BTB entry is used. If the receiver has the same
destination address as the sender, the BTB will make a correct
prediction resulting in a faster jump.

4.4.2 Encode-based Persistent Covert Channels. In encode-based
persistent covert channels, the sender and the receiver can both
directly change and probe the shared state. One example of such a
channel is the AVX channel [99]. There are two AVX2 unit states:
power-off and power-on. To save power, the CPU can power down
the upper half of the AVX2 unit by default. In step 2, if the sender
then uses the AVX2 unit, it will be power-on the unit for at least
1 ms. In step 3, the receiver can measure whether the AVX2 unit
is power-on by measuring the time of using AVXs unit. In this
way, the sender encodes the message into the state of the AVX2
unit, as shown in Figure 6. Other examples are the covert channels
leveraging cache LRU states [19, 59, 124].

4.5 Metrics for Covert Channels

We propose the following metrics to compare different covert chan-
nels:

o Level of Sharing: This metric indicates how the sender and
the receiver should co-locate. As shown in Table 4, some of the
covert channels only exists when the sender and the receiver share
the same physical core. Other attacks exist when the sender and
the receiver share the same chip or even the same motherboard.

e Bandwidth: This metric measures how fast the channel is.
The faster the channel, the faster the attacker can transfer the
secret. Table 4 compared the bandwidth of different covert channels.
Usually, the bandwidth is measured in a real system considering the
noise from activities by other software and the operating system.

e Time Resolution of the Receiver: As shown in Figures 5
and 6, the receiver needs to measure and differentiate different
states. For a timing channel, the time resolution of the receiver’s
clock decides whether the receiver can observe the difference be-
tween the sender sending 0 or 1. The last column of Table 4 shows
the timing difference between states. Some channels, such as cache
L1, require a very high-resolution clock to differentiate 5 cycles
from 15 cycles, while the LLC covert channel only needs to differ-
entiate 500 cycles from 800 cycles, and the receiver only needs a
coarse-grained clock.

e Retention Time: This metric measures how long the channel
can keep the secret. In some of the covert channels (volatile channels
in Section 4.3), no state is changed, e.g., the channel leveraging port
contention [6]. The retention time of such channels is zero, and the
receiver must measure the channel concurrently when the sender
is sending information. Other covert channels (persistent channels
in Section 4.4) leverage state change in micro-architecture, the
retention time depends on how long the state will stay, for example,
AVX2 unit will be powered off after about 1ms. If the receiver does
not measure the state in time, she will obtain no information. For
other states, such as register, cache, etc., the retention time depends

(Sending 0)

Step 1: Step 2: Sender
5 ..
Qo c
@ .© Shared states: Shared states:
2 T
> S Receiver’s data Receiver’s data
oo
©
% g Shared states: Shared states:
o
3
8 2 empty empty
\
§ é Shared states: Shared states:
e 8 State 0 State 0
w o

(Sending 1)

Step 2: Sender Step 3:Receiver

Shared states:
Sender’s data

or invalid

The receiver measures
if her data is still in the
shared states.

Shared states: The receiver measures

if the shared data is in
the shared states.

shared data

Shared states:
The receiver measures

State 1 the state to decode

Figure 6: Steps for the sender and the receiver to transfer information through different types of persistent covert channels.

on the usage of the unit and when the unit will be used by another
user.

4.6 Comparison of Covert Channels

Table 4 lists different covert channels in micro architecture. The
existence of covert channel depends on whether the unit is shared
in that setting. For example, AVX2 units, TLB, and the L1/L2 caches
are shared among programs using the same physical core. There-
fore, a covert channel can be built among hyper-threads and threads
sharing a logical core in a time-sliced setting. The LLC, cache co-
herence states, and DRAM are shared among different cores on the
chip, and therefore, a covert channel can be built between different
cores.

Some covert channels may use more than one component listed
in Table 4. For example, in the cache hierarchy, there could be
multiple levels of caches shared among the sender and the receiver.
In Flush+Reload cache covert channel, the receiver can use the
clflush instruction to flush a cache line from all the caches, and the
sender may load the cache line into L1/L2 of that core or the shared
LLC. If the sender and the receiver are in the same core, then the
receiver will reload the data from L1. If the sender and the receiver
are in different cores and only sharing the LLC, the receiver will
reload the data from LLC. Therefore, even with the same covert
channel protocol, the location of the covert channel depends on the
actual setting of the sender and the receiver.

As shown in Table 4, the channels in caches have relatively
high bandwidth (~1MBits/s), which allows the attacker to launch
efficient attacks. Covert channels in AVX and TLB are slower but
enough for practical attacks.

4.7 Disclosure Gadget

The covert channel is used in the disclosure gadget to transfer the
secret to be accessible to the attacker architecturally. Disclosure
gadget usually contains two steps: 1. load the secret into a register;
2. encode the secret into a covert channel. As shown in Figure 7,
the disclosure gadget code depends on the covert channel used. For
covert channels in the memory hierarchy (e.g., cache side channel),
it will consist of memory access whose address depends on the
secret value. For AVX-based covert channels, the disclosure gadget
encodes the secret by using (or not using) AVX instruction.

Cache covert channel: AVX-based covert channel:

struct array *arrl = ...; struct array *arrl = ...;

struct array *arr2 = ...; struct array *arr2 = ...;
Disclosure unsigned long offset = ...;[|unsigned long offset = ...;
gadget:

if (offset < arril_len) { if(offset < arri_len){

1. Load secret sec = arrlf[offset]; if(arri[offset])

2. Encode value2 = arr2[sec*c];} _mm256_instruction();}

Figure 7: Example disclosure gadgets for different covert channels.

5 EXISTING TRANSIENT EXECUTION
ATTACKS

The transient execution attacks contain two parts: triggering tran-
sient execution to obtain data that is otherwise not accessible (dis-
cussed in Section 3) and transferring the data via a covert chan-
nel (discussed in Section 4). If the victim executes transiently, the
victim will encode the secret into the channel, and the behavior
cannot be analyzed from the software semantics without a hard-
ware model of prediction. If the attacker executes transiently, the
micro-architecture propagates data that is not allowed to propagate
at the ISA level (propagation is not visible at ISA level, but can be
reconstructed through cover channels which observe the changes
in micro-architecture). To formally model and detect the behavior,
a new micro-architectural model, including the transient behavior,
should be used [24, 46, 47, 78].

5.1 Existing Transient Execution Attacks Types

To launch an attack, the attacker needs a way to cause transient
execution of the victim or herself and a covert channel. Table 5
shows the attacks that are demonstrated in the publications. For
demonstrating different speculation primitives, researchers usually
use the covert channel in caches (row L1, L2 in Table 5). This is
because the cache Flush+Reload covert channel is simple and effi-
cient. For demonstrating different covert channels used in transient
execution attacks, researchers usually use PHT (Spectre V1). This is
because Spectre V1 is easy to demonstrate. Note that every entry in
the table can become an attack. For mitigations, each entry of the
table should be mitigated, either mitigate all the covert channels or
prevent accessing the secret data in transient execution.

Table 5: Transient Execution Attacks Types.

Cause of Transient Execution
Covert Channel PHT BTB RSB STL LFB Exception
Execution Ports O [14] o o O o
L1 Cache Ports O O O O O m]
Memory Bus O O O O O O
AVX2 unit [99] O O ul O ul
FP div unit [38] o O o o [38]
TLB O O O O O O
L1, L2 (tag, LRU) [61] [25,61] [62,74] [2, 80] [97,110] [1, 60, 69, 102, 108, 109, 118]
LLC (tag, LRU) O u] O u] O m]
Cache Coherence [106] o O o o [106]
Cache Directory O u] O m] O m]
DRAM row buffer O o O O O O
Other Channel O O O O O m]

O shows attacks that are possible but not demonstrated yet.

5.2 Feasibility of Existing Attacks

5.2.1 Feasibility of the Transient Execution. As discussed in Sec-
tion 2.3.3 and Section 3.5, Spectre attacks require the attacker to
mis-train the prediction unit in the setup phase to let the victim
execute gadget speculatively. To be able to mis-train, the attacker
either needs to control part of the victim’s execution to generate
the desired history for prediction or needs to co-locate with the
victim on the same core. MDS attacks also require the attacker and
the victim to share the same address speculation unit. As shown in
Table 3, the prediction unit is shared only within a physical core, for
some unit, not even share between each hyper-thread. In practice,
it is not trivial to co-locate on the same core.

5.2.2 Feasibility of the Covert Channel. As shown in Table 1 and
Section 4.6, in some scenarios, a covert channel across processes
is required, and thus, the sharing of hardware is needed, which
requires the co-location of threads. Furthermore, for a certain attack
implementation, only one disclosure primitive is used, and the
attack can be mitigated by blocking the covert channel.

5.3 Attacks on Different Commercial
Platforms

Most of the existing studies focus on Intel processors, Table 6
lists the known attacks on processors by different venders, such
as AMD [8, 20], Arm [9, 20], RISC-V [41]. As shown in the ta-
ble, Spectre-type attacks using branch prediction are found on all
the platforms, this is because branch speculation is fundamental
in modern processors. Other transient execution depends on the
micro-architecture implementation of speculation units, and show
different results on different platforms.

6 MITIGATIONS OF SPECTRE-TYPE
ATTACKS IN MICRO-ARCHITECTURE
DESIGN

In this section, we focus on micro-architectural mitigations to at-
tacks that occur when the victim executes transiently under wrong
control flow prediction. As shown in Table 6, attacks that lever-
aging control flow prediction are more fundamental and affect all
modern computer architectures. Attacks that leveraging address

speculation and exceptions are implementation-dependent, and we
consider them as implementation bugs. They can be fixed, although
the performance penalty is unknown now. We focus on possible
future micro-architecture designs that are safe against control flow
prediction. Thus, software mitigation schemes, such as [21, 22, 83],
and software vulnerability detection schemes [84, 111, 112] are not
discussed in detail.

6.1 Mitigating Transient Execution

The simplest mitigation is to stop any transient execution. However,
it will come with a huge performance overhead, e.g., adding a fence
after each branch to stop branch prediction causes 88% performance
loss [127].

6.1.1 Mitigating the Trigger of Transient Execution. To mitigate
Spectre-type attacks, one solution is to limit the attackers’ ability
to mis-train the prediction units to prevent the disclosure gadget
to be executed transiently (the first metric in Section 3.3). The
prediction units (e.g., PHT, BTB, RSB, STL) should not be shared
among different users. This can be achieved by static partition for
concurrent users and flush the state during context switches. For
example, there are ISA extensions for controlling and stopping
indirect branch predictions [7, 53]. In [105], a decode-level branch
predictor isolation technique is proposed, where a special micro-op
that clears the branch predictor states will be executed when the
security domain switches. In [138], it is proposed to use thread-
private random number to encode the branch prediction table, to
build isolation between threads in the branch predictor. However,
for both proposals, if the attacker can train the prediction unit by
executing victim code with certain input (e.g., always provide valid
input in Spectre V1), isolation is not enough.

There is also mitigation in software to stop speculation by mak-
ing the potential secret data depends on the result of the branch
condition leveraging data dependency, e.g., masking the data with
the branch condition [21, 83], because current processors do not
speculate on data. However, this solution requires to identify all
control flow dependency and all disclosure gadgets, to figure out
all possible control flow that could lead to the execution of the
disclosure gadgets, and to patch each of them. It is a challenge to

Table 6: Known Transient Execution Attacks on Different Platforms.

Cause of Transient Execution

Intel

AMD [8,20] Arm[9,20] RISC-V[41]

PHT (V1)
BTB (V2)
RSB (V5)

Control Flow

X

X X X

STL (V4,MDS)

Address Speculation LFB (MDS)

PF-US (V3)
PF-P (L1TF)
PF-RW (V1.2)
NM (LazyFP)
GP (V3a)
Other

Exception

XX KNXNXKXKK

X

o o o o o Y Y
XN OXKNONXNIONKIKK
O0O00000KROO0R

X
X

® indicates that an attack of the type on the platform; O indicates that there is no known attack.

identify all (current and future) disclosure gadgets, because dis-
closure gadgets may vary due to the encoding to different covert
channels, and formal methods that model the micro-architecture
behavior are required [46, 47].

6.1.2 Mitigating Transient Execution of Disclosure Gadget. To
mitigate leak of secret during the transient execution attacks, one
way is to prevent the transient execution of the disclosure gadget,
i.e., to stop loading of secrets in transient execution or stop propa-
gating the secret to younger instructions in the disclosure gadget
transiently. For Meltdown-type and MDS-type attacks, it means
to stop propagating secret data to the younger instructions. For
Spectre-type attacks, however, the logic may not know which data
is secret. To mitigate the attacks, secret data should be tagged with
metadata as in secure architecture designs, which will be discussed
in Section 6.1.3.

Another solution is that data cannot be propagated speculatively,
and thus, cannot be send to covert channels speculatively, which
can potentially prevent transient execution attacks with any covert
channel. In Context-Sensitive Fencing [105], fences will be injected
at decoder-level to stop speculative data propagation if there are
potential Spectre attacks. In NDA [117], a set of propagation policies
are designed for defending the attacks leveraging different types of
transient executions (for example, transient execution due to branch
prediction or all transient execution), showing the trade-off between
security and performance. Similarly, in SpecShield [11, 12], different
propagation policies are designed and evaluated. In Conditional
Speculation [65], the authors propose a defense scheme targeting
covert channels in the memory system and propose an architecture
where data cannot be transiently propagated to instructions that
lead to changes in memory system showing 13% performance over-
head. To reduce performance overhead of the defense, they further
change the design to only target Flush+Reload cache side channels,
resulting performance overhead of 7%. Furthermore, in STT [134], a
dynamic information flow tracking based micro-architecture is pro-
posed to stop the propagation of speculative data to covert channels
but reduce the performance overhead by waking up instructions as
early as possible. Speculative data-oblivious (SDO) execution [133]
is based on STT. To reduce performance overhead, SDO introduces
new predictions that do not depend on operands (holding data po-
tentially depending on speculative data). Specifically, speculative

data-oblivious loads are designed to allow safe speculative load.
The overhead to defend Spectre-like attacks is moderate, e.g., 7.7%
in Context-Sensitive Fencing [105], 21% reported in SpecShield [11],
20 ~ 51% (113% for defending all transient execution attacks) re-
ported in NDA [117], and 8.5% for branch speculation (14.5% for
all transient execution) in STT [134], 4.19% for branch speculation
(10.05% for all transient execution) in STT+SDO [133].

There should be a large enough speculative window to let the
disclosure gadget execute transiently for the attack to happen. The
micro-architecture may be able to limit the speculation window size
to prevent the encoding to the covert channel (the fourth metric
in Section 3.3). However, the disclosure gadget can be very small
that only contains two loads from L1 [124], which is only about 20
cycles in total. Detecting a malicious windowing gadget accurately
can be challenging.

6.1.3 Mitigations in Secure Architectures. Secure architectures
are designed to protect the confidentiality (or integrity) of certain
data or code. Thus, secure architectures usually come with ISA
extensions to identify the data or code to be protected, e.g., secret
data region, and micro-architecture designs to isolate the data and
code to be protected [26, 66, 103].

With knowledge about the data to be protected, hardware can
further stop propagating secret data during speculation. The hard-
ware can identify data that is depended on the secret with taint
checking, as proposed in [37, 61, 95, 105], and forbid tainted data
to have micro-architectural side effects, or flush all the states on
exit from the protected domain, to defend against persistent covert
channels, and disable SMT to defend volatile covert channels. The
overhead of such mitigation depends on the size of secret data to be
protected. For example, as reported in ConTExT[95], the overhead is
71.14% for OpenSSL RSA encryption and less than 1% for real-world
workloads. Similar overhead is reported in SpectreGuard [37]. Intel
also proposed a new memory type, named speculative-access pro-
tected memory (SAPM) [56]. Any access to SAPM region will cause
instruction-level serialization and speculative execution beyond the
SAPM-accessing instruction will be stopped until the retirement of
that instruction.

Table 7: Comparison of Different Mitigation Schemes in Micro-architecture.

Mitigation Schemes

Performance Overhead

Fence after each branch

88% [127]

Stop propagating all data
Stop propagating all data to cache changes
Stop propagating all data to Flush+Reload

30-55% [12]; 21% [11]; 20-51% [117]; 8.5% [134]; 4.19% [133]
7.7% [105], 13% [65]
7% [65]

Stop propagating all tagged secret data

71% for security-critical applications, < 1% for real-world work-
loads [37, 95]

Partitioned cache

1-15% [59]

Stop (Undo) speculative change in caches

7.6% [127]; 11% [93]; 4% [5]; 5.1% [92]; 8.3% [120]

6.2 Mitigating Covert Channels

To limit the covert channels, one way is to isolate all the hardware
across the sender and receiver of the channel, so the change cannot
be observable to the receiver. However, this is not always possible,
e.g., in some attacks, the attacker is both the sender and the receiver
of the channel.

Another mitigation is to eliminate the sender of the covert chan-
nel in transient execution. For volatile covert channels, the mitiga-
tion is challenging. For permanent covert channels, there should
not be speculative change to any micro-architectural states or any
micro-architectural state changes should be rolled back when the
pipeline is squashed. Covert channels in memory systems, such
as caches and TLBs, are most commonly used. Hence, most of the
existing mitigations focus on cache and TLB side channels.

InvisiSpec [127] proposed the concept of “visibility point" of a
load, which indicates the time when a load is safe to cause micro-
architecture state changes that are visible to attackers. Before the
visibility point, a load may be squashed, and should not cause any
micro-architecture state changes visible to the attackers. To reduce
performance overhead, a “speculative buffer” is used to temporarily
cache the load, without modifications in the local cache. After
the “visibility point", the data will be fetched into the cache. For
cache coherency, a new coherency policy is designed such that
the data will be validated when stale data is potentially fetched.
The gem5 [15] simulation results show a 7.6% performance loss for
SPEC 2006 benchmark [51]. Similarly, SafeSpec [58] proposed to
add “shadow buffers" to caches and TLBs, so that transient changes
in the caches and TLBs does not happen.

In Muontrap [5], “filter cache" (LO cache) is added to each physical
thread to hold speculative data. The proposed filter cache only
holds data that is in Shared state, so it will not change the timing
of accessing other caches. If the shared state in L0 is not possible
without causing the cache line in another cache to change state
form Modified or Exclusive state, the access will be delayed until it
is at the head of ROB. The cache line will be written through to L1
when the corresponding instruction commits. Different from the
buffers in InvisiSpec [127] and SafeSpec [58], the filter cache is a
real cache that is cleared upon a context switch, syscall, or when
the execution change security boundaries (e.g., explicit flush when
exiting sandbox) to ensure isolation between security boundaries.
Muontrap results in a 4% slowdown for SPEC 2006.

CleanupSpec [92] proposed to use a combination of undoing the
speculative changes and secure cache designs. When mis-speculation
is detected and the pipeline is squashed, the changes to the L1 cache

are rolled back. For tracking the speculative changes in caches,
1Kbyte storage overhead is introduced. To prevent the cross-core
or multi-thread covert channel, partitioned L1 with random re-
placement policy and randomized L2/LLC are used. Because only a
small portion of transient executions results in mis-speculations,
the method shows an average slowdown of 5.1%.

ReversiSpec [120] proposed a comprehensive cache coherence
protocol considering speculative cache accesses. The cache coher-
ence protocol proposed an interface including three operations: 1)
speculative load, 2) merge when a speculative load is safe, 3) purge
when a speculative load is squashed. Compared to InvisiSpec [127],
the speculative buffer only stores data when the data is not in the
cache, and thus, less data movement will occur when a load is safe
(merge). Compared to CleanupSpec [92], purge is fast as not all the
changes have propagated in to cache. The performance overhead is
8.3%.

Moreover, accessing speculative loads that hit in L1 cache will not
cause side effects (except LRU state updates) in the memory system.
Therefore, only allowing speculative L1 hits can mitigate transient
execution attacks using covert channels (other than LRU) in the
memory system. In Selective Delay [93], to improve performance,
for a speculative load that miss in L1, value prediction is used. The
load will fetch from deeper layers in the memory hierarchy until the
load is not speculative. In their solution, 11% performance overhead
is shown.

Meanwhile, many secure cache architectures are proposed to
use randomization to mitigate the cache covert channels in general
(not only the transient execution attacks). For example, Random Fill
cache [71] decouples the load and the data that is filled into the cache,
and thus, the cache state will no longer reflect the sender’s memory
access pattern. Random Permutation (RP) cache [115], Newcache
cache [72, 116], CEASER cache [90], and ScatterCache [119] random-
ize memory-to-cache-set mapping to mitigate contention-based
occupancy-based covert channels in the cache. Non Deterministic
cache [57] randomizes cache access delay and de-couple the rela-
tion between cache block access and cache access timing. Secure
TLBs [30] are also proposed to mitigate covert channels in TLBs.
But again, all the possible covert channels need to be mitigated
to fully mitigate transient execution attacks. Further, Cyclone [48]
proposed a micro-architecture to detect cache information leaks
across security domains.

Another mitigation is to degrade the quality of the channel or
even make the channel unusable for a practical attack. For exam-
ple, many timing covert channels require the receiver to have a
fine-grained clock to observe the channel (the second metric in

Section 4.5). Limiting the receiver’s observation will reduce the
bandwidth or even mitigate the covert channel [89, 96]. Noise can
also be added to the channel to reduce the bandwidth (the third
metric in Section 4.5).

However, the above mitigations only cover covert channels in
memory systems. To mitigate other covert channels, there are the
following challenges: 1. Identify all possible covert channels in
micro-architecture, including future covert channels. Formal meth-
ods are required in this process. For example, information flow
tracking, such as methods in [29, 135, 136], can be used to analyze
the hardware components, where the data of transient execution
could flow to. Then, analyze if each of the components could result
in a permanent or transient covert channel. 2. Mitigate each of the
possible covert channels.

6.2.1 Mitigations in Secure Architectures. With clearly defined
security domain, isolation can be designed to mitigate not only
transient covert channels and also conventional covert channels.
For example, to defend cache covert channels, a number of parti-
tioned caches to different security domains are proposed, either
statically [18, 27, 49, 59, 64, 70, 115, 128, 135, 136] or dynamically [32,
113]. With partition, shared resource no longer exists between the
sender and the receiver, and the receiver cannot observe secret
dependent behavior to decode the secret.

The above proposal assumes the hardware is isolated for each
security domain. However, there is also a scenario where software
outside the security domain may use the same hardware after a
context switch. In Mi6 processor [18], caches and ports partitioning
are used to isolate software on different cores. Further, when there
is a context switch, a security monitor flushes the architecture and
micro-architecture states, which holds the information of in-flight
speculation from the previously executing program. To protect the
security monitor, speculation is not used in the execution of the
security monitor. In OPTIMUS [85], a dynamic partitioning scheme
in the granularity of core is proposed to achieve both security and
high performance.

7 CONCLUSION

This paper provide a survey of the transient execution attacks.
This paper first defines the transient execution attacks and the
three phases of the attacks. It then categorizes possible causes of
transient executions. The security boundaries that are broken in
the transient executions are discussed. It also analyzes the causes
of transient execution by proposing a set of metrics and using the
metrics to compare the feasibility. Furthermore, the covert channels
that can be used in the attacks are categorized and compared with
a new set of metrics. Combining the transient execution and the
covert channels, different types of attacks are compared. In the
end, possible mitigation schemes in micro-architecture designs are
discussed and compared.

ACKNOWLEDGEMENTS

This work was supported in part by NSF grants 1651945 and 1813797,
and through SRC award number 2844.001.

REFERENCES

(1]
(2]

3
[4

[11

[12

[13
[14

[15

[16

[17]

[18

[19

[20

[21

[22

[23

[24

[25

2018. CVE-2018-3640. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2018-3640 accessed Jul. 2020.

2018. speculative execution, variant 4: speculative store bypass. https://bugs.
chromium.org/p/project-zero/issues/detail?id=1528 accessed May. 2019.

2019. CVE details. https://www.cvedetails.com accessed July. 2020.

2019. Intel Transactional Synchronization Extensions (Intel TSX) Overview.
https://software.intel.com/en-us/cpp-compiler-developer-guide-and-
reference-intel-transactional-synchronization-extensions-intel-tsx-overview
accessed May. 2019.

Sam Ainsworth and Timothy M Jones. 2019. Muontrap: Preventing cross-
domain spectre-like attacks by capturing speculative state. arXiv preprint
arXiv:1911.08384 (2019).

Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan, Cesar Pereida
Garcia, and Nicola Tuveri. 2019. Port contention for fun and profit. In 2019 IEEE
Symposium on Security and Privacy. IEEE, 870-887.

AMD. 2018. Software Techniques for Managing Speculation on AMD Proces-
sors. https://developer.amd.com/wp-content/resources/Managing-Speculation-
on-AMD-Processors.pdf accessed May. 2019.

AMD. 2020. AMD Product Security. https://www.amd.com/en/corporate/
product-security accessed July. 2020.

ARM. 2020. Vulnerability of Speculative Processors to Cache Timing Side-
Channel Mechanism. https://developer.arm.com/support/arm-security-
updates/speculative-processor-vulnerability accessed July. 2020.

Michael Backes, Markus Diirmuth, Sebastian Gerling, Manfred Pinkal, and
Caroline Sporleder. 2010. Acoustic Side-Channel Attacks on Printers.. In USENIX
Security symposium (USENIX Security 10). 307-322.

Kristin Barber, Anys Bacha, Li Zhou, Yingian Zhang, and Radu Teodorescu. 2019.
Specshield: Shielding speculative data from microarchitectural covert channels.
In 2019 28th International Conference on Parallel Architectures and Compilation
Techniques (PACT). ACM.

Kristin Barber, Li Zhou, Anys Bacha, Yingian Zhang, and Radu Teodorescu.
2019. Isolating Speculative Data to Prevent Transient Execution Attacks. IEEE
Computer Architecture Letters (2019).

Daniel J Bernstein. 2005. Cache-timing attacks on AES. (2005).

Atri Bhattacharyya, Alexandra Sandulescu, Matthias Neugschwandtner,
Alessandro Sorniotti, Babak Falsafi, Mathias Payer, and Anil Kurmus. 2019.
SMoTherSpectre: exploiting speculative execution through port contention. In
Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communica-
tions Security. 785-800.

Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna, Somayeh
Sardashti, et al. 2011. The gem5 simulator. ACM SIGARCH Computer Architecture
News 39, 2 (2011), 1-7.

Bitdefender. 2019. Bypassing KPTI Using the Speculative Behavior of the
SWAPGS Instruction. https://www.bitdefender.co.th/wp-content/uploads/
gz/Bitdefender- WhitePaper-SWAPGS.pdf accessed Jul. 2020.

Joseph Bonneau and Ilya Mironov. 2006. Cache-collision timing attacks against
AES. In International Workshop on Cryptographic Hardware and Embedded Sys-
tems. Springer, 201-215.

Thomas Bourgeat, Ilia Lebedev, Andrew Wright, Sizhuo Zhang, Srinivas De-
vadas, et al. 2019. Mi6: Secure enclaves in a speculative out-of-order processor.
In 2019 IEEE/ACM International Symposium on Microarchitecture (MICRO). ACM,
42-56.

Samira Briongos, Pedro Malagén, José M Moya, and Thomas Eisenbarth. 2020.
RELOAD+ REFRESH: Abusing Cache Replacement Policies to Perform Stealthy
Cache Attacks. (2020).

Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin
Von Berg, Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, and Daniel Gruss.
2019. A systematic evaluation of transient execution attacks and defenses. In
28th USENIX Security Symposium (USENIX Security 19). 249-266.

Chandler Carruth. 2018. Speculative Load Hardening (a Spectre variant #1
mitigation). https://lists.llvm.org/pipermail/llvm-dev/2018-March/122085.html
accessed May. 2019.

Microsoft Security Response Center. 2019. Retpoline: a software construct for
preventing branch-target-injection. https://support.google.com/fags/answer/
7625886 accessed Oct. 2019.

David Champagne and Ruby B Lee. 2010. Scalable architectural support for
trusted software. In 2010 IEEE International Symposium on High Performance
Computer Architecture (HPCA). IEEE, 1-12.

Kevin Cheang, Cameron Rasmussen, Sanjit Seshia, and Pramod Subramanyan.
2019. A formal approach to secure speculation. In 2019 IEEE 32nd Computer
Security Foundations Symposium (CSF). IEEE, 288-28815.

Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang Lin, and
Ten H Lai. 2019. SgxPectre: Stealing Intel Secrets from SGX Enclaves Via
Speculative Execution. In 2019 IEEE European Symposium on Security and Privacy
(EuroS&P). IEEE, 142-157.

https://www.nsf.gov/awardsearch/showAward?AWD_ID=1651945
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1813797
 https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3640
 https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3640
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://www.cvedetails.com
https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference-intel-transactional-synchronization-extensions-intel-tsx-overview
https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference-intel-transactional-synchronization-extensions-intel-tsx-overview
 https://developer.amd.com/wp-content/resources/Managing-Speculation-on-AMD-Processors.pdf
 https://developer.amd.com/wp-content/resources/Managing-Speculation-on-AMD-Processors.pdf
https://www.amd.com/en/corporate/product-security
https://www.amd.com/en/corporate/product-security
https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability
https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability
https://www.bitdefender.co.th/wp-content/uploads/gz/Bitdefender-WhitePaper-SWAPGS.pdf
https://www.bitdefender.co.th/wp-content/uploads/gz/Bitdefender-WhitePaper-SWAPGS.pdf
https://lists.llvm.org/pipermail/llvm-dev/2018-March/122085.html
 https://support.google.com/faqs/answer/7625886
 https://support.google.com/faqs/answer/7625886

[26]

[27]

[28

[29

[30

(31

[32

[33

&
=)

(35

[36

=
=

[41

[42

(43

[44

[45

[46]

[48

Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. IACR Cryptology
ePrint Archive 2016, 086 (2016), 1-118.

Victor Costan, Ilia Lebedev, and Srinivas Devadas. 2016. Sanctum: Minimal
hardware extensions for strong software isolation. In 25th USENIX Security
Symposium (USENIX Security 16). 857-874.

Sanjeev Das, Jan Werner, Manos Antonakakis, Michalis Polychronakis, and
Fabian Monrose. 2019. SoK: The challenges, pitfalls, and perils of using hardware
performance counters for security. In 2019 IEEE Symposium on Security and
Privacy.

Shuwen Deng, Doguhan Giimiisoglu, Wenjie Xiong, Y. Serhan Gener, Onur
Demir, and Jakub Szefer. 2019. SecChisel Framework for Security Verification
of Secure Processor Architectures. In Proceedings of the Workshop on Hardware
and Architectural Support for Security and Privacy (HASP).

Shuwen Deng, Wenjie Xiong, and Jakub Szefer. 2019. Secure TLBs. In Proceedings
of the International Symposium on Computer Architecture (ISCA).

Craig Disselkoen, David Kohlbrenner, Leo Porter, and Dean Tullsen. 2017. Prime+
Abort: A Timer-Free High-Precision L3 Cache Attack using Intel TSX. In 26th
USENIX Security Symposium (USENIX Security 17). 51-67.

Leonid Domnitser, Aamer Jaleel, Jason Loew, Nael Abu-Ghazaleh, and Dmitry
Ponomarev. 2012. Non-monopolizable caches: Low-complexity mitigation of
cache side channel attacks. ACM Transactions on Architecture and Code Opti-
mization (TACO) 8, 4 (2012), 35.

Marius Evers, Po-Yung Chang, and Yale N Patt. 1996. Using hybrid branch
predictors to improve branch prediction accuracy in the presence of context
switches. In ACM SIGARCH Computer Architecture News, Vol. 24. ACM, 3-11.
Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. 2015. Covert
channels through branch predictors: a feasibility study. In Proceedings of the
Fourth Workshop on Hardware and Architectural Support for Security and Privacy.
ACM, 5.

Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. 2016. Jump
over ASLR: Attacking branch predictors to bypass ASLR. In 2016 IEEE/ACM
International Symposium on Microarchitecture (MICRO). IEEE, 40.

Dmitry Evtyushkin, Ryan Riley, Nael CSE Abu-Ghazaleh, ECE, and Dmitry
Ponomarev. 2018. BranchScope: A New Side-Channel Attack on Directional
Branch Predictor. In Proceedings of the Twenty-Third International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS ’18). ACM, New York, NY, USA, 693-707. https://doi.org/10.1145/
3173162.3173204

Jacob Fustos, Farzad Farshchi, and Heechul Yun. 2019. SpectreGuard: An Effi-
cient Data-centric Defense Mechanism against Spectre Attacks.. In Proceedings
of the 56th Annual Design Automation Conference (DAC) 2019. 61-1.

Jacob Fustos and Heechul Yun. 2020. SpectreRewind: A framework for leaking
secrets to past instructions. arXiv preprint arXiv:2003.12208 (2020).

Daniel Genkin, Itamar Pipman, and Eran Tromer. 2015. Get your hands off
my laptop: Physical side-channel key-extraction attacks on PCs. Journal of
Cryptographic Engineering 5, 2 (2015), 95-112.

Daniel Genkin, Adi Shamir, and Eran Tromer. 2014. RSA key extraction via low-
bandwidth acoustic cryptanalysis. In Annual Cryptology Conference. Springer,
444-461.

Abraham Gonzalez, Ben Korpan, Jerry Zhao, Ed Younis, and Krste Asanovi¢.
2019. Replicating and Mitigating Spectre Attacks on an Open Source RISC-V
Microarchitecture. In Third Workshop on Computer Architecture Research with
RISC-V (CARRYV 2019), Phoenix, AZ, USA.

Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2018. Translation
Leak-aside Buffer: Defeating Cache Side-channel Protections with TLB Attacks.
In USENIX Security Symposium (USENIX Security 18). USENIX, 955-972.
Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard. 2016.
Flush+ Flush: a fast and stealthy cache attack. In International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment. Springer,
279-299.

Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. 2015. Cache Template
Attacks: Automating Attacks on Inclusive Last-Level Caches.. In USENIX Security
Symposium (USENIX Security 15). 897-912.

Roberto Guanciale, Hamed Nemati, Christoph Baumann, and Mads Dam. 2016.
Cache storage channels: Alias-driven attacks and verified countermeasures. In
2016 IEEE Symposium on Security and Privacy. IEEE, 38-55.

M. Guarnieri, B. Kopf, J. F. Morales, J. Reineke, and A. Sanchez. 2020. SPEC-
TECTOR: Principled Detection of Speculative Information Flows. In 2020 IEEE
Symposium on Security and Privacy. IEEE, 160-178.

Marco Guarnieri, Boris Kopf, Jan Reineke, and Pepe Vila. 2020. Hardware-
Software Contracts for Secure Speculation. arXiv preprint arXiv:2006.03841
(2020).

Austin Harris, Shijia Wei, Prateek Sahu, Pranav Kumar, Todd Austin, and Mohit
Tiwari. 2019. Cyclone: Detecting Contention-Based Cache Information Leaks
Through Cyclic Interference. In 2019 IEEE/ACM International Symposium on
Microarchitecture (MICRO). ACM, 57-72.

[49] Zecheng He and Ruby B Lee. 2017. How secure is your cache against side-

channel attacks?. In 2017 IEEE/ACM International Symposium on Microarchitec-
ture (MICRO). ACM, 341-353.

[50] John L Hennessy and David A Patterson. 2011. Computer architecture: a quanti-

tative approach. Elsevier.

[51] John L Henning. 2006. SPEC CPU2006 benchmark descriptions. ACM SIGARCH

Computer Architecture News 34, 4 (2006), 1-17.

Ralf Hund, Carsten Willems, and Thorsten Holz. 2013. Practical Timing Side
Channel Attacks Against Kernel Space ASLR. In 2013 IEEE Symposium on Security
and Privacy. IEEE, 191-205.

Intel. 2018. Speculative Execution Side Channel Mitigations. https://software.
intel.com/security-software-guidance/api-app/sites/default/files/336996-
Speculative-Execution-Side- Channel- Mitigations.pdf accessed May. 2019.
Saad Islam, Ahmad Moghimi, Ida Bruhns, Moritz Krebbel, Berk Gulmezoglu,
Thomas Eisenbarth, and Berk Sunar. 2019. SPOILER: Speculative Load Hazards
Boost Rowhammer and Cache Attacks. In 28th USENIX Security Symposium
(USENIX Security 19). USENIX, 621-637.

Daniel A Jiménez and Calvin Lin. 2001. Dynamic branch prediction with per-
ceptrons. In 2001 IEEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 197-206.

Kekai Hu Ke Sun, Rodrigo Branco. 2019. A New Memory Type against Specula-
tive Side Channel Attacks. https://blogs.technet.microsoft.com/srd/2018/03/15/
mitigating-speculative-execution-side-channel-hardware-vulnerabilities/ ac-
cessed May. 2019.

Georgios Keramidas, Alexandros Antonopoulos, Dimitrios N Serpanos, and
Stefanos Kaxiras. 2008. Non deterministic caches: A simple and effective defense
against side channel attacks. Design Automation for Embedded Systems 12, 3
(2008), 221-230.

Khaled N Khasawneh, Esmaeil Mohammadian Koruyeh, Chengyu Song, Dmitry
Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. 2019. SafeSpec: Ban-
ishing the Spectre of a Meltdown with Leakage-Free Speculation. In Proceedings
of the 56th Annual Design Automation Conference 2019. ACM, 60.

Vladimir Kiriansky, Ilia Lebedev, Saman Amarasinghe, Srinivas Devadas, and
Joel Emer. 2018. DAWG: A defense against cache timing attacks in speculative
execution processors. In 2018 IEEE/ACM International Symposium on Microar-
chitecture (MICRO). IEEE, 974-987.

Vladimir Kiriansky and Carl Waldspurger. 2018. Speculative buffer overflows:
Attacks and defenses. arXiv preprint arXiv:1807.03757 (2018).

Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative Exe-
cution. In 40th IEEE Symposium on Security and Privacy.

Esmaeil Mohammadian Koruyeh, Khaled N Khasawneh, Chengyu Song, and
Nael Abu-Ghazaleh. 2018. Spectre returns! speculation attacks using the return
stack buffer. In 12th USENIX Workshop on Offensive Technologies (WOOT 18).
Dayeol Lee, David Kohlbrenner, Shweta Shinde, Dawn Song, and Krste Asanovic.
2019. Keystone: A Framework for Architecting TEEs. CoRR abs/1907.10119
(2019). arXiv:1907.10119 http://arxiv.org/abs/1907.10119

Ruby B Lee, Peter Kwan, John P McGregor, Jeffrey Dwoskin, and Zhenghong
Wang. 2005. Architecture for protecting critical secrets in microprocessors. In
ACM SIGARCH Computer Architecture News, Vol. 33. IEEE, 2-13.

Peinan Li, Lutan Zhao, Rui Hou, Lixin Zhang, and Dan Meng. 2019. Condi-
tional Speculation: An Effective Approach to Safeguard Out-of-Order Execution
Against Spectre Attacks. In 2019 IEEE International Symposium on High Perfor-
mance Computer Architecture (HPCA). IEEE, 264-276.

David Lie, Chandramohan Thekkath, Mark Mitchell, Patrick Lincoln, Dan Boneh,
John Mitchell, and Mark Horowitz. 2000. Architectural support for copy and
tamper resistant software. Acm Sigplan Notices 35, 11 (2000), 168-177.

Mikko H Lipasti and John Paul Shen. 1996. Exceeding the dataflow limit via value
prediction. In 2019 IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 226-237.

Mikko H Lipasti, Christopher B Wilkerson, and John Paul Shen. 1996. Value
locality and load value prediction. ACM SIGPLAN Notices 31, 9 (1996), 138-147.
Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval
Yarom, and Mike Hamburg. 2018. Meltdown: Reading Kernel Memory from
User Space. In 27th USENIX Security Symposium (USENIX Security 18).

Fangfei Liu, Qian Ge, Yuval Yarom, Frank Mckeen, Carlos Rozas, Gernot Heiser,
and Ruby B Lee. 2016. Catalyst: Defeating last-level cache side channel attacks
in cloud computing. In 2016 IEEE International Symposium on High Performance
Computer Architecture (HPCA). IEEE, 406-418.

Fangfei Liu and Ruby B Lee. 2014. Random fill cache architecture. In 2014
IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE, 203—
215.

Fangfei Liu, Hao Wu, Kenneth Mai, and Ruby B Lee. 2016. Newcache: Secure
cache architecture thwarting cache side-channel attacks. IEEE Micro 36, 5 (2016),
8-16.

https://doi.org/10.1145/3173162.3173204
https://doi.org/10.1145/3173162.3173204
 https://software.intel.com/security-software-guidance/api-app/sites/default/files/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
 https://software.intel.com/security-software-guidance/api-app/sites/default/files/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
 https://software.intel.com/security-software-guidance/api-app/sites/default/files/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
 https://blogs.technet.microsoft.com/srd/2018/03/15/mitigating-speculative-execution-side-channel-hardware-vulnerabilities/
 https://blogs.technet.microsoft.com/srd/2018/03/15/mitigating-speculative-execution-side-channel-hardware-vulnerabilities/
http://arxiv.org/abs/1907.10119
http://arxiv.org/abs/1907.10119

(73]

[74

[75

<
&

(77

[78

[79

[80

)
=

(82

(83

(84

(85]

[91

[92

[93

)
=

[95

[96

[97

[98

Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B Lee. 2015. Last-
level cache side-channel attacks are practical. In 2015 IEEE Symposium on Security
and Privacy. IEEE, 605-622.

Giorgi Maisuradze and Christian Rossow. 2018. ret2spec: Speculative execution
using return stack buffers. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security. ACM, 2109-2122.

Andrea Mambretti, Matthias Neugschwandtner, Alessandro Sorniotti, Engin
Kirda, William Robertson, and Anil Kurmus. 2019. Speculator: a tool to analyze
speculative execution attacks and mitigations. In Proceedings of the 35th Annual
Computer Security Applications Conference. 747-761.

Nikolay Matyunin, Jakub Szefer, Sebastian Biedermann, and Stefan Katzen-
beisser. 2016. Covert channels using mobile device’s magnetic field sensors. In
2016 21st Asia and South Pacific Design Automation Conference (ASP-DAC). IEEE,
525-532.

Scott McFarling. 1993. Combining branch predictors. Technical Report. Technical
Report TN-36, Digital Western Research Laboratory.

Ross Mcilroy, Jaroslav Sevcik, Tobias Tebbi, Ben L Titzer, and Toon Verwaest.
2019. Spectre is here to stay: An analysis of side-channels and speculative
execution. arXiv preprint arXiv:1902.05178 (2019).

Pierre Michaud, André Seznec, and Richard Uhlig. 1997. Trading conflict and
capacity aliasing in conditional branch predictors. In ACM SIGARCH Computer
Architecture News, Vol. 25. ACM, 292-303.

Marina Minkin, Daniel Moghimi, Moritz Lipp, Michael Schwarz, Jo Van Bulck,
Daniel Genkin, Daniel Gruss, Frank Piessens, Berk Sunar, and Yuval Yarom. 2019.
Fallout: Reading kernel writes from user space. arXiv preprint arXiv:1905.12701
(2019).

Ahmad Moghimi, Thomas Eisenbarth, and Berk Sunar. 2018. MemJam: A false
dependency attack against constant-time crypto implementations in SGX. In
Cryptographers’ Track at the RSA Conference. Springer, 21-44.

Donald A Neamen. 2012. Semiconductor physics and devices: basic principles.
New York, NY: McGraw-Hill,.

Oleksii Oleksenko, Bohdan Trach, Tobias Reiher, Mark Silberstein, and Christof
Fetzer. 2018. You shall not bypass: Employing data dependencies to prevent
bounds check bypass. arXiv preprint arXiv:1805.08506 (2018).

Oleksii Oleksenko, Bohdan Trach, Mark Silberstein, and Christof Fetzer. 2020.
SpecFuzz: Bringing Spectre-type vulnerabilities to the surface. In 29th USENIX
Security Symposium (USENIX Security 20).

Hamza Omar, Brandon D’Agostino, and Omer Khan. 2020. OPTIMUS: A Security-
Centric Dynamic Hardware Partitioning Scheme for Processors that Prevent
Microarchitecture State Attacks. IEEE Trans. Comput. (2020).

Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache attacks and counter-
measures: the case of AES. In CryptographersiAZ Track at the RSA Conference.
Springer, 1-20.

Colin Percival. 2005. Cache missing for fun and profit.

Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and Stefan
Mangard. 2016. DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks.
In 25th USENIX Security Symposium (USENIX Security 16). 565-581.

Filip Pizlo. 2018. What Spectre and Meltdown Mean For WebKit. https://webkit.
org/blog/8048/what- spectre-and-meltdown-mean-for-webkit/ accessed May.
2019.

Moinuddin K Qureshi. 2018. CEASER: Mitigating Conflict-Based Cache At-
tacks via Encrypted-Address and Remapping. In 2018 IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 775-787.

Hany Ragab, Alyssa Milburn, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida.
[n. d.]. CROSSTALK: Speculative Data Leaks Across Cores Are Real. ([n. d.]).
Gururaj Saileshwar and Moinuddin K Qureshi. 2019. CleanupSpec: An Undo
Approach to Safe Speculation. In 2019 IEEE/ACM International Symposium on
Microarchitecture (MICRO). ACM, 73-86.

Christos Sakalis, Stefanos Kaxiras, Alberto Ros, Alexandra Jimborean, and Mag-
nus Sjilander. 2019. Efficient Invisible Speculative Execution Through Selective
Delay and Value Prediction. In Proceedings of the 46th International Symposium
on Computer Architecture. ACM, 723-735.

Michael Schwarz, Claudio Canella, Lukas Giner, and Daniel Gruss. 2019. Store-
to-Leak Forwarding: Leaking Data on Meltdown-resistant CPUs. arXiv preprint
arXiv:1905.05725 (2019).

Michael Schwarz, Moritz Lipp, Claudio Canella, Robert Schilling, Florian Kargl,
and Daniel Gruss. 2020. Context: A generic approach for mitigating spectre. In
Proceedings of the 27th Annual Network and Distributed System Security Sympo-
sium (NDSS20).

Michael Schwarz, Moritz Lipp, and Daniel Gruss. 2018. JavaScript Zero: real
JavaScript and zero side-channel attacks. Proceedings of the 25th Annual Network
and Distributed System Security Symposium (NDSS18) (2018).

Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian Steck-
lina, Thomas Prescher, and Daniel Gruss. 2019. ZombieLoad: Cross-Privilege-
Boundary Data Sampling. (2019), 753-768.

Michael Schwarz, Clémentine Maurice, Daniel Gruss, and Stefan Mangard. 2017.
Fantastic timers and where to find them: high-resolution microarchitectural

[99

[100

[101

[102

[103

[104]

[105

[106

[107

[108

[109

[110

[111

[112

[113

[114

[115

[116

[117]

[118

[119

[120

[121

attacks in JavaScript. In International Conference on Financial Cryptography and
Data Security. Springer, 247-267.

Michael Schwarz, Martin Schwarzl, Moritz Lipp, Jon Masters, and Daniel Gruss.
2019. Netspectre: Read arbitrary memory over network. In European Symposium
on Research in Computer Security. Springer, 279-299.

Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli, and Mag-
nus O Myreen. 2010. x86-TSO: a rigorous and usable programmer’s model for
x86 multiprocessors. Commun. ACM 53, 7 (2010), 89-97.

Eric Sprangle, Robert S Chappell, Mitch Alsup, and Yale N Patt. 1997. The agree
predictor: A mechanism for reducing negative branch history interference. In
ACM SIGARCH Computer Architecture News, Vol. 25. ACM, 284-291.

Julian Stecklina and Thomas Prescher. 2018. LazyFP: Leaking FPU register state
using microarchitectural side-channels. arXiv preprint arXiv:1806.07480 (2018).
G Edward Suh, Dwaine Clarke, Blaise Gassend, Marten Van Dijk, and Srinivas
Devadas. 2014. AEGIS: architecture for tamper-evident and tamper-resistant
processing. In ACM International Conference on Supercomputing 25th Anniversary
Volume. ACM, 357-368.

Jakub Szefer. 2018. Survey of Microarchitectural Side and Covert Channels,
Attacks, and Defenses. Journal of Hardware and Systems Security (13 September
2018). https://doi.org/10.1007/s41635-018-0046-1

Mohammadkazem Taram, Ashish Venkat, and Dean Tullsen. 2019. Context-
sensitive fencing: Securing speculative execution via microcode customization.
In Proceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems. ACM, 395-410.
Caroline Trippel, Daniel Lustig, and Margaret Martonosi. 2018. MeltdownPrime
and SpectrePrime: Automatically-Synthesized Attacks Exploiting Invalidation-
Based Coherence Protocols. arXiv preprint arXiv:1802.03802 (2018).

Paul Turner. 2018. Mitigating speculative execution side channel hardware
vulnerabilities. https://github.com/intelstormteam/Papers accessed Oct. 2019.
Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Thomas F Wenisch, Yuval Yarom, and Raoul Strackx.
2018. Foreshadow: Extracting the keys to the intel SGX kingdom with transient
out-of-order execution. In 27th USENIX Security Symposium (USENIX Security
18). 991-1008.

Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lipp, Marina Minkin,
Daniel Genkin, Yuval Yarom, Berk Sunar, Daniel Gruss, and Frank Piessens.
2020. LVI: Hijacking transient execution through microarchitectural load value
injection. In 2020 IEEE Symposium on Security and Privacy. 1399-1417.
Stephan van Schaik, Alyssa Milburn, Sebastian Osterlund, Pietro Frigo, Giorgi
Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2019. RIDL:
Rogue In-flight Data Load. In 2019 IEEE Symposium on Security and Privacy.
IEEE, 88-105.

Guanhua Wang, Sudipta Chattopadhyay, Arnab Kumar Biswas, Tulika Mitra,
and Abhik Roychoudhury. 2020. Kleespectre: Detecting information leakage
through speculative cache attacks via symbolic execution. ACM Transactions
on Software Engineering and Methodology (TOSEM) 29, 3 (2020), 1-31.
Guanhua Wang, Sudipta Chattopadhyay, Ivan Gotovchits, Tulika Mitra, and
Abhik Roychoudhury. 2019. 007: Low-overhead Defense against Spectre attacks
via Program Analysis. IEEE Transactions on Software Engineering (2019).

Yao Wang, Andrew Ferraiuolo, Danfeng Zhang, Andrew C Myers, and G Ed-
ward Suh. 2016. SecDCP: secure dynamic cache partitioning for efficient tim-
ing channel protection. In Design Automation Conference (DAC), 2016 53nd
ACM/EDAC/IEEE. IEEE, 1-6.

Zhenghong Wang and Ruby B Lee. 2006. Covert and side channels due to
processor architecture. In Annual Computer Security Applications Conference
(ACSAC’06). TEEE, 473-482.

Zhenghong Wang and Ruby B Lee. 2007. New cache designs for thwarting soft-
ware cache-based side channel attacks. In ACM SIGARCH Computer Architecture
News, Vol. 35. ACM, 494-505.

Zhenghong Wang and Ruby B Lee. 2008. A novel cache architecture with
enhanced performance and security. In 2008 IEEE/ACM International Symposium
on Microarchitecture (MICRO). IEEE, 83-93.

Ofir Weisse, Ian Neal, Kevin Loughlin, Thomas F Wenisch, and Baris Kasikci.
2019. NDA: Preventing Speculative Execution Attacks at Their Source. In 2019
IEEE/ACM International Symposium on Microarchitecture (MICRO). ACM, 572
586.

Ofir Weisse, Jo Van Bulck, Marina Minkin, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Raoul Strackx, Thomas F Wenisch, and Yuval Yarom.
2018. Foreshadow-NG: Breaking the virtual memory abstraction with transient
out-of-order execution. Technical Report. Technical report.

Mario Werner, Thomas Unterluggauer, Lukas Giner, Michael Schwarz, Daniel
Gruss, and Stefan Mangard. 2019. Scattercache: Thwarting cache attacks via
cache set randomization. In 28th USENIX Security Symposium (USENIX Security
19). 675-692.

You Wu and Xuehai Qian. 2020. ReversiSpec: Reversible Coherence Protocol
for Defending Transient Attacks. arXiv preprint arXiv:2006.16535 (2020).
Zhenyu Wu, Zhang Xu, and Haining Wang. 2014. Whispers in the hyper-space:
high-bandwidth and reliable covert channel attacks inside the cloud. IEEE/ACM

https://webkit.org/blog/8048/what-spectre-and-meltdown-mean-for-webkit/
https://webkit.org/blog/8048/what-spectre-and-meltdown-mean-for-webkit/
https://doi.org/10.1007/s41635-018-0046-1
 https://github.com/intelstormteam/Papers

Transactions on Networking 23, 2 (2014), 603-615.

Yuan Xiao, Yinqian Zhang, and Radu Teodorescu. 2020. SPEECHMINER: A
Framework for Investigating and Measuring Speculative Execution Vulnerabili-
ties. In Proceedings of the 27th Annual Network and Distributed System Security
Symposium (NDSS20).

Wenjie Xiong, Nikolaos Athanasios Anagnostopoulos, André Schaller, Stefan
Katzenbeisser, and Jakub Szefer. 2019. Spying on Temperature using DRAM. In
Proceedings of the Design, Automation, and Test in Europe (DATE).

Wenjie Xiong and Jakub Szefer. 2020. Leaking Information Through Cache LRU
States. (2020), 139-152.

Yunjing Xu, Michael Bailey, Farnam Jahanian, Kaustubh Joshi, Matti Hiltunen,
and Richard Schlichting. 2011. An exploration of L2 cache covert channels in
virtualized environments. In Proceedings of the 3rd ACM workshop on Cloud
computing security workshop. ACM, 29-40.

Mengjia Yan. 2019. Cache-based side channels: Modern attacks and defenses. Ph.D.
Dissertation. University of Illinois at Urbana-Champaign.

Mengjia Yan, Jiho Choi, Dimitrios Skarlatos, Adam Morrison, Christopher
Fletcher, and Josep Torrellas. 2018. InvisiSpec: Making Speculative Execution
Invisible in the Cache Hierarchy. In 2018 IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 428-441.

Mengjia Yan, Bhargava Gopireddy, Thomas Shull, and Josep Torrellas. 2017. Se-
cure Hierarchy-Aware Cache Replacement Policy (SHARP): Defending Against
Cache-Based Side Channel Attacks. In Proceedings of the 44th Annual Interna-
tional Symposium on Computer Architecture (ISCA). ACM, 347-360.

Mengjia Yan, Read Sprabery, Bhargava Gopireddy, Christopher Fletcher, Roy
Campbell, and Josep Torrellas. 2019. Attack directories, not caches: Side channel
attacks in a non-inclusive world. In 2019 IEEE Symposium on Security and Privacy.
IEEE, 888-904.

Fan Yao, Milos Doroslovacki, and Guru Venkataramani. 2018. Are Coherence
Protocol States Vulnerable to Information Leakage?. In 2018 IEEE International

Symposium on High Performance Computer Architecture (HPCA). IEEE, 168-179.
Yuval Yarom and Katrina Falkner. 2014. FLUSH+ RELOAD: A High Resolution,
Low Noise, L3 Cache Side-Channel Attack.. In USENIX Security Symposium
(USENIX Security 14), Vol. 1. 22-25.

Yuval Yarom, Daniel Genkin, and Nadia Heninger. 2017. CacheBleed: a timing
attack on OpenSSL constant-time RSA. Journal of Cryptographic Engineering 7,
2 (2017), 99-112.

[133] Jiyong Yu, Namrata Mantri, Josep Torrellas, Adam Morrison, and Christopher W

Fletcher. 2020. Speculative Data-Oblivious Execution: Mobilizing Safe Prediction
For Safe and Efficient Speculative Execution. In Proceedings of the International
Symposium on Computer Architecture (ISCA). IEEE, 707-720.

Jiyong Yu, Mengjia Yan, Artem Khyzha, Adam Morrison, Josep Torrellas, and
Christopher W Fletcher. 2019. Speculative Taint Tracking (STT): A Comprehen-
sive Protection for Speculatively Accessed Data. In 2019 IEEE/ACM International
Symposium on Microarchitecture (MICRO). ACM, 954-968.

Danfeng Zhang, Aslan Askarov, and Andrew C Myers. 2012. Language-based
control and mitigation of timing channels. ACM SIGPLAN Notices 47, 6 (2012),
99-110.

Danfeng Zhang, Yao Wang, G Edward Suh, and Andrew C Myers. 2015. A
hardware design language for timing-sensitive information-flow security. In
ACM SIGARCH Computer Architecture News, Vol. 43. ACM, 503-516.

Yinqian Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart. 2014. Cross-
tenant side-channel attacks in PaaS clouds. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security. ACM, 990-1003.
Lutan Zhao, Peinan Li, Rui Hou, Jiazhen Li, Michael C Huang, Lixin Zhang,
Xuehai Qian, and Dan Meng. 2020. A Lightweight Isolation Mechanism for
Secure Branch Predictors. arXiv preprint arXiv:2005.08183 (2020).

	Abstract
	1 Introduction
	1.1 Outline and Contributions

	2 Transient Execution Attack Scenarios
	2.1 Attacker's Goal: Breaking Security Boundaries
	2.2 Phases of the Attack
	2.3 Transient Execution by the Victim vs. the Attacker

	3 Transient Execution
	3.1 Causes of Transient Execution
	3.2 Causes of Transient Execution in Known Attacks
	3.3 Metrics for Causes of Transient Execution
	3.4 Security Boundaries that are Broken
	3.5 Required Control of the Victim's Execution
	3.6 Required Sharing during Transient Execution
	3.7 Speculative Window Size

	4 Covert Channels
	4.1 Assumptions about Covert Channels
	4.2 Types of Covert Channels
	4.3 Volatile Covert Channels
	4.4 Persistent Covert Channels
	4.5 Metrics for Covert Channels
	4.6 Comparison of Covert Channels
	4.7 Disclosure Gadget

	5 Existing Transient Execution Attacks
	5.1 Existing Transient Execution Attacks Types
	5.2 Feasibility of Existing Attacks
	5.3 Attacks on Different Commercial Platforms

	6 Mitigations of Spectre-type Attacks in Micro-architecture Design
	6.1 Mitigating Transient Execution
	6.2 Mitigating Covert Channels

	7 Conclusion
	References

