MAPA: Multi-Accelerator Pattern Allocation Policy for
Multi-Tenant GPU Servers

Kiran Ranganath
Department of Electrical and
Computer Engineering
University of California Riverside
CA, USA
krang006@ucr.edu

Shuaiwen Leon Song
Future System Architecture Lab
School of Computer Science
University of Sydney
Sydney, Australia
shuaiwen.song@sydney.edu.au

ABSTRACT

Multi-accelerator servers are increasingly being deployed in shared
multi-tenant environments (such as in cloud data centers) in order
to meet the demands of large-scale compute-intensive workloads. In
addition, these accelerators are increasingly being inter-connected
in complex topologies and workloads are exhibiting a wider variety
of inter-accelerator communication patterns. However, existing al-
location policies are ill-suited for these emerging use-cases. Specif-
ically, this work identifies that multi-accelerator workloads are
commonly fragmented leading to reduced bandwidth and increased
latency for inter-accelerator communication.

We propose Multi-Accelerator Pattern Allocation (MAPA), a
graph pattern mining approach towards providing generalized
allocation support for allocating multi-accelerator workloads on
multi-accelerator servers. We demonstrate that MAPA is able to
improve the execution time of multi-accelerator workloads and that
MAPA is able to provide generalized benefits across various accel-
erator topologies. Finally, we demonstrate a speedup of 12.4% for
75th percentile of jobs with the worst case execution time reduced
by up to 35% against baseline policy using MAPA.

ACM Reference Format:

Kiran Ranganath, Joshua D. Suetterlein, Joseph B. Manzano, Shuaiwen Leon
Song, and Daniel Wong. 2021. MAPA: Multi-Accelerator Pattern Allocation
Policy for Multi-Tenant GPU Servers. In The International Conference for
High Performance Computing, Networking, Storage and Analysis (SC °21), No-
vember 14-19, 2021, St. Louis, MO, USA. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3458817.3480853

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike International 4.0 License

SC °21, November 14—19, 2021, St. Louis, MO, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8442-1/21/11.
https://doi.org/10.1145/3458817.3480853

Joshua D. Suetterlein
High-Performance Computing Group High-Performance Computing Group
Pacific Northwest National Lab
WA, USA
joshua.suetterlein@pnnl.gov

Joseph B. Manzano

Pacific Northwest National Lab
WA, USA
joseph.manzano@pnnl.gov

Daniel Wong
Department of Electrical and
Computer Engineering
University of California Riverside
CA, USA
danwong@ucr.edu

1 INTRODUCTION

The never ending demand for faster computation from data inten-
sive workloads has driven the growth for multi-accelerator servers.
Systems equipped with accelerators, such as General Purpose Pro-
cessing in Graphical Processing Units (GPGPUs) and Tensor Pro-
cessing Units (TPU) [29] are increasingly being deployed in shared
environments, such as Cloud, Enterprise, and High-Performance
Computing (HPC). These systems are increasingly modular with
many accelerators within a single server.

O cpu
O GPU

—PCle

—Single NVLink
— QPI

— Double NVLink

25"

(a) Summit V100 (c) DGX-1 V100

(b) DGX-1 P100

Figure 1: Emerging multi-GPU accelerator topologies are in-
creasingly heterogeneous.

As software and hardware becomes more complex and heteroge-
neous, new challenges have emerged in software-hardware stack.

Two major challenges of modern large-scale systems are the
need for faster collective communication operations [51, 67] and
topology-aware scheduling [7, 72]. Recent works like topology-
aware scheduling [7] and Gandiva [72] have motivated the impor-
tance of optimal placements to improve performance of Machine
Learning (ML) workloads within multi-GPU environments by ef-
ficiently utilizing inter-accelerator interconnection link. Systems
such as Nvidia’s DGX-V100, Facebook’s Big-Basin [17], and Ama-
zon’s P3DN [69] have accelerators connected with many different
types of interconnection links.

In this work, we focus on the challenge of inefficient job alloca-
tion in a multi-accelerator environment. These sub-par allocations

SC ’21, November 14-19, 2021, St. Louis, MO, USA

—~
%)

~ e e e B) B 3 1 S
% 40 | | —— NV2-Single |
= —=— NV2-Double

f —e— PCle

= 20 -
2

=

§ 07\ i e N 1 S | R A B ¥ T1 AR B WA T] MR
[ae]

10% 10° 100 107 108 10°
Data Size (Bytes)

(a) Bandwidth characterization

Kiran Ranganath, Joshua D. Suetterlein, Joseph B. Manzano, Shuaiwen Leon Song, and Daniel Wong

! ! ! !
3 0 Bnvz-Double [INv2-single [] Dpcre

Speedup

VGG-16 Resnet AlexNet Inception CaffeNet GoogleNet
Network
(b) Speedup with different links

Figure 2: Nvidia’s multi-GPU systems exhibit a variety of interconnects. This figure shows the various links available in DGX-
1 Volta. These different links have significantly different bandwidth as well as impact on applications such as CNN training.
where NV2-Single and NV2-Double are Single and Double NVLink-v2 links respectively.

can lead to significant slowdown in execution time. These chal-
lenges are most prominent in architectures with high heterogene-
ity in their inter-accelerator inter-connect network (i.e., different
number of links with different bandwidths, non uniform network
accesses, etc.) such as NVIDIA’s DGX-1(Figure 1b), Facebook’s Big-
Basin systems [17], Amazon’s P3DN [69] and DGX-1-V (Figure 1c).
Even designs with constant access latency such as the DGX-2 exhibit
NUMA effects [37] which can lead to allocation inefficiencies. Fur-
thermore, new accelerator designs such as TPUs [29] and multi-chip
accelerators [73] can further fuel the adoption of heterogeneous
multi-accelerator designs. As the number of accelerators continues
to grow, a smarter job scheduler and resource allocator is needed
to fully utilize the underlying hardware and handle the increasing
complexity of multi-accelerator workloads.

To this end, we propose a graph pattern matching-based alloca-
tion solution called Multi-Accelerator Pattern Allocation(MAPA) to
address problems with allocation of multi-accelerator workloads in
multi-accelerator environments. MAPA aims to provide a generic
framework applicable to any multi-accelerator environment.

The contributions of this paper are the following:

e Performance analysis of increasingly heterogeneous acceler-
ator communication links (i.e., PCle, NVLink) to motivate
the need for hardware topology-aware allocation policies.

e MAPA, a graph pattern matching approach for scheduling
multi-accelerator workloads on multi-accelerator systems.

e Novel metrics to score matching patterns and predict the
effective bandwidth of an allocation.

e Evaluation of MAPA with machine learning training work-
loads on real-world multi-GPU server.

e Exploration of MAPA on novel hardware topologies at larger
scale and complex non-uniform topologies.

2 MOTIVATION

Increasingly more popular cloud [8, 17, 20, 22, 23] and modern HPC
systems [21] are accelerator based, and are used to train and to
deploy complex machine learning workloads across many different
fields from proteomics to self driving vehicles. While these systems
primarily employ GPUs, in the future, systems are expected to
take advantage of other types of accelerators such as FPGAs or
TPUs [29]. The following describes some of the challenges posed
by these multi-accelerator architectures.

2.1 Modern Multi-Accelerator Systems

Characterizing Accelerator Interconnects. Modern multi-GPU servers
exhibit a wide range of capabilities when dealing with inter-GPU
communication. Table 1 lists the types of links used to connect
accelerators in these systems and their respective bandwidths.

Link Bandwidth (GBps)
Single NVlink-v1 20
Single NVlink-v2 25
Double NVlink-v2 50
16-lanes PCle Gen 3 [46] 12

Table 1: Peak Bandwidths per link

In systems like Big basin [17], P3DN [69], Summit [21], DGX-1
V100 [23], and DGX-1 P100 [22], accelerators are not uniformly
connected. For example, in earlier generations of the DGX systems,
communication can be routed through PCle links in the case that a
direct NVLink cannot be found. Furthermore, in the case of DGX-1
with Volta GPUs (a.k.a. DGX1-V100) and Big-basin, there are some
accelerators that are connected via double NVLink connections.
Current support for communicating and synchronizing across ac-
celerators includes NVidia Collective Communication Libraries
(NCCL) [45], AMD’s Radeon Collective Communication Library
(RCCL) [9], and Baidu All-Reduce [52].

We observe from Figure 3 (a) that supercomputers are increas-
ingly employing discrete GPUs. Figure 3 (b) shows the increased
presence of heterogeneous interconnects in such systems. Hence,
it is important to identify and explore allocation challenges in
such compute environments. Additionally, machine learning-based
workloads has recently gained attention in the HPC community,
with efforts such as Mesh-tensorflow [54] and Zero [50] which aim
to improve the scalability and performance of machine learning on
supercomputing systems. Furthermore, there exist numerous works
that have attempted to utilize machine learning to accelerate various
simulation workloads on HPC systems [11, 14, 19, 30, 31, 48, 49, 68].

In Figure 2(a), we characterize the communication bandwidth
achieved with different links by running the NCCL All-reduce
microbenchmark on a DGX-V100 system. This figure demonstrates
the peak achievable communication bandwidth of various links
across different data transfer sizes. While smaller data transfer sizes

MAPA: Multi-Accelerator Pattern Allocation Policy for Multi-Tenant GPU Servers

100 [T —

Ratio (%)
2
T
!

HPC Systems

0 | | | |
20172018201920202021

0
20172018201920202021

Year
(b) Heterogeneous interconnects

Year
(a) Accelerator-based
Figure 3: The number of Top500 supercomputers with accel-
erators are increasing, with GPUs being the most common.
The ratio of these GPU HPC systems with heterogeneous in-
terconnects has increased over time and are now dominant.

achieve lower bandwidth, the relative performance of each link
type to each other remains, with double NVLink being the fastest.

In Figure 2(b), we show the impact of allocation on popular ML
training jobs to GPUs connected by these links. We obtained this
by running Caffe workloads across 2 GPUs to utilize the various
interconnects. To utilize double NVLink, single NVLink and PCle,
we allocate to GPUs 1 and 5, 1 and 2, and 1 and 6, respectively. We
see that certain networks, such as VGG-16, experience up to 3x exe-
cution time speedup using double NVLink compared to PCle, while
other workloads, such as GoogleNet are less impacted. In general,
we observe that allocation of high-bandwidth links is critical for
workloads with larger data transfers.

Multi-tenant Multi-Accelerator Servers. It was shown in Philly [26]
and Gandiva [72] that jobs running in cloud environments often
do not use all of the available accelerator resources. Thus to en-
sure the best return on investment in terms of costs and energy,
co-location of jobs might be desirable in order to boost utilization.
In fact, co-location has already appeared in modern Nvidia GPUs
with the Multi-Instance GPU (MIG) [2] feature which enables the
GPU accelerator to be shared by up to 7 instances. However, co-
location introduces challenges for hard-limit real-time applications,
secure applications, or high performance workloads in general. The
effects on performance / security for co-locating jobs requires a
further in-depth exploration to ensure that the loss in these metrics
is acceptable for these applications.

2.2 Resource fragmentation in multi-tenant
servers

One critical challenge caused by multi-tenant servers is that al-
located hardware resources can become fragmented, that is, the
allocated GPUs can be scattered across the entire topology result-
ing in the loss of high-bandwidth interconnect available to the
workload. For example, a 3-GPU allocation will experience frag-
mentation when allocating GPUs 1, 2, and 5 on the DGX-V system
shown in Figure 1c. This allocation would require the use of low-
bandwidth PCle that traverses the CPU’s QPI interconnect in order
to communicate directly between GPU 2 and GPU 5.

To quantify and highlight this problem, we present Figure 4.
The x-axis shows the quality of bandwidth allocation which we
quantify as the aggregate bandwidth of an allocation (BWajjocated)
with respect to the ideal aggregate bandwidth of an ideal allocation
(BWigealAllocation)- For example, for a 3-GPU allocation of GPUs 1,

SC ’21, November 14-19, 2021, St. Louis, MO, USA

2,and 5, BWyjjocated is 87 GBps (1 PCle, 1 Single NVLink, 1 Double
NVLink). The ideal 3-GPU allocation would be GPUs 1, 3, and 4,
where BWjgeaiallocation 1S 125 GBps (1 Single NVLink, 2 Double
NVLinks).

NumGPUs
N W s U
T
!

[H | | N

0 0.2 0.4 0.6 0.8 1
BWAllocated/BVVIdealAllocation

Figure 4: Due to fragmentation of GPU allocations, a large
portion of GPU jobs have sub-optimal allocated aggregate
bandwidth (BWyjjocareq) compared to the aggregate band-
width of an ideal allocation (BWyg.a14ll0cation)-

We ran 100 machine learning training jobs, each utilizing a differ-
ent number of GPUs (y-axis), on a DGX-V system using the default
baseline scheduling in Nvidia Docker where GPUs are assigned to
jobs based on the lowest available GPU IDs (see Section 4 for exper-
imental methodology details). The box-plot shows the distribution
of bandwidth allocation quality.

We observe that a large majority of jobs receive suboptimal
allocations. It should be noted that smaller jobs with less GPUs
suffer more due to the potential for being spread out more across
the interconnect topology. For example, with 3 GPU jobs, 75% of
jobs experience allocations with 20% less bandwidth availability
or worse and 25% of jobs experience allocations with 45% less
bandwidth availability or worse.

2.3 Understanding Bandwidth sensitivity of
ML workloads

As machine learning continues to spread across all aspects of mod-
ern life, it is no surprise that ML workloads are the most popular
workloads for multi-accelerator systems [26, 72]. While these work-
loads are characterized to be very compute intensive, they have
different degrees of sensitivity to the bandwidth provided by the
system.

Figure 5(a) shows the distribution of data sizes that are communi-
cated during the synchronization phase of ML training. Figure 5(b)
shows the number of collective communication calls per GPU that is
employed in training these networks. We can infer from Figure 5(a)
that Alexnet, VGG, Inception, and CaffeNet involve an average
communication data size of at least 10° bytes during the synchro-
nization. Similarly in Figure 5(b), we can observe that Inception,
Resnet, and GoogleNet involve a large number of communication
calls.

It is also to be noted from Figure 2(a) that data size has to be larger
than 10° bytes to make use of the available high-speed links. In
GoogleNet, the number of communication calls are higher, however
the average communication size is smaller than 10° bytes. In Caf-
feNet, even though the average size is higher, there are not enough
communication calls made to extract the benefit of high-speed links.

SC ’21, November 14-19, 2021, St. Louis, MO, USA

T T T T T T T T Ty —T T T T T T T T TTTm
1 1 | —— AlexNet
GoogleNet
<8 — VGG
8 0.5} B Resnet
Inception
——— CaffeNet
0 O T T 1 T 1 A

102 10® 10* 10° 10° 107 108 10°
Size (Bytes)

(a) Cumulative distribution of collective communication calls

Network Communication calls Bandwidth
per iter. Sensitive

AlexNet 80,001 Yes
Inception-v3 2,830,001 Yes
VGG-16 160,001 Yes
Resnet-50 1,600,001 Yes
CaffeNet 84,936 No
GoogleNet 640,001 No

(b) Number of communication calls triggered per GPU per it-
eration and bandwidth sensitivity

Figure 5: Communication Properties of ML workloads

3500
800
"umf ; v numGPU
3000 40 700 2.0
link . 4.0
2500 —— NVLink 600 link

2000

1500

Execution Time (s)
Execution Time (s)
]

3

1000
200

500

0

0
0 1000 2000 3000 4000 5000 6000 7000 0 2000 4000 6000

Iterations .
Iterations

(a) GoogleNet (Insensitive) (b) VGG-16 (Sensitive)
Figure 6: Execution Time trends of Bandwidth Sensitive and
Insensitive Networks.

Hence, networks such as CaffeNet and GoogleNet are not band-
width sensitive whereas VGG-16, Inception, Alexnet, and Resnet
are. Furthermore, this assertion holds true when increasing num-
ber of GPUs and iterations as shown in Figure 6a and Figure 6b.
Other bandwidth sensitive networks such as Alexnet, Inception,
and Resnet, and bandwidth insensitive networks, such as CaffeNet,
follow similar trends to that of VGG and GoogleNet, respectively.

If a bandwidth sensitive network gets placed on a fragmented
allocation, it may slowdown ML training jobs by more than 50%
as shown in Figure 2(b). A solution that could potentially avoid
the scenarios like this could improve overall throughput of the
multi-accelerator systems.

In summary, the trends of heterogeneous link topologies and
job co-location for multi-GPU servers can leave hardware resource
fragmented. Existing job allocation polices are unaware of the hard-
ware diversity leading to a misappropriation of bandwidth to jobs.

Kiran Ranganath, Joshua D. Suetterlein, Joseph B. Manzano, Shuaiwen Leon Song, and Daniel Wong

Popular workloads such as ML training can be particularly suscep-
tible to poor allocations. Clearly, there is a need for a generalized
allocation policy that can take into account the growing diversity
of inter-accelerator interconnects and multi-accelerator workloads.
For the remainder of this work, we will focus our attention on GPUs
and ML workloads, however our approach can be easily generalized
to various accelerators and workloads.

3 MAPA: MULTI-ACCELERATOR PATTERN
ALLOCATION

The Multi-Accelerator Pattern Allocation (MAPA) framework intro-
duces a generalized solution towards allocation of multi-accelerator
workloads on multi-accelerator servers in multi-tenant (shared)
environments such as cloud/enterprise data centers, virtualized en-
vironments, and shared high-performance computing facilities. Fig-
ure 7 shows an overview of MAPA. Multi-accelerator applications
and multi-accelerator servers are abstracted as smaller application
graphs and larger hardware graphs, respectively. The application
graphs capture the compute accelerator requirement and inter-
accelerator communication topology of the workload, while the
hardware graph captures the multi-accelerator system topology.
In order to account for fragmentation and application bandwidth
sensitivity, allocation decisions must consider the inter-accelerator
communication properties of both the application and hardware.
To solve this, we take a graph pattern matching approach where
we mine the larger hardware graph (i.e., the data graph) for the
smaller application graph (i.e., the pattern graph). Given a set of
possible matches, we then assign a score to each pattern match to
quantify the quality of each allocation and then select an allocation
pattern using our proposed policy. In the remainder of this section,
we will describe in detail each component of MAPA.

3.1 Application Topology

To make allocation decisions, MAPA abstracts applications into ap-
plication graphs depicting the communication pattern across GPUs.
In an application graph, vertices represent an accelerator compute
resource (i.e. GPU) and the edges indicate communication between
accelerators, as illustrated in Figure 8. This application topology
graph represents a summary of the application’s communication
pattern. While an application’s communication pattern may vary
over time, we cannot dynamically reallocate the hardware resource
at runtime due to limited support for hardware preemption and the
overhead of migration. Thus, we utilize a fixed application topology
graph for allocation decisions.

Application communication patterns can be manually specified
by the programmer, or can be automatically extracted through
program analysis or profiling [16, 18, 59, 70]. We will outline how
each can be performed in the remainder of this subsection.

Source code analysis: Multi-GPU communication is typically
coordinated through well-defined APIs. Examples include the NCCL
library for collective communications and cudaMemcpyPeer () (which
explicitly passes the source and destination device) for peer-to-peer
communication. By identifying these API calls, communication
patterns can be identified through a source code analysis. Figure 9a
illustrates this through a code sample from Caffe which performs
the training operation of a layer. In this example, a collective all

MAPA: Multi-Accelerator Pattern Allocation Policy for Multi-Tenant GPU Servers

SC ’21, November 14-19, 2021, St. Louis, MO, USA

SR

App graphs Possible Matches

|
@ Scorin Policy
Matching % g

YN

".'.‘%'? (—1

) S ;

oemo@ Update Allocation

HW graph l g I
-

Figure 7: Overview of the Multi-Accelerator Pattern Allocation(MAPA) system

D @ O
>0 TB OB

Figure 8: Example application topology for 5-GPU work-
load utilizing NCCL collective communication for inter-
GPU communication. Application topologies can be ring
(left), tree (middle), or a combination of both (right).

reduce is performed with ncc1A11Reduce () before the performing
the layer’s training computation in caffe_gpu_scal().

NCCL handles collective communications by building rings or
trees and utilizes them depending on the data transfer size that is
required by the application. Figure 8 shows potential application
graphs for a 5-GPU allocation utilizing the NCCL library. Therefore,
a 5-GPU application can have varying application topologies de-
pending on the API that is used. Since the communication pattern
can be identified based on the NCCL API, we can build an applica-
tion topology graph by combining the graph of all NCCL API calls
used in the program.

Besides NCCL and CUDA APIs, multi-GPU communication can
also occur through MPI. For example, many HPC application pair
a single MPI rank to a single GPU and use MPI calls to communi-
cation across ranks. With CUDA-aware MPI [10], these GPU-GPU
communication can be handled directly through NVLink without
going through the host. While source code analysis of MPI calls
can explicitly identify the communication pattern, many recent
works have aimed to automatically identify MPI application topolo-
gies [16, 18], or automatically identify communication through
compiler-assisted skeletons [59, 70].

Runtime profiling: Runtime profiling of multi-GPU workloads
can identify an application’s communication pattern through the
monitoring of interconnect traffic over PCle and NVLink. For ex-
ample, tools such as nvidia-smi tracks the amount of traffic sent
over each NVlink. Figure 9b shows an example output for GPU 5
and 6. We can identify that these GPUs are directly connected by
Link 0 of GPU 5 and Link 2 of GPU 6. Therefore, at runtime we
can monitor the various interconnects to identify any inter-GPU
communication between any given pair of GPUs to construct the
application topology.

Runtime profiling is especially beneficial when a multi-GPU
program has a complex and dynamic communication pattern that
is implicit (i.e., Unified Memory) and cannot be easily identified

void runi{int layer) {
cudaMemcpy (Y, ¥, sizeof(Dtype) * N, cudaMemcpyDefault);

nceclAllReduce(blobs[@]->mutable_gpu_diff(),
blobs[@]->mutable_gpu_diff(),
size,
nccl::dataType<Dtypes::type,
neclSum, comm_, stream_);
caffe_gpu_scal(size, (Dtype) 1.8 / Caffe::solver_count(),
blobs[@]-s>mutable_gpu_diff(), stream_);

(a) Sample multi-GPU CUDA program using NCCL.

% nvidia-smi nvlink -g 8 -1 &
GPU 5: Tesla P1BB-S5XMZ-16GB (UUID: GPU-eBB421d4-7649-T32e-c4B5-335ch46b3e2c)
Link @: RxB: 5242973348 KBytes, Tx@: 6417636288 KBytes
Link 1: Rx®: 8 KBytes, Tx@: @ KBytes
Link 2Z: Rx@: @ KBytes, Tx@: 8 KBytes
Link 3: Rx®: B KBytes, Tx@: @ KBytes
% nvidia-smi nvlink -g 8 -1 &
GPU 6: Tesla P1BB-5SXM2-16GB (UUID: GPU-Bd366%aa-dbf3-9dfB-dafb-edcPB861dcdss)
Link @: Rx®: B KBytes, Tx@: @ KBytes
Link 1: Rx®: 8 KBytes, Tx@: @ KBytes
Link 2: RxB: 6417636288 KBytes, Tx@: 5242073348 KBytes
Link 3: Rx®: B KBytes, Tx@: @ KBytes

(b) Sample NVlink traffic profiling.

Figure 9: Examples of identifying application topology
through source code analysis and runtime profiling.

through source code analysis. In these scenarios, instead of conser-
vatively assuming a fully connected application topology, runtime
profiling allows us to identify a more representative communication
pattern enabling higher-quality allocations.

3.2 Hardware Topology

In order to find an allocation, MAPA aims to find a pattern (the appli-
cation graph) in the larger graph representing the server hardware
resource.

In the hardware graph, the vertices represent the compute accel-
erators and edges are used to indicate the hardware links available
on the server. While the underlying system can have multiple paths
(e.g. both an NVLink and PCIe) between two accelerators, edges are
labeled with the highest available link bandwidth. For simplicity,
we assume the hardware graph to be fully connected graph as there
always exists a path to each accelerator through the host. For ex-
ample, if two GPUs are directly connected with double NVLink-V2,
then the edge will be labeled with 50. If two GPUs have no NVLink
connectivity, then it will be labeled with the PCIe bandwidth of 12.
The hardware graphs can be automatically extracted from existing

SC ’21, November 14-19, 2021, St. Louis, MO, USA

tools, such as nvidia-smi, which describes how the accelerators and
compute units are connected to each other.

Note that our current approach only includes accelerators as
vertices and not CPUs. We can potentially extend our approach
to also include CPUs in both the application and hardware graph
to account for CPU-GPU effects, such as potential NUMA effects.
However, the goal of this work is to demonstrate the benefit of
improving inter-accelerator communication and thus leave CPU-
centric research for future explorations. Another challenge for the
hardware topology representation is virtualized accelerators (e.g.,
Nvidia Multi-Instance GPU or AMD MxGPU) where jobs can be
allocated to a virtual device and where inter-accelerator intercon-
nects can be shared between multiple jobs. A potential solution to
address this is to label the vertices (which represents a physical
device) with the amount of physical resources available and then
account for resource usage as resources are allocated to jobs and
for the potential interference of the inter-accelerator interconnects.

3.3 Pattern Matching

To do the application to hardware graph pattern mining, we define
a graph g which contains a set of vertices V(g) and labeled edges
E(g), a subgraph s of g which containing a subset of edges in g
and their endpoints. Given a hardware graph G and the application
pattern graph P, we aim to find a match M which is a subgraph of
G that is isomorphic to P. Isomorphic is defined when there is a
one-to-one mapping between the set of vertices in the application
pattern graph V(P) and the matching pattern graph V(M) such
that adjacent vertices in P are also adjacent in M with their corre-
sponding vertices. This can be formulated as a subgraph isomor-
phism (or subgraph matching) problem [47]. Several well-known
algorithm exist in solving this problem, such as Ullmann’s algo-
rithm [65, 66], VF2 [47], and VF3 [12]. Since the goal of this paper is
not in proposing a novel subgraph matching algorithm, we choose
to utilize existing graph mining systems to implement MAPA’s
pattern matching stage. Many general-purpose graph mining sys-
tems have been proposed, such as Arabesque [61], AutoMine [42],
and Peregrine [25]. Specifically, Peregrine is a state-of-the-art fully
pattern-aware graph mining system and pattern-aware program-
ming model to create pattern-aware mining programs. Thus, we
implement our pattern matching stage with Peregrine which takes
our application pattern graph and hardware graph as input, and all
matching subgraph patterns as outputs.

This pattern matching scheme assumes one-to-one mapping be-
tween GPU applications and GPU hardware. Many-to-one mapping,
where multiple applications can map to the same GPU hardware, are
currently emerging. For example, GPUs can be virtualized for multi-
tenancy [53] or GPUs can be hardware-partitioned into multiple
GPUs (Nvidia multi-instance GPU). Identifying many-to-one map-
ping is non-trivial and is outside the scope of this work. However,
MAPA can potentially support many-to-one mapping by repre-
senting virtual GPUs as separate nodes in the hardware graph, or
by labeling the nodes of the application / hardware graph with
resource requirements / availability (threads, register, NVLink, etc.).
This would require label-aware pattern matching and potentially

Kiran Ranganath, Joshua D. Suetterlein, Joseph B. Manzano, Shuaiwen Leon Song, and Daniel Wong

NVLink
—

Figure 10: Illustrative example showing bandwidths used for
Aggregated Bandwidth score calculation (left) and Preserved
Bandwidth calculation (right) given an allocation [1, 2, 4]

partitioning of the application graph to fit into the available hard-
ware resources, or utilize more complex many-to-one scheduling
policies, such as in [53].

3.4 Pattern Scoring

Given the set of matching patterns from the previous stage, MAPA
then must select the best pattern for allocation. MAPA aims to
assign a score to each matching pattern which predicts which allo-
cation will result in the most performance. To this end, we need to
first answer How do we score each pattern match?

3.4.1 Pattern scoring metrics. To find a suitable pattern scoring
metric, we explore two proposed metrics called Aggregated Band-
width (AggBW) and Effective Bandwidth (EffBW).

Aggregated Bandwidth: We define Aggregated Bandwidth (Ag-
gBW) as the total allocated bandwidth in the matching pattern M
that is used by the application pattern graph P. Since the application
pattern graph P is isomorphic to the matching pattern M, we know
that V(P) = V(M). However, the application’s communication pat-
tern may not use all of the available hardware interconnects that is
allocated to it. That is, the set of edges in the application pattern
may be a subset of the edges in the matching pattern, E(P) C E(M).
Therefore, the set of edges that are actually used by the application
pattern in the matching pattern is denoted as E(P) N E(M). Recall
that the edges e of the hardware graph E(G), and therefore the
edges of the matching pattern E(P), are weighted w(e) with the
highest available bandwidth between the two accelerator devices
corresponding to the vertices of the graph. Therefore, we formally
define Aggregated Bandwidth as shown in Equation 1.

AggBW = Z w(e), (1)
ec(E(P)NE(M))

where E(P) N E(M) represents the allocated interconnect in the
matching pattern M that are used by the application P, e represents
a used interconnect, and w(e) represents the bandwidth of the inter-
connect. Specifically, AggBW takes into account the application’s
communication pattern in order to quantify the amount of usable
communication bandwidth that was allocated to it.

To illustrate AggBW, Figure 10 shows a possible allocation of a
3-GPU tasks that is mapped to GPU 1, 2, 4. Therefore, the AggBW
is the sum of the bandwidth of the interconnects between GPU 1,2
and 2,4 and 1,4.

MAPA: Multi-Accelerator Pattern Allocation Policy for Multi-Tenant GPU Servers

SC ’21, November 14-19, 2021, St. Louis, MO, USA

% 800 B %807 ° 7T = 800F B
§ 600 [— O 60| | § 600 [—
£ 400 |- o > 40| e © %o o £ 400 - B
. 0 .
S 200 [s - 20 48 200 B
3 hay e ®® ¢ o 00 0 00 ° =
Sy 0 ! ! ! | “‘h? 0 ! ! ! ! S 0 ! ! ! !
50 100 150 200 50 100 150 200 20 40 60 80

Aggregated BW (GBps)
(a) VGG-16 training Execution Time

Aggregated BW (GBps)
(b) Aggregated vs Effective Bandwidth

Ef fective BW (GBps)
(c) VGG-16 training Execution Time

Figure 11: Evaluating pattern scoring metrics. (a) AggBW does not correlate well with execution time. (b) This is due to AggBW
not correlating well with the effective achievable bandwidth of an allocation. (c) EffBW correlates well with execution time.

Effective Bandwidth: We define Effective Bandwidth (EffBW)
as the peak achievable bandwidth for a given allocation. This metric
is measured by running microbenchmarks to measure the peak ef-
fective real-world bandwidth across multiple links that is achievable
for a given allocation. In our experiments, we use the NCCL All-
reduce microbenchmark to determine the peak effective bandwidth.
We selected this benchmark because the All-reduce collective com-
munication pattern is the most used and has the greatest impact to
overall execution time. The effective bandwidth that we observe
with different allocations is dependent on the number of links and
the type of links (i.e. double NVLink, single NVLink, and/or PCle).

3.4.2 Evaluating Metrics . Now let us evaluate the two metrics, Ag-
gregated and Effective Bandwidths. We ran a multi-GPU training
workload, VGG-16, with various 4-GPU and 5-GPU jobs and poten-
tial matching allocations. We measured the execution time of the
workload, and the AggBW and EffBW of the allocation. Figure 11(a)
shows that AggBW does not correlate well with the workload’s
execution time. For example, an allocation with AggBW of 170
is much slower than an allocation with AggBW of 150. An ideal
metric for scoring pattern matches would be correlated and be able
to predict a workload’s execution time.

We find that this discrepancy is due to the fact that naively us-
ing the aggregated bandwidth AggBW does not correlate with the
effective bandwidth EffBW that is achievable for a given alloca-
tion. This is demonstrated in Figure 11(b) which is collected using
microbenchmarks to measure the effective bandwidth of various
allocations ranging from 2-5 GPUs. Therefore, we find that execu-
tion time of workloads cannot be predicted by naively aggregating
the allocated bandwidth. Instead, execution time of workloads must
be predicted by the effective bandwidth. Figure 11(c) demonstrates
this fact by showing that effective bandwidth correlates well with
workload execution time.

However, a major challenge of using effective bandwidth as a
metric to score matching patterns is that effective bandwidth cannot
be trivially obtained given an allocation without microbenchmark-
ing. Therefore, we need to create a model for predicting effective
bandwidth.

3.4.3 Predicted Effective Bandwidth. In the previous section, we
demonstrated that the execution time is a function of effective band-
width. Hence, we need to figure a way to predict EffBW without
having to run the microbenchmarks for a matching pattern. This
could be achieved by solving a non-linear polynomial regression

model. Here the Effective Bandwidth is related to the number of
Double NVLinks (x), Single NVLinks (y), and PCle links (z) in a
given matching pattern M.

Predicted Ef fective Bandwidth =

1 1
01x+ 60y + O3z 4+ 04 —— + 05 —— + ¢
x+1

y+1 z+1
1 1 1 (2)
+ 07xy + Ogyz + Oozx + 0 +0 +0
7XY T DsyE T Desx ¥ P10 xy+1 " yz+1 12zx +1

+ O13xyz + 0
13%Y 14xyz+1

To obtain data to train the model, we generate a set of 2, 3, 4,
and 5-GPU allocations in a DGX-V machine described in Figure 1c.
To limit the size of the generated set, we use an exhaustive set of
allocations with unique (x, y, z) resulting in a total of 31 samples.
Next, we recorded the EffBW by running the NCCL microbench-
mark as described previously. Next, we solve equation 2 using non-
linear polynomial regression and the collected data (corresponding
(x,y, z) and the recorded EffBW), to learn the relationships between
the types of allocated links (x, y, z) and EffBW. Through the regres-
sion model in equation 2, we learn the coefficient 6 of the following
linear and non-linear features to capture their impact on effective
bandwidth - linear (x, y, z), inverse-linear (ﬁ,#,;ﬁ), pairwise
(xy, yz, zx), inverse-pairwise (ﬁ#ﬁ) triplet (xyz), and
inverse-triplet (ﬁ). The values of each of the coefficient is tab-
ulated in table 2.

Coeff. 91 92 93 94 95 66 97

Value | 16.396 | 4.536 1.556 | -20.694 | -9.467 | 7.615 -7.973

Coeff. 98 99 910 911 912 913 914

Value | 12.733 | -4.195 | -8.413 | 62.851 | 27.418 | -5.114 | -46.973

Table 2: Values of Coefficients.

Figure 12 shows the predicted versus actual Effective Bandwidths
given a (x,y,z). For this model, the Relative Error, Root Mean
Square Error (RMSE), and Mean Absolute Error (MAE) were found
to be 0.0709, 1.5153, and 7.0539 respectively. The model shows a
strong correlation between the predicted EffBW and the measured
EffBW, and generalizes well even when the number of GPUs in a job
varies. This demonstrates that the Effective Bandwidth is strongly
related to the mix of links allocated and not necessarily the amount

SC ’21, November 14-19, 2021, St. Louis, MO, USA

of aggregate bandwidth allocated. Using equation 2 we can now
directly utilize EffBW as our pattern scoring metric without the
need for microbenchmarking.

B
60 |- N
2 ®
30 4
o [£ N
2z W ' ©2-GPU
21 A g ®3-GPU
Rl 20 Ba A4-GPU ||
e ®2 5-GPU
M, ®2° | | | :
0 20 40 60 80

Actual Ef f. BW (GBps)

Figure 12: Predicted effective bandwidth correlates well with
actual effective bandwidth and generalizes across jobs of dif-
ferent sizes.

3.5 Pattern Selection Allocation Policy

Once the matching patterns are scored, MAPA will then select a
matching pattern for allocation. Recall form Section 2.3 and Fig-
ure 5b that certain workloads are bandwidth sensitive while others
are bandwidth insensitive. Thus, in order to maximize the overall
performance of scheduled jobs, the pattern selection policy must
account for (1) the effective bandwidth of an allocation, (2) the band-
width sensitivity of the job, and (3) avoid starving future bandwidth
sensitive jobs of effective bandwidth. To account for bandwidth sen-
sitivity, MAPA assume that an application’s bandwidth sensitivity
is known and already annotated. The bandwidth sensitivity of an
application can be determined through various means, for example,
by profiling execution time vs allocated links as shown in Figure 6.

A novel aspect of MAPA is that when we select an allocation
for bandwidth insensitive jobs, we try to preserve as much remain-
ing effective bandwidth as possible for future sensitive jobs. This
bandwidth preservation scheme will then be able to optimize the
allocation of bandwidth sensitive jobs. In order to quantify the
amount of remaining bandwidth that is preserved, we introduce a
new metric as follows.

3.5.1 Preserved Bandwidth. We define Preserved Bandwidth as the
aggregate bandwidth of the usable links that remain (preserved)
if a pattern match M is allocated on the hardware graph G. The
remaining hardware graph is denoted as G \ M which is the sub-
graph of G induced by the remaining available accelerator devices
V(G)\V(M). In other words, the remaining hardware graph G\ M
is an induced subgraph which is constructed by deleting the pattern
match vertices V(G) \ V(M) (which allocates the corresponding
accelerator devices) and with them all the incident edges (the hard-
ware links that are no longer usable for future allocations). Figure 10
illustrates the calculation of preserved bandwidth if GPUs 1, 2, and
4 are allocated. Hence, we formally define Preserved Bandwidth as
follows in Equation 3.

Preserved Bandwidth = Z w(e) 3)
ecE(G\M)

Kiran Ranganath, Joshua D. Suetterlein, Joseph B. Manzano, Shuaiwen Leon Song, and Daniel Wong

3.5.2 Preserve Allocation Policy. We present the Preserve Alloca-
tion policy in Algorithm 1. In this policy, we rely on the programmer
annotated bandwidth sensitivity (bwSensitive), the Preserved Band-
width (Preserved BW) and Predicted Effective Bandwidth (Ef fBW).
If the job to be allocated is bandwidth insensitive, we allocate the
matching pattern that obtains the largest Preserved Bandwidth.
Meaning, we are preserving the amount of remaining available
high-bandwidth links in the hardware graph for bandwidth sensi-
tive allocations to avoid potentially starving these jobs. If the job
to be allocated is bandwidth sensitive, we allocate the matching
pattern with the highest Predicted Effective Bandwidth.

3.6 State Management

Once a matching pattern is selected for allocation, we then must
update the hardware graph G. The hardware graph G is updated
whenever there is an allocation (a job is scheduled) and a dealloca-
tion (a job is finished). Once an allocation is obtained, we update
the hardware graph to remove the unavailable vertices and inci-
dental edges. When a job is complete and the hardware resource
is deallocated, we update the hardware graph by adding back the
vertices and incidental edges that was previously removed.

4 EVALUATION

To evaluate MAPA, we use a combination of real-world runs and
simulation. Specifically, we first evaluate the effectiveness of MAPA
and the impact on performance on an NVIDIA DGX-1 V100 ma-
chine running on Ubuntu-16.04 with CUDA 11.3 and NCCL-2.10.3.
The DGX-1 V100 hardware topology is shown in Figure 1c. The
MAPA framework is built on top of Peregrine [25], a graph min-
ing engine, which performs subgraph pattern matching. Although
MAPA is agnostic to scheduling policies and can be extended to
any scheduling policy and can employ reordering. However, in this
work we use Fist-in First-out (FIFO) for scheduling jobs from the
queue.

Algorithm 1: Preserve Allocation Policy

Result: Allocation
HWgraph hGraph;
AppGraph aGraph;
Allocation alloc = { };
Patterns possiblePatterns = graphPatternMatching (aGraph,
hGraph);
if aGraph is bwSensitive then
foreach pattern in possiblePatterns do
if EffectiveBW (pattern) > EffectiveBW (alloc) then
‘ alloc = pattern;
end
end
end
else
foreach pattern in possiblePatterns do
if PreservedBW (pattern) > PreservedBW (alloc) then
‘ alloc = pattern;
end

end
end

MAPA: Multi-Accelerator Pattern Allocation Policy for Multi-Tenant GPU Servers

.
scheduler a

i R L

)

1000 B baseline
o) ‘ [Topo-aware .
g 800 G0 B Greedy]
= ! I Preserve |
§ 600
=2
S
3
2 400
w

200

vgg-16 alexnet resnet-50 inception-v3 BW-Sensitive

Network

(a) Execution time of bandwidth sensitive jobs

ﬁ

BB Dbaseline

W Topo-aware

B Greedy

[0 Preserve 5 5

vgg-16 alexnet

o N
S o

o
o

w
S

Predicted Effective BW (GBps)
N 3
S S

=
1S5

resnet-50
Network

inception-v3 BW-Sensitive

(c) Effective bandwidth of bandwidth sensitive jobs

SC ’21, November 14-19, 2021, St. Louis, MO, USA

1100

1000

)

@ 900 scheduler

-E &8 8 mm baseline

S 800 I Topo-aware

'g 4 I Greedy

$ 700 é E i % [Preserve

o = J l

600 T o 0 : t ;
caffenet googlenet cusimann gmm jacobi BW-Insensitive

Workloads

(b) Execution time of bandwidth insensitive jobs

‘
T TH
50 scheduler
20 I baseline
W Topo-aware
30 (BB Greedy
20 [0 Preserve
Lrrp Il

10 53 £ 75 35 §

~
=)

Predicted Effective BW (GBps)

caffenet googlenet cusimann gmm jacobi BW-Insensitive
Workloads

(d) Effective bandwidth of bandwidth insensitive jobs

Figure 13: Evaluation results on DGX-V

Later in Section 5, we will evaluate MAPA on different multi-
accelerator topology configurations by simulating the schedulers
benefit on various representative hardware graphs.

Workloads: In our evaluation, we use a set of Caffe [27] train-
ing jobs which makes use of multiple GPUs — AlexNet [34], VGG-
16 [55], Resnet-50 [32], Inception [57], GoogleNet [58], and Caf-
feNet [28]. These neural networks are trained using the Image-Net
dataset [13]. Each of the evaluated networks have different compute
and communication patterns as discussed in Section 2.3. In addi-
tion, we use three other non-neural network multi-GPU workloads.
They are a parallel simulated annealing algorithm for global opti-
mization (Cusimann) [39], Gaussian Mixture Model (GMM) [39],
and a Jacobi solver [44]. Furthermore, previous works [38, 39] have
demonstrated that Cusimann and GMM to have negligible inter-
GPU communication during the course of execution. Furthermore,
we observed less than 3% execution time improvement with Ja-
cobi solver. Hence, we classify Cusimann, GMM, and Jacobi to be
bandwidth insensitive. In this work, we focus on the inter-GPU
communication aspect when multiple GPUs are employed in a
single job.

Jobs configuration: We randomly generated a job file of 300
jobs consisting of a uniform mix of training jobs for machine learn-
ing networks as shown in Figure 5.

In addition, these jobs are generated with a random number of
requested GPUs, from 1 to 5, which follows a uniform distribution.
Prior work [26] has shown that the number of request GPUs for
multi-GPU jobs in multi-tenant environments tend to be uniformly
distributed.

Baseline Scheduling Policies: To evaluate MAPA, we com-
pare the preserve policy against three multi-GPU allocation policies—
Baseline, the current state-of-the-art scheduling technique Topo-
aware [7], and a simple greedy policy Greedy. The Baseline policy
simply allocates GPU by ID by selecting the lowest IDs. This is how

current GPU allocation are done in existing frameworks such as
Nvidia Docker [1]. The Topo-aware allocation policy [7] utilizes re-
cursive bi-partitioning to select GPUs for allocation. This scheduler
in effect selects GPU allocations under the same PCle tree (CPU
socket). The Greedy allocation policy simply selects a matching
pattern with the highest Aggregated Bandwidth for allocation.

4.1 Evaluation on DGX-V System

We ran a mix of 300 jobs on the target DGX-1 V100 machine with
Baseline, Topo-Aware, Greedy, and Preserve. These jobs are provi-
sioned concurrently if sufficient hardware resources available to
allow multiple jobs to run concurrently. For each job we record the
quality of the allocation using the predicted Effective Bandwidth
score and the execution time. Figure 13 shows our results, separated
by sensitive and insensitive workloads.

Figure 13(a) and 13(b) shows the execution time of the experi-
ments. Note that when running jobs on a multi-tenant server not all
jobs will experience poor allocation due to fragmentation. Instead,
the main point of focus should be the long tail of execution time
where workloads that exhibit poor allocation will similarly exhibit
poor execution time.

The baseline policy allocates based on smallest available GPU
ID and thus suffers significantly when allocations are fragmented,
as demonstrated by the long tails of most bandwidth sensitive
workloads, except Inception. The Topo-aware policy aims to sched-
ule jobs under the same CPU socket which consists of fully inter-
connected GPUs. This results in significantly improved tail execu-
tion times, most notably in VGG and Alexnet at the 75th percentile
execution time, which improved from 785s to 378s and 511s to
374s, respectively. Overall, Topo-aware reduced the 75th percentile
execution time from 540s to 505s for bandwidth sensitive jobs. How-
ever, this Topo-aware policy is not generalized to support arbitrary
application and hardware topologies. As shown in Figure 13(c) and

SC ’21, November 14-19, 2021, St. Louis, MO, USA

(d), the chosen allocations’ effective bandwidth does not signifi-
cantly improve upon the baseline policy with the barplot of baseline
and Topo-aware being nearly identical.

We evaluate MAPA with two pattern selection allocation policy—
Greedy and Preserve. The MAPA Greedy policy greedily selects
the allocation with the most aggregated bandwidth. Although ag-
gregated bandwidth does not correlated with effective bandwidth,
the Greedy policy nevertheless significantly improves the quality
of allocation. As shown in Figure 13(c) and (d), the median effec-
tive bandwidth across all workloads (57.85GBps for Greedy and
Preserve) is nearly the maximum effective bandwidth of baseline
and Topo-aware which does not take into account application and
hardware topologies. This demonstrates the benefits of MAPA and
the benefits of being application and hardware topology aware.

However, the Greedy policy does not consider application band-
width sensitivity nor aim to preserve bandwidth for future band-
width sensitive workloads. In Figure 13(c) we see that the Greedy
policy has allocations with lower 25th percentile of effective band-
width (12.33 GBps), indicating that more sensitive jobs are starved.

Policy MIN | 25th % | 50th % | 75th % | MAX | Tput
Baseline 1.000 1.000 1.000 1.000 1.000 1.00
Topo-aware 1.002 1.029 1.385 1.014 1.075 1.07
Greedy 0.997 1.059 1.519 1.048 1.319 1.08
Preservation | 1.006 1.057 1.119 1.124 1.352 | 1.12

Table 3: Summary of results. Normalized execution time
speed up and throughput (Tput) observed on DGX-1 V100.

The Preserve policy is able to successfully preserve bandwidth
for bandwidth sensitive workloads. This policy is able to achieve
similar median effective bandwidth as the Greedy policy (57.85
GBps) without suffering at the 25th percentile. In many cases, the
25th percentile effective bandwidth also significantly improved as
in the case of AlexNet and Inception-v3. In terms of execution time,
the Preserve policy achieves the lowest maximum tail execution
time and 75th percentile execution time (498s) across the majority
of the networks.

Table 3 summarizes the speedup across all allocation policies and
the quartiles, normalized to the baseline policy. By greedily selecting
the most aggregated bandwidth, the Greedy policy performs the
best in the median case at the cost of less improvement for the
longer running jobs at the tail. The Preserve policy is able to achieve
the best speedup at the tail by improving the 75th percentile and
Max by 12.4% and 35.2% over baseline. By improving the longer
running jobs, the Preserve policy is able to improve throughput by
11.7%. This throughput improvement is due to better utilization of
available high-speed communication links, which results in higher
GPU utilization and reduced execution times.

5 EXPLORING NOVEL HARDWARE
TOPOLOGIES

5.1 Methodology

To explore the effects of scheduling and fragmentation for novel
accelerator topologies, we built the MAPA simulator framework to
evaluate the quality of allocation for arbitrary hardware topologies.

10

Kiran Ranganath, Joshua D. Suetterlein, Joseph B. Manzano, Shuaiwen Leon Song, and Daniel Wong

The simulation takes as input the hardware topology graph and
a job file consisting of jobs represented by the application pattern
graph and its execution times. For the job file input to the simulator,
we obtained the extracted application pattern graph and measured
baseline execution time from our real-world runs on the DGX-V.
The output of the simulator is the effective bandwidths of each job.
In lieu of building a full-featured performance model to predict
the execution time of the workload, our simulator uses effective
bandwidth as a proxy for execution time.

5.2 Simulation Framework

Details of the simulation framework is shown in Figure 14. The
simulation starts with a job file. Each row in a job file corresponds
to a job and is annotated with a job ID, number of GPUs, application
topology, and bandwidth sensitivity. The Dispatcher reads the job
file and puts the job in the Job Queue. The Job Queue employs a First-
in First-out policy to mimic the FIFO scheduling in the real-world
experiments. If there exist available GPU resources, the simulator
invokes MAPA to obtain an allocation for the next job.

The execution engine of the simulator is cycle-based and models
the availability of a hardware resource. When a job is allocated, we
flag the hardware as busy, record the cycle time, and begin the exe-
cution of the job. Once the specified execution time has elapsed, we
flag the hardware resources as free, log the job’s information into a
log file, and send a job Finished Signal to MAPAto update its hard-
ware state. The logger records the Predicted Effective Bandwidth
information along with other job properties.

Simulator validation and soundness of effective bandwidth
proxy. In order to validate the simulator with real-runs, we cor-
relate the predicted Effective Bandwidth obtained in the real run
results with the simulator configured for DGX-V. As shown in Fig-
ure 15, the simulated and real effective bandwidth correlates well
indicating that the simulation adequately captures the schedul-
ing behaviors of the real DGX-V system. We believe this simula-
tion methodology can scale to evaluate future topologies since our
evaluation metric (effective bandwidth) is based on the resource
provisioned for a job, and not based on global topology proper-
ties. Therefore, we're confident our simulator result is accurate for
future topologies utilizing the same link types.

To demonstrate the soundness of using effective bandwidth as
a proxy for execution time, we collected the effective bandwidth
and measured execution time of the real run for each workload. As
shown in Figure 16, we can see for bandwidth insensitive work-
loads that execution time is not impacted by effective bandwidth
as expected. For bandwidth sensitive workloads, as effective band-
width increases the execution time of the workload also improves
(decreases). Although the amount of execution time improvement
is limited once the effective bandwidth is past 50 GBps, the general
trend still holds. Thus, effective bandwidth can be used as a good
proxy for evaluating execution time improvements.

Novel 16-GPU topologies. We explore the impact of schedul-
ing policies on two novel 16-GPU hardware topologies — Torus-
2d, and Cube-mesh topologies. The accelerators in Torus-2d and
Cube-mesh topology are configured to have double NVLinks, sin-
gle NVLinks, and PCle as shown in Figures 17a and 17b, respec-
tively. Although 16-GPU topologies exists with crossbar switches

MAPA: Multi-Accelerator Pattern Allocation Policy for Multi-Tenant GPU Servers

t Job File h

SC ’21, November 14-19, 2021, St. Louis, MO, USA

Hardware graph

Job Queue

(Allocate/

1D, NumGPUs, Topology, BW Sensitive
1,3, Ring, True
2,4, Ring, True

—.[Dispatcher]—v | | | |6|5|4|3 App Graph

Deallocate)

MAPA

Relrieve

3, 5, Tree, False
4,4, AlIToAIl, True

Available
HW graph

OO @O
o5
- 7

Job Finished

Log File
ID, Allocation, Topology, Effective BW (GBps)
1,(1,23), Ring, 45
2,(56,7.8), Ring, 48

Allocation

Figure 14: MAPA simulation execution framework.

40 N
R ¥R ®

20 -

Simulated
Ef fective BW (GBps)

0 | | |
0 20 40 60

Real Ef fective BW (GBps)

Figure 15: Effective bandwidth measured during DGX-V’s
real and simulation runs correlated well.

—~
© —— VGG-16
— 1,000 |~ I
Y ——— AlexNet
§ Inception-v3
=~ 500 [— Resnet-50
§ ~ — — CaffeNet
— — - GoogleNet
<8 0 | | ! ! GoogleNe

60
Ef fective BW (GBps)

Figure 16: Effective bandwidth vs execution time observed
during real runs on DGX-V.

0O

PU

—

I

§

-

o OGPU —QPI
~

— O Single Double

—PCle —NVLink™ NVLink

g

AR

-

(a) Torus-2d (b) Cube-mesh

Figure 17: 16-GPU topologies

(NVSwitch), we aim to explore alternative topologies consisting of
cost-effective point-to-point links.

5.3 Exploration Results

Recall that the aim is to improve the upper tail of execution time,
and by proxy, to improve the lower tail (min and 25th percentile) of
effective bandwidth. For brevity, we omit the results for bandwidth

11

insensitive workloads since the execution times of these workloads
are not impacted by effective bandwidth as shown in Figure 16.

For the 16-GPU Torus-2d (Figures 18a), we observe that Preserve
significantly improves the 25th percentile and is better than the
median of baseline and Topo-aware. In addition, the minimum of
Preserve is equivalent to the 25th percentile of all other policies,
demonstrating Preserve’s ability to rein in the tail execution time.
Due to the uniformness of the Torus-2d interconnect network, the
Greedy policy is able to easily select high bandwidth allocations
improving the 75th percentile (making fast jobs even faster).

For the Cube-mesh topology (Figure 18b), it is a more irregular
network and thus more difficult to greedily select optimal alloca-
tions. Here, Preserve performs even better for sensitive workloads.
While the minimum effective bandwidth of Preserve is equivalent
to the 25th percentile of all other workloads, the median is near
the 75th percentile of Greedy and the maximum of baseline and
Topo-aware. Therefore, half of the jobs allocated with Pre-
serve will effectively run faster than the all of the jobs with
baseline and Topo-aware and the majority of Greedy.

These results demonstrates that as hardware topologies scale
and becomes more complex and non-uniform, the greater the need
for scheduling and allocation policies that are application commu-
nication pattern-aware and hardware topology-aware.

5.4 Overhead of Scheduling

Figure 19 presents the scheduling overhead analysis of the MAPA
framework. We evaluate this overhead across different sizes of ap-
plication pattern graphs (x-axis) and different sizes of hardware
topology graphs. We evaluate hardware topology graphs of size 6,
8, and 16 for Summit, DGX-V and Torus-2d/CubeMesh-16, respec-
tively. Typically, we observe scheduling overheads in the order of
milliseconds which is negligible. However, the scheduling overhead
does increase modestly for larger job sizes (9 GPUs and above) on
larger hardware graphs (16 GPUs with 120+ edges). This is due
to more combinations of matching patterns which requires more
scoring of patterns.

Note that this experiment is done on an idle hardware graph
and represents an upper-bound of scheduling cost. In reality, the
allocation search will be performed on a smaller graph of available
hardware which leads to significantly smaller pattern matches. Also
our evaluation utilizes a single thread implementation to perform
scoring. This overhead can be reduced by parallelizing the scoring
process since it is a data parallel problem. Therefore, we expect our
overhead to be manageable in real-world conditions and can scale
to larger servers with parallel optimizations of our implementation.

SC ’21, November 14-19, 2021, St. Louis, MO, USA

—70
@
o 60
i 50 scheduler
g 40 B baseline
° B Topo-aware
l'U
£ 30 mmm Greedy
=20 l:l Preserve
1
S
3 10 + + T v
< . . . L tor
o 0 [
vgg-16 alexnet resnet-50 inception-v3 BW-Sensitive

Network

(a) Torus-2d

o .o
60 . PR p— . .
scheduler .
I baseline ' !
= Topo-aware
I Greedy
[T |Preserve
20
2 v
M PR B v
0 L]

. .

Predicted Effective BW (GBps)
B
o

resnet-50 BW-Sensitive

Network

vgg-16 alexnet inception-v3

(b) Cube Mesh

Figure 18: Simulation results for bandwidth sensitive work-
loads on 16-GPU topologies. Improvements to lower tail
(min and 25th percentile) is better in both .

6 RELATED WORKS

Scheduling for multi-node GPU clusters: Many works [3-6,
15, 24, 35, 36, 40, 41, 56, 60, 62—-64, 71, 74, 75] have proposed op-
timizations to improve GPU performance and Energy efficiency.
Recent works, such as Gandiva [72] and Philly [26], proposes sched-
uling policies for multi-GPU jobs on multi-node multi-GPU clusters.
Specifically, Gandiva proposes support for transparently migrating
and time-slicing jobs for better job-to-GPU fit. Philly, on the other
hand, aims to maximize the locality of multi-GPU allocations for
non-preemptive multi-node multi-GPU clusters in multi-tenant en-
vironments. Both prior works aim to minimize fragmentation by
either adding preemption support for migration, or by allocating
across nodes to minimize fragmentation. Our work is complemen-
tary and aims to alleviate fragmentation that occurs within the node
itself in a multi-tenant environment due to the heterogeneity of
links.

Collective communication: In [33, 67], the authors have pro-
posed techniques towards achieving efficient collective communica-
tion. Blink [67] offers a new approach to collective communication
by creating sets of spanning trees instead of rings. The spanning
trees are dynamically generated based on the topology detected
to utilize the links best. Specifically, given allocations from Philly,
which are unaware of GPU-GPU interconnection topology, the goal
of Blink is to identify optimal communication paths using spanning
trees. Gossip [33] proposes flow-oriented collectives and generates
transfer plans to best schedule packets. Works like WOTIR [51]
presents software optimization techniques to improve the execution

12

Kiran Ranganath, Joshua D. Suetterlein, Joseph B. Manzano, Shuaiwen Leon Song, and Daniel Wong

| | | | | | |
I [l Summit I 1 DGX*VI [Torus-2d D [CubeMesh-16

[
(=
S

QOverhead (ms)
2,

—
(=}
©

2 3 4 5 6 7 8 9
Number of GPUs Requested

Figure 19: Overhead analysis of MAPA w/ Preserve policy.

times of bad allocations using NVLink. These works seek to opti-
mize bad allocations, while our work seeks to reduce the number
of bad allocations for bandwidth sensative jobs.

Multi-GPUs for Machine Learning: From recent works [26,
43, 72], Machine Learning (ML) is one of the primary workloads
on multi-GPU systems. Hence, we use ML training as a target
workload in this work, as well. We used Caffe [27] framework for
Machine Learning in this work. These machine learning workloads
use Nvidia Collective Communications Library (NCCL) [45] to per-
form operations like Reduce, AllReduce, Broadcast, Gather, Scatter,
and Scatter-Gather. While we only demonstrated software NVLink
routing in NCCL integrated into Caffe, our observed results and
trends should generalize to other machine learning frameworks
that use NCCL as the collective communication backend. Besides,
as ML models grow in size and complexity, the communication in-
tensity will only increase, leading to a greater reliance on maximum
achievable communication bandwidth.

7 CONCLUSION

In this work, we proposed Multi-Accelerator Pattern Allocation
(MAPA), a novel approach to perform efficient scheduling and allo-
cation of multi-accelerator workloads on multi-accelerator systems
using a generalized graph pattern matching approach. Through
real-world evaluations, MAPA improves overall system throughput
by up to 12% and reduced the worst case execution time by 35% over
baseline. Through simulation we explore larger novel hardware
topologies and find that MAPA’s benefit grow as hardware topolo-
gies scale and becomes more non-uniform. We demonstrate that
more than half of the jobs allocated with MAPA can effectively run
faster than all jobs allocated with existing state-of-the-art schedul-
ing policies.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable feedback
and suggestions. This work was partially supported by NSF grants
#1815643, #1955650, #2047521, and University of Sydney faculty
startup funding and Australia Research Council (ARC) Discovery
Project DP210101984.

This work was also partially funded by the U.S. Dept. of En-
ergy’s Office of Science Center for Advanced Technology Eval-
uation (CENATE) project under the Pacific Northwest National
Laboratory. Pacific Northwest National Laboratory is operated by
Battelle Memorial Institute for the U.S. Department of Energy under
Contract DE-AC05-76RL01830.

MAPA: Multi-Accelerator Pattern Allocation Policy for Multi-Tenant GPU Servers

REFERENCES

(1]

[2

—

[3

[4

flaa

[11]

[12]

[13]

=
it

[20]

[21

[22

[23]

2021. Nvidia Docker Containers. https://docs.nvidia.com/datacenter/cloud-
native/container-toolkit/install- guide.html

2021. NVIDIA Multi-instance GPU. https://docs.nvidia.com/datacenter/tesla/
mig-user-guide/index.html

Mohammad Abdel-Majeed, Daniel Wong, and Murali Annavaram. 2013. Warped
gates: Gating aware scheduling and power gating for GPGPUs. In 2013 46th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). 111~
122.

Mohammad Abdel-Majeed, Daniel Wong, Justin Kuang, and Murali Annavaram.
2016. Origami: Folding Warps for Energy Efficient GPUs. In Proceedings of the
2016 International Conference on Supercomputing (ICS ’16).

AmirAli Abdolrashidi, Hodjat Asghari Esfeden, Ali Jahanshahi, Kaustubh
Singh, Nael Abu-Ghazaleh, and Daniel Wong. 2021. Blockmaestro: Enabling
programmer-transparent task-based execution in gpu systems. In 2021 ACM/IEEE
48th Annual International Symposium on Computer Architecture (ISCA). IEEE,
333-346.

AmirAli Abdolrashidi, Devashree Tripathy, Mehmet Esat Belviranli,
Laxmi Narayan Bhuyan, and Daniel Wong. 2017. Wireframe: Support-
ing data-dependent parallelism through dependency graph execution in gpus.
In Proceedings of the 50th Annual IEEE/ACM International Symposium on
Microarchitecture. 600-611.

Marcelo Amaral, Jorda Polo, David Carrera, Seetharami Seelam, and Malgorzata
Steinder. 2017. Topology-aware gpu scheduling for learning workloads in cloud
environments. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. 1-12.

Amazon. 2019. Amazon EC2 elastic GPUs. https://aws.amazon.com/ec2/elastic-
gpus/ Accessed 04-20-2019.

Advanced Micro Devices (AMD). 2021. ROCm Communication Collectives Li-
brary. https://github.com/ROCmSoftwarePlatform/rccl

Ammar Ahmad Awan, Khaled Hamidouche, Akshay Venkatesh, and Dha-
baleswar K Panda. 2016. Efficient large message broadcast using NCCL and
CUDA-aware MPI for deep learning. In Proceedings of the 23rd European MPI
Users’ Group Meeting. 15-22.

Noah D Brenowitz, Brian Henn, Jeremy McGibbon, Spencer K Clark, Anna
Kwa, W Andre Perkins, Oliver Watt-Meyer, and Christopher S Bretherton. 2020.
Machine learning climate model dynamics: Offline versus online performance.
arXiv preprint arXiv:2011.03081 (2020).

V. Carletti, P. Foggia, A. Saggese, and M. Vento. 2018. Challenging the Time
Complexity of Exact Subgraph Isomorphism for Huge and Dense Graphs with
VF3. IEEE Transactions on Pattern Analysis and Machine Intelligence 40, 4 (2018),
804-818. https://doi.org/10.1109/TPAMI.2017.2696940

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. 2009. ImageNet: A
Large-Scale Hierarchical Image Database. In CVPR09.

Wengqian Dong, Zhen Xie, Gokcen Kestor, and Dong Li. 2020. Smart-PGSim:
using neural network to accelerate AC-OPF power grid simulation. In SC20:
International Conference for High Performance Computing, Networking, Storage
and Analysis. IEEE, 1-15.

Alexandru Dutu, Matthew D Sinclair, Bradford M Beckmann, David A Wood,
and Marcus Chow. 2020. Independent forward progress of work-groups. In 2020
ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA).
IEEE, 1022-1035.

Steffen Ernsting and Herbert Kuchen. 2012. Algorithmic skeletons for multi-
core, multi-GPU systems and clusters. International Journal of High Performance
Computing and Networking 7, 2 (2012), 129-138.

Facebook. 2018. Facebook Flexible GPU Expander Big Basin Refresh.
https://www.opencompute.org/files/OCP2018-Facebook-Flexible-GPU-
Expander-Big-Basin-Refresh-v0.7.pdf

Iman Faraji, Seyed H Mirsadeghi, and Ahmad Afsahi. 2016. Topology-aware GPU
selection on multi-GPU nodes. In 2016 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW). IEEE, 712-720.

Geoffrey Fox, James A Glazier, JCS Kadupitiya, Vikram Jadhao, Minje Kim, Judy
Qiu, James P Sluka, Endre Somogyi, Madhav Marathe, Abhijin Adiga, et al. 2019.
Learning everywhere: Pervasive machine learning for effective high-performance
computation. In 2019 IEEE International Parallel and Distributed Processing Sym-
posium Workshops (IPDPSW). IEEE, 422-429.
Google. 2020. Google Cloud: Cloud GPUs.
Accessed 04-16-2020.

Jonathan Hines. 2018. Stepping up to Summit. Computing in Science & Engineering
20, 2 (2018), 78-82.

NVIDIA Inc. 2019. NVIDIA DGX-1: The essential instrument for Al Research: Spec
Sheet. https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/dgx-
1/dgx-1-rhel-datasheet-nvidia-us-808336-r3-web.pdf

NVIDIA Inc. 2019. NVIDIA DGX-2: The World Most Powerful Deep
Learning System For the Most Complex AI Challenges: Spec Sheet.
https://www.nvidia.com/content/dam/en-zz/Solutions/Data- Center/dgx-
1/dgx-2-datasheet-us-nvidia-955420-r2-web-new.pdf

https://cloud.google.com/gpu

SC ’21, November 14-19, 2021, St. Louis, MO, USA

[24] Ali Jahanshahi, Hadi Zamani Sabzi, Chester Lau, and Daniel Wong. 2020. GPU-

NEST: Characterizing Energy Efficiency of Multi-GPU Inference Servers. IEEE
Computer Architecture Letters 19, 2 (2020), 139-142. https://doi.org/10.1109/LCA.
2020.3023723

Kasra Jamshidi, Rakesh Mahadasa, and Keval Vora. 2020. Peregrine: A Pattern-
Aware Graph Mining System. In Proceedings of the Fifteenth European Con-
ference on Computer Systems (Heraklion, Greece) (EuroSys '20). Association
for Computing Machinery, New York, NY, USA, Article 13, 16 pages. https:
//doi.org/10.1145/3342195.3387548

Myeongjae Jeon, Shivaram Venkataraman, Junjie Qian, Amar Phanishayee, Wen-
cong Xiao, and Fan Yang. 2018. Multi-tenant GPU clusters for deep learning
workloads: Analysis and implications. Tech. Rep. (2018).

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,
Ross Girshick, Sergio Guadarrama, and Trevor Darrell. 2014. Caffe: Convolu-
tional architecture for fast feature embedding. In Proceedings of the 22nd ACM
international conference on Multimedia. 675-678.

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,
Ross Girshick, Sergio Guadarrama, and Trevor Darrell. 2014. Caffe: Convolu-
tional Architecture for Fast Feature Embedding. In Proceedings of the 22Nd ACM
International Conference on Multimedia (Orlando, Florida, USA) (MM ’14). ACM,
New York, NY, USA, 675-678. https://doi.org/10.1145/2647868.2654889
Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. 2017.
In-datacenter performance analysis of a tensor processing unit. In Proceedings of
the 44th annual international symposium on computer architecture. 1-12.

JCS Kadupitiya, Geoffrey C Fox, and Vikram Jadhao. 2019. Machine learning for
performance enhancement of molecular dynamics simulations. In International
Conference on Computational Science. Springer, 116-130.

JCS Kadupitiya, Geoffrey C Fox, and Vikram Jadhao. 2020. Machine learning for
parameter auto-tuning in molecular dynamics simulations: Efficient dynamics of
ions near polarizable nanoparticles. The International Journal of High Performance
Computing Applications 34, 3 (2020), 357-374.

Riaz Ullah Khan, Xiaosong Zhang, Rajesh Kumar, and Emelia Opoku Aboagye.
2018. Evaluating the Performance of ResNet Model Based on Image Recognition.
In Proceedings of the 2018 International Conference on Computing and Artificial In-
telligence (Chengdu, China) (ICCAI 2018). Association for Computing Machinery,
New York, NY, USA, 86-90. https://doi.org/10.1145/3194452.3194461

Robin Kobus, Daniel Jiinger, Christian Hundt, and Bertil Schmidt. 2019. Gossip:
Efficient Communication Primitives for Multi-GPU Systems. In Proceedings of
the 48th International Conference on Parallel Processing. 1-10.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. ImageNet Classifi-
cation with Deep Convolutional Neural Networks. In Advances in Neural Infor-
mation Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Wein-
berger (Eds.). Curran Associates, Inc., 1097-1105. http://papers.nips.cc/paper/
4824-imagenet-classification- with- deep- convolutional-neural-networks.pdf
Ang Li, Tong Geng, Tiangi Wang, Martin Herbordt, Shuaiwen Leon Song, and
Kevin Barker. 2019. BSTC: A novel binarized-soft-tensor-core design for accel-
erating bit-based approximated neural nets. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis.
1-30.

Ang Li, Weifeng Liu, Linnan Wang, Kevin Barker, and Shuaiwen Leon Song. 2018.
Warp-consolidation: A novel execution model for gpus. In Proceedings of the 2018
International Conference on Supercomputing. 53-64.

A.Li, S. Song, J. Chen, J. Li, X. Liu, N. Tallent, and K. J. Barker. 2019. Evaluating
Modern GPU Interconnect: PCle, NVLink, NV-SLI, NVSwitch and GPUDirect.
IEEE Transactions on Parallel and Distributed Systems (2019). https://doi.org/10.
1109/TPDS.2019.2928289

Ang Li, Shuaiwen Leon Song, Jieyang Chen, Jiajia Li, Xu Liu, Nathan R. Tallent,
and Kevin J. Barker. 2019. Evaluating Modern GPU Interconnect: PCle, NVLink,
NV-SLI, NVSwitch and GPUDirect. CoRR abs/1903.04611 (2019). arXiv:1903.04611
http://arxiv.org/abs/1903.04611

Ang Li, Shuaiwen Leon Song, Jieyang Chen, Xu Liu, Nathan Tallent, and Kevin
Barker. 2018. Tartan: Evaluating Modern GPU Interconnect via a Multi-GPU
Benchmark Suite. In 2018 IEEE International Symposium on Workload Characteri-
zation (IISWC). 191-202. https://doi.org/10.1109/IISWC.2018.8573483

Ang Li, Shuaiwen Leon Song, Akash Kumar, Eddy Z Zhang, Daniel Chavarria-
Miranda, and Henk Corporaal. 2016. Critical points based register-concurrency
autotuning for GPUs. In 2016 Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE, 1273-1278.

Zhenhong Liu, Daniel Wong, and Nam Sung Kim. 2018. Load-Triggered Warp
Approximation on GPU. In Proceedings of the International Symposium on Low
Power Electronics and Design (ISLPED ’18).

Daniel Mawhirter and Bo Wu. 2019. AutoMine: Harmonizing High-Level Ab-
straction and High Performance for Graph Mining. In Proceedings of the 27th
ACM Symposium on Operating Systems Principles (Huntsville, Ontario, Canada)
(SOSP °19). Association for Computing Machinery, New York, NY, USA, 509-523.
https://doi.org/10.1145/3341301.3359633

SC ’21, November 14-19, 2021, St. Louis, MO, USA

[43]

[44

[45

[46

[48]

[49]

[50

[51

[52]

[53

[54]

[56]

[57

[58

[59

[60]

[61

o
o

[63

[64

Saiful A Mojumder, Marcia S Louis, Yifan Sun, Amir Kavyan Ziabari, José L
Abellan, John Kim, David Kaeli, and Ajay Joshi. 2018. Profiling dnn workloads on
a volta-based dgx-1 system. In 2018 IEEE International Symposium on Workload
Characterization (IISWC). IEEE, 122-133.

Nvidia. 2019. Multi-GPU Programming Models. https://developer.download.
nvidia.com/video/gputechconf/gtc/2019/presentation/s9139-multi-gpu-
programming-models.pdf

Nvidia. 2021. Optimized primitives for collective multi-GPU communication.
https://github.com/nvidia/nccl

Tesla NVIDIA. 2017. V100 white paper. ~ NVIDIA Corporation (2017).
https://images.nvidia.com/content/pdf/dgx1-v100-system-architecture-
whitepaper.pdf

Luigi P. Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento. 2004. A
(Sub)Graph Isomorphism Algorithm for Matching Large Graphs. IEEE Trans.
Pattern Anal. Mach. Intell. 26, 10 (Oct. 2004), 1367-1372. https://doi.org/10.1109/
TPAMI.2004.75

Sam Partee, Matthew Ellis, Alessandro Rigazzi, Scott Bachman, Gustavo Marques,
Andrew Shao, and Benjamin Robbins. 2021. Using Machine Learning at Scale in
HPC Simulations with SmartSim: An Application to Ocean Climate Modeling.
arXiv preprint arXiv:2104.09355 (2021).

J Luc Peterson, Rushil Anirudh, Kevin Athey, Benjamin Bay, Peer-Timo Bremer,
Vic Castillo, Francesco Di Natale, David Fox, Jim A Gaffney, David Hysom, et al.
2019. Merlin: enabling machine learning-ready HPC ensembles. arXiv preprint
arXiv:1912.02892 (2019).

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. 2020. Zero:
Memory optimizations toward training trillion parameter models. In SC20: Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis. IEEE, 1-16.

Kiran Ranganath, AmirAli Abdolrashidi, Shuaiwen Leon Song, and Daniel Wong.
2019. Speeding up Collective Communications Through Inter-GPU Re-routing.
IEEE Computer Architecture Letters 18, 2 (2019), 128-131.

Baidu Research. 2017. Baidu All-Reduce. https://github.com/baidu-research/
baidu-allreduce

Dipanjan Sengupta, Anshuman Goswami, Karsten Schwan, and Krishna Pallavi.
2014. Scheduling multi-tenant cloud workloads on accelerator-based systems. In
SC’14: Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE, 513-524.

Noam Shazeer, Youlong Cheng, Niki Parmar, Dustin Tran, Ashish Vaswani, Pen-
porn Koanantakool, Peter Hawkins, HyoukJoong Lee, Mingsheng Hong, Cliff
Young, Ryan Sepassi, and Blake Hechtman. 2018. Mesh-TensorFlow: Deep Learn-
ing for Supercomputers. In Neural Information Processing Systems.

Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional Net-
works for Large-Scale Image Recognition. In International Conference on Learning
Representations.

Shuaiwen Song, Matthew Grove, and Kirk W Cameron. 2011. An iso-energy-
efficient approach to scalable system power-performance optimization. In 2011
IEEE International Conference on Cluster Computing. IEEE, 262-271.

Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A. Alemi.
2017. Inception-v4, Inception-ResNet and the Impact of Residual Connections
on Learning. In Proceedings of the Thirty-First AAAI Conference on Artificial
Intelligence (San Francisco, California, USA) (AAAI'17). AAAI Press, 4278-4284.
Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabi-
novich. 2014. Going Deeper with Convolutions. CoRR abs/1409.4842 (2014).
arXiv:1409.4842 http://arxiv.org/abs/1409.4842

Nathan R Tallent and Adolfy Hoisie. 2014. Palm: Easing the burden of analytical
performance modeling. In Proceedings of the 28th ACM international conference
on Supercomputing. 221-230.

Jingweijia Tan, Shuaiwen Leon Song, Kaige Yan, Xin Fu, Andres Marquez, and
Darren Kerbyson. 2016. Combating the reliability challenge of GPU register file
at low supply voltage. In 2016 International Conference on Parallel Architecture
and Compilation Techniques (PACT). IEEE, 3-15.

Carlos H. C. Teixeira, Alexandre J. Fonseca, Marco Serafini, Georgos Siganos,
Mohammed J. Zaki, and Ashraf Aboulnaga. 2015. Arabesque: A System for Dis-
tributed Graph Mining. In Proceedings of the 25th Symposium on Operating Systems
Principles (Monterey, California) (SOSP °15). Association for Computing Machin-
ery, New York, NY, USA, 425-440. https://doi.org/10.1145/2815400.2815410
Devashree Tripathy, Amirali Abdolrashidi, Laxmi Narayan Bhuyan, Liang Zhou,
and Daniel Wong. 2021. Paver: Locality graph-based thread block scheduling
for gpus. ACM Transactions on Architecture and Code Optimization (TACO) 18, 3
(2021), 1-26.

Devashree Tripathy, Amirali Abdolrashidi, Quan Fan, Daniel Wong, and Manoran-
jan Satpathy. 2021 (To appear). LocalityGuru: A PTX Analyzer for Extracting
Thread Block-level Locality in GPGPUs. Proceedings of the 15th IEEE/ACM Inter-
national Conference on Networking, Architecture, and Storage (2021 (To appear)).
Devashree Tripathy, Hadi Zamani, Debiprasanna Sahoo, Laxmi N Bhuyan, and
Manoranjan Satpathy. 2020. Slumber: static-power management for gpgpu
register files. In Proceedings of the ACM/IEEE International Symposium on Low

14

[65]

o6]

[67]

e
&

[69]

[70]

(71]

[72

(73]

(74]

[75]

Kiran Ranganath, Joshua D. Suetterlein, Joseph B. Manzano, Shuaiwen Leon Song, and Daniel Wong

Power Electronics and Design. 109-114.

J. R. Ullmann. 1976. An Algorithm for Subgraph Isomorphism. J. ACM 23, 1 (Jan.
1976), 31-42. https://doi.org/10.1145/321921.321925

Julian R. Ullmann. 2011. Bit-Vector Algorithms for Binary Constraint Satisfaction
and Subgraph Isomorphism. ACM J. Exp. Algorithmics 15, Article 1.6 (Feb. 2011),
64 pages. https://doi.org/10.1145/1671970.1921702

Guanhua Wang, Shivaram Venkataraman, Amar Phanishayee, Jorgen Thelin,
Nikhil Devanur, and Ion Stoica. 2019. Blink: Fast and generic collectives for
distributed ml. arXiv preprint arXiv:1910.04940 (2019).

Lijing Wang, Jiangzhuo Chen, and Madhav Marathe. 2019. DEFSI: Deep learning
based epidemic forecasting with synthetic information. In Proceedings of the
AAAI Conference on Artificial Intelligence, Vol. 33. 9607-9612.

Emma White. 2019. Optimizing deep learning on P3 and P3dn with
EFA. https://aws.amazon.com/blogs/compute/optimizing-deep-learning-on-p3-
and-p3dn-with-efa/

Jeremiah J Wilke, Joseph P Kenny, Samuel Knight, and Sebastien Rumley. 2018.
Compiler-assisted source-to-source skeletonization of application models for
system simulation. In International Conference on High Performance Computing.
Springer, 123-143.

Daniel Wong, Nam Sung Kim, and Murali Annavaram. 2016. Approximat-
ing warps with intra-warp operand value similarity. In 2016 IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA). 176—187.
https://doi.org/10.1109/HPCA.2016.7446063

Wencong Xiao, Romil Bhardwaj, Ramachandran Ramjee, Muthian Sivathanu,
Nipun Kwatra, Zhenhua Han, Pratyush Patel, Xuan Peng, Hanyu Zhao, Quanlu
Zhang, et al. 2018. Gandiva: Introspective cluster scheduling for deep learning.
In 13th {USENIX} Symposium on Operating Systems Design and Implementation
({OSDI} 18). 595-610.

J. Yin, Z. Lin, O. Kayiran, M. Poremba, M. Shoaib Bin Altaf, N. Enright Jerger,
and G. H. Loh. 2018. Modular Routing Design for Chiplet-Based Systems. In 2018
ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA).
726-738. https://doi.org/10.1109/ISCA.2018.00066

Hadi Zamani, Yuanlai Liu, Devashree Tripathy, Laxmi Bhuyan, and Zizhong
Chen. 2019. GreenMM: energy efficient GPU matrix multiplication through un-
dervolting. In Proceedings of the ACM International Conference on Supercomputing.
308-318.

Hadi Zamani, Devashree Tripathy, Laxmi Bhuyan, and Zizhong Chen. 2020.
SAQU: Safe adaptive overclocking and undervolting for energy-efficient GPU
computing. In Proceedings of the ACM/IEEE International Symposium on Low
Power Electronics and Design. 205-210.

Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED

MAPA is hosted on GitHub and can be accessed on
https://github.com/socal-uct/MAPA. The repo consists of
necessary submodules - Peregrine, Caffe, ML models used in the
paper, and the JobGenerator.

Follow the instructions on https://github.com/socal-
ucr/MAPA/blob/master/README.md to compile and run
MAPA software.

We ran our experiments on DGX-1 V100 Machine. DGX-1 V100
has 8 V100 GPUs which are connected via Double and Single
NVLinks as described in the paper. We used the Caffe framework
for workload evaluation. Peregrine was used for subgraph pattern
matching as described in the paper. Compatible Caffe and Peregrine
dependencies are provided as submodules in the MAPA repository.

We used the following Caffe-models available in
https://github.com/socal-ucr/caffe-models. Our training jobs
used the image-net data set available at http://www.image-net.org.

We used GCC 9.3 to compile MAPA. Caffe requires GCC-5.4.0,
NCCL-2.5.7, and CUDA-11 to compile. All the experiments were
run on Ubuntu-16.04. The system configuration is as follows: CPU:
Intel Xeon E5-2698 processors GPUs: Nvidia Volta V100

Author-Created or Modified Artifacts:

Persistent ID:
— https://zenodo.org/badge/latestdoi/310419676
Artifact name: MAPA

BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER

Relevant hardware details: CPU-Intel Xeon E5-2698 processors,
GPU-Nvidia Volta V100

Operating systems and versions: Ubuntu 16.04 running linux ker-
nel 4.4.0

Compilers and versions: GCC>=9.3.0, G++>=9.3.0, NCCL>=2.5.7,
Unittest++, CUDA>=9

Applications and versions: Caffe
Libraries and versions: Peregrine
Input datasets and versions: ImageNet

URL to output from scripts that gathers execution environment
information.
https://intra.ece.ucr.edu/~kranganath/dgx-v_environ
— ment.md

