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ABSTRACT: Thiol containing molecules as both interfacial surface ligands and	additives are promising modulators for en-
hancing photoluminescence (PL) properties, stability, and photovoltaic (PV) performance of metal halide perovskites. How-
ever, alkanethiols are much more effective for improving photoluminescence (PL) intensity and stability in metal halide per-
ovskite nanocrystals than in their thin film analogues.  Herein, we investigate how additional functional groups on a pyrimi-
dine core can alter thiol reactivity and influence the PL, stability, and PV performance of organic metal halide perovskites. 
Through an investigation of five different pyrimidine derivatives, it is shown that all derivatives containing thiol groups form 
thiolates in the presence of the perovskite precursors and increase the photoluminescence intensity of the perovskite film.  
The largest all-around improvement to the PL intensity, stability, and photovoltaic performance of Cs0.15FA0.85PbI3 perovskites 
is realized through the addition of a hydroxyl group combined with a trifluoromethyl group to form 4-hydroxy-6-(trifluoro-
methyl)pyrimidine-2-thiol.  This investigation helps illuminate how combinations of functional groups can be employed to 
further increase the beneficial effects over mono-functional additives in organic metal halide perovskites. 

Organic metal halide perovskites (HPs) are pioneering 
light harvesting materials for photovoltaics (PVs) and 
light-emitting applications.1,2 However, these materials 
suffer from poor stability and there is further room for 
improving their performance in both PVs and light emit-
ting applications.3,4 In addition, they are prone to degra-
dation under electron beam irradiation,5 humidity,6 
heat,7 and light.8 Introducing interfacial surface ligands 
and solution	additives are promising routes to enhance 
stability and PL properties of both HP nanocrystals (NCs) 
and thin films, as these ligands and additives can passiv-
ate defect states. Passivation can be performed on both 
NCs and thin films in different ways: including introduc-
ing additives in the precursor solution used for synthesis 
of NCs or thin films and exposing the NCs or thin films to 
surface ligands in solution or in the vapor phase post-
synthesis.9–13 Passivation of both NCs and their bulk 
counterparts have been investigated with different lig-
and binding groups, including thiols,10,13–19 tri-
chlorosilanes,20–22 alkoxysilanes,23–26 phosphonic ac-
ids,27–29 carboxylic acids,28,30,31 zwitterionic ligands,32,33 
ammonium ligands,34–37 and other salts (e.g., NaSCN, 
NH4SCN, NaBF4, NH4BF4, etc.).11,38 Among these passivat-
ing groups, thiols are promising passivants for metal-hal-
ide perovskite NCs and their bulk counterparts because 
of the coordinating nature of thiolate ions toward under-
coordinated Pb atoms,39 which results in enhanced opti-
cal and electronic properties of metal-halide perovskites 
upon thiol treatment.10,16,40    

Thiols as interfacial ligands are effective in reducing 
recombination at interfaces between perovskites and 
charge transport layers. It was demonstrated that incor-
poration of 4-mercaptobenzoic acid at the TiO2/MAPbI3 
interface facilitates electron transfer from MAPbI3 to 
TiO2 and alters the HP film morphology to enhance the 
power conversion efficiency (PCE) of PV devices,13 
whereas treatment of MAPbI3 thin films at the 
MAPbI3/Spiro-OMeTAD interface with pentafluoroben-
zenethiol improves the overall stability of the PV de-
vices.13 In other surface modification studies, thiol-func-
tionalized molecules were used to modify HP films and 
found to improve the device performance via suppress-
ing undercoordinated Pb and  Pb0 formation, as well as 
to improve stability via suppressing phase segregation in 
the HP.41,42 In the alternative approach, where thiols are 
added directly to the HP precursor solutions, thiol-based 
additives such as mercapto-tetrazolium in CsxFA1-xPbI3 
and 1-dodecanethiol in (FAPbI3)0.85(MAPbBr3)0.15, re-
spectively, were demonstrated to passivate surface de-
fects and promote the formation of larger grains; 
thereby, enhancing PV performance and operational sta-
bility under ambient conditions.10,43   

In our previous study, we also explored the role of thi-
ols in enhancing the PL quantum yield (ΦPL) and stability 
of HP NCs.15,16 We show that alkanethiols are able to en-
hance the ΦPL of as-synthesized CsPbCl3 (ΦPL of <1%) 
and CsPbBr3 NCs (ΦPL of <50%) to near 50% and 100% 
for CsPbCl3 and CsPbBr3, respectively, and greatly im-
prove the stability.15,16  However, we find that these 



 

benefits are drastically reduced when alkanethiols are 
used with HP thin films. Herein, we investigate a family 
of pyrimidine derivatives, including thiol substituted de-
rivatives, to determine how varying substituents influ-
ence the effectiveness of thiols in passivating defect 
states, improving film stability, and increasing the PV 
performance of Cs0.15FA0.85PbI3 based cells.  We find that 
4-hydroxy-6-(trifluoromethyl)pyrimidine-2-thiol (P-
CF3-OH-SH) results in the largest increase in the PL in-
tensity and PV performance, while also improving the 

stability of Cs0.15FA0.85PbI3 thin films. These improve-
ments are attributed to suppression of undercoordi-
nated lead atoms in thin film surfaces and grain bounda-
ries left by the excess PbI2 containing precursor solution, 
as supported by x-ray diffraction (XRD).  The greater im-
provement of P-CF3-OH-SH relative to the other pyrim-
idines is attributed to the combination of the electron 
withdrawing trifluoromethyl substituent and the hy-
droxyl group. 

 
 

   

Figure	1.	(a) Structures of the additives investigated and (b) absorbance and (c)	PL relative intensity (RI) spectra of fabricated 
Cs0.15FA0.85PbI3 thin films on glass substrates with 20 µmol of each ligand added in the precursor solutions. 

 
In this work, Cs0.15FA0.85PbI3 thin films were fabricated 

with 5% PbI2 excess with respect to 1.3 M concentration 
of perovskite precursor solution.  This composition was 
selected due to its superior stability relative to pure 
MAPbI3 or FAPbI3, while excess PbI2 was included as it is 
reported to benefit Cs0.05(FA0.83MA0.17)0.95 

Pb(I0.83Br0.17)3,44 MAPbI3,45,46 and CsxFA1-xPbI3 PVs.47 We 
find an excess of 5% PbI2 delivers the highest PL inten-
sity and PV performance, as shown in Figure	S1.  The se-
ries of multifunctional additives investigated are de-
picted in Figure	1a and include pyrimidine (P), 4-hy-
droxy-6-(trifluoromethyl)-pyrimidine (P-CF3-OH), 4-hy-
droxy-6-(trifluoromethyl)pyrimidine-2-thiol (P-CF3-OH-
SH), 2-mercaptopyrimidine (P-SH), and 2-mercapto-4-
(trifluoromethyl)pyrimidine (P-CF3-SH).  Complete de-
tails of thin film and PV device fabrication are found in 
the experimental section. 

An optimal additive concentration was determined to 
be 20 µmol additive to 1 mL of Cs0.15FA0.85PbI3 precursor 
solution based on both PL intensity and PV device per-
formance, as shown in Figure	S2	and	S3, respectively.  
Thus, all data discussed herein is based on the additives 
at a 20 mM concentration in the Cs0.15FA0.85PbI3 precur-
sor solution, which equates to an additive to PbI2 molar 
ratio of ca. 0.015.  Absorbance and PL spectra of the HP 
thin films with each additive are shown in Figure	1b	&	
c.	No significant change is observed in the absorbance 
spectra with the varying additives, indicating that the 
Cs0.15FA0.85PbI3 structure remains intact.  On the other 
hand, the PL intensity of the thin films with the different 
additives varies significantly. All additives show an 

enhancement in PL intensity compared to the control 
film.  For P and P-CF3-OH, where no thiol is present, the 
increase in PL intensity is the smallest.  The addition of 
the thiol group in P-SH results in a larger increase in PL 
intensity, but this increase in intensity is still dwarfed 
relative to when both the thiol and electron withdrawing 
trifluoromethyl group are present (P-CF3-OH-SH and P-
CF3-SH). For both P-CF3-SH and P-CF3-OH-SH, the PL in-
tensity increases 7-fold with 2-8 nm red shifts in PL max-
ima, as shown in Figure	1c	&	S4. 

Photovoltaic devices with a p‐i‐n architecture 
(glass/ITO/Cs0.15FA0.85PbI3/C60/BCP/Al) were fabri-
cated with the varying pyrimidine derivatives. The J-V 
characteristics and PV device parameters are presented 
in Figure	2b	and	S5a‐d, respectively. From Figure	S5a‐
d, it is seen that pyrimidine (P), P-CF3-OH, and P-CF3-SH 
show similar device performance, whereas P-SH shows 
the poorest device performance.  The relatively low PV 
performance with P-SH is attributed to a worse film mor-
phology consisting of frequent pinholes, as indicated in 
the scanning electron microscope (SEM) images shown 
in Figure	S6f.  Although both P-CF3-OH-SH and P-CF3-SH 
show a 7-fold enhancement in PL intensity, PV devices 
with P-CF3-SH display lower performance compared 
with P-CF3-OH-SH, which is attributed to the presence of 
pinholes.48 P-CF3-OH-SH as an additive reproducibly 
shows a higher average PCE of 16.4±0.7% compared to 
that of control devices (average PCE of 15.1±0.7%), as 
shown in Figure	2	and	S5,	and a champion PCE of 18.2%.  
This PCE improvement with P-CF3-OH-SH comes from an 
enhancement in both Jsc and Voc.  Both the higher Jsc and 
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Voc indicate suppressed charge recombination in the HP 
layer and/or at the HP/transport layer interfaces,49 

which is consistent with the increased PL intensity rela-
tive to the control Cs0.15FA0.85PbI3 film. 

 
 
 

      

 

Figure	 2. (a) SEM cross-section of p‐i‐n	 PV device (glass-ITO/PTAA/Cs0.15FA0.85PbI3/C60/BCP/Al),	 (b) J-V characteristics of 
Cs0.15FA0.85PbI3 thin film PVs, fabricated with and without different additives in the perovskite precursor solution, under AM 1.5 G 
illumination; and (c‐f) PV performance parameters under 1 sun illumination of the control device and with 20 mM P-CF3-OH-SH. In 
Figure	2c‐f, each red dot indicates an individual PV cell with active area of 0.1 cm2. 

 

The XRD and transmission electron microscopy (TEM) 
images show no detectable changes in the 
Cs0.15FA0.85PbI3 crystal structure with varying additives.  
Here, peak positions from Cs0.15FA0.85PbI3 remain con-
sistent and d-spacing values from high-resolution TEM 
crystal fringes of the control (d200 = 0.315±0.012 nm) and 
P-CF3-OH-SH added films (d200 = 0.313±0.015 nm) re-
main nearly identical, as shown in Figure	S7.50  The main 
observation from the XRD spectra is that the intensity of 
the PbI2 peak at 12.6o is reduced upon incorporation of 
all additives, as shown in Figure	S7	and	S8a,	b.  This re-
duction in PbI2 may arise from the stabilizing effects of 
the additives, as PbI2 is a known decomposition prod-
uct,47 or the reduction of the initial amount of PbI2 

formed as a result of PbI2 coordination in solution and 
during film formation. We also find that P-CF3-OH-SH in-
creases the Cs0.15FA0.85PbI3 stability under TEM electron 
beam irradiation compared to that of the control film, as 
demonstrated in Figure	 S9. This improved stability is 
also evident in the PV devices, which showed improved 
stability upon storage at ambient and elevated (65 °C) 
temperatures, as shown in Figure	S10. 

The additive may accumulate at grain boundaries, in-
cluding the top and bottom interfaces, be incorporated 
into the crystalline grains, or largely excluded from the 
formed Cs0.15FA0.85PbI3 films.  To determine the distribu-
tion of P-CF3-OH-SH in the Cs0.15FA0.85PbI3 films, we col-
lected STEM elemental mapping images of 
Cs0.15FA0.85PbI3 film sections, as shown in Figure	 S11. 
Based on the distribution of fluorine and sulfur elements, 
we observe that P-CF3-OH-SH does not accumulate at 
grain boundaries and is either distributed throughout 
the HP grains or as a uniform coating over the exposed 
surfaces. 

The original hypothesis of the work was that the 
pyrimidine and substituent groups could play an 
auxilarly role of activating the thiol and also coordinating 
with the Cs0.15FA0.85PbI3 precursors.  To obtain more 
information regarding the presence and role of P-CF3-
OH-SH in perovskite solid films, we collected XPS and 
NMR data. XPS measurements shown in Figure	S12 in-
dicate that there is not a detectable layer of P-CF3-OH-SH 
on the film surface, and NMR studies strongly support 
that the thiol group in P-CF3-OH-SH is deprotonated in 
solution.
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Figure	3. (a) 1H NMR and (b) 19F NMR of the Cs0.15FA0.85PbI3 precursor solution (control), P-CF3-OH-SH solution, and Cs0.15FA0.85PbI3 

precursor solution with P-CF3-OH-SH added.  All spectra were recorded in deuterated DMSO. 

 
The 1H NMR of FA+ shows two broad proton peaks 2 at 

8.66 and 8.91 ppm, respectively, as indicated in Figure	
3a	and	S13. These same peaks are absent from the 1H 
NMR of the pure P-CF3-OH-SH molecule. When P-CF3-
OH-SH is added to the HP precursor solution the FA+ 
peaks change significantly. Here, the 8.63 peak splits into 
a doublet, the second NH2 peak at 8.9 ppm narrows con-
siderably, and the CH peak at 7.9 ppm splits into a triplet 
of triplets when P-CF3-OH-SH is added.  The increased 
peak resolution is attributed to increased solution acid-
ity and decreased proton exchange between the 
NH2/NH2+ groups and water in solution.51  This conclu-
sion is further supported by the peak shift of protons 
from H2O/H3O+ from 3.35 and 3.45 for the P-CF3-OH-SH 
and Cs0.15FA0.85PbI3 precursor solutions, respectively, to 
3.62 ppm for the Cs0.15FA0.85PbI3 precursor with P-CF3-
OH-SH added.  The absence of the thiol proton (peak 8) 
after P-CF3-OH-SH is added to the Cs0.15FA0.85PbI3 precur-
sor solution confirms that P-CF3-OH-S‒ forms.   

The 1H NMR spectra of P-SH, P-CF3-SH, and P-CF3-OH 
individually and in the Cs0.15FA0.85PbI3 precursor solution 
were also recorded, as shown in Figure	S15	and	S16.  
Here, we see that both P-SH and P-CF3-SH are also depro-
tonated to form the thiolate in the precursor solution and 
the solution becomes more acidic, as indicated by the 
lack of NMR signal from the thiol protons for both thiols 
and a shift in the water peak to 4.02 ppm, respectively, in 
the precursor solution with P-CF3-SH. When the thiol is 
removed and only the hydroxyl and CF3 groups are pre-
sent in P-CF3-OH, the precursor solution does not be-
come acidic, and the hydroxyl group is not deprotonated. 
Another observation from the NMR is that the protons off 
the 6 C or 2 and 6 C (as labeled in Figure 3a for P-CF3-OH-
SH) in P-CF3-SH and P-SH, respectively, at near 8.3 ppm 
are not apparent when these additives are present in the 
precursor solution (Figure S15 and S16). It is possible 
that these protons shift when the thiolate forms to be 
hidden by the FA peaks, or that these proton signals 

broaden significantly due to interactions with PbI2 or 
PbI2 and H2O.  The incorporation of H2O in the complex 
is supported by broadening of the H2O/H3O+ peak in the 
Cs0.15FA0.85PbI3 precursor solution with P-CF3-SH and the 
disappearance of the H2O/H3O+ peak altogether with P-
SH. In summary, the NMR spectra show that all thiol con-
taining pyrimidines are deprotonated in solution, but the 
influence of the pyrimidine derivatives extends beyond 
thiol deprotonation to include additional solution phase 
intermolecular and H-bonding interactions. 

The solution phase interactions and formation of com-
plexes is also supported by 19F NMR spectra of P-CF3-OH-
SH in the absence and presence of the Cs0.15FA0.15PbI3 
precursor, as shown in Figure	3b	and	S14. Here, these 
spectra show that the F peak broadens when P-CF3-OH-
SH is added to the Cs0.15FA0.85PbI3 precursor solution. We 
attribute this broadening to the interaction of P-CF3-OH-
S‒ with PbI2 in the perovskite precursor solution. 

To better understand the impact of P-CF3-OH-SH and 
P-CF3-SH on the electronic properties of the HP films, we 
collected UPS spectra of the HP films with these two ad-
ditives. Figure	4 shows the UPS spectra of a control HP 
film, HP film with P-CF3-OH-SH added, and HP film with 
P-CF3-SH added. It is found that the work function de-
creases by approximately 0.15 eV when either of these 
additives is included and the ionization energies (IEs) 
decrease from 6.07 to 5.94 eV, which could arguably im-
prove charge carrier extraction.  All films are more n-
type, as indicated by the large difference between the 
work function and IE. From an energetic perspective, 
there is no reason that P-CF3-SH should show lower PV 
performance than P-CF3-OH-SH, which combined with 
the PL results supports the previous discussion that the 
lower PV performance with P-CF3-SH relative to P-CF3-
OH-SH is attributed to morphological differences. 
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Figure	4.	UPS spectra showing the (a) secondary electron cut-off region (10.2 eV photon source) and the (b) valence band onset 
region with Gaussian fittings of the control HP film, HP film with P-CF3-OH-SH added, and HP film with P-CF3-SH added.  The work 
functions (Φ) and IEs are indicated on the spectra.  

 
In summary, the role of multifunctional pyrimidine ad-

ditives on the PL properties and PV performance of 
Cs0.15FA0.85PbI3 is explored. We find that the substituents 
off of the pyrimidine ring have a large effect on both the 
PL and PV properties, with 4-hydroxy-6-(trifluorome-
thyl)pyridimidine-2-thiol (P-CF3-OH-SH) greatly en-
hancing the PL intensity and PV performance of 
Cs0.15FA0.85PbI3 perovskite thin films.  The increased PL 
properties and PV performance are attributed to for-
mation of thiolate in the HP precursor solution and likely 
coordination between the thiolate and PbI2 in solution, 
which reduces the defect states present in the HP films.  
The presence of a CF3 group is shown to be critical to in-
creasing the additives effectiveness, as without this CF3 
group the PL intensity is only approximately one-third as 
intense as it is when both a CF3 and thiol group are in-
cluded. In general, this work highlights the interplay of 
functional groups in tuning the reactivity of additives in 
HPs. 
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