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1. Introduction

This paper concerns invariants of monomial ideals which admit interpretations from a convex geometry 
perspective. Monomial ideals are ideals I that can be generated by monomials in a polynomial ring R =
K[x1, . . . , xn] with coefficients in a field K.

There is a well established tradition of associating convex bodies to monomial ideals. The preeminent 
example in this direction is the Newton polyhedron, which is the convex hull of all the exponent vectors of 
monomials in I. Invariants of monomial ideals can be read from their Newton polyhedron: for example, the 
Hilbert-Samuel multiplicity of an ideal primary to the homogeneous maximal ideal can be interpreted as 
the normalized volume of the complement of its Newton polyhedron. For an introduction to the significance 
of Newton polyhedra in commutative algebra with emphasis on the role they play in integral closure we 
recommend [15, §1.4, §10.3, §11].

In this paper we focus our attention on associating convex bodies to decompositions of a monomial ideal 
as an intersection of monomial ideals. Such a decomposition I = J1 ∩ · · · ∩ Js leads to considering on one 
hand a graded family of monomial ideals

Im = Jm
1 ∩ · · · ∩ Jm

s (1.1)

obtained by intersecting the powers of the components in the original decomposition. On the other hand it 
leads to considering a convex body

C = NP (J1) ∩ · · · ∩NP (Js)

obtained by intersecting the Newton polyhedra of the components in the original decomposition. Our first 
main result shows that C can be understood as a limit of the Newton polyhedra for the family of ideals 
{Im}m≥1, appropriately scaled. For this reason we term C the asymptotic Newton polyhedron of the family 
{Im}.

Theorem (Theorem 3.15). If J1, . . . , Js are monomial ideals and Im = Jm
1 ∩ · · · ∩ Jm

s , then there is an 
equality of polyhedra

C = NP (J1) ∩ · · · ∩NP (Js) =
⋃

m≥1

1
m
NP (Im).

The idea of associating an asymptotic Newton polyhedron to a graded family of monomial ideals has 
appeared previously in the context of Okounkov bodies attached to a graded linear series [17,16]. To our 
knowledge, asymptotic Newton polyhedra arising from ideal decompositions have not been studied be-
fore.

Our work is motivated by the family of symbolic powers of a monomial ideal. Symbolic powers are a 
topic of sustained interest from a geometric as well as a combinatorial viewpoint. We recommend [5], [12] for 
an introduction to this family of ideals and some combinatorial connections. Symbolic powers of monomial 
ideals fit in the paradigm of the graded families described in (1.1) since they arise by intersecting powers 
of the components in a coarsening of the primary decomposition of the monomial ideal; see Lemma 2.2. 
The convex body C which corresponds to the graded family of symbolic powers is known as the symbolic 
polyhedron. It was introduced in [4] and utilized in [1]. In the study of symbolic powers, convex bodies reach 
beyond the setting of monomial ideals. Indeed, [18] associates a graded family of monomial ideals termed a 
generic initial system to the symbolic powers of certain ideals in polynomial rings; see also [24] for a similar 
approach. This suggests that our methods can yield future extensions to arbitrary ideals by following this 
procedure.
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A novel family of monomial ideals, termed irreducible powers, is introduced in this paper. They arise 
from a decomposition of a monomial ideal into irreducible ideals in the manner described in (1.1) and 
coincide with the symbolic powers in some cases of interest, for example for square-free monomial ideals. 
The advantage to considering the irreducible powers is that for non square-free monomial ideals they give 
rise to convex bodies, termed irreducible polyhedra, which are easier to control than the symbolic polyhedra. 
Our second main result captures the symbolic polyhedron between the two other convex bodies discussed 
above.

Theorem (Theorem 3.9). For any monomial ideal I the following containments hold between its Newton 
(NP), symbolic (SP) and irreducible (IP) polyhedra:

NP (I) ⊆ SP (I) ⊆ IP (I).

We show that certain asymptotic invariants for graded families of ideals can be read off the respective 
asymptotic Newton polyhedra by means of linear optimization. These invariants generalize the notion of 
initial degree of a homogeneous ideal, by which we mean the least degree of a nonzero element of the 
ideal, to an asymptotic counterpart. For symbolic powers, the resulting asymptotic invariant is known in 
the literature as the Waldschmidt constant. It has been investigated in many works, among which we cite 
[23,25,13,3] and specifically for the case of monomial ideals in [4,1]. In [21] Nagata established, in different 
language, that the Waldschmidt constant for any set of r ≥ 9 very general points in P 2 is √r if r is a perfect 
square and conjectured this remains true for arbitrary r ≥ 9. Since then a considerable amount of effort has 
gone towards providing bounds for Waldschmidt constants in the setting of ideals defining reduced sets of 
points in projective space; see [8,11,7,2].

In this paper we introduce an analogous invariant, termed naive Waldschmidt constant, which can be 
interpreted as the solution of a linear optimization problem on the irreducible polyhedron and which gives an 
intrinsic lower bound on the Waldschmidt constant. We view the naive Waldschmidt constant as an invariant 
that is more amenable to computations than the Waldschmidt constant yet it furnishes strong bounds on 
the latter. We obtain lower bounds on the naive Waldschmidt constant reminiscent of a Chudnovsky-type 
inequality conjectured in [4, Conjecture 6.6]. Our results in this direction are summarized by the inequalities 
in the following result; the first two inequalities reflect the containments in the previous theorem and the 
last two inequalities are tight by Corollary 4.23.

Theorem (Theorem 4.29). Let I ⊆ K[x1, . . . , xn] be a monomial ideal with initial degree α(I) = d. If 
d − 1 ≡ k mod (n), 0 ≤ k < n, then the following inequalities are satisfied by the Waldschmidt constant 
α̂(I) and the naive Waldschmidt constant α̃(I)

α(I) ≥ α̂(I) ≥ α̃(I) ≥ (n + d− 1 − k)(2n + d− 1 − k)
n(2n + d− 1 − 2k) ≥

⌊
α(I) + n− 1

n

⌋
.

Our paper is organized as follows: in section 2 we discuss notions of powers arising from decompositions 
of monomial ideals, in section 3 we associate asymptotic Newton polyhedra to the families introduced 
previously, in section 4 we define the asymptotic initial degrees for our graded families, we express these 
invariants by means of linear optimization, and we derive bounds on their values.

2. Decompositions of monomial ideals and notions of powers

Let N denote the set of nonnegative integers. For all vectors a = (a1, . . . , an) ∈ Nn we use the shorthand 
notation xa := xa1

1 · · ·xan
n and thus any monomial ideal is described by a finite set of vectors a1, . . . , a! ∈ Nn

as I = (xa1 , . . . , xan).
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An ideal J is called irreducible if whenever there is a decomposition J = J1 ∩ J2, with J1, J2 ideals, 
then J = J1 or J = J2. An irreducible decomposition of an ideal I is an expression I = J1 ∩ J2 ∩ · · · ∩ Js
where Ji are irreducible ideals for all 1 ≤ i ≤ s. Such a decomposition is called irredundant if none of the 
Ji can be omitted from this expression. Emmy Noether showed in [22] that every ideal I in a noetherian 
ring admits an irredundant irreducible decomposition. Moreover, although the number of components in 
any irredundant irreducible decomposition of I is the same, the components themselves are in general not 
unique.

A monomial ideal J is irreducible if and only if it is generated by pure powers for a subset of the 
variables, i.e., J = (xa1

i1
, · · · , xat

it
). By contrast to arbitrary ideals, monomial ideals have a unique irredundant 

decomposition into irreducible monomial ideals up to permutation of the components; see [19, Theorem 3.3.9]
for a proof. The ideals appearing in a monomial irredundant irreducible decomposition of a monomial ideal 
I can also be characterized as the smallest irreducible monomial ideals which contain I. See Definition 4.27
and the considerations following it for this perspective.

Irreducible decompositions are special cases of primary decompositions. Both for monomial and for 
arbitrary ideals they possess the advantage of being much more easily computable in an algorithmic fashion; 
see [20, §5.2] and [10]. In the case of square-free monomial ideals and more generally for radical ideals, the 
irredundant irreducible decomposition and the irredundant primary decomposition coincide.

Symbolic powers of ideals arise from the theory of primary decomposition. For an ideal I, the symbolic 
powers retain only the components of the ordinary powers whose radicals are contained in some associated 
prime of I. When I is a radical ideal and K is a field of characteristic 0, the m-th symbolic power of I
encodes the polynomial functions vanishing to order at least m on the variety cut out by I.

Definition 2.1. Let R be a noetherian ring and I an ideal in R. The m-th symbolic power of I is the ideal

I(m) =
⋂

P∈Ass(R/I)
ImRp ∩R.

Recall that the set of associated primes, denoted Ass(R/I), of an ideal I in a Noetherian ring is finite. 
We view it as a poset with respect to containment. A minimal element of this poset is called a minimal 
prime of I and the non minimal elements are called embedded primes.

The symbolic powers of monomial ideals admit an alternate description which is even more closely related 
to their primary decomposition.

Lemma 2.2 ([14, Lemma 3.1], [4, Theorem 3.7]). If I is a monomial ideal with monomial primary decom-
position I = Q1 ∩Q2 ∩ · · ·∩Qs, set Max(I) to denote the set of maximal elements in the poset of associated 
primes of I and for each P ∈ Max(I) denote

Q⊆P =
⋂

√
Qi⊆P

Qi.

Then the symbolic powers of I can be expressed as follows

I(m) =
⋂

P∈Max(I)
(Q⊆P )m.

Remark 2.3. The above Lemma employs the decomposition I =
⋂

P∈Max(I) Q⊆P . We will call this a combined 
primary decomposition for I. The ideals Q⊆P are uniquely determined by I and P and are independent of 
the primary decomposition in the statement of Lemma 2.2. This follows from the identity Q⊆P = IRP ′ ∩R, 
where P ′ is the prime monomial ideal generated by the variables of R that are not in P .
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Example 2.4. If I is a monomial ideal with no embedded primes and I = Q1 ∩ · · ·∩Qs is a minimal primary 
decomposition, then the symbolic powers of I are given for all integers m ≥ 1 by

I(m) = Qm
1 ∩Qm

2 ∩ · · · ∩Qm
s .

In this paper we introduce a notion of irreducible powers for monomial ideals, which parallels the behavior 
in Example 2.4.

Definition 2.5. Let I be a monomial ideal with monomial irreducible decomposition given by I = J1 ∩ J2 ∩
· · · ∩ Js. For integers m ≥ 1, the m-th irreducible power of I is the ideal

I{m} = Jm
1 ∩ Jm

2 ∩ · · · ∩ Jm
s .

It is easy to see that the definition above does not depend on whether the decomposition is irredundant.

Remark 2.6. If I is a square-free monomial ideal then the irredundant irreducible decomposition of I co-
incides with the combined primary decomposition thus the symbolic powers and irreducible powers of 
square-free monomial ideals coincide.

More generally if the components in the irredundant irreducible decomposition of I have distinct radicals, 
then the symbolic powers and irreducible powers coincide.

One similarity between the symbolic and irreducible powers is that they both form graded families. A 
graded family of ideals {Im}m∈N is a collection of ideals that satisfies Ia · Ib ⊆ Ia+b for all pairs a, b ∈ N.

Lemma 2.7. The irreducible powers of a monomial ideal form a graded family, i.e., any nonnegative integers 
a, b give rise to a containment

I{a} · I{b} ⊆ I{a+b}.

Proof. The containment follows easily from Definition 2.5. !

In many ways, the irreducible powers of monomial ideals resemble closely the symbolic powers of square-
free monomial ideals. A similarity between irreducible powers of monomial ideals and symbolic powers of 
square-free monomial ideals is that their associated primes are among the associated primes of I. This is 
not the case for symbolic powers of arbitrary ideals; see Remark 2.9.

Lemma 2.8. Let I be a monomial ideal. Then for each integer m ≥ 1 there are containments Im ⊆ I(m) ⊆
I{m} and Ass(I{m}) = Ass(I).

Proof. The containments Im ⊆ I(m) ⊆ I{m} follow from the definition of symbolic powers Definition 2.1
for the former and from Lemma 2.2 for the latter. In detail, if I = J1 ∩ · · ·∩Js is an irredundant irreducible 
decomposition, then for each 1 ≤ i ≤ s there exists a prime Pi ∈ Max(I) such that 

√
Ji ⊆ Pi. Then we see 

from Lemma 2.2 that Q⊆Pi ⊆ Ji and so we deduce

I(m) =
⋂

P∈Max(I)
Qm

⊆P ⊆
s⋂

i=1
Qm

⊆Pi
⊆

s⋂

i=1
Jm
i = I{m}.

Now let I = J1 ∩ · · · ∩ Js be an irredundant irreducible decomposition with pi =
√
Ji. Since each 

irreducible ideal Ji is generated by a regular sequence of pure powers of the variables, it follows that 
Ass(Jm

i ) = Ass(Ji) = {pi} for each i and thus we obtain
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Ass(I{m}) = Ass(Jm
1 ∩ · · · ∩ Jm

s ) = {p1, . . . , ps} = Ass(I). !

Remark 2.9. Lemma 2.8 reveals that the irreducible powers of monomial ideals enjoy a property that the 
symbolic powers of monomial ideals which possess embedded primes do not enjoy. Specifically, it is not in 
general true that the associated primes of the symbolic powers are restricted to a subset of Ass(I). For 
example, the ideal

I = (x, y) ∩ (x, z) ∩ (x,w) ∩ (y, z) ∩ (y, w) ∩ (z, w) ∩ (x, y, z, w)4

has the property that Ass(I(2)) contains the primes (x, y, z), (x, y, w), (x, z, w) and (y, z, w) in addition to 
the associated primes of I.

3. Convex bodies associated to powers of monomial ideals

3.1. The symbolic and irreducible polyhedra of a monomial ideal

In this section we define new convex bodies associated to decompositions of monomial ideals. In our 
main cases of interest these convex bodies will be polyhedra. A polyhedron can be defined in two different 
manners, either as convex hulls of a set of points in Euclidean space or as a finite intersection of half spaces. 
All polyhedra considered in this section will be unbounded.

Definition 3.1. For a monomial ideal I, the Newton polyhedron of I, denoted NP (I), is the convex hull of 
the exponent vectors for all the monomials in I

NP (I) = convex hull{a ∈ Nn | xa ∈ I}.

One of the useful properties of Newton polyhedra is that they scale linearly upon taking ordinary powers 
of ideals, namely the following identity holds for all m ∈ N:

NP (Im) = mNP (I).

The situation becomes more complicated upon considering Newton polyhedra for the symbolic powers 
or for the irreducible powers, as taking Newton polyhedra does not commute with intersections of ideals. 
Specifically, there is always a containment

NP (J1 ∩ · · · ∩ Js) ⊆ NP (J1) ∩ · · · ∩NP (Js),

but this rarely becomes an equality. However, we shall see that there is an asymptotic sense in which Newton 
polyhedra can be taken to commute with intersections of ideals. To elaborate on this, we introduce two more 
convex bodies, one corresponding to each of the notions of symbolic and irreducible powers introduced in 
the previous section.

Following [4, Definition 5.3], which in turn takes inspiration from Lemma 2.2, we define a symbolic 
polyhedron associated to a monomial ideal.

Definition 3.2. The symbolic polyhedron of a monomial ideal I with primary decomposition I = Q1∩ · · ·∩Qs

is

SP (I) =
⋂

P∈Max(I)
NP (Q⊆P ) where Q⊆P =

⋂

√
Qi⊆P

Qi.

This polyhedron does not depend on the choice of primary decomposition by Remark 2.3.
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Similarly, with inspiration taken from Definition 2.5, we introduce a new convex body termed the irre-
ducible polyhedron.

Definition 3.3. The irreducible polyhedron of a monomial ideal I with monomial irreducible decomposition 
I = J1 ∩ · · · ∩ Js is

IP (I) = NP (J1) ∩ · · · ∩NP (Js).

Example 3.4. Fig. 1 shows the Newton, symbolic and irreducible polyhedra for the ideal I = (x2, xy, y2)
with irreducible decomposition I = (x, y2) ∩ (x2, y). The dashed lines help visualize the boundaries of the 
convex bodies appearing in the definition of the irreducible polyhedron

IP (I) = NP ((x, y2)) ∩NP ((x2, y)).

The equality SP (I) = NP (I) follows in this case because I is primary to the maximal ideal m = (x, y)
of k[x, y] and hence the combined primary decomposition consists of a single component, in other words 
I = Q⊆m and SP (I) = NP (Q⊆m) = NP (I).

Fig. 1. The Newton, symbolic and irreducible polyhedra of I = (x2, xy, y2).

Remark 3.5. If I is a square-free monomial ideal or more generally an ideal such that the radicals of the 
irredundant irreducible components are distinct, then IP (I) = SP (I) by Remark 2.6.

Example 3.6. Fig. 2 shows a partial view of the facets of the Newton, symbolic and irreducible polyhedra for 
the ideal I = (xy, xz, yz) with irreducible decomposition I = (x, y) ∩(x, z) ∩(y, z). The respective polyhedra 
are solid bodies located in the positive orthant and having the pictured facets as the outer boundary. In 
particular that SP (I) has an additional vertex compared to NP (I), which is located at (1

2 , 
1
2 , 

1
2 ). The 

equality IP (I) = SP (I) follows in this case because I is squarefree; see Remark 3.5.

Fig. 2. The Newton, symbolic and irreducible polyhedra of I = (xy, xz, yz).
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We supplement the description of the irreducible polyhedron in Definition 3.3 by providing equations for 
hyperplanes supporting the facets of the polyhedron, which we term bounding hyperplanes. We term the 
linear inequalities describing a polyhedron as an intersection of half spaces its bounding inequalities.

Establishing the bounding inequalities for the symbolic polyhedron of an arbitrary monomial ideal is 
generally an infeasible task. However, the analogous task is considerably easier for the irreducible polyhedron.

Lemma 3.7. The bounding inequalities for the irreducible polyhedron of a monomial ideal I are read off 
a monomial irreducible decomposition I = J1 ∩ · · ·Js as follows: if for each 1 ≤ i ≤ s we have Ji =
(xai1

1 , . . . , xain
n ), where aij ∈ N ∪ {−∞} with the convention that x−∞

i = 0, then IP (I) is the set of points 
y = (y1, . . . , yn) ∈ Rn which satisfy the system of inequalities (3.1) given below, where we set 1

−∞ = 0






1
a11

y1 + · · · + 1
a1n

yn ≥ 1
...
1

as1
y1 + · · · + 1

asn
yn ≥ 1

y1, . . . , yn ≥ 0.

(3.1)

Proof. For each irreducible component Ji we have that NP (Ji) is the complement within the positive 
orthant of Rn of a simplex with vertices given by the origin and the exponent vectors of the minimal 
monomial generators xai1

1 , . . . , xain
n for Ji, that is,

NP (Ji) =
{

1
a11

y1 + · · · + 1
ain

yn ≥ 1
y1, . . . , yd ≥ 0.

Equation (3.1) collects together all the inequalities of each NP (Ji) according to Definition 3.3. !

We next give an account of the containments between the three polyhedra discussed above. This is based 
upon observing that more refined decompositions of an ideal will yield larger polyhedra. We make this 
precise in the following lemma.

Lemma 3.8. Assume given two collections of monomial ideals I1, . . . , It and J1, . . . , Js such that the latter 
refines the former, that is, for each 1 ≤ j ≤ s there exists 1 ≤ ij ≤ t such that Iij ⊆ Jj. Then there is a 
containment of polyhedra

NP (I1) ∩ · · · ∩NP (It) ⊆ NP (J1) ∩ · · · ∩NP (Js).

Proof. Employing the hypothesis that for each 1 ≤ j ≤ s there exists 1 ≤ ij ≤ t such that Iij ⊆ Jj , we 
deduce that NP (Iji) ⊆ NP (Ji). Thus we obtain the desired containments

NP (I1) ∩ · · · ∩NP (It) ⊆ NP (Iji) ∩ · · · ∩NP (Ijs) ⊆ NP (J1) ∩ · · · ∩NP (Js). !

With this key ingredient in hand we established the containments between the three types of polyhedra 
considered in this paper.

Theorem 3.9. Every monomial ideal I satisfies the following containments

NP (I) ⊆ SP (I) ⊆ IP (I).
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Proof. Let I = J1∩· · ·∩Js be a monomial irreducible decomposition, then it is also a primary decomposition. 
Hence the combined primary decomposition I =

⋂
P∈Max(I) Q⊆P can be computed using Q⊆P =

⋂
√
Ji⊆P Ji

according to Remark 2.3. This shows that the irreducible decomposition refines the combined decomposition 
in the sense that for each 1 ≤ j ≤ s there exists Pj ∈ Max(I) such that Q⊆Pj ⊆ Jj . Indeed, this is the case 
for each P ∈ Max(I) such that 

√
Jj ⊆ P and such a prime exists by finiteness of the poset Ass(I).

Now we apply Lemma 3.8 to obtain the second desired containment

SP (I) =
⋂

P∈Max(I)
NP (Q⊆P ) ⊆

s⋂

j=1
NP (Jj) = IP (I).

The remaining containment, NP (I) ⊆ SP (I) can be deduced by applying Lemma 3.8 to the trivial decom-
position I = I and its refinement I =

⋂
P∈Max(I) Q⊆P . !

Remark 3.10. The containments NP (I) ⊆ SP (I) ⊆ IP (I) can be strict. See Example 3.4 for an ideal with 
NP (I) ! SP (I) and Example 3.6 for an ideal with SP (I) ! IP (I).

3.2. Asymptotic Newton polyhedra for graded families of monomial ideals

Let {Im}m≥1 denote a graded family of monomial ideals. By definition, such a family satisfies contain-
ments Ia · Ib ⊆ Ia+b for each pair a, b ∈ N. We define a convex body capturing the asymptotics of each 
such family. This construction bears some resemblance to the Newton-Okounkov bodies of [17,16]. A similar 
construction appears in [18] but for a different family of monomial ideals.

Definition 3.11. Given a graded family of monomial ideals I := {Im}m≥1, the limiting body associated to 
this family is

C(I) =
⋃

m→∞

1
m
NP (Im).

If the limiting body is a polyhedron, we call it the asymptotic Newton polyhedron associated to the family 
I. For an example of non polyhedral limiting body see Remark 3.14.

Example 3.12. For the family of ordinary powers {Im}m∈N of a monomial ideal, the sequence 1
mNP (Im)

is constant, each term being equal to NP (I). Thus the asymptotic Newton polyhedron associated to the 
family of ordinary powers of I is none other than the Newton polyhedron of I itself.

Lemma 3.13. The limiting body for a graded family of monomial ideals is a convex body.

Proof. Let I = {Im}m≥1 be a graded family of monomial ideals. This implies that (Im)k ⊆ Imk for all k ≥ 1
and hence 1

mNP (Im) ⊆ 1
mkNP (Imk). Now let a, b ∈ C(I) and suppose a ∈ 1

aNP (Ia) and b ∈ 1
bNP (Ib). 

Then by the preceding argument a, b are points of the same convex body 1
abNP (Iab), which is a subset of 

C(I). Thus any convex combination of a, b is also in 1
abNP (Iab) and hence in C(I). !

Remark 3.14. Limiting bodies for arbitrary graded families of monomial ideals can fail to be polyhedral. 
They can also fail to be closed in the Euclidean topology. Consider for example, the family I of monomial 
ideals Im ⊆ k[x, y] such that xayb ∈ Im if and only if ab > m. Then C(I) = {(a, b) | ab > 1, a ≥ 0, b ≥ 0} is 
a non-polyhedral convex region in R2 and is not closed in the Euclidean topology.

We now consider graded families arising from decompositions into monomial ideals. In this scenario the 
limiting body is a polyhedron that can be described explicitly.
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Theorem 3.15. Let I be a monomial ideal equipped with a decomposition into monomial ideals I = J1∩· · ·∩Js. 
Consider the graded family I = {Im}m≥1 where

Im = Jm
1 ∩ · · · ∩ Jm

s .

Then the limiting body associated to this family is a polyhedron termed the asymptotic Newton polyhedron 
of this family. It can be described equivalently as

C(I) = NP (J1) ∩ · · · ∩NP (Js).

Proof. We start by proving the last assertion. Let Q =
⋂s

i=1 NP (Ji). First we see that for each m ≥ 1 one 
has the containment 1

mNP (Im) ⊆ Q. Indeed, since Im = Jm
1 ∩· · ·∩Jm

s , we have NP (Im) ⊆
⋂s

i=1 NP (Jm
i ) =

m · Q. This yields the inclusion C(I) ⊆ Q.
Next, for the opposite containment, we will show that for each 1 ≤ i ≤ s every point of Q ∩Qn is in C(I). 

This is enough to guarantee the containment Q ⊆ C(I), since all the vertices of the former polyhedron have 
rational coordinates. Thus assume a ∈ Q ∩Qn and hence a ∈ NP (Ji) ∩Qn for all 1 ≤ i ≤ s. Fix i and let 
v1, . . . , vt be the vertices of the polyhedron NP (Ji). Since these correspond to a subset of the monomial 
generators of Ji we notice that vj ∈ Zn for all 1 ≤ j ≤ t and

NP (Ji) = convex hull{v1, . . . ,vt} + Rn
≥0.

By a version of Carathéodory’s theorem for unbounded polyhedra [4, Theorem 5.1] we can write

a =
n∑

j=1
λjvij +

n∑

j=1
cjej ,

where λj , cj ≥ 0 are rational numbers satisfying 
∑n

j=1 λj = 1. Let m be the least common multiple of the 
denominators of the rational numbers λj, cj for all 1 ≤ j ≤ n. Multiplying the equation displayed above by 
m we deduce the identity

ma =
n∑

j=1
mλjvij +

n∑

j=1
mcjej ,

where 
∑n

j=1 mλj = m and mλj ∈ N for all 1 ≤ j ≤ n. This yields that xma ∈ Jm
i and since the argument 

holds for each i, we deduce that xma ∈
⋂s

i=1 J
m
i = Im. Based on this we see that a ∈ 1

mNP (Im) ⊆ C(I), 
as desired.

The fact that C(I) is a polyhedron follows from the identity C(I) = Q shown above because the latter is 
a finite intersection of polyhedra. !

As we show in the following two corollaries, the previous theorem allows us to identify the symbolic 
and irreducible polyhedra as asymptotic Newton polyhedra for the graded families of symbolic powers and 
irreducible powers of monomial ideals respectively.

Corollary 3.16. Let I be a monomial ideal. Then the asymptotic Newton polyhedron of the family of symbolic 
powers {I(m)}m≥1 is the symbolic polyhedron SP (I).

Proof. This follows by applying Theorem 3.15 to the family of symbolic powers, which is defined in terms 
of the decomposition I =

⋂
P∈Max(I) Q⊆P with Q⊆P = IRP ∩ R. Together with Definition 3.2, this result 

yields the claim. !
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Corollary 3.17. Let I be a monomial ideal. Then the asymptotic Newton polyhedron of the family {I{m}}m≥1
of irreducible powers is the irreducible polyhedron IP (I).

Proof. By Definition 2.5, we are in the setting of Theorem 3.15 where the family of irreducible powers is 
defined in terms of a monomial irreducible decomposition I =

⋂s
i=1 Ji. Thus Theorem 3.15 and Definition 3.3

yield the desired conclusion. !

4. Asymptotic invariants for families of monomial ideals

4.1. Asymptotic initial degrees and linear optimization

In this section we define asymptotic invariants for graded families of monomial ideals which are derived 
from their initial degree. For a homogeneous ideal I the initial degree, denoted α(I), is the least degree of 
a non zero element of I. Also termed the order of the ideal, this invariant references the position of I in the 
topology given by the powers of the homogeneous maximal ideal m, specifically α(I) is the largest integer 
such that I ⊆ mα(I). This interpretation enters into the picture in Theorem 4.25.

Definition 4.1. For a graded family of ideals I = {Im}m≥1 define the asymptotic initial degree of the family 
to be α(I) = limm→∞

α(Im)
m .

Lemma 4.2. For a graded family of ideals I = {Im}m≥1 the limit limm→∞
α(Im)

m exists and is equal to 

infm≥1
{

α(Im)
m

}
.

Proof. The existence of the limit is ensured by Fekete’s lemma [9] by means of the subadditivity of the 
sequence of initial degrees {α(Im)}m≥1. In turn, the subadditivity arises from the graded family property, as 
the containments IaIb ⊆ Ia+b give rise to inequalities α(Ia+b) ≤ α(Ia) +α(Ib) for all integers a, b ≥ 1. Fekete’s 
lemma also gives that the limit in Definition 4.1 is equal to the infimum of the respective sequence. !

Applying the definition for asymptotic initial degree of the family of symbolic powers recovers the notion 
of Waldschmidt constant introduced in [25] and studied widely in the literature starting with the inspiring 
paper [3].

Definition 4.3. Let I be a homogeneous ideal. The asymptotic initial degree of the family of symbolic powers 
{I(m)}m≥1 is termed the Waldschmidt constant of I and defined as follows

α̂(I) = lim
m→∞

α(I(m))
m

.

Applying the definition for asymptotic initial degree of the family of irreducible powers yields a novel 
invariant.

Definition 4.4. Let I be a monomial ideal. The asymptotic initial degree of the family of irreducible powers 
{I{m}}m≥1 is termed the naive Waldschmidt constant of I and defined as follows

α̃(I) = lim
m→∞

α(I{m})
m

.

We now show that asymptotic initial degrees for families of monomial ideals are solutions to an opti-
mization problem. The initial degree of a monomial ideal I can be expressed as the solution of a linear 
programming problem in the following manner:



12 J. Camarneiro et al. / Journal of Pure and Applied Algebra 226 (2022) 107089

α(I) = min{y1 + · · · + yn | (y1, · · · , yn) ∈ NP (I)}. (4.1)

This is because the optimal solution is attained at a vertex of NP (I) and the vertices of NP (I) correspond 
to a subset of the minimal generators of I. We see below that the asymptotic initial degree for a graded 
family of monomial ideals can also be expressed as an optimization problem. Moreover, the feasible set is 
the limiting body of the family as defined in Definition 3.11.

Theorem 4.5. Let I = {Im}m≥1 be a graded family of monomial ideals. Then α(I) is the solution of the 
following optimization problem

minimize y1 + · · · + yn
subject to (y1, · · · , yn) ∈ C(I),

where C(I) denotes the closure of C(I) in the Euclidean topology of Rn.

Proof. Recall from Lemma 4.2 the alternate definition α(I) = infm≥1
α(Im)

m . From (4.1) we deduce α(Im) =
min{y1 + · · · + yn | (y1, · · · , yn) ∈ NP (Im)}, hence there are equalities

α(Im)
m

= min{y1 + · · · + yn | (y1, · · · , yn) ∈ 1
m
NP (Im)}.

Now passing to the infimum and denoting the solution of the optimization problem in the statement of the 
theorem by β, we deduce

α(I) = inf
m≥1

α(Im)
m

= inf
m≥1

{
min{y1 + · · · + yn | (y1, · · · , yn) ∈ 1

m
NP (Im)}

}

= inf{y1 + · · · + yn | (y1, · · · , yn) ∈
⋃

m≥1

1
m
NP (Im) = C(I)}

= min{y1 + · · · + yn | (y1, · · · , yn) ∈ C(I)} = β. !

Applying this theorem, we are able to recover a result relating the Waldschmidt constant to the symbolic 
polyhedron from [4, Corollary 6.3] and [1, Theorem 3.2].

Corollary 4.6. The Waldschmidt constant of a monomial ideal I is the solution to the following linear 
optimization problem with feasible region given by its symbolic polyhedron:

minimize y1 + · · · + yn
subject to (y1, · · · , yn) ∈ SP (I).

Corollary 4.7. The naive Waldschmidt constant of a monomial ideal I is the solution to the following linear 
optimization problem with feasible region given by its irreducible polyhedron:

minimize y1 + · · · + yn
subject to (y1, · · · , yn) ∈ IP (I).

From the containments in Theorem 3.9 and the above two corollaries we deduce inequalities relating the 
various asymptotic initial degrees.

Proposition 4.8. Every monomial ideal I satisfies the inequality α̃(I) ≤ α̂(I) ≤ α(I).
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Proof. Theorem 3.9 gives NP (I) ⊆ SP (I) ⊆ IP (I) and taking the minimum value of the sum of the 
coordinates of any point in these convex bodies turns containments into reverse inequalities. These minimum 
values are α̃(I) for SP (I) and α̂(I) for IP (I) by Corollary 4.6 and Corollary 4.7 respectively and α(I) for 
NP (I) by equation (4.1). !

Example 4.9. The inequalities α̃(I) ≤ α̂(I) ≤ α(I) are in general strict. For the ideal I = (x2, xy, y2) in 
Example 3.4 one finds by applying the above corollaries α̃(I) = 4

3 < 2 = α̂(I) = α(I). The value of α̃(I)
follows by observing that, as illustrated in Example 3.4, IP (I) has vertices at (2, 0), (0, 2) and (2

3 , 
2
3 ). The 

latter furnishes the solution to the linear program in Corollary 4.7.
For the ideal I = (xy, xz, yz) in Example 3.6 one finds by applying the above corollaries α̃(I) = α̂(I) =

3
2 < 2 = α(I). The value of α̂(I) follows by observing that, as illustrated in Example 3.6, SP (I) has 
vertices at (1, 1, 0), (1, 0, 1), (0, 1, 1) and (1

2 , 
1
2 , 

1
2 ). The latter furnishes the solution to the linear program in 

Corollary 4.6.

Under special circumstances, we may also deduce equality between the asymptotic invariants discussed 
above.

Proposition 4.10. If I is a monomial ideal whose irredundant irreducible components have distinct radicals, 
then it satisfies α̂(I) = α̃(I). In particular, this equality holds when I is square-free.

Proof. The equality follows from Corollary 4.6 and Corollary 4.7 after noticing that SP (I) = IP (I) under 
the given hypothesis, according to Remark 2.6. !

4.2. Lower bounds on asymptotic initial degrees

Proposition 4.8 establishes that the initial degree of I is an upper bound for both α̃(I) and α̂(I). This 
upper bound is attained, for example, when I is an irreducible monomial ideal, hence a complete intersection, 
and thus I{m} = I(m) = Im for each integer m ≥ 1.

We now discuss lower bounds for the asymptotic invariants α̃(I) and α̂(I). These are formulated in terms 
of the initial degree of I and an invariant termed big-height, which is defined as follows:

big-height(I) = max{ht(P ) | P ∈ Ass(R/I)}.

This invariant can be computed from an irredundant primary decomposition and in particular also from an 
irredundant irreducible decomposition of I as the maximum height of the primary, respectively irreducible, 
ideals appearing in the decomposition.

For the Waldschmidt constant the following lower bounds are either known or conjectured to be true. 
An inequality similar to Proposition 4.11 first appeared in [23,25] and was proven in the generality given 
here in [13].

Proposition 4.11 (Skoda bound). Every homogeneous ideal I satisfies the following inequality

α̂(I) ≥ α(I)
big-height(I) .

The following conjecture proposing a stronger bound has been formulated in [4, Conjecture 6.6].

Conjecture 4.12 (Chudnovsky bound). Every monomial ideal I satisfies the inequality

α̂(I) ≥ α(I) + big-height(I) − 1
big-height(I) .
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The Chudnovsky bound in Conjecture 4.12 is known to hold true for square-free monomial ideals cf. [1, 
Theorem 5.3].

We now proceed to establish lower bounds for the asymptotic irreducible degree α̃(I), by analogy to the 
bounds discussed above for α̂(I). First we prove a Skoda-type lower bound.

Theorem 4.13. Every monomial ideal I satisfies the inequality α̃(I) ≥ α(I)
big-height(I) .

Proof. We proceed by adapting the proof of [1, Theorem 5.3].
Let I be a monomial ideal with big-height(I) = e and irredundant irreducible decomposition I = J1 ∩

· · · ∩ Js. We know from Corollary 4.7 that α̃(I) is the minimum value of y1 + · · · + yn over IP (I) and 
from Lemma 3.7 that, if for each i = 1, . . . , s Ji = (xai1

1 , . . . , xain
n ), then the bounding inequalities for this 

polyhedron are

IP (I) =






1
a11

y1 + · · · + 1
a1n

yn ≥ 1
· · ·
1

as1
y1 + · · · + 1

asn
yn ≥ 1

y1, . . . , yn ≥ 0.

To establish the claim, it suffices to show that, for every t ∈ IP (I), we have

t1 + · · · + tn ≥ α(I)
big-height(I) = α(I)

e

which implies by taking infimums that α̃(I), the minimal value of the sum of coordinates of any point in 
IP (I), will satisfy the desired inequality.

We find a subset of the components of t whose sum is greater or equal to α(I)/e.
To start, consider a bounding inequality corresponding to an irreducible component Ji1 . This takes the 

form

1
ai11

y1 + · · · + 1
ai1n

yn ≥ 1,

where the number of yi whose coefficients are non zero in the preceding inequality is the height of the 
monomial prime ideal 

√
Ji, thus at most e. The displayed inequality thus implies that for y = t at least one 

of the terms is greater or equal to 1
e , i.e.,

tk1 ≥ ai1k1

e
for some 1 ≤ k ≤ n and some integer ai1k1 ≥ 1.

Now, suppose we have found tk1 , tk2 , . . . , tkm such that tk1 ≥ ai1k1
e , ..., tkm ≥ aimkm

e , but we have 
ai1k1 + ai2k2 + · · · + aimkm < α(I). Consider the monomial xai1k1

k1
x
ai1k2
k2

· · ·xaimkm
km

. By the assumption, 
it has degree smaller than α(I), so it’s not an element of I. Therefore, there is some component Jim+1

that does not contain this monomial. Repeating the previous argument, from the corresponding inequality 
we obtain tkm+1 ≥ aim+1km+1

e for some aim+1km+1 ≥ 1. There are two possibilities depending on whether 
km+1 ∈ {k1, . . . , km} or not:

(1) tkm+1 is not one of tk1 , tk2 , . . . , tkm . Then we observe that

ai1k1 + ai2k2 + · · · + aimkm + aim+1km+1 > ai1k1 + ai2k2 + · · · + aimkm .
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(2) tkm+1 is one of tk1 , tk2 , . . . , tkm , say tkm+1 = tk! . Since the monomial xai1k1
k1

x
ai2k2
k2

· · ·xaimkm
km

is not 
contained in Jim+1 , it must be that aim+1km+1 > ai!k! . Therefore, we can replace the inequality tk! ≥
ai!k!

e by the stronger inequality tkm+1 ≥ aim+1km+1
e . Specifically, redefining i! := im+1 and k! := km+1

and thus ai!k! := aim+1km+1 increases the value of the sum ai1k1 + ai2k2 + · · · + akm .

Since in either case the value of the sum ai1k1 +ai2k2 + · · ·+aimkm +aim+1km+1 or ai1k1 +ai2k2 + · · ·+aimkm

increases, we see that iterating this procedure eventually results in positive integers ai1k1 , ai2k2 , · · ·+ aimkm

such that

ai1k1 + ai2k2 + · · · + aimkm ≥ α(I)

as well as in a corresponding set of coordinates of t that satisfy the desired inequality

tk1 + · · · + tkm ≥ ai1k1 + ai2k2 + · · · + aimkm

e
≥ α(I)

e
. !

We remark that the direct analogue of the Chudnovsky bound in Conjecture 4.12 fails for α̃(I), as shown 
by the following example.

Example 4.14. Consider the ideal I = (x2, xy, y2) = (x2, y) ∩ (x, y2) ⊆ k[x, y]. The initial degree is α(I) = 2, 
the big height is big-height(I) = 2 and the naive Waldschmidt constant is α̃(I) = 4

3 per Example 4.9. This 
gives an inequality

α̃(I) = 4
3 <

3
2 = α(I) + big-height(I) − 1

big-height(I) .

However, there are many ideals for which the expression in the Chudnovsky Conjecture 4.12 does indeed 
provide a lower bound on α̃(I). In the next section we give a modified Chudnovsky-type lower bound for 
α̃(I) that applies to all monomial ideals I.

4.3. Powers of the maximal ideal

In this section we determine the naive Waldschmidt constant for the powers of the homogeneous maximal 
ideal. We will later use this to deduce a Chudnovsky-type lower bound on the naive Waldschmidt constant 
of ideals primary to the homogeneous maximal ideal.

In the following, we denote by mn the homogeneous maximal ideal (x1, . . . , xn) of the polynomial ring 
R = k[x1, . . . , xn]. We start by establishing the irredundant irreducible decompositions for the ordinary 
powers of mn.

Notation 4.15. For each positive integer s we denote by Pn(s) the set of partitions of s into n nonempty 
parts

Pn(s) =
{

(a1, . . . , an)
∣∣∣∣∣ ai ∈ N, ai ≥ 1,

n∑

i=1
ai = s

}
.

Proposition 4.16. Given an integer d ≥ 1, the irredundant irreducible decomposition of the ideal md
n =

(x1, . . . , xn)d is

md
n =

⋂

(a1,...,an)∈Pn(d+n−1)
(xa1

1 , . . . , xan
n ) (4.2)
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Proof. Let xb = xb1
1 · · ·xbn

n ∈
⋂

(a1,...,an)∈Pn(d+n−1)(x
a1
1 , . . . , xan

n ), and suppose xb /∈ md
n. Then there are 

inequalities

n∑

i=1
bi < d and thus d−

n∑

i=1
bi ≥ 1.

Let

ai =
{
bi + 1 1 ≤ i < n

bn + d−
∑n

i=1 bi i = n

which implies ai ≥ bi + 1 for all 1 ≤ i ≤ n. From this, we have an equality

n∑

i=1
ai =

n−1∑

i=1
(bi + 1) + bn + d−

n∑

i=1
bi =

n∑

i=1
bi + n− 1 + d−

n∑

i=1
bi = d + n− 1

and hence (a1, . . . , an) ∈ Pn(d + n − 1). But since ai > bi for all i, xb /∈ (xa1
1 , . . . , xan

n ), a contradiction. As 
a result, we obtain the containment

⋂

(a1,...,an)∈Pn(d+n−1)
(xa1

1 , . . . , xan
n ) ⊆ md

n (4.3)

Now take xb ∈ md
n, and suppose xb /∈

⋂
(a1,...,an)∈Pn(d+n−1)(x

a1
1 , . . . , xan

n ). Then there is some Q =
(xc1

1 , . . . , xcn
n ) with (c1, . . . , cn) ∈ Pn(d +n − 1) such that xb /∈ Q. This implies that ci > bi for all 1 ≤ i ≤ n, 

so ci ≥ bi + 1. But then we deduce

d + n− 1 =
n∑

i=1
ci ≥

n∑

i=1
(bi + 1) = n +

n∑

i=1
bi ≥ n + d > d + n− 1,

which is of course a contradiction. Hence

md
n ⊆

⋂

(a1,...,an)∈Pn(d+n−1)
(xa1

1 , . . . , xan
n ) (4.4)

Combining (4.3) and (4.4), we obtain our desired result. !

Having determined the irredundant irreducible decomposition of md
n, we deduce the bounding inequalities 

for the irreducible polyhedron from Lemma 3.7.

Corollary 4.17. The irreducible polyhedron of the ideal md
n is given by the inequalities

{
1
a1
y1 + · · · + 1

an
yn ≥ 1 for (a1, . . . , an) ∈ Pn(d + n− 1)

yi ≥ 0 for 1 ≤ i ≤ n.

Next we give closed formulas for the naive Waldschmidt constant for the powers of the maximal ideal. 
We first single out the case when this value is an integer.

Proposition 4.18. Suppose d ≡ 1 mod n. Then the naive Waldschmidt constant of md
n is

α̃(md
n) = d + n− 1

n
∈ N.
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Proof. If d ≡ 1 mod n, then d + n − 1 is an integer multiple of n; in other words, d+n−1
n is an integer, say 

m. The ideal (xm
1 , . . . , xm

n ) is in the irreducible decomposition of md
n by Proposition 4.16. The bounding 

inequality corresponding to NP (xm
1 , . . . , xm

n )

1
m
y1 + · · · + 1

m
yn ≥ 1 ⇒ y1 + · · · + yn ≥ m

indicates that α̃(md
n) ≥ m. Consider the vector (mn , . . . , mn ) in Rn that clearly has sum of coordinates m. 

For each component (xa1
1 , . . . , xan

n ) in the irreducible decomposition there is an identity

1
a1

(m
n

)
+ · · · + 1

an

(m
n

)
= m

n

n∑

i=1

1
ai
.

The value 1
n

∑n
i=1

1
ai

is the inverse of the harmonic mean of the set a1, . . . , an and the arithmetic mean for 
this set is m. Hence the inequality relating these means yields

1
a1

(m
n

)
+ · · · + 1

an

(m
n

)
≥ m

( 1
m

)
= 1.

Therefore the point (mn , . . . , mn ) is part of the Newton polyhedron of each irreducible component of md
n, i.e., 

(mn , . . . , mn ) ∈ IP (md
n). Since it was shown before that the least value of the sum of coordinates of points in 

this polyhedron is at least m, and the point identified above has sum of coordinates exactly m, we conclude 
that α̃(md

n) = m. !

Remark 4.19. The right hand side in the equality displayed in Proposition 4.18 matches the Chudnovsky 
lower bound α(mn)+big-height(mn)−1

big-height(mn) ; see Conjecture 4.12.

Before we continue our analysis, we state a simple fact that will become useful later. The proof is omitted, 
since it is a direct verification.

Lemma 4.20. If x, y ∈ R>0 are such that x ≥ y + 1, then 1
x + 1

y ≥ 1
x−1 + 1

y+1 .

An interesting consequence of the above lemma is presented below.

Proposition 4.21. Fix an integer s > 0. The minimum value of the function f(a) = 1
a1

+ · · ·+ 1
an

, where the 
tuple a = (a1, . . . , an) ranges over Pn(s) is attained by a partition where the parts differ by at most one, 
that is, |ai − aj | ≤ 1 for all 1 ≤ i < j ≤ n.

Proof. The result follows by noticing that modifying a partition in a manner that decreases the difference 
between the parts results in an increase of the objective function f . Indeed, Lemma 4.20 insures that if 
(a1, . . . , an) ∈ Pn(s) has two parts ai, aj such that |ai − aj | > 1, then the partition (a′1, . . . , a′n) ∈ Pn(s)
obtained by setting a′k = ak whenever k /∈ {i, j}, a′i = max{ai, aj} − 1, a′j = min{ai, aj} + 1 satisfies

f(a) =
n∑

!=1

1
a!

≥
n∑

!=1

1
a′!

= f(a′). !

Now we turn to the determination of α̃(md
n) for arbitrary values of d.

Theorem 4.22. Suppose d is a positive integer and d − 1 ≡ k mod n, 0 ≤ k < n. Then the following equality 
holds
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α̃(md
n) = (n + d− 1 − k)(2n + d− 1 − k)

n(2n + d− 1 − 2k) .

Proof. First, if k = 0, then the formula becomes

α̃(md
n) = (2n + d− 1 − 0)(n + d− 1 − 0)

n(2n + d− 1 − 2(0)) = n + d− 1
n

,

which is in accordance with Proposition 4.18. Therefore, let us consider the case k > 0.
Let a =

⌈
n+d−1

n

⌉
and b =

⌊
n+d−1

n

⌋
, with explicit expressions

a = n + d− 1 + (n− k)
n

, b = n + d− 1 − k

n
.

Thus a and b are positive integers. We define the balanced partition of n + d − 1 as the unordered n-tuple 
where k of the elements are a and n − k of the elements are b. This partition is in Pn(n + d − 1) since these 
elements sum to n + d − 1.

Consider now the components of the irreducible decomposition (4.2) corresponding to permutations of 
this balanced partition. There are 

(n
k

)
such irreducible components; each corresponds to a permutation σ

in the symmetric group on n elements in the following way

Jσ = (xa
σ(1), . . . , x

a
σ(k), x

b
σ(k+1), . . . , x

b
σ(n)).

There are multiple permutations σ which give the same irreducible component Jσ. The bounding inequality 
for IP (md

n) corresponding to the component Jσ is

1
a

(
yσ(1) + · · · + yσ(k)

)
+ 1

b

(
yσ(k+1) + · · · + yσ(n)

)
≥ 1

Summing up these inequalities for all the distinct ideals Jσ and utilizing the symmetry of the coefficients 
yields

(y1 + y2 + · · · + yn)
((

n− 1
k − 1

)1
a

+
(
n− 1
k

)1
b

)
≥

(
n

k

)

whence we deduce that any point y = (y1, . . . , yn) ∈ IP (I) satisfies

y1 + y2 + · · · + yn ≥
(n
k

)
(n−1
k−1

) 1
a +

(n−1
k

) 1
b

= (n + d− 1 − k)(2n + d− 1 − k)
n(2n + d− 1 − 2k) := β.

From Corollary 4.7 we now deduce the inequality α̃(md
n) ≥ β.

Next consider the vector ỹ ∈ Rn having each component ỹi = β/n. We show that ỹ ∈ IP (md
n) by verifying 

that this vector satisfies the bounding inequalities in Corollary 4.17. Given (a1, . . . , an) ∈ Pn(d + n − 1)
there is an equality

1
a1

ỹ1 + · · · + 1
an

ỹn =
( 1
a1

+ · · · + 1
an

)
· β
n

and by Proposition 4.21 we can compare the sum of the reciprocals for the partition (a1, . . . , an) to that of 
the balanced partition as follows

1
a1

+ · · · + 1
an

≥ k · 1
a

+ (n− k) · 1
b

= n2(2n + d− 1 − 2k)
(n + d− 1 − k)(2n + d− 1 − k) = n

β
.
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Altogether, the previous two displayed equations yield the inequality

1
a1

ỹ1 + · · · + 1
an

ỹn ≥ n

β
· β
n

= 1.

Since we have shown ỹ satisfies the bounding inequalities for the irreducible polyhedron of md
n, it follows 

that ỹ ∈ IP (md
n) and thus

α̃(md
n) ≤ ỹ1 + · · · + ỹn = β = (n + d− 1 − k)(2n + d− 1 − k)

n(2n + d− 1 − 2k) .

Together with the opposite inequality proven above this finishes the proof. !

We give a lower bound that extends Remark 4.19.

Corollary 4.23. Let d, n be positive integers. Then the following inequality holds

α̃(md
n) ≥

⌊
d + n− 1

n

⌋
,

with equality taking place if and only if d ≡ 1 (mod n).

Proof. In view of Theorem 4.22, setting d − 1 ≡ k (mod n) where 0 ≤ k ≤ n − 1, the claim is equivalent to 
the following easily verified inequality

(n + d− 1 − k)(2n + d− 1 − k)
n(2n + d− 1 − 2k) ≥ d + n− 1 − k

n
=

⌊
d + n− 1

n

⌋
. !

In view of the result above, we make a conjecture regarding the naive Waldschmidt constant that parallels 
Conjecture 4.12.

Conjecture 4.24. Let I be a monomial ideal. Then the following inequality holds

α̃(I) ≥
⌊
α(I) + big-height(I) − 1

big-height(I)

⌋
.

In Theorem 4.29 we prove this conjecture for the case when I has maximum possible big-height, namely 
big-height(I) = n. The importance of determining the value of the naive Waldschmidt constant for the 
powers of the homogeneous maximal ideal earlier in this section becomes apparent in the next result because 
this provides lower bounds for the naive Waldschmidt constant of arbitrary ideals.

Theorem 4.25. Let I be a monomial ideal in K[x1, . . . , xn] with α(I) = d. Then the inequality α̃(md
n) ≤ α̃(I)

holds.

Remark 4.26. The analogue of the above theorem fails when replacing the naive Waldschmidt constant with 
the Waldschmidt constant. That is, if α(I) = d, the inequality α̂(md

n) ≤ α̂(I) need not hold. This can be seen 
taking I = (xy, xz, yz), an ideal which satisfies the containment I ⊆ m2

3, but yields α̂(I) = 3
2 < α̂(m2

3) = 2.
It is nevertheless true that for square-free monomial ideals I ⊆ J one has α̂(I) ≥ α̂(J); see [6, Lemma 

3.10]. Our proof for Theorem 4.25 draws inspiration from this result. Before giving the proof, we require 
some additional preparation.
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Definition 4.27. For an ideal I denote

Irr(I) := {J | J is irreducible and I ⊆ J}.

For any monomial ideal I, the set Irr(I) is a partially ordered set with respect to containment which 
has finitely many minimal elements. Moreover, J1, . . . , Js are the minimal elements of Irr(I) with respect 
to containment if and only if I = J1 ∩ · · · ∩ Js is the irredundant irreducible decomposition of I.

Lemma 4.28. If I ⊆ I ′ are monomial ideals, then the following hold:

(1) Irr(I ′) ⊆ Irr(I),
(2) if J ′ is a minimal element of Irr(I ′) with respect to containment then there exists a minimal element 

J ∈ Irr(I) with respect to containment such that J ⊆ J ′,
(3) α̃(I) ≥ α̃(I ′).

Proof. The containment Irr(I ′) ⊆ Irr(I) follows from Definition 4.27 and the fact that I ⊆ I ′.
Suppose J ′ is minimal in Irr(I ′). Consider the set S = {J ∈ Irr(I) | J ⊆ J ′}. This is a non-empty subset 

of Irr(I) since J ′ ∈ S. Thus it has a minimal element with respect to containment, let’s call it J . Moreover, 
since S is a lower interval of the poset Irr(I), we deduce that J is in fact a minimal element of Irr(I).

Now let I = J1∩ · · ·∩Js and I ′ = J ′
1∩ · · ·∩J ′

t be the irredundant irreducible decompositions for I and I ′

respectively. From the second assertion of this lemma, for every j ∈ {1, 2, . . . , t} there exists an ij ∈ {1, . . . , s}
such that Jij ⊆ J ′

j . From this we deduce NP (Jij ) ⊆ NP (J ′
j) for each j and these containments combine to 

show the following

IP (I) =
s⋂

i=1
NP (Ji) ⊆

t⋂

j=1
NP (Jij ) ⊆

t⋂

j=1
NP (J ′

j) = IP (I ′).

Having established the containment IP (I) ⊆ IP (I ′) above, we deduce from this containment and Corol-
lary 4.7 the desired inequality α̃(I) ≥ α̃(I ′). !

Proof of Theorem 4.25. Theorem 4.25 follows from part 3 of Lemma 4.28 applied to I ′ = md
n. The contain-

ment I ⊆ I ′ = md
n is ensured by the hypothesis α(I) = d. !

The following consequence of Theorem 4.25 establishes a lower bound on the naive Waldschmidt constant 
applicable to all monomial ideals.

Theorem 4.29. Let I ⊆ K[x1, . . . , xn] be a monomial ideal with α(I) = d. If d − 1 ≡ k mod (n), 0 ≤ k < n, 
then the following inequalities hold

α(I) ≥ α̂(I) ≥ α̃(I) ≥ (n + d− 1 − k)(2n + d− 1 − k)
n(2n + d− 1 − 2k) ≥

⌊
α(I) + n− 1

n

⌋
.

Proof. This follows from Proposition 4.8, Theorem 4.25 and Theorem 4.22. !

The above inequalities establish the validity of Conjecture 4.24 for monomial ideals I which have the 
maximal ideal as an associated prime. For this class of ideals, Conjecture 4.12 is obviously satisfied as well, 
since the symbolic and ordinary powers agree and thus α̂(I) = α(I).
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