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1. Introduction

This paper concerns invariants of monomial ideals which admit interpretations from a convex geometry
perspective. Monomial ideals are ideals I that can be generated by monomials in a polynomial ring R =
Klxy,...,z,] with coefficients in a field K.

There is a well established tradition of associating convex bodies to monomial ideals. The preeminent
example in this direction is the Newton polyhedron, which is the convex hull of all the exponent vectors of
monomials in /. Invariants of monomial ideals can be read from their Newton polyhedron: for example, the
Hilbert-Samuel multiplicity of an ideal primary to the homogeneous maximal ideal can be interpreted as
the normalized volume of the complement of its Newton polyhedron. For an introduction to the significance
of Newton polyhedra in commutative algebra with emphasis on the role they play in integral closure we
recommend [15, §1.4, §10.3, §11].

In this paper we focus our attention on associating convex bodies to decompositions of a monomial ideal
as an intersection of monomial ideals. Such a decomposition I = J; N--- N Jg leads to considering on one
hand a graded family of monomial ideals

Ip=Jm0-nJm (1.1)

obtained by intersecting the powers of the components in the original decomposition. On the other hand it
leads to considering a convex body

C=NP(J))N---NNP(Js)

obtained by intersecting the Newton polyhedra of the components in the original decomposition. Our first
main result shows that C can be understood as a limit of the Newton polyhedra for the family of ideals
{Iin}m>1, appropriately scaled. For this reason we term C the asymptotic Newton polyhedron of the family

{Im}-

Theorem (Theorem 5.15). If Jy, ..., Js are monomial ideals and I, = J N --- N J7", then there is an
equality of polyhedra

C=NP(Jy)n---nNP(J) = | %NP(Im).

m>1

The idea of associating an asymptotic Newton polyhedron to a graded family of monomial ideals has
appeared previously in the context of Okounkov bodies attached to a graded linear series [17,16]. To our
knowledge, asymptotic Newton polyhedra arising from ideal decompositions have not been studied be-
fore.

Our work is motivated by the family of symbolic powers of a monomial ideal. Symbolic powers are a
topic of sustained interest from a geometric as well as a combinatorial viewpoint. We recommend [5], [12] for
an introduction to this family of ideals and some combinatorial connections. Symbolic powers of monomial
ideals fit in the paradigm of the graded families described in (1.1) since they arise by intersecting powers
of the components in a coarsening of the primary decomposition of the monomial ideal; see Lemma 2.2.
The convex body C which corresponds to the graded family of symbolic powers is known as the symbolic
polyhedron. Tt was introduced in [4] and utilized in [1]. In the study of symbolic powers, convex bodies reach
beyond the setting of monomial ideals. Indeed, [18] associates a graded family of monomial ideals termed a
generic initial system to the symbolic powers of certain ideals in polynomial rings; see also [24] for a similar
approach. This suggests that our methods can yield future extensions to arbitrary ideals by following this
procedure.
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A novel family of monomial ideals, termed irreducible powers, is introduced in this paper. They arise
from a decomposition of a monomial ideal into irreducible ideals in the manner described in (1.1) and
coincide with the symbolic powers in some cases of interest, for example for square-free monomial ideals.
The advantage to considering the irreducible powers is that for non square-free monomial ideals they give
rise to convex bodies, termed irreducible polyhedra, which are easier to control than the symbolic polyhedra.
Our second main result captures the symbolic polyhedron between the two other convex bodies discussed
above.

Theorem (Theorem 3.9). For any monomial ideal I the following containments hold between its Newton

(NP), symbolic (SP) and irreducible (IP) polyhedra:
NP(I) C SP(I) C IP(I).

We show that certain asymptotic invariants for graded families of ideals can be read off the respective
asymptotic Newton polyhedra by means of linear optimization. These invariants generalize the notion of
initial degree of a homogeneous ideal, by which we mean the least degree of a nonzero element of the
ideal, to an asymptotic counterpart. For symbolic powers, the resulting asymptotic invariant is known in
the literature as the Waldschmidt constant. It has been investigated in many works, among which we cite
[23,25,13,3] and specifically for the case of monomial ideals in [4,1]. In [21] Nagata established, in different
language, that the Waldschmidt constant for any set of r > 9 very general points in P2 is \/7 if r is a perfect
square and conjectured this remains true for arbitrary r > 9. Since then a considerable amount of effort has
gone towards providing bounds for Waldschmidt constants in the setting of ideals defining reduced sets of
points in projective space; see [8,11,7,2].

In this paper we introduce an analogous invariant, termed naive Waldschmidt constant, which can be
interpreted as the solution of a linear optimization problem on the irreducible polyhedron and which gives an
intrinsic lower bound on the Waldschmidt constant. We view the naive Waldschmidt constant as an invariant
that is more amenable to computations than the Waldschmidt constant yet it furnishes strong bounds on
the latter. We obtain lower bounds on the naive Waldschmidt constant reminiscent of a Chudnovsky-type
inequality conjectured in [4, Conjecture 6.6]. Our results in this direction are summarized by the inequalities
in the following result; the first two inequalities reflect the containments in the previous theorem and the
last two inequalities are tight by Corollary 4.23.

Theorem (Theorem /.29). Let I C Klxy,...,2,] be a monomial ideal with initial degree o(I) = d. If
d—1=k mod (n), 0 <k < n, then the following inequalities are satisfied by the Waldschmidt constant
a(I) and the naive Waldschmidt constant a(I)

o) > a(l) > a() » 41 -k@nid—1-k) {Q(I)—Fn—lJ.

n(2n+d—1-—2k) n

Our paper is organized as follows: in section 2 we discuss notions of powers arising from decompositions
of monomial ideals, in section 3 we associate asymptotic Newton polyhedra to the families introduced
previously, in section 4 we define the asymptotic initial degrees for our graded families, we express these
invariants by means of linear optimization, and we derive bounds on their values.

2. Decompositions of monomial ideals and notions of powers
Let N denote the set of nonnegative integers. For all vectors a = (ay,...,a,) € N™ we use the shorthand

notation x* := z{* - - - % and thus any monomial ideal is described by a finite set of vectors aj,...,a, € N”
as [ = (x21,...,x2").
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An ideal J is called irreducible if whenever there is a decomposition J = J; N Jo, with Ji, Jy ideals,
then J = J; or J = Js. An irreducible decomposition of an ideal I is an expression I = JyNJoN--- N Jg
where J; are irreducible ideals for all 1 < ¢ < s. Such a decomposition is called irredundant if none of the
J; can be omitted from this expression. Emmy Noether showed in [22] that every ideal I in a noetherian
ring admits an irredundant irreducible decomposition. Moreover, although the number of components in
any irredundant irreducible decomposition of I is the same, the components themselves are in general not
unique.

A monomial ideal J is irreducible if and only if it is generated by pure powers for a subset of the
?11 L
decomposition into irreducible monomial ideals up to permutation of the components; see [19, Theorem 3.3.9]

variables, i.e., J = (x . ,x?:). By contrast to arbitrary ideals, monomial ideals have a unique irredundant
for a proof. The ideals appearing in a monomial irredundant irreducible decomposition of a monomial ideal
I can also be characterized as the smallest irreducible monomial ideals which contain I. See Definition 4.27
and the considerations following it for this perspective.

Irreducible decompositions are special cases of primary decompositions. Both for monomial and for
arbitrary ideals they possess the advantage of being much more easily computable in an algorithmic fashion;
see [20, §5.2] and [10]. In the case of square-free monomial ideals and more generally for radical ideals, the
irredundant irreducible decomposition and the irredundant primary decomposition coincide.

Symbolic powers of ideals arise from the theory of primary decomposition. For an ideal I, the symbolic
powers retain only the components of the ordinary powers whose radicals are contained in some associated
prime of I. When [ is a radical ideal and K is a field of characteristic 0, the m-th symbolic power of I
encodes the polynomial functions vanishing to order at least m on the variety cut out by I.

Definition 2.1. Let R be a noetherian ring and I an ideal in R. The m-th symbolic power of I is the ideal

™= () I™R,NR
PeAss(R/I)

Recall that the set of associated primes, denoted Ass(R/I), of an ideal I in a Noetherian ring is finite.
We view it as a poset with respect to containment. A minimal element of this poset is called a minimal
prime of I and the non minimal elements are called embedded primes.

The symbolic powers of monomial ideals admit an alternate description which is even more closely related
to their primary decomposition.

Lemma 2.2 ([1/, Lemma 3.1], [/, Theorem 8.7]). If I is a monomial ideal with monomial primary decom-
position I = Q1N Q2N---NQs, set Max(I) to denote the set of maximal elements in the poset of associated
primes of I and for each P € Max(I) denote

Qcp = ﬂ Qi-
VQiCP

Then the symbolic powers of I can be expressed as follows

™= (Qcp)™

PeMax(I)

Remark 2.3. The above Lemma employs the decomposition I = ﬂPeMaX(I) Qcp. We will call this a combined
primary decomposition for I. The ideals QQc p are uniquely determined by I and P and are independent of
the primary decomposition in the statement of Lemma 2.2. This follows from the identity Qcp = IRp N R,
where P’ is the prime monomial ideal generated by the variables of R that are not in P.
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Example 2.4. If I is a monomial ideal with no embedded primes and I = Q1 N---N; is a minimal primary
decomposition, then the symbolic powers of I are given for all integers m > 1 by

1 = QP Ay NN Q.

In this paper we introduce a notion of irreducible powers for monomial ideals, which parallels the behavior
in Example 2.4.

Definition 2.5. Let I be a monomial ideal with monomial irreducible decomposition given by I = J; N Jo N
-+ N Js. For integers m > 1, the m-th irreducible power of I is the ideal

= gmnagrn...nJm
It is easy to see that the definition above does not depend on whether the decomposition is irredundant.

Remark 2.6. If I is a square-free monomial ideal then the irredundant irreducible decomposition of I co-
incides with the combined primary decomposition thus the symbolic powers and irreducible powers of
square-free monomial ideals coincide.

More generally if the components in the irredundant irreducible decomposition of I have distinct radicals,
then the symbolic powers and irreducible powers coincide.

One similarity between the symbolic and irreducible powers is that they both form graded families. A
graded family of ideals {I,,}men is a collection of ideals that satisfies I, - I, C I, for all pairs a,b € N.

Lemma 2.7. The irreducible powers of a monomial ideal form a graded family, i.e., any nonnegative integers
a,b give rise to a containment

rtad . o} ¢ plato}
Proof. The containment follows easily from Definition 2.5. O

In many ways, the irreducible powers of monomial ideals resemble closely the symbolic powers of square-
free monomial ideals. A similarity between irreducible powers of monomial ideals and symbolic powers of
square-free monomial ideals is that their associated primes are among the associated primes of I. This is
not the case for symbolic powers of arbitrary ideals; see Remark 2.9.

Lemma 2.8. Let I be a monomial ideal. Then for each integer m > 1 there are containments I™ C m c
I} and Ass(11™}) = Ass(I).

Proof. The containments I™ C ™) C [{m} follow from the definition of symbolic powers Definition 2.1
for the former and from Lemma 2.2 for the latter. In detail, if I = J; N---N J, is an irredundant irreducible
decomposition, then for each 1 < ¢ < s there exists a prime P; € Max([) such that V/J; C P;. Then we see
from Lemma 2.2 that Qcp, C J; and so we deduce

I(m) _ ﬂ Qgp C ﬂ QgPi C ﬂ sz — I{m}.
i=1 =1

PeMax(I)

Now let I = J; N---NJ, be an irredundant irreducible decomposition with p; = +/J;. Since each
irreducible ideal J; is generated by a regular sequence of pure powers of the variables, it follows that
Ass(J™) = Ass(J;) = {p;} for each i and thus we obtain



6 J. Camarneiro et al. / Journal of Pure and Applied Algebra 226 (2022) 107089

Ass(IT™H) = Ass(J™ NN J™) = {p1,...,ps} = Ass(I). O

Remark 2.9. Lemma 2.8 reveals that the irreducible powers of monomial ideals enjoy a property that the
symbolic powers of monomial ideals which possess embedded primes do not enjoy. Specifically, it is not in
general true that the associated primes of the symbolic powers are restricted to a subset of Ass([). For
example, the ideal

I'=(z,y) N (z,2) N (z,w) N (y,2) N (y,w) N (z,0) N (2,y, 2,w)"
has the property that Ass(I(®)) contains the primes (z,%, 2), (x,y, w), (x, z,w) and (y, z,w) in addition to
the associated primes of I.
3. Convex bodies associated to powers of monomial ideals

8.1. The symbolic and irreducible polyhedra of a monomial ideal

In this section we define new convex bodies associated to decompositions of monomial ideals. In our
main cases of interest these convex bodies will be polyhedra. A polyhedron can be defined in two different
manners, either as convex hulls of a set of points in Euclidean space or as a finite intersection of half spaces.
All polyhedra considered in this section will be unbounded.

Definition 3.1. For a monomial ideal I, the Newton polyhedron of I, denoted NP(I), is the convex hull of
the exponent vectors for all the monomials in

NP(I) = convex hull{a € N" | x* € I}.

One of the useful properties of Newton polyhedra is that they scale linearly upon taking ordinary powers
of ideals, namely the following identity holds for all m € N:

NP(I'™) = mNP(I).

The situation becomes more complicated upon considering Newton polyhedra for the symbolic powers
or for the irreducible powers, as taking Newton polyhedra does not commute with intersections of ideals.
Specifically, there is always a containment

NP(JiN---NJ,) € NP(J)N---NNP(J,),

but this rarely becomes an equality. However, we shall see that there is an asymptotic sense in which Newton
polyhedra can be taken to commute with intersections of ideals. To elaborate on this, we introduce two more
convex bodies, one corresponding to each of the notions of symbolic and irreducible powers introduced in
the previous section.

Following [4, Definition 5.3], which in turn takes inspiration from Lemma 2.2, we define a symbolic
polyhedron associated to a monomial ideal.

Definition 3.2. The symbolic polyhedron of a monomial ideal I with primary decomposition I = Q1N --NQs
is
SP(I)= ()| NP(@Qcp)  where Qcp= [) Qi
PeMax(I) VQ.cp

This polyhedron does not depend on the choice of primary decomposition by Remark 2.3.
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Similarly, with inspiration taken from Definition 2.5, we introduce a new convex body termed the irre-
ducible polyhedron.

Definition 3.3. The irreducible polyhedron of a monomial ideal I with monomial irreducible decomposition
I=Jin---NJsis

IP(I) = NP(J)N---NNP(J,).

Example 3.4. Fig. 1 shows the Newton, symbolic and irreducible polyhedra for the ideal I = (22, zy,y?)
with irreducible decomposition I = (z,4%) N (22, y). The dashed lines help visualize the boundaries of the
convex bodies appearing in the definition of the irreducible polyhedron

IP(I) = NP((z,y%)) N NP((2%y)).

The equality SP(I) = NP(I) follows in this case because I is primary to the maximal ideal m = (x,y)
of k[z,y] and hence the combined primary decomposition consists of a single component, in other words
I =Qcwm and SP(I) = NP(Qcwm) = NP(I).

3

s NP(I) = SP(I) e IP(I)

xT xT

Fig. 1. The Newton, symbolic and irreducible polyhedra of I = (m2, Ty, yz).

Remark 3.5. If I is a square-free monomial ideal or more generally an ideal such that the radicals of the
irredundant irreducible components are distinct, then IP(I) = SP(I) by Remark 2.6.

Example 3.6. Fig. 2 shows a partial view of the facets of the Newton, symbolic and irreducible polyhedra for
the ideal I = (zy, xz, yz) with irreducible decomposition I = (x,y)N(x, z)N(y, z). The respective polyhedra
are solid bodies located in the positive orthant and having the pictured facets as the outer boundary. In
particular that SP(I) has an additional vertex compared to NP(I), which is located at (3,%,1). The
equality IP(I) = SP(I) follows in this case because I is squarefree; see Remark 3.5.

@ NP1 W sp) = 1P(1)

1
22 22

Fig. 2. The Newton, symbolic and irreducible polyhedra of I = (zy, zz, yz).
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We supplement the description of the irreducible polyhedron in Definition 3.3 by providing equations for
hyperplanes supporting the facets of the polyhedron, which we term bounding hyperplanes. We term the
linear inequalities describing a polyhedron as an intersection of half spaces its bounding inequalities.

Establishing the bounding inequalities for the symbolic polyhedron of an arbitrary monomial ideal is
generally an infeasible task. However, the analogous task is considerably easier for the irreducible polyhedron.

Lemma 3.7. The bounding inequalities for the irreducible polyhedron of a monomial ideal I are read off
a monomial irreducible decomposition I = Jy N ---Js as follows: if for each 1 < i < s we have J; =
(7™, ..., x%in), where a;; € N U {—oo} with the convention that x; °° = 0, then IP(I) is the set of points
y = (¥1,-.-,yn) € R™ which satisfy the system of inequalities (3.1) given below, where we set —— =0

St t oy 21

ail QA1n

1 1 (3.1)
Ey1+...+ T Un >1
Ytis-- - Yn > 0.

Proof. For each irreducible component J; we have that NP(J;) is the complement within the positive
orthant of R™ of a simplex with vertices given by the origin and the exponent vectors of the minimal
monomial generators z{™, ..., xz%n for J;, that is,

1 1

Lo+ >1
NP(Ji) _ an 1 amIn =

ylan-’deO-

Equation (3.1) collects together all the inequalities of each N P(J;) according to Definition 3.3. O

We next give an account of the containments between the three polyhedra discussed above. This is based
upon observing that more refined decompositions of an ideal will yield larger polyhedra. We make this
precise in the following lemma.

Lemma 3.8. Assume given two collections of monomial ideals I1,...,I; and Ji,...,Js such that the latter

refines the former, that is, for each 1 < j < s there exists 1 < i; <t such that I;; C J;. Then there is a
containment of polyhedra

NP(I))N---ANP(I;) C NP(J;)N--- 0N NP(J,).

Proof. Employing the hypothesis that for each 1 < j < s there exists 1 < i; < ¢ such that I;; C J;, we
deduce that NP(I;;) C NP(J;). Thus we obtain the desired containments

NP(L)N---NNP(I;) C NP(I;,)"---NNP(I;,)) C NP(J;)N---NNP(J,). O

i

With this key ingredient in hand we established the containments between the three types of polyhedra
considered in this paper.

Theorem 3.9. Fvery monomial ideal I satisfies the following containments

NP(I) C SP(I) C IP(I).
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Proof. Let I = J1N---NJs be a monomial irreducible decomposition, then it is also a primary decomposition.
Hence the combined primary decomposition I = (peyar) @cp can be computed using Qcp = () /7;cp Ji
according to Remark 2.3. This shows that the irreducible decomposition refines the combined decomposition
in the sense that for each 1 < j < s there exists P; € Max(I) such that Qgpj C J;. Indeed, this is the case
for each P € Max(I) such that y/.J; C P and such a prime exists by finiteness of the poset Ass(I).

Now we apply Lemma 3.8 to obtain the second desired containment

SP(I)= (] NP(Qcp)C ﬂ NP(J;) =IP(I).

PeMax(I)

The remaining containment, NP(I) C SP(I) can be deduced by applying Lemma 3.8 to the trivial decom-
position I = I and its refinement I = ﬂPeMaX(I) Qcp. O

Remark 3.10. The containments NP(I) C SP(I) C IP(I) can be strict. See Example 3.4 for an ideal with
NP(I) € SP(I) and Example 3.6 for an ideal with SP(I) C IP(I).

8.2. Asymptotic Newton polyhedra for graded families of monomial ideals

Let {I,,}m>1 denote a graded family of monomial ideals. By definition, such a family satisfies contain-
ments I, - Iy C I 4y for each pair a,b € N. We define a convex body capturing the asymptotics of each
such family. This construction bears some resemblance to the Newton-Okounkov bodies of [17,16]. A similar
construction appears in [18] but for a different family of monomial ideals.

Definition 3.11. Given a graded family of monomial ideals Z := {I,, };n>1, the limiting body associated to
this family is

cn= %NP(Im).

m—0o0

If the limiting body is a polyhedron, we call it the asymptotic Newton polyhedron associated to the family
Z. For an example of non polyhedral limiting body see Remark 3.14.

Example 3.12. For the family of ordinary powers {I™},,en of a monomial ideal, the sequence %N P(Im™)
is constant, each term being equal to NP(I). Thus the asymptotic Newton polyhedron associated to the
family of ordinary powers of I is none other than the Newton polyhedron of I itself.

Lemma 3.13. The limiting body for a graded family of monomial ideals is a convex body.

Proof. Let Z = {I,,,},n>1 be a graded family of monomial ideals. This implies that (I,,,)* C I,,, for all k > 1
and hence ~NP(I,,) € 2z NP(Iui). Now let a,b € C(Z) and suppose a € 1NP(I,) and b € : NP(I,).
Then by the preceding argument a, b are points of the same convex body ﬁN P(1,p), which is a subset of
C(Z). Thus any convex combination of a,b is also in -5 NP(I;) and hence in C(Z). O

Remark 3.14. Limiting bodies for arbitrary graded families of monomial ideals can fail to be polyhedral.
They can also fail to be closed in the Euclidean topology. Consider for example, the family Z of monomial
ideals I,,, C k[x,y] such that x%® € I,,, if and only if ab > m. Then C(Z) = {(a,b) | ab > 1,a > 0,b > 0} is
a non-polyhedral convex region in R? and is not closed in the Euclidean topology.

We now consider graded families arising from decompositions into monomial ideals. In this scenario the
limiting body is a polyhedron that can be described explicitly.
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Theorem 3.15. Let I be a monomial ideal equipped with a decomposition into monomial ideals I = JiN---NJs.
Consider the graded family T = {L,;,};m>1 where

L= JM0--nJm

Then the limiting body associated to this family is a polyhedron termed the asymptotic Newton polyhedron
of this family. It can be described equivalently as

C(I)= NP(Jy)N---NNP(J,).

Proof. We start by proving the last assertion. Let Q = (\;_, NP(J;). First we see that for each m > 1 one
has the containment - NP(I,,) C Q. Indeed, since I, = J{"N---NJ", we have NP(I,,,) C (;_; NP(J™) =
m - Q. This yields the inclusion C(Z) C Q.

Next, for the opposite containment, we will show that for each 1 < ¢ < s every point of QNQ" is in C(Z).
This is enough to guarantee the containment Q C C(Z), since all the vertices of the former polyhedron have
rational coordinates. Thus assume a € Q N Q™ and hence a € NP(J;) N Q" for all 1 <¢ < s. Fix ¢ and let
vi,...,Vs be the vertices of the polyhedron N P(.J;). Since these correspond to a subset of the monomial
generators of J; we notice that v; € Z" for all 1 < j <t and

NP(J;) = convex hull{vy,...,v;} + RY,.

By a version of Carathéodory’s theorem for unbounded polyhedra [4, Theorem 5.1] we can write

n n
a = E )\jVij + E cjej,
j=1 j=1

where \j,c; > 0 are rational numbers satisfying Z?Zl Aj = 1. Let m be the least common multiple of the
denominators of the rational numbers A, ¢; for all 1 < j < n. Multiplying the equation displayed above by
m we deduce the identity

n n
ma = E mA;vi, + E mc;e;,
Jj=1 Jj=1

where E?:1 mA; =m and mA; € N for all 1 < j < n. This yields that x™# € J/" and since the argument
holds for each i, we deduce that x™® € ﬂle J™ = I,,. Based on this we see that a € %NP(I,,L) C C(7),
as desired.

The fact that C(Z) is a polyhedron follows from the identity C(Z) = Q shown above because the latter is
a finite intersection of polyhedra. 0O

As we show in the following two corollaries, the previous theorem allows us to identify the symbolic
and irreducible polyhedra as asymptotic Newton polyhedra for the graded families of symbolic powers and
irreducible powers of monomial ideals respectively.

Corollary 3.16. Let I be a monomial ideal. Then the asymptotic Newton polyhedron of the family of symbolic
powers {I™},,~, is the symbolic polyhedron SP(I).

Proof. This follows by applying Theorem 3.15 to the family of symbolic powers, which is defined in terms
of the decomposition I = ﬂPeMax(D Qcp with Qcp = IRp N R. Together with Definition 3.2, this result
yields the claim. O
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Corollary 3.17. Let I be a monomial ideal. Then the asymptotic Newton polyhedron of the family {I{"} Fm>1
of irreducible powers is the irreducible polyhedron IP(I).

Proof. By Definition 2.5, we are in the setting of Theorem 3.15 where the family of irreducible powers is
defined in terms of a monomial irreducible decomposition I = (;_, J;. Thus Theorem 3.15 and Definition 3.3
yield the desired conclusion. O

4. Asymptotic invariants for families of monomial ideals
4.1. Asymptotic initial degrees and linear optimization

In this section we define asymptotic invariants for graded families of monomial ideals which are derived
from their initial degree. For a homogeneous ideal I the initial degree, denoted a([I), is the least degree of
a non zero element of I. Also termed the order of the ideal, this invariant references the position of I in the
topology given by the powers of the homogeneous maximal ideal m, specifically « (1) is the largest integer
such that I € m®(). This interpretation enters into the picture in Theorem 4.25.

Definition 4.1. For a graded family of ideals Z = {I,;,},,>1 define the asymptotic initial degree of the family
a(Im)

to be a(Z) = limy, 00

Lemma 4.2. For a graded family of ideals T = {Ip}m>1 the limit limy, o %

infmzl {a 7{,:”) }

Proof. The existence of the limit is ensured by Fekete’s lemma [9] by means of the subadditivity of the

exists and is equal to

sequence of initial degrees {a(I,,) }m>1. In turn, the subadditivity arises from the graded family property, as
the containments I, I, C I, give rise to inequalities (I 45) < a(l,)+a(ly) for all integers a, b > 1. Fekete’s
lemma also gives that the limit in Definition 4.1 is equal to the infimum of the respective sequence. 0O

Applying the definition for asymptotic initial degree of the family of symbolic powers recovers the notion
of Waldschmidt constant introduced in [25] and studied widely in the literature starting with the inspiring

paper [3].

Definition 4.3. Let I be a homogeneous ideal. The asymptotic initial degree of the family of symbolic powers
{1(™)},,>1 is termed the Waldschmidt constant of T and defined as follows

R I(m)
a(l) = lim M.
m— oo m
Applying the definition for asymptotic initial degree of the family of irreducible powers yields a novel
invariant.

Definition 4.4. Let I be a monomial ideal. The asymptotic initial degree of the family of irreducible powers
{1{m}},,51 is termed the naive Waldschmidt constant of T and defined as follows

_ a(10m
a(l) = lim g
m—oo m
We now show that asymptotic initial degrees for families of monomial ideals are solutions to an opti-
mization problem. The initial degree of a monomial ideal I can be expressed as the solution of a linear

programming problem in the following manner:
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a(l) =min{y; + - +yn | (y1,-- ,yn) € NP(I)}. (4.1)

This is because the optimal solution is attained at a vertex of NP(I) and the vertices of NP(I) correspond
to a subset of the minimal generators of I. We see below that the asymptotic initial degree for a graded
family of monomial ideals can also be expressed as an optimization problem. Moreover, the feasible set is
the limiting body of the family as defined in Definition 3.11.

Theorem 4.5. Let T = {I,,}m>1 be a graded family of monomial ideals. Then o(Z) is the solution of the
following optimization problem

minimize Y13 + - -+ Yn
subject to  (y1,--* ,yn) € C(Z),

where C(Z) denotes the closure of C(Z) in the FEuclidean topology of R™.

Proof. Recall from Lemma 4.2 the alternate definition a(Z) = inf,,>1 % From (4.1) we deduce a(I,,) =
min{y1 +---+yn | (y1,- -+ ,yn) € NP(I,,,)}, hence there are equalities

a(ly,

) 1

Now passing to the infimum and denoting the solution of the optimization problem in the statement of the
theorem by 3, we deduce

o(Z) = inf (Im) = inf1 {min{y1 +ooodyn | (Y1, ,yn) € TlnNP(Im)}}

m>1 m m>

. 1
=inf{ys + - +yn | W1, om) € Y —NP(In) =C(I)}
m>1

=min{y; +- -+ yn | (Y1, ,yn) €CI)} =5. O

Applying this theorem, we are able to recover a result relating the Waldschmidt constant to the symbolic
polyhedron from [4, Corollary 6.3] and [1, Theorem 3.2].

Corollary 4.6. The Waldschmidt constant of a monomial ideal I is the solution to the following linear
optimization problem with feasible region given by its symbolic polyhedron:

minimize Yy + -+ yYn
subject to  (y1,- - ,yn) € SP(I).

Corollary 4.7. The naive Waldschmidt constant of a monomial ideal I is the solution to the following linear
optimization problem with feasible region given by its irreducible polyhedron:

minimize Yy + -+ yn
subject to (Y1, ,yn) € IP(I).

From the containments in Theorem 3.9 and the above two corollaries we deduce inequalities relating the
various asymptotic initial degrees.

Proposition 4.8. Every monomial ideal I satisfies the inequality a(I) < a(I) < «(I).
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Proof. Theorem 3.9 gives NP(I) C SP(I) C IP(I) and taking the minimum value of the sum of the
coordinates of any point in these convex bodies turns containments into reverse inequalities. These minimum
values are a(I) for SP(I) and a(I) for IP(I) by Corollary 4.6 and Corollary 4.7 respectively and «(I) for
NP(I) by equation (4.1). O

Example 4.9. The inequalities &(I) < @(I) < a(I) are in general strict. For the ideal I = (22, zy,y?) in
Example 3.4 one finds by applying the above corollaries a(I) = 3 < 2 = @(I) = a(I). The value of a(I)
follows by observing that, as illustrated in Example 3.4, IP(I) has vertices at (2,0),(0,2) and (2, 3). The
latter furnishes the solution to the linear program in Corollary 4.7.

For the ideal I = (xy,zz,yz) in Example 3.6 one finds by applying the above corollaries a(I) = a(I) =
3 < 2 = a(I). The value of @&(I) follows by observing that, as illustrated in Example 3.6, SP(I) has
vertices at (1,1,0),(1,0,1),(0,1,1) and (%7 %7 %) The latter furnishes the solution to the linear program in
Corollary 4.6.

Under special circumstances, we may also deduce equality between the asymptotic invariants discussed
above.

Proposition 4.10. If I is a monomial ideal whose irredundant irreducible components have distinct radicals,
then it satisfies a(l) = a(I). In particular, this equality holds when I is square-free.

Proof. The equality follows from Corollary 4.6 and Corollary 4.7 after noticing that SP(I) = IP(I) under
the given hypothesis, according to Remark 2.6. 0O

4.2. Lower bounds on asymptotic initial degrees

Proposition 4.8 establishes that the initial degree of I is an upper bound for both &(I) and @(I). This
upper bound is attained, for example, when [ is an irreducible monomial ideal, hence a complete intersection,
and thus 71"} = 10™) = '™ for each integer m > 1.

We now discuss lower bounds for the asymptotic invariants a(l) and @(7). These are formulated in terms
of the initial degree of I and an invariant termed big-height, which is defined as follows:

big-height(I) = max{ht(P) | P € Ass(R/I)}.

This invariant can be computed from an irredundant primary decomposition and in particular also from an
irredundant irreducible decomposition of I as the maximum height of the primary, respectively irreducible,
ideals appearing in the decomposition.

For the Waldschmidt constant the following lower bounds are either known or conjectured to be true.
An inequality similar to Proposition 4.11 first appeared in [23,25] and was proven in the generality given
here in [13].

Proposition 4.11 (Skoda bound). Every homogeneous ideal I satisfies the following inequality

~ a(I)
al) z big-height (1) "

The following conjecture proposing a stronger bound has been formulated in [4, Conjecture 6.6].

Conjecture 4.12 (Chudnovsky bound). Every monomial ideal I satisfies the inequality

a(I) + big-height(I) — 1
big-height(I)

a(l) >
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The Chudnovsky bound in Conjecture 4.12 is known to hold true for square-free monomial ideals cf. [1,
Theorem 5.3].

We now proceed to establish lower bounds for the asymptotic irreducible degree a([I), by analogy to the
bounds discussed above for a(I). First we prove a Skoda-type lower bound.

Theorem 4.13. Every monomial ideal I satisfies the inequality a(I) > big_%é)htm.
Proof. We proceed by adapting the proof of [1, Theorem 5.3].
Let I be a monomial ideal with big-height(I) = e and irredundant irreducible decomposition I = J; N
-+ N Js. We know from Corollary 4.7 that &(I) is the minimum value of y; + -+ + y,, over IP(I) and
;1

from Lemma 3.7 that, if for each i = 1,...,s J; = (z{*",...,x%"), then the bounding inequalities for this

polyhedron are

iy1+...+$yn>1

ail -

LP(I) = Lo Ly >1
aslyl asnyn =

Yy ooy Yn > 0.

To establish the claim, it suffices to show that, for every t € IP(I), we have

" = big-height (1) e

t1 +

which implies by taking infimums that &(7), the minimal value of the sum of coordinates of any point in
IP(I), will satisfy the desired inequality.

We find a subset of the components of t whose sum is greater or equal to «(I)/e.

To start, consider a bounding inequality corresponding to an irreducible component J;,. This takes the
form

Y+ -+
aill ailn

Yn = 1,

where the number of y; whose coefficients are non zero in the preceding inequality is the height of the

monomial prime ideal y/J;, thus at most e. The displayed inequality thus implies that for y = t at least one

of the terms is greater or equal to %, i.e.,

e’

Qi k .
tr, > —* for some 1 < k < n and some integer a; 1, > 1.
e

Now, suppose we have found tj,,tg,,. .., ¢, such that ty, > “L% ¢ > Zmbs byt we have
. . a; a; a; . .
Wirky + Qigky + -+ + @ik, < a(I). Consider the monomial x " ) "1™ ...z, """ By the assumption,

it has degree smaller than «(I), so it’s not an element of I. Therefore, there is some component J;, .,
that does not contain this monomial. Repeating the previous argument, from the corresponding inequality

> 1. There are two possibilities depending on whether

. Qippt1kmt1
we obtain tg,  , > —=5=" for some a;,, k.,

km+1 S {kl, ey km} or IiOtS
(1) tk,.., is not one of ty ,tg,,...,tx, . Then we observe that

Qi ky + Qigky + 0+ Qi ke, + Qi1 kg = Qigky T Qigky + 0+ Qi ke, -
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. . . Qi k Aink aimkm .
(2) tk,,,, is one of ty,,tk,,...,tk,, say tk, ., = tr,. Since the monomial z, '™z, >" -z, is not

it must be that a;,,_ &, ., > @ik, Therefore, we can replace the inequality t;, >

m )

contained in J;, , ,,

al% by the stronger inequality ¢y, ., > a’"“% Specifically, redefining iy := 4,41 and kg := kpyy1

and thus a;,k, = a;,, & increases the value of the sum a;,x, + @iy, + - + ag,, -

m-41
Since in either case the value of the sum a; 5, + @ik, +- -+ ik + ik OF Qigky + Qg+ -+ Q4 ey
increases, we see that iterating this procedure eventually results in positive integers a;,k,, Gisky, * * * + Qi k.,
such that

Qirky + Gigky + -+ + ik, 2 O((I)

m —

as well as in a corresponding set of coordinates of t that satisfy the desired inequality

a; a; oo
tkl ++tkm > ivky + Qigky T + T Km > O
e e

We remark that the direct analogue of the Chudnovsky bound in Conjecture 4.12 fails for a(I), as shown
by the following example.

Example 4.14. Consider the ideal I = (2%, 2y,4?) = (22,9) N (x,%?) C k[z,y]. The initial degree is a(I) = 2,
the big height is big-height(I) = 2 and the naive Waldschmidt constant is a(I) = % per Example 4.9. This

gives an inequality

a(I) + big-height(I) — 1
big-height(I)

~ 4 3

However, there are many ideals for which the expression in the Chudnovsky Conjecture 4.12 does indeed
provide a lower bound on @([/). In the next section we give a modified Chudnovsky-type lower bound for
a(I) that applies to all monomial ideals I.

4.8. Powers of the mazimal ideal

In this section we determine the naive Waldschmidt constant for the powers of the homogeneous maximal
ideal. We will later use this to deduce a Chudnovsky-type lower bound on the naive Waldschmidt constant
of ideals primary to the homogeneous maximal ideal.

In the following, we denote by m,, the homogeneous maximal ideal (z1,...,z,) of the polynomial ring
R = k[z1,...,z,]). We start by establishing the irredundant irreducible decompositions for the ordinary
powers of m,,.

Notation 4.15. For each positive integer s we denote by P,(s) the set of partitions of s into » nonempty
parts

n
aieN,aizl,Zaizs}.

i=1

P.(s) = {(a1,~-~7an)

Proposition 4.16. Given an integer d > 1, the irredundant irreducible decomposition of the ideal me =

(w1, .., m,)% is

my, = N (20, ) (4.2)
(a1,...,an)EPy (d+n—1)
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Proof. Let x* = 28 ...2br ¢ Naran)ePn(din—1 (@1 - 23"), and suppose x? ¢ md. Then there are
inequalities

n n

d bi<d  andthus  d—) b > 1.

i=1 i=1
Let

bi+1 1<i<n
a; =
by +d—S" b i=n

which implies a; > b; + 1 for all 1 <4 < n. From this, we have an equality

n n—1 n n n
>ai=Y (bi+1)+ba+d=Y b= bi+tn—-1+d-Y bj=d+n—1
i=1 i=1 i=1 i=1 i=1
and hence (ai,...,a,) € P,(d+n — 1). But since a; > b; for all 4, x* ¢ (2§*,...,2%"), a contradiction. As

a result, we obtain the containment

N (@f, ... ) Cmil (4.3)
(a1,...,0n)E Py (d+n—1)
Now take x* € mf, and suppose x" ¢ n(al,...,an)epn(dﬁ»nfl)(x(flﬂ'-'7!7/‘?1”)- Then there is some @ =

(z, ..., 28) with (c1,...,¢,) € Po(d+mn—1) such that x* ¢ Q. This implies that ¢; > b; for all 1 <1i < n,
so ¢; > b; + 1. But then we deduce

d—i—n—l:iciZzn:(bi—kl):n—i—ibi2n+d>d+n—1,
i=1 i=1 i=1

which is of course a contradiction. Hence

md C N (291, ..., z0) (4.4)
(a1,...,an)EP,(d+n—1)

Combining (4.3) and (4.4), we obtain our desired result. O

Having determined the irredundant irreducible decomposition of m¢, we deduce the bounding inequalities
for the irreducible polyhedron from Lemma 3.7.

Corollary 4.17. The irreducible polyhedron of the ideal m¢ is given by the inequalities

Lyi++ Ly, =1 for (ar,....a,) € Po(d+n—1)
yi >0 for1 <i<n.

Next we give closed formulas for the naive Waldschmidt constant for the powers of the maximal ideal.
We first single out the case when this value is an integer.

Proposition 4.18. Suppose d = 1 mod n. Then the naive Waldschmidt constant of m is

_ d -1
amdy =7 e,
n
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d+n—1
n

Proof. If d =1 mod n, then d+ n — 1 is an integer multiple of n; in other words, is an integer, say

m. The ideal (z7",...,2™) is in the irreducible decomposition of m¢ by Proposition 4.16. The bounding
inequality corresponding to NP(z1*,...,z}")

1 1

—yitoct—yn 21l = ety 2m

m m
indicates that a(m?) > m. Consider the vector (Z,...,™) in R™ that clearly has sum of coordinates m.
For each component (z{*,...,z%") in the irreducible decomposition there is an identity

1(m)+ +1(m)_mzn:1
a \n an \ 1N T n a;

i=1

The value % Z?:l ai is the inverse of the harmonic mean of the set ay,...,a, and the arithmetic mean for
this set is m. Hence the inequality relating these means yields

HORREICEIOR!

Therefore the point (7, ..., ™) is part of the Newton polyhedron of each irreducible component of m? ie.,
(Z,...,2) e IP(m?). Since it was shown before that the least value of the sum of coordinates of points in
this polyhedron is at least m, and the point identified above has sum of coordinates exactly m, we conclude

that a(md) =m. O

Remark 4.19. The right hand side in the equality displayed in Proposition 4.18 matches the Chudnovsky
a(m,,)+big-height(m,)—1

lower bound Big-height (my) ;

see Conjecture 4.12.

Before we continue our analysis, we state a simple fact that will become useful later. The proof is omitted,
since it is a direct verification.

> 1oy 1

Lemma 4.20. If x,y € Rsg are such that x >y + 1, then % + =1 T g41

1
y

An interesting consequence of the above lemma is presented below.

Proposition 4.21. Fiz an integer s > 0. The minimum value of the function f(a) = a—ll 4+ 4 ai, where the
tuple a = (ay,...,a,) ranges over P,(s) is attained by a partition where the parts differ by at most one,

that is, la; —a;| <1 for all1 <i < j < n.

Proof. The result follows by noticing that modifying a partition in a manner that decreases the difference
between the parts results in an increase of the objective function f. Indeed, Lemma 4.20 insures that if
(a1,...,a,) € P,(s) has two parts a;,a; such that |a; — a;j| > 1, then the partition (a},...,a,) € Pu(s)
obtained by setting aj = ay whenever k ¢ {i,j}, a; = max{a;, a;} — 1, a; = min{a;, a;} + 1 satisfies

n

1
a

~

Now we turn to the determination of &(m¢) for arbitrary values of d.

Theorem 4.22. Suppose d is a positive integer and d —1 =k mod n, 0 < k < n. Then the following equality
holds
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m+d—-1—-k)(2n+d—-1-k)
n(2n+d—1-—2k)

a(my) =

Proof. First, if £k = 0, then the formula becomes

G(md) = 2n+d—-1-0)(n+d—-1-0) n+d-1

alm) = = e rd=1-200)) T~ T

which is in accordance with Proposition 4.18. Therefore, let us consider the case k > 0.
Let a = {%d_l} and b = L%J, with explicit expressions

)

n n

n+d—1+(n-—k) n+d—1—k

Thus a and b are positive integers. We define the balanced partition of n +d — 1 as the unordered n-tuple
where k of the elements are @ and n — k of the elements are b. This partition is in P,,(n + d — 1) since these
elements sum to n +d — 1.
Consider now the components of the irreducible decomposition (4.2) corresponding to permutations of
n

this balanced partition. There are (k) such irreducible components; each corresponds to a permutation o
in the symmetric group on n elements in the following way

JO’ = (I,UZ.(I), e ,xg_(k),mg_(k+1), .. ,mg(n))

There are multiple permutations o which give the same irreducible component J,. The bounding inequality
for IP(m?) corresponding to the component J,, is

1 1
p Yoy T + Yok)) + b (Yotr1) ++ + Yo(m)) =1

Summing up these inequalities for all the distinct ideals J, and utilizing the symmetry of the coefficients

o () (7))

whence we deduce that any point y = (y1,...,yn) € IP(I) satisfies

yields

(™) (n+d—1—k)2n+d—1—k)
+ + o+ n Z = = P.
SR T G E n(Zn+d=1-2k) ’

From Corollary 4.7 we now deduce the inequality &(md) > 3.

Next consider the vector y € R™ having each component 3; = 3/n. We show that y € I P(m¢) by verifying
that this vector satisfies the bounding inequalities in Corollary 4.17. Given (a1,...,a,) € Py(d+n — 1)
there is an equality

1 1 1 1\ B8

a1 [e7% ay 27
and by Proposition 4.21 we can compare the sum of the reciprocals for the partition (ay,...,a;) to that of
the balanced partition as follows

n?(2n+d —1 - 2k)

FUNE EURS BRI o
ap an = q T\ b (n+d—-1-k)2n+d—-1-k) B’
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Altogether, the previous two displayed equations yield the inequality

1 1 n B

—?71+-~-+—§n2—'—=1~
a Qn B n

d

o, it follows

Since we have shown y satisfies the bounding inequalities for the irreducible polyhedron of m
that y € IP(m¢) and thus

m+d-1—k)(2n+d—1-k)
n(2n+d—1-2k)

amp) <4+ =p=
Together with the opposite inequality proven above this finishes the proof. O
We give a lower bound that extends Remark 4.19.

Corollary 4.23. Let d,n be positive integers. Then the following inequality holds

a(me) > {MJ ,

n
with equality taking place if and only if d =1 (mod n).

Proof. In view of Theorem 4.22, setting d — 1 = k (mod n) where 0 < k < n — 1, the claim is equivalent to
the following easily verified inequality

(n+d-1-k)(2n+d—1-k) S d+n—-1-Fk {d+n1J 5
” .

n(2n+d—1—2k) - n

In view of the result above, we make a conjecture regarding the naive Waldschmidt constant that parallels
Conjecture 4.12.

Conjecture 4.24. Let I be a monomial ideal. Then the following inequality holds

~ a(I) + big-height(I) — 1
all) z { big-height (1) J

In Theorem 4.29 we prove this conjecture for the case when I has maximum possible big-height, namely
big-height(I) = n. The importance of determining the value of the naive Waldschmidt constant for the
powers of the homogeneous maximal ideal earlier in this section becomes apparent in the next result because
this provides lower bounds for the naive Waldschmidt constant of arbitrary ideals.

Theorem 4.25. Let I be a monomial ideal in K[zy,...,x,] with a(I) = d. Then the inequality a(m2) < a(1)
holds.

Remark 4.26. The analogue of the above theorem fails when replacing the naive Waldschmidt constant with
the Waldschmidt constant. That is, if a(I) = d, the inequality a&(m¢) < @(I) need not hold. This can be seen
taking I = (zy, zz,yz), an ideal which satisfies the containment I C m3, but yields a(I) = 3 < &(m3) = 2.

It is nevertheless true that for square-free monomial ideals I C J one has a(I) > a(J); see [6, Lemma
3.10]. Our proof for Theorem 4.25 draws inspiration from this result. Before giving the proof, we require
some additional preparation.
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Definition 4.27. For an ideal I denote
Irr(I) := {J| J is irreducible and I C J}.

For any monomial ideal I, the set Irr([) is a partially ordered set with respect to containment which
has finitely many minimal elements. Moreover, Jy, ..., Js are the minimal elements of Irr(I) with respect
to containment if and only if I = J; N --- N J is the irredundant irreducible decomposition of I.

Lemma 4.28. If I C I' are monomial ideals, then the following hold:

(1) Irr(J") C Irr(1),

(2) if J' is a minimal element of Irr(I') with respect to containment then there exists a minimal element
J € Irr(I) with respect to containment such that J C J',

(3) a(I) > a(I').

Proof. The containment Irr(I’) C Irr(I) follows from Definition 4.27 and the fact that I C I'.

Suppose J’ is minimal in Irr(I"). Consider the set S = {J € Irr(I) | J C J'}. This is a non-empty subset
of Irr(7) since J' € S. Thus it has a minimal element with respect to containment, let’s call it J. Moreover,
since S is a lower interval of the poset Irr(I), we deduce that J is in fact a minimal element of Irr(T).

Now let I = JyN---NJgand I’ = JyN---NJ] be the irredundant irreducible decompositions for I and I’
respectively. From the second assertion of this lemma, for every j € {1,2,...,t} there existsani; € {1,...,s}
such that J;; C J}. From this we deduce NP(J;;) € NP(J}) for each j and these containments combine to
show the following

IP(I) = ﬂ NP(J;) € (Y NP(J;,) € (| NP(J}) = IP(I').
i=1 j=1 Jj=1

Having established the containment IP(I) C IP(I') above, we deduce from this containment and Corol-
lary 4.7 the desired inequality () > a(I’). O

Proof of Theorem 4.25. Theorem 4.25 follows from part 3 of Lemma 4.28 applied to I’ = mZ. The contain-
ment I C I’ = m? is ensured by the hypothesis a(l) =d. O

The following consequence of Theorem 4.25 establishes a lower bound on the naive Waldschmidt constant
applicable to all monomial ideals.

Theorem 4.29. Let I C K|z, ...,2,] be a monomial ideal with a(I) =d. Ifd—1 =k mod (n), 0 < k <n,
then the following inequalities hold

all) > a(l) >a(l) >

n+d—1—k)2n+d—1-k) S {a([)—!—n—lJ.

n(2n+d—1—2k)
Proof. This follows from Proposition 4.8, Theorem 4.25 and Theorem 4.22. 0O

The above inequalities establish the validity of Conjecture 4.24 for monomial ideals I which have the
maximal ideal as an associated prime. For this class of ideals, Conjecture 4.12 is obviously satisfied as well,
since the symbolic and ordinary powers agree and thus a(I) = a(I).
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