

Biogeosciences Perspectives on Integrated, Coordinated, Open, Networked (ICON) Science

D. Dwivedi¹, A.L.D. Santos², M.A. Barnard³, T.M. Crimmins⁴, A. Malhotra⁵,
 K.A. Rod⁶, K.S. Aho⁷, S.M. Bell⁸, B. Bomfim⁹, F.Q. Brearley¹⁰, H.
 Cadillo-Quiroz¹¹, J. Chen¹², C.M. Gough¹³, E.B. Graham^{6,14}, C.R.
 Hakkenberg¹⁵, L. Haygood^{16,17}, G. Koren¹⁸, E.A. Lilleskov¹⁹, L.K. Meredith²⁰,
 S. Naeher²¹, Z.L. Nickerson⁷, O. Pourret²², H.-S. Song²³, M. Stahl²⁴, N. Tas²⁵,
 R. Vargas²⁶, and S. Weintraub-Leff⁷

¹Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, One Cyclotron Road
 M.S. 74R316C, Berkeley, CA 94720, USA

²Department of Environmental Engineering, Federal University of Paraná, Polytechnic Center Campus,
 Curitiba, PR 82590-300, Brazil

³Institute of Marine Sciences, University of North Carolina at Chapel Hill, 3431 Arendell Street, Morehead
 City, NC 28557, USA

⁴USA National Phenology Network, School of Natural Resources and the Environment, University of
 Arizona, 1311 E. 4th St., Ste. 325, Tucson, AZ 85721, USA

⁵Department of Earth System Science, Stanford University, Stanford, CA 94305, USA

⁶Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354,
 USA

⁷Battelle, National Ecological Observatory Network, 1685 38th St #100, Boulder, CO 80301, USA

⁸Institute of Environmental Science and Technology (ICTA), Universitat Autònoma de Barcelona (UAB),
 Bellaterra, Spain,

⁹Climate and Ecosystems Sciences Division, Lawrence Berkeley National Laboratory, Calvin Rd., Berkeley,
 CA 94705, USA

¹⁰Department of Natural Sciences, Manchester Metropolitan University, Chester Street, Manchester, M1
 5GD, UK

¹¹School of Life Sciences, Arizona State University, Tempe AZ 85287, USA

¹²Department of Geography, Environment, and Spatial Sciences, Michigan State University, East Lansing,
 MI 48823, USA

¹³Department of Biology, Virginia Commonwealth University, 1000 W. Cary St., Richmond, VA 23284,
 USA

¹⁴School of Biological Sciences, Washington State University, Richland, WA 99354, USA

¹⁵School of Informatics, Computing & Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011,
 USA

¹⁶Department of Geosciences, The University of Tulsa, 800 South Tucker Drive, Tulsa, OK 74104, USA

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the [Version of Record](#). Please cite this article as [doi: 10.1029/2021EA002119](https://doi.org/10.1029/2021EA002119).

This article is protected by copyright. All rights reserved.

36 ¹⁷Boone Pickens School of Geology, Oklahoma State University, 105 Noble Research Center, Stillwater,
37 OK 74075, USA

38 ¹⁸Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, the Netherlands

39 ¹⁹USDA Forest Service, Northern Research Station, 410 MacInnes Dr, Houghton, MI 49931, USA

40 ²⁰School of Natural Resources and the Environment, University of Arizona, 1064 East Lowell Street,
41 Tucson, AZ 85721, USA

42 ²¹GNS Science, 1 Fairway Drive, PO Box 30368, Lower Hutt 5040, New Zealand

43 ²²UniLaSalle, AGHYLE, 19 rue Pierre Waguet, 60026 Beauvais cedex, France

44 ²³Department of Biological Systems Engineering, Department of Food Science and Technology, University
45 of Nebraska-Lincoln, Lincoln, NE 68583, USA

46 ²⁴Department of Geosciences, Union College, Schenectady, NY 12308, USA

47 ²⁵Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, One Cyclotron Road
48 70A-2250, Berkeley, CA 94720, USA

49 ²⁶Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA

50 **Key Points:**

51 • Biogeosciences needs ICON principles to address multiscale global problems and re-
52 duce geographical bias in scientific progress.

53 • Much potential exists for emphasizing people-centric capacity building, involving rel-
54 evant stakeholders within an ICON framework.

55 • Globally coordinated experimental and field data provide challenges and opportunities
56 for scientific advancement in biogeosciences.

Corresponding author: Dipankar Dwivedi, ddwivedi@lbl.gov

57 Abstract

58 This article is composed of three independent commentaries about the state of Integrated,
59 Coordinated, Open, Networked (ICON) principles (Goldman et al., 2021) in the AGU Bio-
60 geosciences section, and discussion on the opportunities and challenges of adopting them.
61 Each commentary focuses on a different topic: Global collaboration, technology transfer, and
62 application (**Section 2**), Community engagement, community science, education, and stake-
63 holder involvement (**Section 3**), and Field, experimental, remote sensing, and real-time data
64 research and application (**Section 4**). We discuss needs and strategies for implementing
65 ICON and outline short- and long-term goals. The inclusion of global data and international
66 community engagement are key to tackling grand challenges in biogeosciences. Although
67 recent technological advances and growing open-access information across the world have
68 enabled global collaborations to some extent, several barriers, ranging from technical to
69 organizational to cultural, have remained in advancing interoperability and tangible sci-
70 entific progress in biogeosciences. Overcoming these hurdles is necessary to address pressing
71 large-scale research questions and applications in the biogeosciences, where ICON principles
72 are essential. Here, we list several opportunities for ICON, including coordinated exper-
73 imentation and field observations across global sites, that are ripe for implementation in
74 biogeosciences as a means to scientific advancements and social progress.

75 Plain Language Summary

76 Biogeosciences is an interdisciplinary field that requires multiscale global data and con-
77 certed international community efforts to tackle grand challenges. However, several technical,
78 institutional, and cultural hurdles have remained as major roadblocks toward scientific
79 progress, hindering seamless global data acquisition and international community engage-
80 ment. To bring a paradigm shift in biogeosciences, there is a need to implement integrated,
81 coordinated, open, and networked efforts, collectively known as the ICON principles. In this
82 article, we present three related commentaries about the state of ICON, discuss needs to
83 reduce geographical bias in data for enhancing scientific progress, and identify action items.
84 Action items are primarily people-centric and include but are not limited to: longer-term
85 funding priorities to institutionalize capacity and reduce entry costs, engagement of local
86 stakeholders across the globe, incentivization of collaborations, and development of training
87 and workshops for capacity building.

88 1 Introduction

89 Integrated, Coordinated, Open, Networked (ICON) science aims to enhance synthesis,
90 increase resource efficiency, and create transferable knowledge (Goldman et al., 2021). In
91 particular, ICON science is an approach to designing and carrying out research activities
92 encompassing four components:

- 93 • Integrating processes across traditional disciplines,
- 94 • Coordinating consistent protocols across systems to generate interoperable data across
95 systems,
- 96 • Openly exchanging ideas, data, software, and models, and
- 97 • Promoting networks and collaborations that benefit and provide resources toward
98 common scientific goals synergistically.

99 Biogeosciences is an inherently interdisciplinary field that needs ICON to address grand
100 environmental challenges, including anthropogenic climate change and its effects on abiotic
101 and biotic systems. Tackling multiscale global problems requires reducing geographical bias
102 in data collection and scientific progress. Integrating biology, chemistry, and Earth sciences,
103 the biogeosciences address human impacts on the biophysical and chemical properties of
104 terrestrial and aquatic systems around the globe. However, a variety of hurdles prevent
105 ICON implementation in biogeosciences. As part of a collection of commentaries spanning
106 ICON in the geosciences (Goldman et al., 2021), this article evaluates the state of ICON in
107 biogeosciences and focuses on three aspects surrounding global collaborations, stakeholder
108 engagement, and data research and application in biogeosciences.

109 2 Global Collaboration, Technology Transfer, and Application

110 2.1 The need for ICON in biogeosciences

111 Many pressing biogeoscience grand environmental challenges, including climate change
112 and nutrient deposition, are global in scope and transcend political boundaries (Figure 1).
113 These challenges are linked to local-to-global ecosystem processes (e.g., carbon or nitrogen
114 cycling) that require distributed observations across spatial scales. Too often, measurements
115 and networks are defined within political boundaries and concentrated in high-income coun-
116 tries, leading to geographical biases (e.g., Stell et al., 2021). Appropriately addressing these
117 grand challenges requires research to be conducted across countries in a coordinated way.

118 However, participation costs can be prohibitive, especially for developing countries. Given
119 this barrier and the heterogeneity of methods available in biogeosciences, we must develop
120 strong instrumentation and protocol coordination for characterizing biogeochemical pools
121 and fluxes, data archiving, and researcher training (e.g., Hubbard et al., 2018, 2020; Varad-
122 harajan et al., 2019). Overall, tackling biogeosciences grand challenges requires concerted
123 actions that are **integrated, coordinated, open, and networked**. Below, we briefly
124 describe several hurdles toward implementing the ICON principles and discuss the path
125 forward for pioneering global biogeosciences.

126 2.2 Major challenges

127 Grand challenges in the field of biogeosciences are global and require international
128 collaborations to address them. **Integrated and coordinated** efforts are needed for suc-
129 cess, but organizational and cultural challenges for global collaborations present barriers
130 to interoperability (Villarreal & Vargas, 2021). Organizational barriers relate to challenges
131 regarding institutional responsibility and authority, as well as the inequality of resources
132 (Mirtl et al., 2018; Vargas et al., 2017). Cultural barriers relate to how scientists perceive
133 the world and their relationships and collaborations. Differences in cultural norms, institu-
134 tions, education, socioeconomic status, modes of communication, language, infrastructure,
135 and technology complicate collaboration between scholars from different regions, institutes,
136 or subdisciplines. Recent decades have witnessed an enthusiasm for collaborating in edu-
137 cation and research, as most scholars recognize the importance of joint efforts in seeking
138 solutions for global environmental issues. Therefore, **open and networked** efforts are
139 also needed to address grand challenges in the field of biogeosciences. However, cultural
140 barriers can hinder networking, and institutions may prioritize perceived national over in-
141 ternational interests. Even within national borders, there are barriers to open data sharing,
142 such as the desire to avoid competition between smaller and larger research groups due
143 to the availability of disparate resources. International cultural and resource differences
144 further intensify barriers to open and networked efforts, because scholars from developing
145 countries may not receive equal recognition for the outcomes of their data (e.g., inclusion on
146 publications, patents) (Armenteras, 2021). This recognition is critical for addressing local
147 issues, maintaining rigorous research and education programs for their groups, and career
148 and institutional advancement.

149 2.3 Looking Forward: An Urgent Call for People-Centric Actions

150 To address barriers to ICON in the biogeosciences, we call for people-centric actions. In
151 the short term, investment in capacity- and infrastructure-building, workshops, and training
152 can help overcome barriers to global collaboration. These efforts will favor the development
153 of researchers with a sense of “belonging” to global networks, and will facilitate reducing
154 technological barriers (e.g., infrastructure) and global cooperation. Scientific societies, insti-
155 tutions of higher learning, and other research entities can promote these coordinated efforts
156 by organizing in-person and virtual events. For longer-term actions, we propose top-down
157 incentives that reward ICON activities, such as data sharing (e.g., publishing open datasets)
158 and efforts towards integration and coordination of networked efforts (e.g., activities that
159 support or develop networks such as LTER, FLUXNET, ForestPlots). Further, recognizing
160 the need for close coordination and integration across the globe to advance science, the Ac-
161 celerating Research through International Network-to-Network Collaborations (AccelNet)
162 program of the National Science Foundation (NSF) fosters connections among research net-
163 works of the United States of America (USA) and complementary networks abroad. As an
164 illustration, Arora et al. (2021) organized several workshops supported by the NSF and
165 Department of Energy (DOE) between 2019 to 2021 and brought together an international
166 network of DOE watersheds and critical zone observatories (CZOs). They emphasized that
167 networks can serve as a vehicle for knowledge exchange, integration, and discovery among
168 researchers of the USA and their international counterparts. These efforts should carry as
169 much weight as scientific publications for hiring and promotions. Furthermore, longer-term
170 funding priorities are needed for institutionalizing capacity and reducing entry costs, espe-
171 cially for researchers from low-to-middle income countries (Figure 1). Overall, biogeosciences
172 deal with cross-scale and cross-continental problems, and need ICON principles.

173 3 Community Engagement, Community Science Education, and Stake- 174 holder Involvement

175 3.1 Current state of ICON

176 In recent years, increased engagement among non-scientists through public participa-
177 tion in the scientific endeavor (Roy et al., 2012; Besançon et al., 2021) has significantly
178 boosted and popularized community or citizen science projects. These projects are sup-
179 ported by volunteers and have the potential to yield consistently collected diverse data
180 (**integrated and coordinated**) that are openly accessible (**open**) through stakeholder

engagement (**networked**). In this commentary, although we use “community science” as an umbrella term for “citizen science,” “public participation with science,” and “advancing science through volunteer-contributed data,” these terms may have slightly varying connotations in different scientific fields. As an illustration of community science projects, the USA-based phenology-focused community science program Nature’s Notebook utilizes the same published and scientifically vetted observation protocols as the National Ecological Observation Network (NEON; Denny et al. (2014); Elmendorf et al. (2016)), and provides ready access to data contributed by both community and professional (e.g., NEON) scientists (**coordinated, open**). Similarly, many research projects taking place at International Long-Term Ecological Network sites engage students in **integrated** and **coordinated** research (Gosz et al., 2010). However, examples of coordinated, open, networked science engaging communities, stakeholders, and community scientists remain rare. Funding for science and scientific publishing are two areas where changed practices are leading to increased engagement among communities, stakeholders, and community scientists. In Australia, New Zealand, Japan, and several European countries, publicly funded research projects are required to involve local stakeholders and indigenous communities. Federally funded research proposals in New Zealand must demonstrate direct involvement and/or benefit to Māori and address indigenous knowledge and innovation, societal and health concerns, and environmental sustainability (Ministry of Research, 2005). In the USA, expectations for outreach are variable: the DOE calls require outreach plans, and the NSF encourages but does not require outreach and education through grant-funded “broader impacts”. In addition to federal agencies, several non-federal, state-level, and university-based programs also require stakeholder engagement (e.g., SeaGrant Programs, Water Resources Institutes). As a cultural change, a growing number of journals are innovating by ensuring the entire peer-review process is transparent, accessible, and available for an open viewing and comment by not only scientists, but also stakeholders and policymakers.

3.2 Challenges

A key challenge to engaging stakeholders, community members, and non-professional scientists in ICON science is the limited awareness of or access to **coordinated** established and often technical research protocols, **open data efforts**, and communication channels used by professional scientists. Monitoring protocols are not always readily available for would-be non-professional data collectors or users. Similarly, data repositories and commu-

213 nication channels used by professional scientists remain relatively unknown or inaccessible
214 to stakeholders, community members, and non-professional scientists, challenging efforts to
215 engage these communities while adhering to ICON principles. Such limited ICON-centered
216 interaction between scientists and non-scientists stifles the transfer, application, and transla-
217 tion of global change research that could shape policy and inform decision-making (Enquist
218 et al., 2017). Another important barrier to greater engagement among scientists and re-
219 searchers with stakeholders and community members is the persistent and intensifying aca-
220 demic standard that productivity and impact be judged primarily via peer-reviewed articles
221 (Davies et al., 2021; Perkmann et al., 2021). This results in many research findings and
222 data remaining “untranslated” for a non-technical audience, rendering potentially valuable
223 results inaccessible to policymakers, stakeholders, and the general public. Further, scientific
224 journals and databases are frequently inaccessible to the public, presenting additional bar-
225 riers to open, coordinated science engaging and used by stakeholders, community members,
226 or community scientists.

227 3.3 Opportunities

228 The intentional engagement of local stakeholders, community members, and educators
229 during the development of a research project has the potential to increase **integrated**,
230 **coordinated**, and **open science**. During project inception and development, researchers
231 could build in ways to involve stakeholders and the public, ranging from defining the scope
232 and priorities of research questions and applications with community expertise to engag-
233 ing the public in community science data collection (**networked**). The requirement that
234 publicly funded research projects in New Zealand directly involve the native Mori people
235 in project design, execution, and communication of findings has shown that such practices
236 ensure measurable outcomes to research and society (Ministry of Research, 2005). In-
237 creasing research team diversity by involving community members, stakeholders, and other
238 non-professional scientists can amplify data collection by orders of magnitude beyond what
239 researchers alone can achieve and can increase the extent to which science is integrated,
240 open, coordinated, and networked. For example, the “Indigenous Symposium on Water Re-
241 search Education, and Engagement,” held in Montana in 2018 (Chief et al., 2019) brought
242 36 indigenous scientists, community activists, and elders together to discuss topics ranging
243 from groundwater contamination to climate change, topics that are impacting Confeder-
244 ated Salish and Kootenai Tribes. Representation among different genders, backgrounds,

nationalities, and career stages expands perspectives in a project (Sandbrook et al., 2019). Local non-scientists can be great assets to projects, bringing valuable contextual information (Roman et al., 2021). The AGU's Thriving Earth Exchange offers one opportunity for scientists to connect with communities seeking science support to resolve challenges that require the expertise of scientists, such as issues associated with municipal water quality and community forest health. Existing community science projects such as those listed at scistarter.org can provide ready-made infrastructure for engaging members of the public in data collection. Alternatively, researchers may create their own community science project leveraging existing infrastructure like that housed at citsci.org and aneclata.org. Including social scientists on project-teams can maximize societal benefits and use of project outputs by non-scientist audiences (Enquist et al., 2017). Media coverage of biogeoscience research can result in a broader appreciation of research findings and the return on invested funds by the public. Science translation and communication can extend beyond the traditional news media and can be led by researchers themselves, using traditional outlets such as newspaper, radio, and television, in addition to social media (e.g., Twitter, Reddit, Facebook), blog posts, podcasts, and even comics (Pourret et al., 2020). Funding agencies and publishers could encourage or even require such science translation. This could take the form of non-technical abstracts and reports published alongside research papers. Communication in multiple languages is crucial for the effective dissemination of scientific ideas (Márquez & Porras, 2020). Finally, annual and tenure reviews should incentivize researcher participation by acknowledging, funding, and rewarding the effort that community and stakeholder engagement and science communication efforts necessitate.

4 Field, Experimental, Remote Sensing, and Real-Time Data for Biogeosciences

4.1 Current state of ICON

Biogeoscience research is often limited by observational and analytical constraints, and by the integration of concepts and applications across subdisciplines (e.g., land-ocean fluxes in Kothawala et al. (2020)). Recently, a proliferation of data networks and observatories have employed principles of ICON science to mitigate these challenges across scientific research: from data collection to publication. Well-established field sampling networks and observatories, like NEON, ICOS, FLUXNET, and LTERs, generate coordinated data products across disparate study sites and consolidate them (e.g., <https://lter.github.io/som-website/>;

277 Wieder et al. (2021)). ICON principles are likewise evident in the findable, accessible, inter-
278 operable, and reusable (FAIR) data policies required by many journals, which require the
279 provision of direct measurements from independent and less intensively sampled campaigns
280 to public repositories (e.g., Environmental Data Initiative), thereby allowing for post-hoc
281 cross-scale syntheses. These have increased the number of open-access direct measure-
282 ments across field, experimental, remote sensing, and real-time data that have facilitated
283 parameter-specific database creation and “bottom-up” scaling efforts. The growing availabil-
284 ity of field-deployable sensors enables real-time data collection of biogeochemical processes
285 and drivers that capture rare phenomena and short-term processes that are critical to eco-
286 logical monitoring, experimental studies, and predictive models. Openly real-time data are
287 increasingly available in networks like Next Generation Water Observing System (NGWOS),
288 and ecosystem-scale experiments such as SPRUCE (Krassovski et al., 2018) and Biosphere
289 2 Landscape Evolution Observatory (Volkmann et al., 2018). Additionally, there are coordi-
290 nated projects to collect field and sensor data at a network of field sites (e.g., Drought-Net,
291 NutNet; (Chabbi & Loescher, 2017) or under the same research infrastructure (e.g., AnaEE;
292 Clobert et al., 2018).

293 Satellite remote-sensing is another Earth system monitoring technology that has in-
294 creasingly employed ICON principles. Efforts to openly disseminate remote-sensing data
295 have grown rapidly, from the opening of Landsat archives and the establishment of data
296 processing and distribution centers like the Land Processes Distributed Archive Center, to
297 the development of user-friendly web portals like Earthdata Search and EarthExplorer. In-
298 creased coordination has enabled international orchestration of upcoming missions, as well
299 as integrated data products like the Harmonized Landsat-Sentinel dataset, which combines
300 NASA and the European Space Agency (ESA) satellite data. At the application level, user-
301 driven repositories like GitHub have enabled open data and code sharing, while cloud-based
302 platforms like Google Earth Engine have made large data sets, complex algorithms, and
303 cloud computing networked and open.

304 4.2 Current state of ICON

305 Interrelated issues of data availability, computational costs, monetary costs, time costs,
306 researcher preferences, and data standards pose key challenges. For example, challenges exist
307 in balancing geographic representativeness and the need for environmental–ecological strat-
308 ification (Guerin et al., 2020). Geographic gaps are common in data networks, especially for

309 emerging nations, which directly impact data integration and openness (Villarreal & Vargas,
310 2021). While satellite imagery and open-access platforms for data acquisition and processing
311 can partially mitigate these geographic biases, inequity in resources, training, and access
312 due to political restrictions and low funding in emerging nations greatly limit seamless integration.
313 Moreover, despite the potential for existing networks to provide networked research
314 infrastructure for biogeoscience research (Hinckley et al., 2016), mission- and agency-specific
315 protocols can make integrating ICON principles across networks challenging. Research in
316 biogeosciences is driven by exploration and hypotheses rather than by integration and net-
317 working alone. As such, ICON-driven research ensures transparency and reproducibility,
318 while advancing the investigation of large-scale, context-dependent biogeochemical ques-
319 tions. With the large-scale questions that need to be addressed in biogeosciences today,
320 overcoming the challenges that inhibit ICON principles will be essential.

321 4.3 Opportunities

322 Adopting ICON principles in biogeosciences provides many opportunities to expand
323 our understanding of critical ecosystem processes. In particular, paired experimentation and
324 field observations provide coordinated assessments across scales needed to resolve global bio-
325 geosciences challenges like ecosystem responses to climate change (Hanson & Walker, 2020;
326 Hinckley et al., 2016). First, we advocate accelerating efforts to integrate multiple experi-
327 ments at single sites and coordinate research efforts across networks to provide integrated
328 data streams. For example, globally coordinated field campaigns and remote-sensing data
329 networks can advance the quantification of biogeochemical drivers and feedbacks across
330 scales to improve continental assessments of emerging trends. Second, ICON principles
331 should be more thoroughly embraced for real-time data collection by expanding sensor
332 availability, coordinating data standards and tools, and increasing open access. Especially
333 important in this effort is the goal to increase sampling in underrepresented geographical
334 areas and expand the reach of data networks to researchers in those regions. Third, to
335 optimize these opportunities to incorporate ICON principles across and within all subdisci-
336 plines in the biogeosciences, there should be transparency in data, metadata, and methods
337 in open publications (i.e., clear design descriptions, uncertainty estimates), and an effort
338 to achieve standardization while allowing for site- and budget-specific modifications when
339 needed. Finally, the development of easy-to-use forecasting tools (e.g., web dashboards) for
340 non-specialist end-users in conservation and ecological management should be prioritized.

341 Advances in biogeosciences can then be more readily incorporated by practitioners, allowing
342 them to overcome barriers to technology and information where the need is greatest, espe-
343 cially in underrepresented low- and middle-income countries that are critical for expanding
344 ICON science to the global scale.

345 **5 Call for Action To Work Towards ICON Science**

346 Great potential exists to better engage stakeholders, community members, and inclusive
347 networks of global scientists in research efforts. We strongly encourage richer involvement
348 with these audiences and more purposeful translation and communication of findings to
349 society (e.g., Arora et al., 2019, 2021). ICON-driven science will not only solve scientific
350 gaps but also increase scientific equity, inclusion, and more fluid use of collective scientific
351 knowledge. To implement ICON principles in biogeosciences, we call for a suite of actions
352 on short- and long-term horizons, focusing on a people-centric approach toward capacity
353 building, cultural shifts, breaking barriers through reduced entry costs, building research
354 networks, and promoting community engagement with open and fair research practices.
355 We also suggest developing interoperable methods and instrumentation to confront global
356 challenges and solve key questions in biogeosciences.

357 **Open Research**

358 This research does not use any data or software.

359 **Acknowledgments**

360 DD was supported in part by the Watershed Function Science Focus Area and ExaSheds
361 projects at Lawrence Berkeley National Laboratory funded by the U.S. Department of En-
362 ergy, Office of Science, and Biological and Environmental Research under Contract No.
363 DE-AC02-05CH11231. MAB acknowledges support from the United States National Sci-
364 ence Foundation (OCE 1840715), the United States National Institutes of Health (NIEHS
365 1P01ES028939), and a Grant-in-Aid of Research from Sigma Xi, the Scientific Research
366 Society (G201903158412545). C.G. acknowledges support from the National Science Foun-
367 dation (NSF), Awards 1655095 and 1856319. S.N. acknowledges support from the New
368 Zealand Ministry of Business, Innovation and Employment through the Global Change
369 Through Time research program (contract C05X1702). N.T. acknowledges support from
370 the Office of Biological and Environmental Research in the U.S. Dept. of Energy (DOE)

371 Office of Science - Early Career Research program. B.B. was supported as part of the Next
372 Generation Ecosystem Experiments-Tropics, funded by the U.S. Department of Energy, Of-
373 fice of Science, Office of Biological and Environmental Research (DE-AC02-05CH11231).
374 HCQ acknowledges support from the Division of Environmental Biology at NSF award
375 1749252. SMB acknowledges support from the Spanish Ministry of Science and Innovation
376 (CEX2019-000940-M). RV acknowledges support from NASA Carbon Monitoring System
377 (80NSSC21K0964). LM acknowledges support from the Division of Environmental Biology
378 at NSF award 2034192. Authors for Section 2: DD, AM, EL, MS, SMB, GK, HSS, FQB,
379 RV, SWL, and JC. Authors for Section 3: MB, TMC, CG, LH, SN, TYC, OP, and NT.
380 Authors for Section 4: ALDS, BB, CH, EG, HCQ, KA, KR, LM, and ZLN.

References

Armenteras, D. (2021). Guidelines for healthy global scientific collaborations. *Nature Ecology & Evolution*, 5(9), 1193–1194. Retrieved from <https://doi.org/10.1038/s41559-021-01496-y> doi: 10.1038/s41559-021-01496-y

Arora, B., Ireson, A., Bouteiller, C. L., Hector, B., Ali, G., Stegen, J., ... Groh, J. (2019). *Toward an International Critical Zone Network-of-Networks for the Next Generation Through Shared Science, Tools, Data, and Philosophy* (No. FZJ-2019-06647).

Arora, B., Sullivan, P. L., Kuppel, S., Yang, X., & Groh, J. (2021). *The Future of Critical Zone Science: Call for papers*. Retrieved from <https://doi.org/10.1029/2021EO157965>

Besançon, L., Peiffer-Smadja, N., Segalas, C., Jiang, H., Masuzzo, P., Smout, C., ... Leyrat, C. (2021). Open science saves lives: lessons from the COVID-19 pandemic. *BMC Medical Research Methodology*, 21(1), 1–18.

Chabbi, A., & Loescher, H. W. (2017). *Terrestrial Ecosystem Research Infrastructures: Challenges and Opportunities*. CRC Press.

Chief, K., Emanuel, R., & Conroy-Ben, O. (2019). Indigenous symposium on water research, education, and engagement. *EOS*, 100.

Clobert, J., Chanzy, A., Le Galliard, J.-F., Chabbi, A., Greiveldinger, L., Caquet, T., ... others (2018). How to integrate experimental research approaches in ecological and environmental studies: AnaEE France as an example. *Frontiers in Ecology and Evolution*, 6, 43.

Davies, S. W., Putnam, H. M., Ainsworth, T., Baum, J. K., Bove, C. B., Crosby, S. C., ... others (2021). Promoting inclusive metrics of success and impact to dismantle a discriminatory reward system in science. *PLoS Biology*, 19(6), e3001282.

Denny, E. G., Gerst, K. L., Miller-Rushing, A. J., Tierney, G. L., Crimmins, T. M., Enquist, C. A., ... others (2014). Standardized phenology monitoring methods to track plant and animal activity for science and resource management applications. *International journal of Biometeorology*, 58(4), 591–601.

Elmendorf, S. C., Jones, K. D., Cook, B. I., Diez, J. M., Enquist, C. A., Hufft, R. A., ... others (2016). The plant phenology monitoring design for The National Ecological Observatory Network. *Ecosphere*, 7(4), e01303.

Enquist, C. A., Jackson, S. T., Garfin, G. M., Davis, F. W., Gerber, L. R., Littell, J. A., ... others (2017). Foundations of translational ecology. *Frontiers in Ecology and the*

414 *Environment*, 15(10), 541–550.

415 Goldman, A. E., Emani, S. R., Prez-Angel, L. C., Rodrguez-Ramos, J. A., & Stegen, J. C.
416 (2021). Integrated, Coordinated, Open, and Networked (ICON) Science to Advance
417 the Geosciences: Introduction and Synthesis of a Special Collection of Commentary
418 Articles. *Earth and Space Science Open Archive*, 22. Retrieved from <https://doi.org/10.1002/essoar.10508554.1> doi: 10.1002/essoar.10508554.1

420 Gosz, J. R., Waide, R. B., & Magnuson, J. J. (2010). Twenty-Eight Years of the US-LTER
421 Program: Experience, Results, and Research Questions. In *Long-Term Ecological
422 Research* (pp. 59–74). Springer.

423 Guerin, G. R., Williams, K. J., Sparrow, B., & Lowe, A. J. (2020). Stocktaking the
424 environmental coverage of a continental ecosystem observation network. *Ecosphere*,
425 11(12), e03307.

426 Hanson, P. J., & Walker, A. P. (2020). Advancing global change biology through experi-
427 mental manipulations: Where have we been and where might we go? *Global Change
428 Biology*, 26(1), 287–299.

429 Hinckley, E.-L. S., Anderson, S. P., Baron, J. S., Blanken, P. D., Bonan, G. B., Bowman,
430 W. D., ... others (2016). Optimizing available network resources to address questions
431 in environmental biogeochemistry. *BioScience*, 66(4), 317–326.

432 Hubbard, S. S., Varadharajan, C., Wu, Y., Wainwright, H., & Dwivedi, D. (2020). Emerging
433 technologies and radical collaboration to advance predictive understanding of water-
434 shed hydrobiogeochemistry. *Hydrological Processes*, 34(15).

435 Hubbard, S. S., Williams, K. H., Agarwal, D., Banfield, J., Beller, H., Bouskill, N., ... oth-
436 ers (2018). The East River, Colorado, Watershed: A mountainous community testbed
437 for improving predictive understanding of multiscale hydrological–biogeochemical dy-
438 namics. *Vadose Zone Journal*, 17(1), 1–25.

439 Kothawala, D. N., Kellerman, A. M., Catalán, N., & Tranvik, L. J. (2020). Organic matter
440 degradation across ecosystem boundaries: The need for a unified conceptualization.
441 *Trends in Ecology & Evolution*.

442 Krassovski, M. B., Lyon, G. E., Riggs, J. S., & Hanson, P. J. (2018). Near-real-time
443 environmental monitoring and large-volume data collection over slow communication
444 links. *Geoscientific Instrumentation, Methods and Data Systems*, 7(4), 289–295.

445 Márquez, M. C., & Porras, A. M. (2020). Science communication in multiple languages is
446 critical to its effectiveness. *Frontiers in Communication*, 5, 31.

447 Ministry of Research, S. . T. (2005). *Vision Mātauranga. Unlocking the Innovation Potential*
 448 *of Māori Knowledge, Resources and People*. MoRST Wellington.

449 Mirtl, M., Borer, E., Djukic, I., Forsius, M., Haubold, H., Hugo, W., . . . others (2018).
 450 Genesis, goals and achievements of Long-Term Ecological Research at the global scale:
 451 A critical review of ILTER and future directions. *Science of the Total Environment*,
 452 626, 1439–1462.

453 Perkmann, M., Salandra, R., Tartari, V., McKelvey, M., & Hughes, A. (2021). Academic
 454 engagement: A review of the literature 2011–2019. *Research Policy*, 50(1), 104114.

455 Pourret, O., Suzuki, K., & Takahashi, Y. (2020). Our study is published, but the journey
 456 is not finished! *Elements: An International Magazine of Mineralogy, Geochemistry,*
 457 *and Petrology*, 16(4), 229–230.

458 Roman, D., Reeves, N., Gonzalez, E., Celino, I., Abd El Kader, S., Turk, P., . . . Simperl,
 459 E. (2021). *An analysis of pollution Citizen Science projects from the perspective*
 460 *of Data Science and Open Science* (Vol. 55) (No. 5). Emerald Publishing Limited.
 461 Retrieved from <https://doi.org/10.1108/DTA-10-2020-0253> doi: 10.1108/DTA
 462 -10-2020-0253

463 Roy, H., Pocock, M., Preston, C., Roy, D., Savage, J., Tweddle, J., & Robinson, L. (2012).
 464 Understanding citizen science & environmental monitoring. Final report on behalf
 465 of UK-EOF. NERC Centre for Ecology & Hydrology and Natural History Museum.
 466 *Natural History Museum, London, UK. See <http://www.ukeof.org.uk/co/citizen.aspx>*
 467 *(accessed 28/11/2012)*.

468 Sandbrook, C., Fisher, J. A., Holmes, G., Luque-Lora, R., & Keane, A. (2019). The
 469 global conservation movement is diverse but not divided. *Nature Sustainability*, 2(4),
 470 316–323.

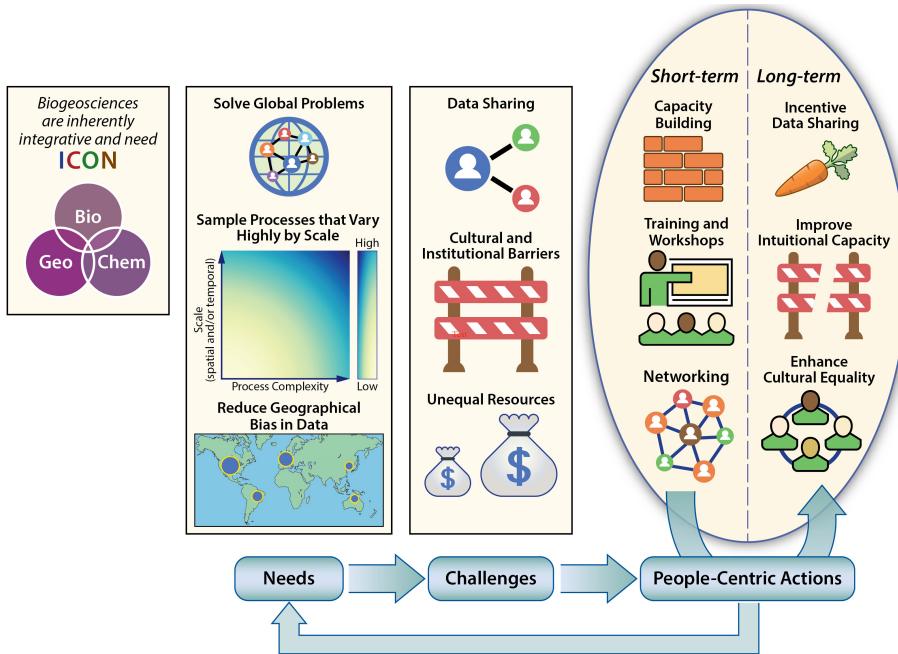
471 Stell, E., Warner, D., Jian, J., Bond-Lamberty, B., & Vargas, R. (2021). Spatial biases of
 472 information influence global estimates of soil respiration: how can we improve global
 473 predictions? *Global Change Biology*, 27(16), 3923–3938.

474 Varadharajan, C., Agarwal, D. A., Brown, W., Burrus, M., Carroll, R. W., Christianson,
 475 D. S., . . . others (2019). Challenges in building an end-to-end system for acquisition,
 476 management, and integration of diverse data from sensor networks in watersheds:
 477 lessons from a mountainous community observatory in East River, Colorado. *IEEE*
 478 *Access*, 7, 182796–182813.

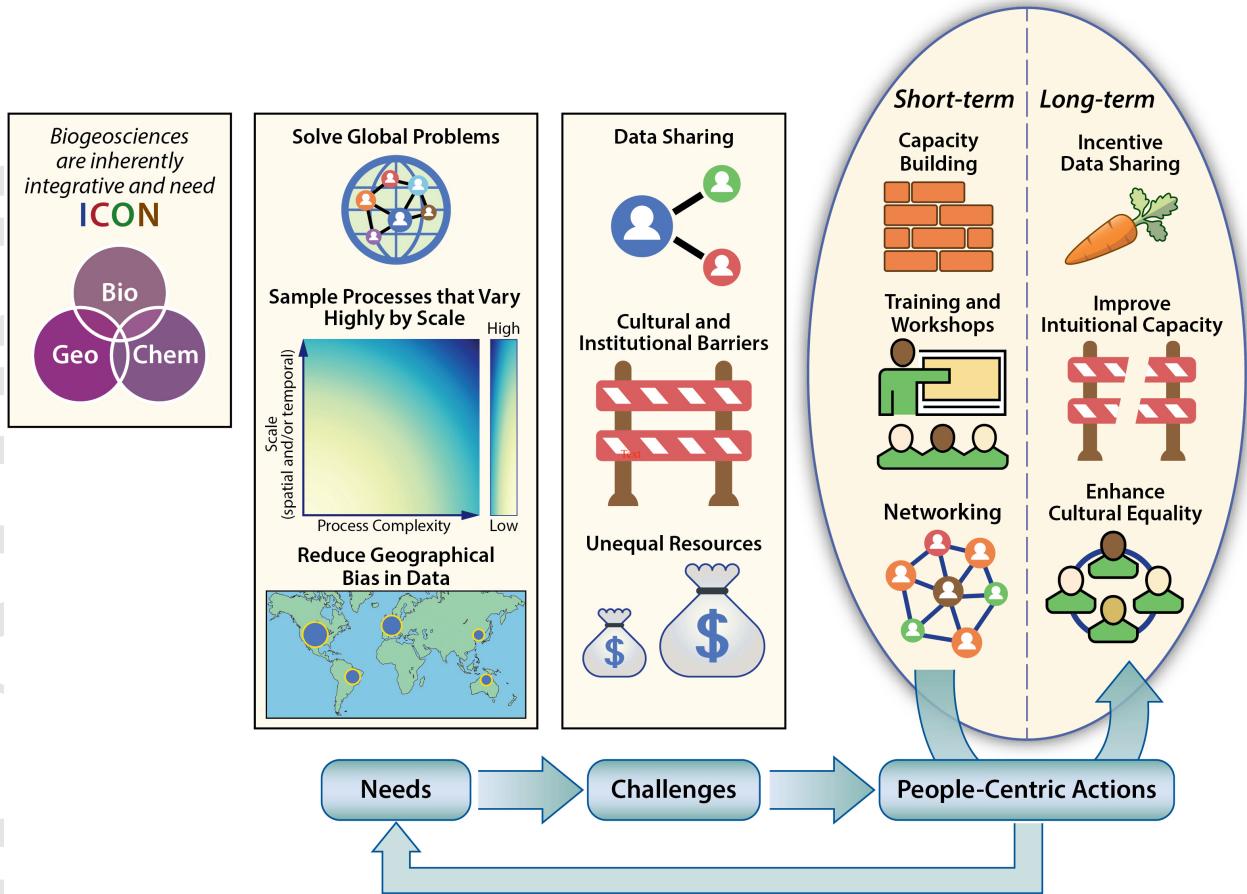
479 Vargas, R., Alcaraz-Segura, D., Birdsey, R., Brunsell, N. A., Cruz-Gaistardo, C. O., de

480 Jong, B., ... others (2017). Enhancing interoperability to facilitate implementation
481 of REDD+: case study of Mexico. *Carbon Management*, 8(1), 57–65.

482 Villarreal, S., & Vargas, R. (2021). Representativeness of FLUXNET sites across Latin
483 America. *Journal of Geophysical Research: Biogeosciences*, 126(3), e2020JG006090.


484 Volkmann, T. H., Sengupta, A., Pangle, L. A., Dontsova, K., Barron-Gafford, G. A., Har-
485 man, C. J., ... others (2018). Controlled experiments of hillslope coevolution at the
486 Biosphere 2 Landscape Evolution Observatory: Toward prediction of coupled hydro-
487 logical, biogeochemical, and ecological change. *Hydrology of Artificial and Controlled
488 Experiments*, 25–74.

489 Wieder, W. R., Pierson, D., Earl, S., Lajtha, K., Baer, S. G., Ballantyne, F., ... others
490 (2021). Sodah: the soils data harmonization database, an open-source synthesis of
491 soil data from research networks, version 1.0. *Earth System Science Data*, 13(5),
492 1843–1854.


List of Figures

493 1. Biogeosciences, an inherently interdisciplinary field, **needs** ICON to address urgent
494 and multiscale global problems, where process-complexity and need for ICON increase
495 with scale, and to reduce geographical bias in data and scientific progress. Various
496 **challenges** hinder ICON in biogeosciences, but perhaps the most critical ones revolve
497 around cultural and institutional barriers that prevent data sharing and cross-border
498 collaborations. Our recommended **short- and long-term** solutions focus on **people-
499 centric actions** to break these barriers, especially for low-to-middle-income countries
500 (LMIC) researchers.
501

Accepted Article

Figure 1. Biogeosciences, an inherently interdisciplinary field, **needs** ICON to address urgent and multiscale global problems, where process-complexity and need for ICON increase with scale, and to reduce geographical bias in data and scientific progress. Various **challenges** hinder ICON in biogeosciences, but perhaps the most critical ones revolve around cultural and institutional barriers that prevent data sharing and cross-border collaborations. Our recommended **short- and long-term** solutions focus on **people-centric actions** to break these barriers, especially for low-to-middle-income countries (LMIC) researchers.

