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Abstract

We present estimates for the number of shadow-resolved supermassive black hole (SMBH) systems that can be
detected using radio interferometers, as a function of angular resolution, flux density sensitivity, and observing
frequency. Accounting for the distribution of SMBHs across mass, redshift, and accretion rate, we use a new
semianalytic spectral energy distribution model to derive the number of SMBHs with detectable and optically thin
horizon-scale emission. We demonstrate that (sub)millimeter interferometric observations with ∼0.1 μas resolution
and ∼1 μJy sensitivity could access>106 SMBH shadows. We then further decompose the shadow source counts
into the number of black holes for which we could expect to observe the first- and second-order lensed photon
rings. Accessing the bulk population of first-order photon rings requires 2 μas resolution and 0.5 mJy
sensitivity, whereas doing the same for second-order photon rings requires 0.1 μas resolution and 5 μJy
sensitivity. Our model predicts that with modest improvements to sensitivity, as many as ∼5 additional horizon-
resolved sources should become accessible to the current Event Horizon Telescope (EHT), whereas a next-
generation EHT observing at 345 GHz should have access to ∼3 times as many sources. More generally, our
results can help guide enhancements of current arrays and specifications for future interferometric experiments that
aim to spatially resolve a large population of SMBH shadows or higher-order photon rings.

Unified Astronomy Thesaurus concepts: Black holes (162); Event horizons (479); Supermassive black holes
(1663); Very long baseline interferometry (1769)

1. Introduction

The observations and resulting images of the supermassive

black hole (SMBH) in the M87 galaxy by the Event Horizon

Telescope (EHT) collaboration (Event Horizon Telescope

Collaboration et al. 2019a, 2019b, 2019c, 2019d, 2019e,

2019f) represent the first steps in a new field of spatially

resolved horizon-scale studies of black holes. The emission

from around the SMBH in M87 takes the form of a bright ring

surrounding a darker central “shadow,” as expected from

simple models of spherical accretion (Falcke et al. 2000;

Narayan et al. 2019). A wide variety of simulated images of

black hole accretion flows show that this ring generically has a

diameter that is comparable to the theoretical curve bounding

the photon capture cross-section of the time-reversed black hole

(Event Horizon Telescope Collaboration et al. 2019e, 2019f).

General relativity predicts that the boundary of this cross-

section should take on a nearly circular shape with a diameter

of ∼5 times the Schwarzschild radius (Bardeen 1973), and that

this diameter should depend only weakly (to within ±∼4%) on

the black hole’s spin and inclination (Takahashi 2004;

Johannsen & Psaltis 2010). These properties permit spatially

resolved observations to constrain the black hole mass using

measurements of the shadow size; EHT observations of M87

yielded a ∼10% mass measurement via this approach (Event
Horizon Telescope Collaboration et al. 2019f).
Though the EHT has focused its attention thus far on only

those black holes with the largest angular sizes as seen from
Earth, almost all massive galaxies are expected to host SMBHs
(Magorrian et al. 1998; Kormendy & Ho 2013). As the EHT
and future facilities improve upon the angular resolution and
flux density sensitivity of the first M87 observations, more
SMBH shadows—and their corresponding constraints on the
black hole masses—will become observationally accessible.
Though new black hole mass measurements are valuable for
individual galaxy studies, questions about SMBH formation
and growth mechanisms and the degree to which they coevolve
with their host galaxies are most effectively addressed using
large statistical samples of precisely measured SMBH masses
(Volonteri 2010; Heckman & Best 2014). To this end, it is
natural to ask what observational requirements would be
necessary to access large numbers of SMBHs with spatially
resolved shadows.
In addition to mass measurements, sufficiently high-resolu-

tion observations of SMBHs can also provide unique access to
the black hole spin and, potentially, other spacetime properties.
Hidden within the ring of emission seen by the EHT is an
unresolved series of approximately concentric “photon rings,”
formed by rays that execute increasingly many orbits about the
black hole prior to escaping (Darwin 1959; Luminet 1979;
Gralla et al. 2019; Johnson et al. 2020). Each higher-order
photon ring—enumerated by the number n of half-orbits that
the constituent photon trajectories make around the black
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hole—is expected to have an exponentially narrower angular
width on the sky than the previous order. The lowest-order
(n= 0, corresponding to direct emission) photon ring is
affected by specific details of the accretion flow (e.g., stochastic
turbulent structure) that complicate precise spacetime con-
straints, whereas the geometric properties of higher-order rings
contain the same spacetime information while being exponen-
tially less affected by such “astrophysical” contamination.
Furthermore, interferometric observations naturally decompose
the emission by spatial scale, meaning that with fine enough
angular resolution, the signal from n> 0 will dominate the
interferometric response in a time-averaged image (Johnson
et al. 2020; Gelles et al. 2021).

The goal of this paper is to determine the number of SMBH
shadows and low-order photon rings that could be observed as
a function of angular resolution, flux density sensitivity, and
observing frequency. We assume that such observations will be
carried out using (sub)millimeter-wavelength interferometry,
and we take 230 GHz to be a characteristic observing frequency
when not otherwise specified. In Section 2, we describe our
formalism and input assumptions, which we use to compute the
number and distribution of SMBH shadows in the universe as
seen from Earth. In Section 3, we modify these shadow counts
to reflect the flux density response expected when observing
with interferometers, and we further decompose the total source
counts into contributions from systems for which we could
observe the n� 0, n� 1, and n� 2 photon rings. In Section 4,
we discuss the implications of the source count distributions for
current and future telescope specifications. We summarize and
conclude in Section 5. Throughout this paper, we assume a flat
cosmology with Ωm= 0.3, ΩΛ= 0.7, and H0= 70 km s−1Mpc−1

unless otherwise specified.

2. Population Source Counts

Our goal is to estimate the number of black hole shadows
that we could hope to observe. Concretely, we would like to
determine the number N(θr, σν) of SMBHs that satisfy the
following three conditions:

1. The shadow of the black hole has an angular size larger
than some resolution threshold θr.

2. The flux density of the horizon-scale emission exceeds
some sensitivity threshold σν.

3. The emitting plasma is optically thin.

The first of these criteria is set primarily by the mass of and
distance to the black hole, while the second two also depend on
the mass accretion rate and the physical conditions in the
accretion flow. The third criterion exists to ensure that we could
identify a black hole shadow as such; that is, an optically thick
emission region could obscure the shadow even if the angular
resolution and sensitivity would otherwise make it accessible.

2.1. Overview of Strategy

Our strategy for determining N(θr, σν) by considering the
global distribution of SMBHs as a function of mass M and
redshift z,

( ) ( )M z
dN

dz dM
, 1F º

to which we then sequentially apply the above three criteria to

narrow down the number of potentially detectable sources. The

distribution Φ(M, z) is described by the black hole mass

function (BHMF), which we discuss in Section 2.2.
For a given SMBH mass M and redshift z, applying our first

criterion—that the angular shadow size ϑ is larger than some
resolution θr—amounts to requiring that the black hole mass
exceed some minimum mass m0(z). A black hole of mass M
situated at an angular diameter distance DA has an angular
shadow size that is given by

( )
R

D
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c D
27

2 27
, 2

S

A
2

A

J » =

where RS is the Schwarzschild radius and the numerical

prefactor 27 is determined by the shadow diameter for a

Schwarzschild black hole (Hilbert 1917; Bardeen 1973). At a

particular redshift z, the condition ϑ� θr corresponds to

( )
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( )
( )M m
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G z2 27 1
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r
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2

 q
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+

where m0(θr) is the critical mass for which an SMBH at redshift z

has a shadow with angular size θr, and where we have cast the

expression in terms of the comoving distance, D(z)= (1+ z)DA

(see also Bisnovatyi-Kogan & Tsupko 2018).
Applying our second condition—that the flux density Sν be

greater than some threshold σν—requires knowing the distribution
P(Sν|M, z) of flux densities for an SMBH of mass M at redshift z.
The flux density Sν(ν0) observed at a frequency ν0 is related to the
emitted luminosity density Lν by (Peacock 1999),

( )
([ ] )

( ) ( )
( )S

L z

z D z

1

4 1
. 40

0

2
n

n
p

=
+
+

n
n

Here, Lν([1+ z]ν0) denotes the luminosity density evaluated at the

redshifted frequency (1+ z)ν0, and we have assumed that the

emission is isotropic.8 Lν is determined by the spectral energy

distribution (SED) of the source, which we model as described in

Section 2.3 (with more comprehensive details provided in

Appendix A). Within our SED model, Lν depends not only on

the mass of the SMBH, but also on its mass accretion rate M ,
which we cast in terms of the Eddington ratio λ,

( )
M

M
. 5

Edd


l º

Here, M L cEdd Edd
2 hº is the Eddington mass accretion rate,

and η is a nominal radiative efficiency that relates MEdd
 to the

Eddington luminosity LEdd; for this paper, we take the radiative

efficiency to be η= 0.1 (e.g., Yuan & Narayan 2014).

Determining P(Sν|M, z) thus further requires knowledge of

the Eddington ratio distribution function (ERDF), which we

describe in Section 2.4.
Applying our third condition—that the horizon-scale emis-

sion be optically thin at the observing frequency ν0—can also
be achieved using our SED model, which provides an optical
depth prediction for an SMBH with any given M, λ, and ν0.
Practically, we can absorb this condition into the definition of
the flux density distribution by considering only those systems
that are optically thin, that is, by determining P(Sν|M, z, τ� 1).

8
This isotropy assumption is justified because the total flux in the lensed

horizon-scale emission from an SMBH accretion flow is not expected to have a
strong directional dependence in the same manner as Doppler-boosted jet
emission would.
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The fraction f (σν) of SMBHs for which we could expect to
detect the horizon-scale emission is then given by

( ) ( ∣ ) ( )f P S M z dS, , 1 , 6òs t=n
s

n n
¥

n

where σν is some specified sensitivity threshold.
Combining all three criteria, we can compute the source

counts expected for any choice of θr and σν by integrating the
global distribution over mass and redshift,

( ) ( ) ( ) ( )
( )

N dz f M z dM, , . 7r
m0 r0

ò òq s s= Fn
q

n
¥ ¥

Many of the results presented in this paper are derived from

evaluation of Equation (7). When computing this integral, we

must keep in mind that m0(θr) is a function of z and that f (σν) is

a function of both z and M. Figure 1 illustrates the procedure

we follow to determine N(θr, σν) for an example set of angular

resolution and flux density thresholds (in this case, θr= 1 μas

and σν= 10−5 Jy).

2.2. Black Hole Mass Function

Any evaluation of Equation (7) requires a choice of BHMF,
which commonly takes the form

( )
dN

dVdM
, 8F¢ =

where dN is the number of SMBHs in the mass range (M,

M+ dM) and the comoving volume range (V, V+ dV ).9 For

our purposes, it is more useful to work with Φ(M, z), the

number of black holes in the redshift range (z, z+ dz; see

Equation (1)), which is related to F¢ by

( )

( )
( )

M z
dV

dz

cD

H E z

,

4
. 9

2

0

p

F = F¢

=
F¢

Here, ( ) ( ) ( )E z H z H z1m0
3= = W + + WL is the dimen-

sionless Hubble parameter (Peebles 1993).
Estimating the BHMF from observations is difficult because

astronomical surveys are inevitably incomplete in ways that
impose poorly known selection functions on the SMBH count in
any mass bin, and because there are currently no SMBH mass
measurement techniques that are both precise and broadly
applicable (Kelly & Merloni 2012). Many variants of the BHMF
thus exist in the literature (e.g., Salucci et al. 1999; Aller &
Richstone 2002; Marconi et al. 2004; Greene & Ho 2007; Lauer
et al. 2007; Natarajan & Treister 2009; Kelly & Shen 2013).
Recognizing that no single one of these BHMFs is likely to be
uniquely correct, in this paper we consider two different BHMF
prescriptions—which we will refer to as our “lower” and “upper”
BHMFs—that aim to capture a reasonable range of possibilities.

We take as our lower BHMF the phenomenological model
developed by Shankar et al. (2009) and shown in the left panel of
Figure 2. This BHMF is evolved self-consistently forward in time
within a continuity equation formalism (Cavaliere et al. 1971;
Small & Blandford 1992) tuned to match an estimate of the

bolometric active galactic nucleus (AGN) luminosity function
based primarily on the X-ray observations compiled by Ueda et al.
(2003). The Shankar et al. (2009) BHMF is a function of both M
and z, covering SMBH masses in the range 105–109.5 M

e
and

redshifts in the range 0–6. To account for the known existence of
SMBHs with masses exceeding 109.5 M

e
(e.g., Event Horizon

Telescope Collaboration et al. 2019f), we extrapolate the BHMF
using a power law with an exponential cutoff,

( )M
M

M
exp . 10a

extrapolated
cutoff

F¢ µ -- ⎜ ⎟⎛
⎝

⎞
⎠

The index and normalization of the power law are determined for

every z by fitting the BHMF values between 109M
e
and 109.5M

e
.

Natarajan & Treister (2009) argued on empirical and theoretical

grounds for the existence of an upper mass limit for SMBHs at

every cosmic epoch. First, using a physical argument based on

self-regulation, they showed that when the accretion energy of a

growing SMBH back-reacts with the gas flow and exceeds the

binding energy of the feeding disk, it leads to the BH stunting its

own growth and results in an upper limit for its mass (see also

King 2016). Empirically, such a limit is expected from the

observed SMBH mass–bulge luminosity relation when the relation

is extrapolated to the bulge luminosities of bright central galaxies

in clusters (Magorrian et al. 1998). Natarajan & Treister (2009)

showed that consistency between the optical and X-ray BHMFs

requires an upper mass limit for local SMBHs that is on the order

of∼1010 M
e
. Calibrating their estimates using the more recent

observational measurements of the∼ 1.7× 1010 M
e

SMBH in

NGC 1600 (Thomas et al. 2016), we determine an exponential

cutoff mass of 3.5× 1010 M
e
. The extrapolated portion of the

BHMF is plotted using dashed lines in the left panel of Figure 2.
As a counterpart to the model-based lower BHMF, we also

consider an upper BHMF derived empirically using the
UNIVERSEMACHINE stellar mass function (SMF) from Beh-
roozi et al. (2019). The UNIVERSEMACHINE SMF is con-
structed as part of a comprehensive model for galaxy growth
spanning redshifts 0� z� 10 and accommodating many
observational constraints, including among them a number of
observational SMFs determined in various bands (Baldry et al.
2012; Ilbert et al. 2013; Moustakas et al. 2013; Muzzin et al.
2013; Tomczak et al. 2014; Song et al. 2016). From the
UNIVERSEMACHINE SMF, we convert from stellar mass M* to
SMBH mass M using the scaling law from Kormendy & Ho
(2013), as done in Ricarte & Natarajan (2018),

( )
M

M

M

M
log 8.69 1.16 log

10
. 11

11
 
= +⎜ ⎟ ⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠

*

After converting from stellar to SMBH mass, we convolve the

SMBH mass distributions with a Gaussian kernel with a 0.3

dex FWHM to account for the intrinsic scatter in the scaling

relations. The resulting upper BHMF is shown in the center

panel of Figure 2.
Relative to the lower BHMF, the upper BHMF predicts

systematically more SMBHs at low to intermediate redshifts
(i.e., z 3) and at all masses, though at the highest redshifts the
lower BHMF predicts more SMBHs with M 109.5 M

e

(see right panel of Figure 2). The low-redshift behavior of
the lower BHMF agrees well with a BHMF derived from the
UNIVERSEMACHINE SMF using the McConnell & Ma (2013)

9
We note that some authors define the BHMF per unit logarithmic (base-10)

mass bin, such that their distribution f¢ is related to the one we use
by ( )Mln 10f¢ = F¢.
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scaling relation (see also Saglia et al. 2016).10 To remain
conservative in our estimates, throughout this paper we treat
the lower BHMF as our fiducial case and use it for all
computations and figures unless otherwise specified; we use the

upper BHMF primarily to determine plausible uncertainty
ranges for computed values. For this paper, we treat both
BHMFs as being nonzero only in the range 0� z� 6 and
105�M� 1011 M

e
.

For the analyses carried out in this paper, the high-mass end

of the BHMF is most important. To assess the fidelity of the

high-mass end of the lower and upper BHMFs, we compare

their predictions against the number of known massive SMBHs

in the local universe. In this regard, the MASSIVE galaxy

Figure 1. Flowchart illustrating the strategy for determining N(θr, σν) (see Section 2.1) using an example case of θr = 1 μas and σν = 10−5 Jy. Panels (a), (b), and (c)
show the three primary inputs: the BHMF, the SED model, and the ERDF, respectively. The BHMF provides the global distribution of SMBHs as a function of M and
z (see Section 2.2); the SED model predicts the emitted flux density and optical depth for every M, λ, and z (see Section 2.3); and the ERDF provides the distribution
of Eddington ratios λ (see Section 2.4). In panel (d), the ERDF and the SED model are used to determine the fraction f (σν) of sources that simultaneously have flux
densities exceeding σν (left plot in the panel) and are optically thin (i.e., τ < 1; right plot in the panel); in both plots, darker colors indicate a larger fraction. The
combined fraction, as a function of M and z, is then used in panel (e) to modify the global SMBH distribution from the BHMF. In panel (f), we further apply the
requirement that the angular shadow size exceed θr, which can be cast as a minimum mass m0(θr) at every z; N(θr, σν) is then determined by integrating over the region
outside of the gray-shaded area. Finally, panel (g) illustrates that this procedure can be repeated for many other values of both θr and σν (see Section 2.5).

10
An even lower BHMF could be produced using, for example, the scaling

relation from Reines & Volonteri (2015), but the resulting BHMF system-
atically underpredicts the observed local universe’s high-mass SMBH
population by several orders of magnitude.
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survey provides a convenient comparison point because it is a
volume-limited survey targeting massive early-type galaxies
with stellar masses above 1011.5 M

e
within a distance of

108Mpc, or z≈ 0.02 (Ma et al. 2014). To date, four11 SMBHs
in this volume have dynamically measured masses at or above
M87s M� 6.5× 109 M

e
: M87 (Event Horizon Telescope

Collaboration et al. 2019f), NGC 1600 (Thomas et al. 2016),
NGC 3842, and NGC 4889 (McConnell et al. 2011). Our lower
and upper BHMFs predict that the number of SMBHs within
z� 0.02 and M> 6.5× 109 M

e
should be ∼5 and ∼29,

respectively, which are consistent with the MASSIVE survey
results. The specific behavior of the BHMF at low masses is
less important because these black holes do not contribute
significantly at the angular resolutions and flux densities of
most interest for this paper.

2.3. Spectral Energy Distribution Model

Given the global distribution of SMBHs across mass and
redshift, Equation (7) selects only the fraction f (σν) that have
optically thin emission with a flux density that exceeds the
sensitivity threshold. This fraction is defined in Equation (6),
and it results from integrating over the distribution of flux
densities P(Sν|M, z) at a given M and z. The first piece of
information we need to compute this integral is an SED model,
which will permit us to determine the flux density Sν(λ|M, z)
corresponding to a particular choice of Eddington ratio, black
hole mass, and redshift, and also to assess when the observed
emission will be optically thin.

Observational constraints on SMBH growth indicate that
SMBHs spend the majority of their time accreting at well
below the Eddington rate (Hopkins et al. 2006). At these low
accretion rates, the material in the vicinity of the black hole is
thought to follow the advection-dominated accretion flow
(ADAF) solution to the hydrodynamic equations describing
viscous and differentially rotating flows around black holes
(Narayan & Yi 1995a; Narayan et al. 1998; Yuan &
Narayan 2014). An ADAF accretion disk has a two-temperature

structure in which the ion temperature is greater than the
electron temperature. The electrons are able to cool via a
combination of synchrotron, bremsstrahlung, and inverse
Compton radiation, which together define the SED for the
observed emission.
For SMBHs observed in the radio to submillimeter wavelength

range, as relevant for this work, the SED is dominated by
synchrotron and Compton emission. Mahadevan (1997,
hereafter M97) provides a convenient formalism for computing
the gross spectral properties of an ADAF system given a black
hole mass M and accretion rate M (see also Narayan &
Yi 1994, 1995a, 1995b). We use a modified version of the M97
formalism for the SED models in this paper, and Appendix A
provides a detailed description of our updated model. We note that
this SED model only considers emission from the accretion flow,
and it does not incorporate a jet component.
Our SED model provides an estimate of the emitted luminosity

density Lν as a function of frequency for any input values ofM and
λ. Given a particular redshift z, we convert Lν to Sν using
Equation (4). We determine whether the system is optically thin by
comparing the rest-frame observing frequency, (1+ z)ν0, to the
peak synchrotron frequency in the source, νp (see Equation (A16)).
So long as (1+ z)ν0� νp, we consider the system to be
optically thin.

2.4. Eddington Ratio Distribution Function

The last piece of information we need to compute the integral
in Equation (6) is an ERDF, which provides a probabilistic
description of what fraction of SMBHs should be accreting at any
particular Eddington rate λ. In this paper, we consider every
SMBH to be active at some level, rather than considering the
accretion to have only binary “on” and “off” states. We thus
dispense with the notion of a “duty cycle” often adopted for
AGNs (or equivalently, we take the duty cycle to be unity), and
we instead work exclusively in terms of an ERDF (e.g., Merloni
& Heinz 2008) to account for the differences in accretion rates.
There is emerging evidence that luminous (“Type 1”;

unobscured; λ 10−2) and low-luminosity (“Type 2;” obscured;
λ 10−2

) AGNs follow different distributions (Kauffmann &
Heckman 2009; Trump et al. 2011; Weigel et al. 2017).

Figure 2. Black hole mass functions used in this paper; see Section 2.2 for details about each BHMF. The left panel shows the lower BHMF from Shankar et al.
(2009), with our extrapolation to higher SMBH masses (i.e., M > 109.5 M

e
, as proposed by Natarajan & Treister 2009) shown using dashed lines; the BHMF is

colored by redshift. The center panel shows the upper BHMF constructed using the UNIVERSEMACHINE SMF with the Kormendy & Ho (2013) scaling relation. The
right panel shows the envelopes (between z = 0 and z = 6) of the BHMFs from the left and middle panels, overlaid to ease comparison. All three panels share the same
horizontal and vertical axis ranges, which are explicitly labeled in the left panel.

11
This number should be taken as a lower limit because the MASSIVE survey

is ongoing and may uncover more SMBHs in the same range of M and z.
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Though the ERDF for luminous AGNs appears to be consistent
with a log-normal distribution (Lusso et al. 2012), there is no
clear consensus in the literature on a specific form for the
ERDF of low-luminosity AGNs (LLAGNs). Different authors
have used variants that include a power law (Aird et al. 2012;
Bongiorno et al. 2012), a Schechter function (Hopkins &
Hernquist 2009; Cao 2010; Hickox et al. 2014), and a log-
normal (Kauffmann & Heckman 2009; Conroy & White 2013).
In addition, while there seems to be broad agreement on a
power-law behavior toward low Eddingtion ratios in the local
universe (i.e., z 1), few observational constraints currently
exist for the ERDF of LLAGNs at z 1.

We proceed with a form for the ERDF adapted from the
analytic prescription used by Tucci & Volonteri (2017) and
updated using the more recent measurements from Aird et al.
(2018). For their ERDF, Tucci & Volonteri (2017) used a
Schechter function with an exponential cutoff value of λ= 1.5,
but for our purposes (i.e., LLAGN with λ= 1) only the power-
law component of the ERDF is relevant. Furthermore, the
LLAGN portion of the ERDF from Tucci & Volonteri (2017)
was constructed to match the low-redshift behavior from
Hopkins & Hernquist (2009), Kauffmann & Heckman (2009),
and Aird et al. (2012). None of these previous papers included
observational constraints for AGNs accreting below λ≈ 10−5.
To avoid the strong dependence on the low-end cutoff that
comes from continuing the power law to arbitrarily small
values, we posit instead that the distribution breaks (as in, e.g.,
Weigel et al. 2017). Specifically, we modify the power-law
ERDF from Tucci & Volonteri (2017) such that it flattens out
for Eddington ratios smaller than some value λ0. That is, we
have

( ) ( )P

A

A

,

, ,
12

min 0

0
0 max

 
l

l l l
l
l

l l l
=

< <
a

⎜ ⎟

⎧
⎨
⎩

⎛
⎝

⎞
⎠

where P(λ) is the probability density per unit logarithmic

interval in λ, minl and maxl are the lowest and highest permitted

values, and the coefficient A is constructed such that the

distribution integrates to unity:

( )
( ) ( )A log

1

ln 10
. 13

0

min 0
max 0

1
l
l al

l l= + -a
a a

-
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⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

In this paper, we use values of 10min
10l = - , λ0= 10−5, and

10max
2l = - (see Appendix A.4).

In addition to permitting the power-law index α to evolve
with redshift, we also allow for additional evolution with
SMBH mass,

( ) ( )
( )

[ ( )] ( )

( )

z M a M
z a M

z a M z a M
,

1,

1 1 , .

14


a = ´

-
- + - >
⎧⎨⎩

Here, a(M) encodes the mass dependence of the power-law

index. Though there is some prior observational evidence

indicating that the ERDF is approximately independent of

SMBH mass (Kauffmann & Heckman 2009; Kelly &

Shen 2013; Weigel et al. 2017), recent measurements by Aird

et al. (2018) found that more massive SMBHs tend to be

accreting at higher rates. We thus treat a(M) as being

essentially bimodal, with low-mass SMBHs having one

power-law index value and high-mass SMBHs having another,

and we use a logistic function to smoothly vary a(M) between

these two extremes,

( )
( )

( )
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a a M M

M M1
. 15
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Here, alo describes the power-law index at small masses, ahi
describes the power-law index at large masses, M0 denotes the

midpoint mass, andΔ is the logistic width in ( )Mlog that controls

how quickly the transition from the low-mass regime to the high-

mass regime occurs. We determine the values of these four

parameters by fitting Equation (12) to the Aird et al. (2018)

measurements; our fitting procedure is described in Appendix B.

We find best-fit values of alo= 0.55, ahi= 0.20, ( )Mlog 7.50 = ,

and Δ= 0.3, and the resulting ERDF is shown in Figure 3.
Equation (12) defines the probability P(λ) per unit ( )log l for

any particular SMBH to be accreting at the rate λ. Given some
specified M and z, we determine the probability P(Sν|M, z) by
numerically sampling from P(λ) and using our SED model (see
Section 2.3) to associate each sample with a particular Sν.
Efficient sampling of P(λ) can be achieved by transforming a
random variable x that is distributed according to a unit uniform
distribution through the inverse cumulative distribution func-
tion (CDF) of Equation (12). This inverse CDF is given by
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which we can use to generate random samples distributed

according to Equation (12). The associated distribution of Sν

Figure 3. Eddington ratio distribution function, adapted from Tucci &
Volonteri (2017) and updated using the measurements from Aird et al. (2018);
see Section 2.4 for details. The top panel shows the ERDF plotted as the
probability P(λ) per unit ( )log l as a function of λ and z for an SMBH mass of
M = 109 M

e
, and the bottom panel shows the same for an SMBH mass of

M = 106 M
e
.
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provides an estimate of P(Sν|M, z), which we then integrate per

Equation (6) for the purposes of evaluating Equation (7).

2.5. The Number of Black Hole Shadows

Putting it all together, Figure 4 shows the result of evaluating
Equation (7) over a range of values for both the angular
resolution threshold θr and the flux density sensitivity σν at an
observing frequency of ν0= 230 GHz. The top panel shows the
source counts predicted without imposing the optical depth

condition, while the bottom panel restricts the sources to those

that satisfy τ� 1 (see Equation (6)). Each point in both panels

of Figure 4 is computed from an integral over the remaining

(M, z) space. These plots thus represent an observation-

independent prediction about the character of the SMBH

population; namely, how many SMBHs are expected to have

angular shadow sizes in excess of θr, horizon-scale flux

densities at 230 GHz greater than σν, and (in the case of the

bottom panel) an optically thin accretion flow. An approximate

analytic description of the resulting N(θr, σν) is provided in

Appendix C.
The two panels of Figure 5 show the behavior of N(θr, σν) in

the limit as σν= 0 (left panel) and θr= 0 (right panel); these

limits correspond approximately to one-dimensional slices

through the top panel of Figure 4 along the horizontal and

vertical axes, respectively. The black curve in the left panel

shows N(ϑ> θr, σν= 0), while the colored curves show the

contribution from SMBHs in different mass ranges. At large θr
we see that the source counts follow the N r

3qµ - behavior

expected from simple volume scaling. The upturn around

θr≈ 1 μas occurs because this is the resolution threshold below

which the most massive SMBHs can be seen at any redshift

(because of the turnover in angular diameter distance at

z≈ 1.6), and the re-flattening at smaller θr is caused by the

finite redshift coverage of the BHMF. The black curve in the

right panel shows N(θr= 0, Sν> σν), while the colored curves

again split out the contribution by SMBH mass. Throughout

most of the space, we see the source counts climbing

volumetrically as the flux density decreases, following

N 3 2sµ n
- . Cosmological effects become noticeable at the

lowest σν values, where the curve starts flattening out due to a

combination of the luminosity distance increasing more rapidly

and the finite redshift coverage of the BHMF.

3. Interferometric Source Counts

The analysis performed in the previous section predicts the

source counts corresponding to the population of SMBHs that

adhere to the three criteria specified at the beginning of

Section 2. We now aim to estimate a subtly different quantity:

the number of shadow-resolved sources that could be observed

by a telescope with angular resolution θr and flux density

sensitivity σν. This conceptual distinction is relevant because

the telescopes that we expect to be carrying out spatially

resolved studies of black hole shadows in the foreseeable future

are radio interferometers. While the source-counting analysis

performed in Section 2 uses the SED model detailed in

Appendix A to determine the flux density expected from any

particular SMBH, this SED model only provides an estimate

for the total (i.e., spatially integrated) horizon-scale flux

density. However, an interferometric baseline is only sensitive

to flux on specific spatial scales, determined by the length of

the baseline and the wavelength of light being observed.

Though in this paper we do not explore specific methods for

estimating shadow diameters, sparse interferometric observa-

tions have previously been used to constrain the shadow

diameter for M87 under the assumption that the source is ring-

like (Doeleman et al. 2012; Wielgus et al. 2020). In this

section, we thus investigate the prospects for detecting SMBH

shadows on an individual interferometric baseline.

Figure 4. Top: number of black hole shadows with angular sizes larger than an
angular resolution threshold θr and total flux densities larger than a sensitivity
threshold σν, as a function of the threshold values and assuming an observing
frequency of 230 GHz; that is, N(θr, σν) from Equation (7). The solid contours
start with the thick contour indicating a count of N = 1 and then increase by
factors of 10 toward the lower left, while the dashed contours each decrease by
a factor of 10 toward the upper right. Bottom: same as the top panel, but with
the additional restriction that the sources must be optically thin.
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3.1. Flux Density Seen by a Single Baseline

We base our expectations for the horizon-scale emission
structure from an SMBH on the observational and theoretical
understanding of the M87 system. Johnson et al. (2020) provide an
approximate analytic expression for the expected flux density of
the photon ring emission as a function of baseline length for
optically thin emission, which we adapt to take the following form:

( ) ( ) ( )
( )

( )S u S J u e e , 17
n

n
uW

0 0

0

4 ln 2
n

2

åh pJ= p
p

=

¥
- -

( )W W e . 18n
n

0» p-

Here, S0 is the total flux density (i.e., the value provided by the

SED model, given the redshift of the SMBH), ϑ is the angular

diameter of the photon ring (which for our purposes is given by

Equation (2)), u is the length of the baseline in units of

wavelengths, W0 is the FWHM angular thickness of the lowest-

order (i.e., n= 0) photon ring, and η= 1− e
− π is a normal-

izing prefactor. We assume W0= ϑ/5 (Event Horizon Tele-

scope Collaboration et al. 2019e, 2019f). Equation (17) is

shown as the gray curve in Figure 6.
On long baselines (i.e., u? 1/ϑ), the bandwidth-averaged

flux density will be given by

¯ ( ) ( )
( )

( )S u
S

e e
2

, 19
u
n

n0

2

2

0

uWn
2

4 ln 2å
h
p

»
J

p

=

¥
- - p

which is smaller by a factor 2/π than the envelope of

Equation (17) as a result of averaging over many periods;

Equation (19) is shown as the dashed blue curve in Figure 6. By

replacing Sν in Equation (6) with ¯ ( )S 1 rq from Equation (19) and

then recomputing the SMBH source counts via Equation (7), the

Figure 5. One-dimensional slices through N(θr, σν) for an observing frequency of 230 GHz, with no restriction on the optical depth τ. Left: the black curve shows the
total number of SMBHs with shadows larger than some threshold angular resolution θr as a function of that threshold; this curve approximately corresponds to a
horizontal cut through the bottom part of the top panel of Figure 4. The upper axis indicates the minimum mass of a black hole for which the corresponding angular
resolution would permit that black hole to be spatially resolved at any redshift. Right: the black curve shows the total number of SMBHs with horizon-scale flux
densities larger than some threshold value σν as a function of that threshold; this curve approximately corresponds to a vertical cut through the left part of the top panel
of Figure 4. In both panels, the source counts for different choices of black hole mass binning are shown as colored curves.

Figure 6. Fraction of the total source flux density that can be detected on long
baselines for the photon ring model described in Section 3.1, shown here for a
ϑ = 40 μas diameter. The gray curve shows Equation (17), and the dashed
black line tracks the envelope of this function. The red curve shows a running
average of the gray curve across a 2% fractional observing bandwidth, and the
dashed blue curve shows Equation (19). The vertical cyan lines show the
resolution criteria used for the shadow (θr = ϑ) and for the first two orders of
photon ring (θr = 2wn−1).
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form of N(θr, σν) becomes that shown in Figure 7. Unlike in

Figure 4, the source counts no longer monotonically increase as

angular resolution improves (i.e., as θr decreases), because

Equation (19) ensures that longer baselines see lower flux densities

from any given SMBH. An analytic approximation for the

resulting N(θr, σν) is provided in Appendix C.
Figure 8 shows the integrand from Equation (7) plotted over the

domain of integration for several values of θr and σν, providing the
distribution of observable SMBHs as a function of M and z. The
number of objects generally increases with increasing redshift (at
fixed mass) and with decreasing mass (at fixed redshift), though
the density peaks at z≈ 2 for the smallest values of σν. For certain
configurations, such as θr= 0.1 μas and σν= 10−5 Jy, the impact
of Equation (19) is visually apparent as a lack of monotonicity in
the source counts with increasing redshift (at fixed mass). This
behavior reflects the fact that a fixed baseline becomes sensitive to
emission from larger spatial scales around a particular SMBH as
that SMBH is moved to larger distances; that is, S̄ increases as ϑ
decreases. On certain intervals in z, this flux increase associated
with smaller ϑ is more than sufficient to compensate for the flux
decrease associated with the increased distance to the SMBH.

3.2. Photon Ring Decomposition

The expression in Equation (19) for the horizon-scale flux
density contains contributions from all orders of photon rings, and
in Figure 6 we can see that rings of different order are expected to
dominate the observed flux density on different baseline length
intervals. Depending on the value of u relative to 1/ϑ, a telescope
may thus be primarily sensitive to emission from photon rings with
n> 0. To determine the number of sources from which we expect
to be able to detect higher-order photon rings, we can decompose
the total source counts into bins corresponding to which order of
photon ring dominates the emission.

We take as our resolution requirement to “see” the nth sub-ring
that θr� 2wn−1, where ( )w W 8 ln 2n n= is the Gaussian width
corresponding to the FWHM Wn (Equation (18)). This angular
resolution requirement can be recast as a mass threshold mn for a
given redshift, analogous to Equation (3); for n> 0, we have

( ) ( )( )M m e m5 2 ln 2 , 20n
n 1

0 º p-

where m0 is defined in Equation (3). Figure 6 marks the n> 0

and n> 1 resolution thresholds using vertical dashed cyan

lines. To ensure that the emission is optically thin enough to

see down to the nth sub-ring, we further impose a more

stringent condition on the optical depth of

( )
n

1

1
. 21nt t =

+

By replacing the lower mass limit m0 in Equation (7) with mn, and

by replacing the τ� 1 condition in Equation (6) with τ� τn, we

can compute the source counts associated with objects for which a

photon ring of order n or greater is detectable.
Figure 9 shows these source counts for the first three orders

of photon ring at observing frequencies of 86, 230, 345, and
690 GHz, corresponding to standard atmospheric transmis-
sion windows (Thompson et al. 2017). At each observing
frequency, we see qualitatively similar behavior: the source
counts corresponding to the higher-order photon rings look
approximately like scaled-down versions of the n� 0 counts.
For each additional order, the same source count value is
achieved at an angular resolution threshold that is ∼20 times
finer and a sensitivity threshold that is approximately ∼100
times fainter than was necessary at the previous order. The
angular resolution increment is associated with the factor
e− π

≈ 1/23 in Equation (18) that sets the angular size ratio
between consecutive photon rings. The flux density incre-
ment comes from a combination of a similar exponential
suppression factor (a factor e− π from the summand of
Equation (19)) as well as the fact that the flux density profile
is being observed on baselines that are typically a factor of e π

longer, thereby incurring an additional flux density factor of
e− π/2

≈ 1/5 from the u−1/2 proportionality in Equation (19).
The evolution of the source counts with frequency primarily

affects the required sensitivity, with higher-frequency observa-
tions achieving the same source counts at a higher value of σν
than lower-frequency observations. The flux density threshold
required to detect a particular number of objects is approxi-
mately 1 order of magnitude smaller at 86 GHz than at
690 GHz; that is, approximately 1 order of magnitude better
sensitivity—in terms of Jy—is required at 86 GHz than at
690 GHz. The angular resolution requirement does not show
substantial evolution with frequency across this range.

3.3. The Impact of Baseline Projection

The analysis presented in this section thus far has assumed
that an interferometric baseline can observe the entire sky with
the same angular resolution. However, in reality, any physical
baseline between two stations will have a different projected
length as seen from different locations in the sky. The resolving
power of the baseline will thus be a function of source location
on the sky, which means that the number of black hole shadows
a baseline can detect per unit solid angle will also vary across
the sky.

Figure 7. Similar to the bottom panel of Figure 4, but now showing the number
of shadow-resolved, optically thin SMBHs that could be observed at 230 GHz
by an interferometric baseline with flux density sensitivity σν and angular
resolution θr across the entire sky. The drawn contours mark the same source
count values as those in Figure 4. The diagonal dashed cyan line marks a
constant brightness temperature of 1010 K.
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For a particular baseline, we can define a spherical
coordinate system (θ, f) such that θ is a polar angle measured
from the axis defined by the baseline orientation and f is
measured azimuthally around this axis. θr(θ) is then the
effective angular resolution of the baseline when projected
toward a source at a sky position with polar angle θ,

( ) ( )b
b

,
1

sin sin
, 22r

r,0q q
q

q
q

= =

where b is the baseline length in units of the observing

wavelength and θr,0= 1/b is the angular resolution achieved

when θ= π/2 (i.e., the finest resolution achievable by the

baseline). Denoting the number density of sources per unit

solid angle as
d N

d

2

W
, we can express the total number of sources

observable by this baseline as

∬( ) [ ( )] ( )N b
d N

d
b d dsin , , 23r

2

vis

q q q q f=
WW

where we have explicitly indicated that the number density is a

function of the angular resolution, θr(θ, b), and we have assumed

that sources are distributed isotropically on the sky such that there

Figure 8. The integrand from Equation (7), plotted logarithmically as
( ) ( )
dN

d M d zln ln
, showing the distribution of the number of shadow-resolved and optically thin

SMBHs that can be seen by a single baseline as a function of redshift and black hole mass. Each panel shows a different choice of θr and σν, and all panels assume an
observing frequency of 230 GHz. The total number of black holes, integrated over M and z, is given in the lower left-hand corner of each panel. The color scale maps
to the logarithm of the source number density (i.e., the number of sources per unit logarithmic interval in M and z), and the black contours enclose 50%, 90%, 99%,
and 99.9% of the total source count. All panels share the same horizontal and vertical axis ranges, which are explicitly labeled in the bottom-left panel.
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is no f dependence. The integral is carried out over the solid angle

Ωvis on the sky that is visible to the baseline.
To illustrate the impact of this geometric effect on source

counts, we consider the concrete example of an interferometric

baseline formed between two space-based antennas, each of

which can see the entire sky. In this case, the function d2N/dΩ
is given simply by N(θr, σν)/4π, and the domain of integration

for Equation (23) will be all (θ, f); Figure 10 shows the result

of this evaluation. Relative to the source counts in Figure 7, at

large values of θr,0 (e.g., ∼20 μas) the source counts in

Figure 9. Each panel shows a plot analogous to that in Figure 7, but decomposed into the number of sources for which we could expect to detect the first three orders
of photon ring. Each row shows this decomposition for one of four observing frequencies, with the frequency labeled in the upper left-hand corner of each panel. For
each row of panels, the left panel shows the number of sources for which we could detect any order of photon ring at all, while the center and right panels show the
number of sources for which we could detect the first- and second-order photon rings, respectively. In each panel, the drawn contours mark the same source count
values as those in Figure 4. All panels share the same horizontal and vertical axis ranges, which are explicitly labeled in the bottom-left panel.
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Figure 10 are reduced because some fraction of the sky is not

observed with sufficient angular resolution to see SMBHs with

shadow sizes that are close to θr,0. The magnitude of this

reduction is modest, amounting to a factor of 3π/16≈ 0.59 for

uniformly distributed sources in flat space (see Equation (D3)

with α= 4). However, a much more pronounced impact can be

seen in the region of fine angular resolution and poor sensitivity

(e.g., the region around θr,0≈ 10−1 μas and σν≈ 10−4 Jy),

where the source counts in Figure 10 are significantly increased

relative to Figure 7. This difference arises because N(θr, σν)

increases rapidly toward larger θr in this region, and so the

coarser angular resolutions arising from baseline projection

provide access to many SMBHs that a baseline with a fixed

angular resolution of θr,0 across the entire sky would be unable

to see. In this region of the (θr,0, σν) space, the impact of

baseline projection is to increase the accessible number of

SMBH shadows by several orders of magnitude.
While Equation (23) provides the source counts appropriate

for a fixed baseline, in real-world arrays the baseline will

typically be changing orientation with time. For instance, a

spaceborne antenna forming a baseline with another antenna

situated on the Earth would execute a complete revolution once

every orbital period, as observed by a distant source. One effect

of this rotation is to make a larger fraction of the sky observable

with the finest resolution than would otherwise be possible with

just the instantaneous configuration, up to a unit fraction if both

stations are spaceborne and thus can view the entire sky. The

net impact of rotating the baseline is to bring more SMBH

shadows into view than would be accessible by a static

baseline. Appendix D provides a more detailed exposition of

the sampling behavior of such a baseline as it rotates.

4. Discussion

Our general strategy for carrying out the various source-
counting analyses presented in this paper is laid out in
Section 2.1 and illustrated in Figure 1. To recap:

1. We start with the BHMF, which describes the global
distribution Φ(M, z) of SMBHs across mass and redshift.

2. Using our SED model and a prescription for the
distribution of SMBH accretion rates (i.e., the ERDF),
we determine the fraction f (σν) of objects for which the
horizon-scale emission is both optically thin and has
either a total flux density (in Section 2) or a resolved flux
density (in Section 3) exceeding some threshold σν.

3. We then integrate the product f (σν)Φ(M, z) over M and z,
excluding objects with shadow sizes smaller than some
angular resolution threshold θr (see Equation (7)).

The quantity N(θr, σν) resulting from this procedure
corresponds to the number of sources with shadow sizes larger
than θr and flux densities greater than σν.
Figure 4 shows a summary of the SMBH population in terms

of the angular shadow size ϑ> θr and the total horizon-scale flux
density Sν> σν. These source counts at any (θr, σν) provide an
estimate for the number of SMBHs that are “resolvable”—that is,
distinguishable from a point source—by a telescope that achieves
an angular resolution of θr and a flux density sensitivity of σν.
Even if the telescope lacks the sensitivity to detect the source
structure on the scale of θr, it will still be able to constrain the
angular size of the source so long as its sensitivity is sufficient to
detect a total flux density of σν.

12 We find that the population
source counts approximately follow the simple scaling relations
expected if the number of sources grows with the accessed
volume (see Appendix C); for example, hundreds of sources
are predicted to be resolvable with an angular resolution of
∼1 μas and a flux density sensitivity of ∼1 mJy.
For interferometric observations, we find that the number of

detectable SMBH shadows generally increases as the angular
resolution θr and sensitivity σν improve, but that the gradient of
N(θr, σν) changes orientation throughout the parameter space (see
Figure 7). At large θr and small σν, the source counts increase
exclusively toward smaller θr; at large σν and small θr, the source
counts increase both toward smaller σν and toward larger θr. The
gradient changes orientation from pointing primarily toward
smaller θr to pointing primarily toward smaller σν around a ridge-
line in the (θr, σν) space that approximately follows a power law

;r
2.2s qµn Figure 11 shows power-law fits to this ridge-line for

four different observing frequencies. At an observing frequency of
230 GHz, we find a best-fit power law of
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This expression can be used to estimate the angular resolution

and sensitivity corresponding to an effective “Pareto front”13 in

source counts, whereby (θr, σν) pairs located on this curve are in

Figure 10. Similar to Figure 7, but now accounting for baseline projection
effects appropriate for a space-based interferometric baseline that can see the
entire sky (see Section 3.3). The color scale and contours show the number of
shadow-resolved, optically thin SMBHs that could be observed at 230 GHz by
an interferometric baseline with finest angular resolution θr,0 and flux density
sensitivity σν. The drawn contours mark the same source count values as those
in Figure 4.

12
In practice, an interferometric array carrying out such a measurement will need

to have at least a moderately filled aperture; if instead only a single baseline is
present, then the various considerations detailed in Section 3 will apply.
13

A “Pareto front” is the set of locations within a space of interest that satisfy
the property that no one condition can be relaxed without making another more
stringent. In our case, the “Pareto front” constitutes the set of locations in (θr,
σν) space where neither the angular resolution threshold nor the flux density
threshold can be increased (i.e., made less demanding) without requiring a
decrease in the other, while still being sensitive to the same number of objects.
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some sense maximally economical. That is, to access the same

number of sources using a different set of (θr, σν) would require

improving either the sensitivity or the angular resolution. Table 1

provides estimates for the number of SMBHs with shadow sizes

and optically thin horizon-scale flux densities that live on the

ridge-line approximated by Equation (24); Table 2 lists the same

for the number of sources we could expect to detect using

telescopes with different resolution and sensitivity thresholds.

4.1. The Case of M87 and the EHT

As of the writing of this paper, the SMBH in M87 is the only
one whose shadow size (∼40 μas) and horizon-scale flux
density (∼0.5 Jy at 230 GHz) have been directly imaged14

(Event Horizon Telescope Collaboration et al. 2019a, 2019b,
2019c, 2019d, 2019e, 2019f). M87 thus presents a natural test
case against which to compare our source counts predictions from
Section 2. Our model predicts that the number of SMBHs having
ϑ> 40 μas and Sν> 0.5 Jy should be between ∼0.03 and ∼0.23
for the lower and upper BHMF prescriptions, respectively.
Compared against the 1 object known to adhere to the chosen

criteria, our model is systematically underpredicting the pre-
valence of M87. This underprediction may be explained at least in
part if the local density of galaxies exceeds the cosmic mean, as
suggested by, for example, Dálya et al. (2018),15 which violates
our model assumption of a homogeneous distribution of SMBHs.
However, any such overdensity likely does not explain a
discrepancy larger than a factor of ∼2, indicating that we may
simply be finding ourselves on the high end of sampling variance.
We thus expect that using the existence and properties of M87 to
extrapolate the number of SMBHs with smaller shadows or
weaker flux densities will result in systematically overoptimistic
predictions; that is, more sources will be predicted than our
modeling suggests the real universe likely contains.
Similarly, the EHT is currently the only telescope to have

successfully carried out shadow-resolved observations of an

SMBH. The number of sources that the EHT is able to resolve

and detect the shadows for thus presents a test case against which

to compare our source counts predictions from Section 3. The

EHT currently relies on observing with ALMA as part of the

array, and during the 2017 observing campaign that led to the

published M87 black hole images, ALMA itself required in-beam

sources with flux densities of �0.5 Jy to perform the array

phasing necessary for it to participate in VLBI observations

(Matthews et al. 2018). For the purposes of estimating source

counts, this phasing threshold effectively sets the sensitivity limit

of the EHT. In this case, our model predicts that for θr= 20 μas
and σν= 0.5 Jy we should expect to resolve and detect up to∼0.4

sources, similar to the projected number based on the above

extrapolation using M87 as a benchmark.
However, the 0.5 Jy phasing threshold has since been relaxed by

permitting the transfer of phase corrections to faint targets from

nearby but bright out-of-beam calibrators, and even the on-source

phasing threshold can potentially be lowered through refinement of

the phasing algorithm. Moving forward, the EHT may thus be able

to observe much fainter targets. In a best-case scenario in which

the phasing threshold is reduced to mJy levels, these improvements

could permit the nominal sensitivity of the EHT to be used for

source count estimates. Observing at 230GHz, the EHT achieves

θr≈ 20 μas and σν≈ 10−3 Jy, for which our model predicts the

Figure 11. Power-law fits to the ridge-line in N(θr, σν)—defined as the location
of maximum σν for every fixed N—for four different observing frequencies;
this ridge-line can be seen as the turnover in the contours in Figure 7.
Configurations of (θr, σν) that fall below and to the right of the ridge-line can
most effectively increase N by improving angular resolution (i.e., by decreasing
θr), while configurations that fall above and to the right of the ridge-line can
increase N by improving sensitivity (decreasing σν) or by increasing θr. For
reference, we mark the approximate specifications of the EHT (i.e., θr = 20
μas, σν between 1 mJy and 0.5 Jy) by a shaded gray region.

Table 1

Population Characteristics at 230 GHz

Properties

Target Population How many? ϑ (μas) Sν (Jy)

M87 40 0.5

1 (12.8, 24.5) (3.8, 16.5) × 10−2

Black hole shadows 102 (3.1, 5.4) (1.6, 5.5) × 10−3

104 (0.81, 1.1) (7.9, 17.0) × 10−5

106 (0.15, 0.23) (1.9, 4.9) × 10−6

Note. Predicted approximate shadow size (ϑ) and 230 GHz horizon-scale flux

density (Sν) above which there exists the listed number of SMBH shadows.

Quantities in parenthesis indicate the values determined from the lower and

upper BHMF prescriptions. We note that our source counting model predicts

more stringent requirements to see N ≈ 1 source than are actually required to

see the SMBH in M87 (see Section 4.1). We have thus separately listed the

requirements needed to observe M87.

14
The second shadow-resolved black hole that the EHT has targeted—the

Milky Way SMBH Sgr A*
—does not present a relevant comparison for this

work because it is located in our own Galaxy, and it therefore does not fit
within our modeling framework. In addition, Sgr A* has an additional
observing constraint beyond those given in Section 2: it is heavily scattered
by the ionized interstellar medium along its line of sight, so high-resolution
observations must be conducted at correspondingly high frequencies of

1 THz 1 asrn q m (e.g., Lo et al. 1998; Bower et al. 2006; Johnson et al.
2018). The scattering is significantly weaker for sources off the Galactic plane
(such as M87), requiring only 30 GHz 1 asrn q m (e.g., Cordes &
Lazio 2002; Johnson & Gwinn 2015). Thus, interstellar scattering is unlikely to
significantly affect our estimates for observable source counts.

15
We note that the overdensity in Dálya et al. (2018) is driven almost entirely

by the existence of the Virgo cluster, and there are other indications (e.g., Tully
et al. 2019; Böhringer et al. 2020) that when considering a somewhat larger
volume (out to ∼100 Mpc) the local universe may actually be underdense.
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number of accessible SMBHs to be between ∼0.6 and ∼5.7 for
the lower and upper BHMF prescriptions, respectively. We thus
predict that the EHT could potentially gain access to approximately
an order of magnitude more shadow-resolved sources by
improving its effective sensitivity to mJy levels in this way.

4.2. Implications for Array Design

More generally, the behavior of N(θr, σν)—in particular, the
behavior of its gradient—has implications for how an existing array
can be most efficiently augmented to increase the number of
accessible black hole shadows. As mentioned in Section 4.1, the
EHT is currently operating with an angular resolution of θr≈
20 μas and an effective flux density sensitivity between σν≈ 10−3

Jy and σν≈ 0.5 Jy. This sensitivity range straddles the Pareto front
for θr≈ 20 μas (see Figure 11), such that with σν≈ 0.5 Jy the EHT
array could most significantly increase the number of horizon-
resolved black hole targets through improvements in sensitivity.
However, once the sensitivity improves beyond the Pareto
threshold of ∼70 mJy then the EHT will require enhanced angular
resolution to increase the source counts further. For instance, at a
fixed sensitivity of σν= 10−3 Jy, an order-of-magnitude improve-
ment in the angular resolution would yield an increase of
approximately 2 orders of magnitude in the number of detectable
black hole shadows; in contrast, while keeping the angular
resolution fixed at 20μas, arbitrary improvements in sensitivity
beyond 10−3 Jy would not yield many additional sources.

In practice, an Earth-based array like the EHT is limited to a
maximum physical baseline length of one Earth diameter, meaning
that any significant angular resolution improvements must come
from increasing the observing frequency. A near-future aspiration
for the EHT (Event Horizon Telescope Collaboration et al. 2019b),
and a defining capability for the next-generation EHT (ngEHT;
Doeleman et al. 2019; Raymond et al. 2021) will be to observe at a
frequency of 345GHz. At a fixed long-baseline sensitivity of
σν= 10−3 Jy, we expect that the effective 50% improvement in
angular resolution over the current EHT should correspond to a
factor of ∼3 increase in the number of detectable black hole

shadows. In contrast, at a fixed θr= 20 μas, the doubling of the
baseline sensitivity that the ngEHT is expected to provide will only
increase the source counts by ∼10%.
While angular resolution may ultimately limit the number of

observable black hole shadows for ground-based interferometers
like the EHT and ngEHT, sensitivity is expected to be the limiting
factor for many prospective interferometers that network with
space-based stations. For instance, a baseline connecting a station
on Earth to one located at the Earth–Sun L2 Lagrange point—such
as may be possible using the proposed Millimetron (Kardashev
et al. 2014) or Origins (Wiedner et al. 2021) space telescopes—
would have a finest 230GHz angular resolution of θr≈ 0.2 μas. At
this resolution, we expect that a sensitivity of σν 10−4 Jy would
be required to detect even a single object. To achieve this
sensitivity level, a 10-m dish observing at 230GHz as part of a
baseline with the phased ALMA array would require a time-
bandwidth product of∼3× 1012 (e.g., 3 min of on-source
integration time using 16GHz of bandwidth), which is already
larger than achieved by the EHT. Improving the sensitivity to 10−5

Jy would require a time-bandwidth product that is 2 orders of
magnitude larger still (e.g., 2 hr of on-source integration time using
32GHz of bandwidth), and pushing to 10−6 Jy would require an
additional 2 orders beyond that (e.g., 5 days of on-source
integration time using 64GHz of bandwidth). Achieving
the∼10−6 Jy Pareto front flux density corresponding to a
∼0.2 μas angular resolution thus imposes demanding sensitivity
and stability requirements, and we expect that the number of
sources accessible using long (?1 Earth diameter) Earth-space
baselines will be sensitivity limited rather than resolution limited.

5. Summary and Conclusions

Motivated by the success of the EHT and the promise of next-
generation radio interferometric facilities, we have presented a
framework for estimating the number of black hole shadows
that are expected to be observationally accessible to different
telescopes. Given assumptions about the distribution of SMBHs

Table 2

Telescope Requirements to Achieve Various Source Counts at 230 GHz

Requirements

Target Population

How

many? θr (μas) σν (Jy)

M87 40 10−1

1 (8.6, 16.3) (1.1, 3.9) × 10−2

Black hole shadows (n � 0) 102 (2.2, 3.5) (5.0, 16.5) × 10−4

104 (0.5, 0.7) (1.9, 5.6) × 10−5

106 (0.10, 0.14) (3.7, 13.0) × 10−7

M87 7 10−3

1 (1.4, 2.6) (2.7, 9.9) × 10−4

First-order photon rings (n � 1) 102 (0.31, 0.55) (1.2, 4.2) × 10−5

104 (0.075, 0.11) (5.0, 14.6) × 10−7

106 (0.015, 0.022) (1.2, 3.6) × 10−8

M87 0.3 10−5

Second-order photon rings (n � 2) 1 (0.061, 0.12) (2.5, 9.0) × 10−6

102 (0.013, 0.025) (1.1, 3.8) × 10−7

Note. Similar to Table 1, but listing the predicted approximate single-baseline angular resolution (θr) and flux density sensitivity (σν)

requirements for observing different numbers of SMBH shadows and low-order photon rings at 230 GHz. Quantities in parenthesis

indicate the values determined from the lower and upper BHMF prescriptions. For each order of photon ring, we have explicitly listed

the requirements needed to observe M87 at that order.
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across mass, accretion rate, and redshift, we use a semianalytic
ADAF-based SED model to derive estimates for the number
of SMBHs with detectable and optically thin horizon-scale
emission as a function of angular resolution, flux density
sensitivity, and observing frequency. Using a simple analytic
prescription for the interferometric flux density distribution
expected from black hole photon rings, we further decom-
pose the SMBH source count estimates into the number of
objects for which we could expect to observe first- and
second-order photon rings.

Our main findings can be organized into two categories.
First, we provide the following characterizations of the SMBH
population:

1. Figure 4 shows the distribution of observationally
accessible SMBH shadows, predicting that large numbers
(>106 with ∼0.1 μas resolution and ∼1 μJy sensitivity)
of objects should have resolvable horizon-scale emission
at (sub)millimeter wavelengths.

2. Figure 7 shows the angular resolution and sensitivity that
an interferometer would require to observe the black hole
shadows for this same population of SMBHs.

3. For any particular choice of angular resolution and
sensitivity, the population density of SMBHs with
observable shadows generally increases toward higher
redshifts and toward smaller black hole masses (see
Figure 8). As a consequence, a majority of observable
shadows are expected to have angular sizes that fall
close to the resolution limit.

4. The bulk population of SMBHs with observable n= 1
photon rings starts to become accessible at angular
resolutions of 2 μas and flux density sensitivities of
0.5 mJy (see Figure 9 and Table 2). Similarly, the n= 2
population is accessible for angular resolutions of 0.1
μas and flux density sensitivities of 5 μJy.

We also consider the implications of these findings for current
and future interferometric facilities:

1. The current effective sensitivity of the EHT is insufficient
to maximally utilize its angular resolution. We predict
that as many as ∼5 additional horizon-resolved sources
could become accessible by improving the effective
sensitivity of the EHT from ∼0.5 Jy to <70 mJy. ALMA
should be sufficiently sensitive to achieve phased
observations on sources with flux densities at this level,
so an important next step will be to identify the specific
sources that then become accessible.

2. Once the effective sensitivity of the EHT improves
beyond the ∼tens of mJy level, a large (i.e., order-of-
magnitude) additional increase in the number of obser-
vable black hole shadows can only be achieved by
improving the angular resolution. We predict that an
ngEHT observing at 345 GHz should have access to ∼3
times as many sources as the EHT observing at 230 GHz.

3. Future telescopes that observe with 1 μas angular
resolution, such as could be achieved using Earth-space
interferometry, will require flux density sensitivities of
=1 mJy to detect large numbers of black hole shadows.

In carrying out our analyses we have produced a library of
synthetic SEDs and several tables of source counts,16 as well as

the code used to generate each SED.17 The source count tables
provide the predicted number of black hole shadows, n= 1
photon rings, and n= 2 photon rings accessible using different
combinations of angular resolution, flux density sensitivity, and
frequency. These resources may be useful for determining the
specifications of future telescopes that aim to observe a large
population of SMBH shadows or higher-order photon rings.
Once such observations have been carried out, the predictive
framework developed in this paper could be inverted so that the
source counts become inputs rather than outputs, in turn
providing constraints on the distribution of SMBH masses and
accretion rates across cosmic history.
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at Harvard University, which is funded by grants from the
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Appendix A
SED Model

We use an SED model for ADAFs that largely follows the
formalism presented in M97, though we introduce a number
of modifications that update the SED to align it better with
more recent work. In this section, we detail these modifica-
tions, propagate them into the relevant expressions from M97
and Narayan & Yi (1995a, hereafter NY95), and describe the
resulting SED model.
In determining the form of the SED, the primary equation we

aim to solve is one of energy balance between the heating and
cooling of the electrons in the flow. Following M97 Equation
(8), we have

( )Q Q Q Q , A1adv,e ie d+ = +- +

where Q+ is the total viscous heating rate, δ is the fraction of this

heating rate that goes directly to the electrons, Qie is the rate of

energy transfer from the ions to the electrons, and Q− is the total

radiative cooling rate of the electrons. We have introduced an

additional term Qadv,e that accounts for the electron energy that is

advected into the black hole. We note that in the extremely low

accretion regime considered here, energy loss from neutrino

cooling is negligible. The radiative cooling term is given by:

( )Q P P P , A2synch compt brems= + +-

where Psynch, Pcompt, and Pbrems correspond to the power

emitted in synchtrotron, inverse Compton, and bremsstrahlung

radiation, respectively. It is the combined contributions from

these three emission processes that ultimately constitute our

model SED.

16
https://doi.org/10.17632/8pj73cy7vx.1

17
https://github.com/dpesce/LLAGNSED
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The emission processes of interest for this paper depend on

the electron temperature, which is determined self-consistently

such that the total heating and cooling satisfy Equation (A1).

The left panel of Figure 13 shows the various model

contributions to the electron heating and cooling as a function

of electron temperature for an example M87-like system, and

the right panel shows the corresponding predicted SED as a
function of frequency. The right panel of Figure 14 shows the
derived temperatures as a function of m and m . Table 3
provides a list of the various parameters used in the SED
model, and Figure 12 shows example SEDs.

A.1. Flow Equations

We take the underlying accretion flow properties to be
described by the self-similar models developed by NY95, in
which the relevant parameters are the black hole mass M, the
accretion rate M , the radius R, the viscosity parameter α, the
ratio of gas to magnetic pressure β,18 and the fraction f of
viscously dissipated energy that is advected into the black hole.
Following M97, we use scaled quantities,

( ) ( )M M m1 , A3a=

( ) ( )

R rR

m r2.953 10 cm , A3b

S

5

=
= ´

( )

( ) ( )

M mM

m M
R

R

m m r1.399 10 g s , A3c

S

s

s

Edd

0 Edd

18 1
0

  

 



=

=

= ´ -
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⎝

⎞
⎠

where RS= 2GM/c2 is the Schwarzschild radius, MEdd
 =

L cEdd
2h is the Eddington accretion rate, and we have taken

the radiative efficiency η to be 0.1. Here, the difference

between Equation A3(c) and M97 Equation (4) comes from our

adoption of the radius-dependent accretion rate from Blandford

& Begelman (1999), which accounts for outflowing material

via a radial dependence of the mass accretion rate with power-

law index s.
The self-similar equations describing the accretion

flow, M97 Equation (5), become

( )
( )

( )

M

H c GMR

c m m r

4

6.022 10 g cm ,

A4a

s
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5 3 1
1

1 1
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3 2
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( ) ( )( )

n
m

c m m r3.158 10 cm , A4b

e
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s19 3 1
1

1 1
0

3 2

r
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=
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where ρ is the mass density, B is the magnetic field strength, ne
is the number density of electrons, α is the disk viscosity
parameter (Shakura & Sunyaev 1973), H is the disk scale
height (we have followed M97 in setting H= R), μe= 1.14 is
the mean molecular weight (NY95), and c1≈ 0.5 and c3≈ 0.3
are constants defined in NY95 and specified in Table 3.
We adopt a power-law radial profile for the electron

temperature Te of the form

( )T
T

r
, A5e

e

t

,0

1
=

-

with t� 1. From NY95 Equation (2.16), the two-temperature

accretion flow must satisfy

( )( ) ( )T T c r1.08 6.66 10 K 1 , A6i e
12 1

3
1b b+ = ´ + - -

where Ti is the ion temperature. Setting Ti= Te at some

maximum radius r rmax= yields an expression for t,

( )
( )

( )
( )t

r

c

T

1

ln
ln

6.66 10 K

2.08 1
, A7

emax

12
3

,0

b
b

=
´

+
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⎝

⎞
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such that Ti> Te for all r rmax< .

A.2. Heating

The plasma in an ADAF is heated by viscous forces, with the
total heating rate per unit volume denoted as q+. Some fraction
δ of this energy is deposited into the electrons, while the
remaining fraction (1− δ) heats the ions. The ions can transfer
thermal energy to the electrons via Coulomb collisions, with
the rate of this transfer denoted by qie, and the electrons can
radiate energy away at a rate q−. Taken altogether, energy
balance yields advected energy rates of

( ) ( )q q q1 , A8aadv,i ied= - -+

( )q q q q , A8badv,e ied= + -+ -

for the ions (qadv,i) and electrons (qadv,e). The ion heating is

driven by viscous dissipation, while the dominant electron

heating source depends on the accretion rate; at high accretion

rates the ion-electron heating is dominant, whereas at low

accretion rates the viscous heating is more important.
NY95 give an expression for the viscous heating rate per unit

volume,

( )

( )

( ) ( )

A9

q
c c

Rf

GM

R

f c m m r
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1 3
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( )( ) ( )
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18
We note that our definition for β differs from that used in M97; M97 uses

the ratio of the gas pressure to the total pressure, while we use the “plasma
beta” convention (i.e., ratio of gas pressure to magnetic pressure). If we denote
the M97 parameter as βM97, then the two are related by βM97 = β/(1 + β).
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where f is the fraction of viscously dissipated energy that is

advected into the black hole. The total (i.e., volume-integrated)

viscous heating rate is then given by

( ) ( )

( ) ( )
( )

( )

Q f c mm

s r r s

r r s

9.430 10 erg s 1

1 , 1

ln , 1
, A10

s s

38 1 1 1
3
1 2

0

1
min
1

max
1

max min

b= ´ +

´ - - ¹
=

+ - - -

- - + - +⎧
⎨⎩

where rmin and rmax are the minimum and maximum radius,

respectively.19

The heating rate per unit volume of the electrons from

Coulomb interactions with protons is given by Stepney &

Guilbert (1983),

where θe= kTe/mec
2 is the dimensionless electron temper-

ature, θi= kTi/mpc
2 is the dimensionless ion temperature,

( )ln 20L » is a Coulomb logarithm, Kn represents a modified
Bessel function of the nth order, and we have assumed
ne= ni. In the second line we have adopted the approx-
imation from M97.20 We note that in evaluating the prefactor

in Equation (A11) we have followed NY95 and multiplied by
an additional factor of 1.25 to account for the ions containing
a mixture of roughly 75% hydrogen and 25% helium.
The volume-integrated ion-electron heating rate is given by

( ) ( )Q m q r dr3.236 10 cm , A12
r

r
ie 17 3 3 ie 2

min

max

ò= ´

which does not have an analytic form and so must be integrated

numerically.

A.3. Cooling

The observed emission in radio and (sub)millimeter bands is
dominated by synchrotron radiation, but the primary electron

cooling mechanisms also include bremsstrahlung and inverse

Compton radiation. Each of these emission mechanisms

contributes to q−, and each depends on the electron temperature

Te.

A.3.1. Synchrotron Emission

We use a form for the synchrotron spectrum from

Mahadevan et al. (1996; see also NY95; M97), which assumes

an isotropic distribution of relativistic electrons. The synchro-

tron spectral emissivity is given by

Figure 12. Example SEDs produced from the model described in Appendix A plotted for a range of accretion rates. The left panel shows SEDs for an SMBH mass
similar to that of M87 (6.5 × 109 M

e
; Event Horizon Telescope Collaboration et al. 2019f), and the right panel shows SEDs for an SMBH mass similar to that of Sgr

A*
(4 × 106 M

e
; Do et al. 2019; Gravity Collaboration et al. 2019).
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19
We note and correct an error in the original expression for Q+ from M97

Equation (9), for which the exponent of the c3 term should be 1/2 rather than 1.
20

We note and correct an error in the original expression for qie from M97
Equation (10), for which the exponent of the r term should be −3 rather
than −1.
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and xM is a dimensionless frequency,
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Equation (A13) assumes optically thin emission, but below some critical frequency νc (which is a function of radius) we expect the

synchrotron to be optically thick and thus described by a blackbody spectrum. We follow M97 and determine νc(r) by equating

emission within a volume of radius r to the Rayleigh–Jeans blackbody emission from a spherical surface at that radius,
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which lends itself to a prescription for estimating the optical depth more generally of
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We numerically solve Equation (A16) for νc at Rmin and Rmax, yielding a peak frequency νp at Rmin (with luminosity Lp) and a

minimum frequency νm at Rmax (with luminosity Lm); the left panel of Figure 14 shows how νp changes with m and m . We take the

synchrotron spectrum to be blackbody (i.e., optically thick) at frequencies below νm, optically thin with an emissivity described by

Equation (A13) at frequencies above νp, and a power law at intermediate frequencies. That is,
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The total emitted synchrotron power is then the integral of Lν,synch over frequency,

( )P L d , A19synch
0

,synchò n= n
¥

which we evaluate numerically.

A.3.2. Bremsstrahlung Emission

We use an expression for the bremsstrahlung emission that follows M97 Equation (27),
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The volume-integrated power emitted in bremsstrahlung

radiation will then be

with a spectral dependence given by

We integrate both of the above expressions numerically.

A.3.3. Inverse Compton Emission

We follow M97 in considering Comptonization only of

synchrotron photons emitted predominantly at the peak

frequency νp, for which the spectrum in the temperature range

of interest is expected to be a power law,

( )A24L L .p
p

,compt

cn
n

=n

a-

⎜ ⎟⎛
⎝

⎞
⎠

The power-law index αc is determined both by how frequently

photons are scattered (which is determined by the optical depth

Table 3

SED Model Parameters

Parameter Description Default Value

m black hole mass in units of the solar mass; m ≡ M/M
e

K

m0 mass accretion rate onto the black hole, in units of Eddington K

η radiative efficiency 0.1

β plasma beta; ratio of gas pressure to magnetic pressure 10

α viscosity parameter 0.2

s power-law index for the mass accretion rate as a function of radius 0.5

Te electron temperature K

t power-law index for the electron temperature as a function of radius K

f fraction of viscously dissipated energy that is advected 1

δ fraction of viscous heating that goes directly to the electrons 0.3

rmin minimum dimensionless radius of the advection region 3

rmax maximum dimensionless radius of the advection region 103

θe dimensionless electron temperature;
kT

m c

e

e
2

K

xM dimensionless synchrotron frequency; Equation A15(a) K

νb gyro frequency;
eB

m c2 ep
K

νc critical frequency below which synchrotron emission is optically thick K

νp “peak” critical synchrotron frequency at innermost radius; ( )rp c minn n= K

νm critical synchrotron frequency at outermost radius; ( )rm c maxn n= K

γ ratio of specific heats;
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Note. A list of the parameters used for the SED model. Certain parameters in the model take on the default values listed here, while others must either be specified as

inputs (e.g., m, m ) or else are internally computed as part of the model (e.g., Te, t).
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of the scattering process) and by how much a photon is

amplified during a typical scattering event. We use an

expression for the optical depth to electron scattering τes
adapted from NY95 Equation (2.15),

( )( )

n R

c m r

2

6.205 . A25

e T

s

es min

1
1

1
0 min

1 2
t s

a
=
= - - - +

We take the mean amplification factor A from M97 Equation

(32) (originally inspired from Rybicki & Lightman 1979),

( )A 1 4 16 , A26e e,0 ,0
2q q= + +

which together with τes determines the power-law slope for the

Compton emission,

( )( )
( )

A27
A

ln

ln
.c

esa
t

= -

Figure 13. Left: an example set of electron heating and cooling curves used in the SED model as a function of Te,0, for an M87-like SMBH with m = 6.5 × 109 and

m 100
5 = - . Solid colored curves indicate sources of electron heating, while dashed colored curves indicate sources of electron cooling; the total heating and cooling

are plotted as the black solid and dashed lines, respectively. The intersection of these lines is circled and indicates where the heating and cooling are balanced (see
Equation (A1)), which for this system occurs at Te,0 = 4.3 × 1010 K. Right: the SED corresponding to the solution from the left panel, with the individual
contributions from synchrotron, inverse Compton, and bremsstrahlung emission plotted as colored curves and the combined spectrum plotted in black. For a 17 Mpc
assumed distance to M87, the predicted 230 GHz flux density is ∼1 Jy. This prediction agrees well with the horizon-scale flux density measured by the EHT (Event
Horizon Telescope Collaboration et al. 2019d).

Figure 14. Left: the peak synchrotron frequency, νp, at Rmin as a function of m and m . The white curves show contours at four different observing frequencies of
interest, such that at any given frequency objects located to the lower right of the curve are expected to have optically thin emission. Right: the self-consistent value
determined for Te,0 as a function of m and m . In both panels, the approximate mass (6.5 × 109 M

e
) and accretion rate (λ = 10−5

) corresponding to the SMBH in M87
is marked in black.
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The total Compton power will then be given by the integral of

Lν,compt up to the maximum final frequency of a Comptonized

photon (νf= 3kTe,0/h),
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A.3.4. Electron Advection

The M97 model assumed that Te= Ti, and it therefore
ignored electron energy advection. This assumption was
reasonable for the parameters considered in that paper,
particularly the choice of δ=me/mp. However, the modern
view is that δ is much larger (≈0.3; see Yuan & Narayan 2014).
Such large values of δ make electrons significantly hotter,
especially at very low m , and so energy advection in electrons
can no longer be ignored.

When electron advection is included, M97 Equation (8)
gains an additional term Qadv,e and becomes Equation (A1).
This advective cooling term is given by
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ds
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dR4 , A29
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where se is the entropy per electron. Let us write
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where, following the approach described in Narayan & Yi

(1994), we express the specific heat at constant volume CV in

terms of an effective γCV. Substituting in Equations A4(b) and

(A5) and differentiating with respect to R yields
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Saḑowski et al. (2017) provide an accurate fitting function for

γCV, which we write as

( )

( )
( )

20 2 8 5

3 8 40 25
. A32

e e

e e

CV

2

2
g

q q
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Noting further that ne= ρ/μemp and M R v4 2 p r= - , we finally

obtain

which we integrate numerically. We note that there are
conditions under which Equation (A33) can yield a negative
value for Qadv,e; in these cases, we impose Q

adv,e
= 0.

A.4. Maximum Mass Accretion Rate

The ADAF solution ceases to exist above some critical mass
accretion rate, mcrit , where the accretion flow is no longer
advection-dominated (NY95; M97). Within the context of our

SED model, this condition manifests as a maximum accretion
rate above which there is no equilibrium temperature (i.e., the
heating and cooling curves never cross). We numerically
determine a value of m 10crit

1.7 » - , and so in this paper we
only work with values of m 100

2 - .
In addition to the critical m above which no ADAF solutions

exist, there is also a softer threshold accretion rate above which
solutions do exist but our assumed input radiative efficiency of
η= 0.1 is no longer consistent with the output of the SED
model. Figure 15 shows the predicted radiative efficiency from
the model as a function of m0 ; we take the model radiative
efficiency to be the ratio of the bolometric luminosity,

( ) ( )L L L L d , A34bol
0

,synch ,compt ,bremsò n= + +n n n
¥

to the accretion rate equivalent luminosity, Mc2 . Regardless of

the input mass, the output radiative efficiency exceeds the

assumed input value for m 100
2.5 - . Though this inconsistency

reflects a physical limitation of the model, we note that given the

ERDF prescription used in this paper (see Section 2.4),

it impacts only a small fraction of SMBHs (<1% for most M

and z, reaching a peak of ∼5% for M> 109 M
e
and z> 5).

Appendix B
Mass Dependence of the Eddington Ratio Distribution

Function

As described in Section 2.4, in this paper we take the
ERDF to have a broken power-law functional form (see

Figure 15. The ratio of the bolometric luminosity Lbol to the accretion

luminosity Mc2 versus the accretion rate m and colored by SMBH mass m. The
dashed gray line indicates the input radiative efficiency of η = 0.1; for

m 100
2.5 - the radiative efficiency of our model exceeds this input

assumption.
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Equation (12)) with a power-law index α that evolves with both
SMBH mass M and redshift z. Specifically, we adopt the
redshift evolution prescription from Tucci & Volonteri (2017)
(see Equation (14)), and we add to it an evolution with SMBH
mass (see Equation (15)). For the mass evolution of the ERDF
power-law index, we choose a logistic function in ( )Mlog such
that low-mass SMBHs (i.e., those with masses below some
value M0) see a power-law index alo, while high-mass SMBHs
(i.e., those with masses above M0) see a power-law index ahi.
The specific functional form of Equation (15) ensures that a(M)

transitions smoothly between the low- and high-mass regimes,
with a logarithmic width that is set by the parameter Δ.

To determine the values of the ERDF parameters alo, ahi,M0,
and Δ, we rely on the observational constraints provided by
Aird et al. (2018). Aird et al. (2018) determined the distribution
of specific SMBH accretion rates λs—that is, the accretion rate
relative to the stellar mass of the galaxy, rather than to the mass
of the SMBH—by fitting a Bayesian mixture model to X-ray
observations of∼105 near-infrared-selected galaxies. This
sample includes a mix of star-forming, quiescent, and AGN-
dominated galaxies, and it spans a range∼108.5–1011.5 M

e
in

stellar mass and ∼0.3–4 in redshift. We use two different
prescriptions to convert from stellar mass to SMBH mass,
corresponding to the two BHMF prescriptions described in
Section 2.2. For our fiducial choice of the lower BHMF from
Shankar et al. (2009), we adopt the stellar-to-SMBH conver-
sion used by Aird et al. (2018) themselves, which is given
simply by M*= 500M; we use this fiducial prescription for all
figures and values in this paper unless otherwise specified. For
the instances in which we quote a range of values corresp-
onding to the lower and upper BHMFs, for the upper BHMF
we convert from λs to λ using the same stellar-to-SMBH
conversion as in Section 2.2 (i.e., Equation (11)).

Given the observed P(λ) as a function of M and z, we
determine the best-fit ERDF parameters by minimizing the
squared logarithmic differences between the Aird et al. (2018)
empirical model and Equation (12). We restrict our fitting to
the region of parameter space between ( )4 log 1 l- - ,
with the low-λ cutoff determined by the observational
limitations and the high-λ cutoff determined by our interest
in LLAGNs. The resulting best-fit values for the fiducial
case are alo= 0.55, ahi= 0.20, ( )Mlog 7.50 = , and Δ= 0.3.
Figure 16 shows a comparison between the best-fit ERDF and
the Aird et al. (2018) model. For the upper BHMF prescription,

the only parameter that changes isM0, for which we find a best-
fit value of ( )Mlog 7.80 = .

Appendix C
Analytic Approximations Based on Volumetric Scaling

Relations

The behavior of N(θr, σν) seen in Figures 4 and 5 takes on an
apparently simple structure, whose gross properties can be
understood in terms of simple volumetric scaling relations.

C.1. Analytic Approximation for the Population Source Counts

For a static universe in which SMBHs are distributed
uniformly, the number of SMBHs that could be spatially
resolved at an angular resolution θr by a telescope with
arbitrary sensitivity will be proportional to r

3q- . Similarly, the
number of SMBHs that could be detected at a sensitivity σν by
a telescope with arbitrary angular resolution will be propor-

tional to 3 2sn
- . A simple function that captures both limiting

behaviors is
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Here, we have chosen the normalization to be such that we

would expect to see 1 black hole shadows with angular sizes

smaller than θr= 40 μas and with flux densities less than

σν= 1 Jy—approximately matching the values appropriate for

the SMBH in M87 (Event Horizon Telescope Collaboration

et al. 2019c, 2019d)—and that at this angular resolution and

flux density sensitivity we would expect to see N≈ 1 black

hole shadow.
Following these expectations, we fit a simple functional form

to the source counts of
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The model parameters θr,0, γ, σν,0, and κ are determined by

minimizing the squared logarithmic differences between

( ),rq sn from Equation (C2) and the complete numerical

evaluation of N(θr, σν) from Equation (7) (see Section 2.5),

assuming an observing frequency of 230 GHz. Both functions

Figure 16. Comparison of the ERDF prescription used in this paper with the empirical modeling from Aird et al. (2018), with each panel showing a different choice of
redshift. In each panel, the colored lines and corresponding shaded regions show the constraints from Aird et al. (2018) for a range of SMBH masses, as labeled in the
legend at the lower right; the black dashed and dotted lines show our ERDF prescription (see Equation (12)) for example SMBH masses of 106 and 109 M

e
,

respectively, as labeled in the legend at the lower left. All panels share the same horizontal and vertical axis ranges, which are explicitly labeled in the left panel.
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are evaluated on a 200× 200 grid of (θr, σν) points,

logarithmically spaced between [10−2, 102] μas in θr and

between [10−9, 101] Jy in σν.
We find best-fit parameter values of θr,0= 21.8 μas,

γ= 2.95, σν,0= 0.080 Jy, and κ= 1.32; this best fit is shown
in the left panel of Figure 17. The power-law indices, γ and κ,
have best-fit values that are close the initial expectations (i.e.,
γ= 3 and κ= 1.5), indicating that the cosmological effects are
not causing large deviations from simple volumetric scaling
relations. The normalization factors, θr,0 and σν,0, are
substantially different from the values in Equation (C1), in
line with the model’s known underprediction of M87 (see
Section 4.1). Overall, the best-fit Equation (C2) provides a
description of the source counts that deviates from the
numerical computation by less than an order of magnitude
across most of the (θr, σν) space. Only for θr 0.1 μas and
σν 10−7 Jy does the analytic approximation deviate from the
numerical computation by more than an order of magnitude
in N.

C.2. Analytic Approximation for the Interferometric Source
Counts

When observing with an interferometric baseline, the
correlated flux density depends on the brightness temperature
Tb of the source emission. For a source that is marginally
resolved and which subtends a solid angle Ω, the brightness
temperature can be expressed as
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Here, σν represents the total flux density of the source, and θr is its

angular size on the sky. For synchrotron sources, self-absorption and

energy equipartition are expected to limit Tb to some maximum

value of approximately 1011K (Kellermann & Pauliny-Toth 1969;

Readhead 1994, though see also Kovalev et al. 2016). More

specifically, the emitted brightness temperature should never

exceed the electron temperature, which for our SED model

described in Appendix A does not go above∼7× 1010 K (see

the right panel of Figure 14). Following the considerations

from Appendix C.1 while also accounting for this brightness

temperature limit, we can modify Equation (C1) using an

exponential cutoff to smoothly suppress the the high brightness

temperature emission,
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Here, θr should now be understood to represent a single-

baseline angular resolution, and we have adjusted the σν
normalization to match the 230 GHz flux density observed

from M87 on long baselines (Event Horizon Telescope

Collaboration et al. 2019c). We have set the brightness

temperature cutoff to 1010K because we are selecting for

SMBHs that are optically thin and which therefore should not

typically saturate the brightness limit. We note that magneto-

hydrodynamic simulations of the M87 system also exhibit

brightness temperatures that peak between 1010 and 1011K

(Event Horizon Telescope Collaboration et al. 2019e).
Following these expectations, we expand on the results of

Appendix C.1 and fit a simple functional form to the source
counts of
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Here, we have fixed the exponents of the θr and σν terms to the

values expected from initial considerations and further

motivated by the fitting results of Appendix C.1. We also

incorporate the understanding from Section 3.2 into the scale-

setting parameters θr,n and σν,n for the nth sub-ring, which are

Figure 17. Left: same as the bottom panel of Figure 4, but with the source counts predicted by the best-fitting analytic approximation (Equation (C2)) overplotted in
cyan contours. Right: same as Figure 7, but with the source counts predicted by the best-fitting analytic approximation (Equation (C5)) overplotted in cyan contours.
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defined to be

( )e e . C6r n r
n

n
n

, ,0 , ,0
3 2q q s s= =p

n n
p- -

We do not have an a priori expectation for the scaling behavior

of the brightness temperature Tb,n in each sub-ring, so we

simply include it as an additional parameter,

( )T T C . C7b n b
n

, ,0=

The model has five free parameters—θr,0, σν,0, Tb,0, μ, and C
—which we fit in the same manner described in Appendix C.1.
We find best-fit parameter values of θr,0= 23.2 μas, σν,0= 0.17
Jy, Tb,0= 2.2× 108 K, μ= 0.50, and C= 2.39; this best fit is
shown in the right panel of Figure 17. The fit quality is similar
to that in Appendix C.1, with the analytic source counts
throughout most of the (θr, σν) space agreeing to better than an
order of magnitude with the numerical results. The deviations
become worse than an order of magnitude at small values of
θr 0.1 μas and σν 10−7 Jy, as well as wherever the source
counts contain substantial contributions from n> 0 photon
rings.

Appendix D
Sampling Function for a Rotating Baseline

Following Section 3.3, we would like to determine how the
total number of sources that a particular baseline can resolve
changes as that baseline rotates. Equation (22) provides the
angular resolution θr that a baseline of length b (in units of the
observing wavelength) has when viewed from a source at a sky
position with polar angle θ as measured from the tip of the
baseline (see the left panel of Figure 18); there is no f
dependence because sources are assumed to be distributed
isotropically. For any particular baseline, the number density of
resolvable sources per unit solid angle can be written as
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which can then be used as in Equation (23) to determine the

total number of resolvable sources for any fixed baseline b. For

the example calculations presented in this appendix, we will

assume that the integrand of Equation (D1) follows a power

law with index α and coefficient A,
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The number of black holes instantaneously sampled is then

given by an integral over solid angle, expressed in

Equation (23) but now evaluated explicitly for the power law:
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where Γ is the gamma function. In order to compare the

cumulative sampling of different power laws, we must

normalize so that after the baseline rotates by 180°, the number

of black holes sampled is equal; this rotation corresponds to

sweeping the largest projected spacing across the entire sky.

Because the largest projected spacing is the only relevant

quantity, we can normalize simply by requiring
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for all A, b, and α. We express the number of black holes

sampled as a fraction of the total, removing the dependence on

A and b:
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It is then straightforward to observe that the fraction of black

holes in the sky instantaneously observed by a single baseline

decreases with α. However, it is less straightforward to

Figure 18. Left: schematic diagram of black holes sampled by a single baseline at one instant. The dashed black line represents the baseline, the solid gray line
represents the line of sight to an example black hole, the dotted black line represents the projection of the baseline perpendicular to that line of sight, and the dotted
blue curve represents the sampling function (with radial distance from the baseline center proportional to the number of black holes sampled). Middle: same as left, but
after the baseline evolves, rotating by an angle Δχ, sweeping through the volume enclosed by the dashed red line. Dotted gray lines show the decomposition
performed in Equation (D7). Both left and middle diagrams correspond to a two-dimensional cross-section of a three-dimensional surface; for a black hole distribution

that follows
d N

d d r
r

3

qµ
q

a
W

- with α = 2, the instantaneous sampling surface is exactly a torus. Right: cumulative fraction of black holes sampled by sky density functions

with increasingly steep dependence on resolution.
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compute the cumulative number of unique sources a baseline

resolves over the course of some rotation through space,

because the sources sampled at each baseline orientation are

partially redundant with the source sampled at prior baseline

orientations. Put another way, the instantaneous sampling of

black holes provided by a single baseline is given by a

sweeping of the projected baseline through f, whereas the

sampling over a change in orientation is a sweep through a new

angle, which we call χ. The angle χ is related to θ by

( ) ( )tan sin tan . D61c f q= -

χ is defined so that it aligns with θ when f= π/2. An

illustration of χ and the redundant sampling are shown (for the

f= π/2 cross-section) in the middle panel of Figure 18.
The rotation of the baseline in space can then be described

by a change in the axial angle Δχ. Computing Equation (23)
for the total sources sampled after this rotation (shown by the
dashed red surface in the middle panel of Figure 18) can be
simplified by breaking the integral into two regions: first, the
longest projected baseline sweeps out a partial spheroid, while
the rest of the baselines form arcs that intersect at the cusps of
the dashed red line in Figure 18. We refer to the sources
sampled by the partial spheroid as Ns and those sampled by the
cusped curves as N4. As Δχ increases, Ns increases and N4

decreases. The cusped curves have a four-fold symmetry, so we
integrate over a convenient curve (that between θ= π/2 and
θ= π), and Equation (23) reduces to

( ) ( ) ( ) ( )N N N4 , D7s4c c cD = D + D

where

( ) ( ) ( )
( )

N d
d N

d
dsin D84

0 2

2max

ò òc f q q qD =
W

p

p

q cD

is the contribution from each of the cusped curves,

( ) ( )N
d N

d
4

2
D9s

2

c
c
p

p q
p

D =
D

´
W

=⎡
⎣⎢

⎛⎝ ⎞⎠
⎤
⎦⎥

is the contribution from the partial spheroid, and

( )
( ) ( )tan

tan

sin
D10max

1 2q c
p

f
D =

- c

-

D⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

is the value of θ at the first leading cusp. The geometry of this

computation is shown between the dotted gray lines in the

middle panel of Figure 18.
The right panel of Figure 18 shows the cumulative source

sampling for several values of the power-law index α from
Equation (D5). We use α= 2 for the schematic diagrams in
Figure 18 because the sampled surface around an instantaneous
baseline in this case reduces to a torus; α= 4 corresponds to a
sky density of black holes that scales volumetrically (i.e.,
proportional to r

3q- ), which is closer to the actual behavior. For
plausible values of α, we find that the difference between a
fully swept sampling of the sky and the instantaneous baseline
sampling is not more than a factor of 2.
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