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Abstract

We present estimates for the number of shadow-resolved supermassive black hole (SMBH) systems that can be
detected using radio interferometers, as a function of angular resolution, flux density sensitivity, and observing
frequency. Accounting for the distribution of SMBHs across mass, redshift, and accretion rate, we use a new
semianalytic spectral energy distribution model to derive the number of SMBHs with detectable and optically thin
horizon-scale emission. We demonstrate that (sub)millimeter interferometric observations with ~0.1 pas resolution
and ~1 pJy sensitivity could access >10° SMBH shadows. We then further decompose the shadow source counts
into the number of black holes for which we could expect to observe the first- and second-order lensed photon
rings. Accessing the bulk population of first-order photon rings requires <2 pas resolution and <0.5 mly
sensitivity, whereas doing the same for second-order photon rings requires <0.1 pas resolution and <5 uly
sensitivity. Our model predicts that with modest improvements to sensitivity, as many as ~5 additional horizon-
resolved sources should become accessible to the current Event Horizon Telescope (EHT), whereas a next-
generation EHT observing at 345 GHz should have access to ~3 times as many sources. More generally, our
results can help guide enhancements of current arrays and specifications for future interferometric experiments that
aim to spatially resolve a large population of SMBH shadows or higher-order photon rings.

Unified Astronomy Thesaurus concepts: Black holes (162); Event horizons (479); Supermassive black holes

(1663); Very long baseline interferometry (1769)

1. Introduction

The observations and resulting images of the supermassive
black hole (SMBH) in the M87 galaxy by the Event Horizon
Telescope (EHT) collaboration (Event Horizon Telescope
Collaboration et al. 2019a, 2019b, 2019¢, 2019d, 2019e,
2019f) represent the first steps in a new field of spatially
resolved horizon-scale studies of black holes. The emission
from around the SMBH in M87 takes the form of a bright ring
surrounding a darker central “shadow,” as expected from
simple models of spherical accretion (Falcke et al. 2000;
Narayan et al. 2019). A wide variety of simulated images of
black hole accretion flows show that this ring generically has a
diameter that is comparable to the theoretical curve bounding
the photon capture cross-section of the time-reversed black hole
(Event Horizon Telescope Collaboration et al. 2019e, 2019f).
General relativity predicts that the boundary of this cross-
section should take on a nearly circular shape with a diameter
of ~5 times the Schwarzschild radius (Bardeen 1973), and that
this diameter should depend only weakly (to within =~4%) on
the black hole’s spin and inclination (Takahashi 2004;
Johannsen & Psaltis 2010). These properties permit spatially
resolved observations to constrain the black hole mass using
measurements of the shadow size; EHT observations of M87
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yielded a ~10% mass measurement via this approach (Event
Horizon Telescope Collaboration et al. 2019f).

Though the EHT has focused its attention thus far on only
those black holes with the largest angular sizes as seen from
Earth, almost all massive galaxies are expected to host SMBHs
(Magorrian et al. 1998; Kormendy & Ho 2013). As the EHT
and future facilities improve upon the angular resolution and
flux density sensitivity of the first M87 observations, more
SMBH shadows—and their corresponding constraints on the
black hole masses—will become observationally accessible.
Though new black hole mass measurements are valuable for
individual galaxy studies, questions about SMBH formation
and growth mechanisms and the degree to which they coevolve
with their host galaxies are most effectively addressed using
large statistical samples of precisely measured SMBH masses
(Volonteri 2010; Heckman & Best 2014). To this end, it is
natural to ask what observational requirements would be
necessary to access large numbers of SMBHs with spatially
resolved shadows.

In addition to mass measurements, sufficiently high-resolu-
tion observations of SMBHs can also provide unique access to
the black hole spin and, potentially, other spacetime properties.
Hidden within the ring of emission seen by the EHT is an
unresolved series of approximately concentric “photon rings,”
formed by rays that execute increasingly many orbits about the
black hole prior to escaping (Darwin 1959; Luminet 1979;
Gralla et al. 2019; Johnson et al. 2020). Each higher-order
photon ring—enumerated by the number n of half-orbits that
the constituent photon trajectories make around the black
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hole—is expected to have an exponentially narrower angular
width on the sky than the previous order. The lowest-order
(n =0, corresponding to direct emission) photon ring is
affected by specific details of the accretion flow (e.g., stochastic
turbulent structure) that complicate precise spacetime con-
straints, whereas the geometric properties of higher-order rings
contain the same spacetime information while being exponen-
tially less affected by such ‘“astrophysical” contamination.
Furthermore, interferometric observations naturally decompose
the emission by spatial scale, meaning that with fine enough
angular resolution, the signal from n >0 will dominate the
interferometric response in a time-averaged image (Johnson
et al. 2020; Gelles et al. 2021).

The goal of this paper is to determine the number of SMBH
shadows and low-order photon rings that could be observed as
a function of angular resolution, flux density sensitivity, and
observing frequency. We assume that such observations will be
carried out using (sub)millimeter-wavelength interferometry,
and we take 230 GHz to be a characteristic observing frequency
when not otherwise specified. In Section 2, we describe our
formalism and input assumptions, which we use to compute the
number and distribution of SMBH shadows in the universe as
seen from Earth. In Section 3, we modify these shadow counts
to reflect the flux density response expected when observing
with interferometers, and we further decompose the total source
counts into contributions from systems for which we could
observe the n > 0, n > 1, and n > 2 photon rings. In Section 4,
we discuss the implications of the source count distributions for
current and future telescope specifications. We summarize and
conclude in Section 5. Throughout this paper, we assume a flat
cosmology with €, = 0.3, Q) =0.7, and Hy=70 kms~' Mpc ™'
unless otherwise specified.

2. Population Source Counts

Our goal is to estimate the number of black hole shadows
that we could hope to observe. Concretely, we would like to
determine the number N(f,, 0,) of SMBHs that satisfy the
following three conditions:

1. The shadow of the black hole has an angular size larger
than some resolution threshold 4,.

2. The flux density of the horizon-scale emission exceeds
some sensitivity threshold o,.

3. The emitting plasma is optically thin.

The first of these criteria is set primarily by the mass of and
distance to the black hole, while the second two also depend on
the mass accretion rate and the physical conditions in the
accretion flow. The third criterion exists to ensure that we could
identify a black hole shadow as such; that is, an optically thick
emission region could obscure the shadow even if the angular
resolution and sensitivity would otherwise make it accessible.

2.1. Overview of Strategy

Our strategy for determining N(6,, o,) by considering the
global distribution of SMBHs as a function of mass M and
redshift z,

dN

dM, z) =
dz dM

ey

to which we then sequentially apply the above three criteria to
narrow down the number of potentially detectable sources. The
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distribution ®(M, z) is described by the black hole mass
function (BHMF), which we discuss in Section 2.2.

For a given SMBH mass M and redshift z, applying our first
criterion—that the angular shadow size ) is larger than some
resolution §,—amounts to requiring that the black hole mass
exceed some minimum mass m(z). A black hole of mass M
situated at an angular diameter distance D, has an angular
shadow size that is given by

9~ yo7Rs _ 242TGM. ?)
DA CZDA

where Rg is the Schwarzschild radius and the numerical
prefactor /27 is determined by the shadow diameter for a
Schwarzschild black hole (Hilbert 1917; Bardeen 1973). At a
particular redshift z, the condition ¥ > 0, corresponds to

2
M > mo(6,) = —2CPO
2J27G(1 +2)
where mg(6,) is the critical mass for which an SMBH at redshift z
has a shadow with angular size 6,, and where we have cast the
expression in terms of the comoving distance, D(z) = (1 4+ 2)Da
(see also Bisnovatyi-Kogan & Tsupko 2018).

Applying our second condition—that the flux density S, be
greater than some threshold o,—requires knowing the distribution
P(S,|M, ) of flux densities for an SMBH of mass M at redshift z.
The flux density S, (1) observed at a frequency v is related to the
emitted luminosity density L, by (Peacock 1999),

L,([1 + z]vp)
47(1 + 2)D(2)*

Here, L,([1 + z]v) denotes the luminosity density evaluated at the
redshifted frequency (1 + z)1p, and we have assumed that the
emission is isotropic.® L, is determined by the spectral energy
distribution (SED) of the source, which we model as described in
Section 2.3 (with more comprehensive details provided in
Appendix A). Within our SED model, L, depends not only on
the mass of the SMBH, but also on its mass accretion rate M,
which we cast in terms of the Eddington ratio A,
M
Mg

3)

S, (vo) = “

A=

)

Here, Mgaqq = Lggq/nc? is the Eddington mass accretion rate,
and 7 is a nominal radiative efficiency that relates Migqq to the
Eddington luminosity Lgqq; for this paper, we take the radiative
efficiency to be n=0.1 (e.g., Yuan & Narayan 2014).
Determining P(S,|M, z) thus further requires knowledge of
the Eddington ratio distribution function (ERDF), which we
describe in Section 2.4.

Applying our third condition—that the horizon-scale emis-
sion be optically thin at the observing frequency ry—can also
be achieved using our SED model, which provides an optical
depth prediction for an SMBH with any given M, A, and v
Practically, we can absorb this condition into the definition of
the flux density distribution by considering only those systems
that are optically thin, that is, by determining P(S,|M, z, 7 < 1).

8 This isotropy assumption is justified because the total flux in the lensed
horizon-scale emission from an SMBH accretion flow is not expected to have a
strong directional dependence in the same manner as Doppler-boosted jet
emission would.
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The fraction f(o,) of SMBHs for which we could expect to
detect the horizon-scale emission is then given by

f@)= [ PSAM, 2T < 1S, ©

where o0, is some specified sensitivity threshold.

Combining all three criteria, we can compute the source
counts expected for any choice of 6, and o, by integrating the
global distribution over mass and redshift,

N, 0,) = fow dz f w(a) F(o)®M, 2) dM. )

Many of the results presented in this paper are derived from
evaluation of Equation (7). When computing this integral, we
must keep in mind that mq(6,) is a function of z and that f () is
a function of both z and M. Figure 1 illustrates the procedure
we follow to determine N(6,, 0,) for an example set of angular
resolution and flux density thresholds (in this case, 6, =1 pas
and 0, = 107" Jy).

2.2. Black Hole Mass Function

Any evaluation of Equation (7) requires a choice of BHMF,
which commonly takes the form

P = d_N’ (8)
avdm

where dN is the number of SMBHs in the mass range (M,
M + dM) and the comoving volume range (V, V+dV).° For
our purposes, it is more useful to work with &M, z), the
number of black holes in the redshift range (z, 7+ dz; see

Equation (1)), which is related to ®' by
dM, z) =9’ av

dz

_ 4meD*’

=" " 9
H()E(Z) ( )

Here, E(z) = H(z)/Hy = \JQu(l + 2)° + @ is the dimen-
sionless Hubble parameter (Peebles 1993).

Estimating the BHMF from observations is difficult because
astronomical surveys are inevitably incomplete in ways that
impose poorly known selection functions on the SMBH count in
any mass bin, and because there are currently no SMBH mass
measurement techniques that are both precise and broadly
applicable (Kelly & Merloni 2012). Many variants of the BHMF
thus exist in the literature (e.g., Salucci et al. 1999; Aller &
Richstone 2002; Marconi et al. 2004; Greene & Ho 2007; Lauer
et al. 2007; Natarajan & Treister 2009; Kelly & Shen 2013).
Recognizing that no single one of these BHMFs is likely to be
uniquely correct, in this paper we consider two different BHMF
prescriptions—which we will refer to as our “lower” and “upper”
BHMFs—that aim to capture a reasonable range of possibilities.

We take as our lower BHMF the phenomenological model
developed by Shankar et al. (2009) and shown in the left panel of
Figure 2. This BHMF is evolved self-consistently forward in time
within a continuity equation formalism (Cavaliere et al. 1971;
Small & Blandford 1992) tuned to match an estimate of the

° We note that some authors define the BHMF per unit logarithmic (base-10)

mass bin, such that their distribution ¢’ is related to the one we use
by ¢’ = In(10)Md'.
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bolometric active galactic nucleus (AGN) luminosity function
based primarily on the X-ray observations compiled by Ueda et al.
(2003). The Shankar et al. (2009) BHMF is a function of both M
and z, covering SMBH masses in the range 10°~10°> M, and
redshifts in the range 0-6. To account for the known existence of
SMBHs with masses exceeding 10 M, (e.g., Event Horizon
Telescope Collaboration et al. 2019f), we extrapolate the BHMF
using a power law with an exponential cutoff,

CI):3)(trapolated x M exp (_ d ) (10)
cutoff

The index and normalization of the power law are determined for
every z by fitting the BHMF values between 10° M, and 10°° M....
Natarajan & Treister (2009) argued on empirical and theoretical
grounds for the existence of an upper mass limit for SMBHs at
every cosmic epoch. First, using a physical argument based on
self-regulation, they showed that when the accretion energy of a
growing SMBH back-reacts with the gas flow and exceeds the
binding energy of the feeding disk, it leads to the BH stunting its
own growth and results in an upper limit for its mass (see also
King 2016). Empirically, such a limit is expected from the
observed SMBH mass—bulge luminosity relation when the relation
is extrapolated to the bulge luminosities of bright central galaxies
in clusters (Magorrian et al. 1998). Natarajan & Treister (2009)
showed that consistency between the optical and X-ray BHMFs
requires an upper mass limit for local SMBHs that is on the order
of ~10'" M. Calibrating their estimates using the more recent
observational measurements of the ~ 1.7 x 10'"® M., SMBH in
NGC 1600 (Thomas et al. 2016), we determine an exponential
cutoff mass of 3.5 x 10'° M. The extrapolated portion of the
BHMF is plotted using dashed lines in the left panel of Figure 2.

As a counterpart to the model-based lower BHMF, we also
consider an upper BHMF derived empirically using the
UNIVERSEMACHINE stellar mass function (SMF) from Beh-
roozi et al. (2019). The UNIVERSEMACHINE SMF is con-
structed as part of a comprehensive model for galaxy growth
spanning redshifts 0 <z< 10 and accommodating many
observational constraints, including among them a number of
observational SMFs determined in various bands (Baldry et al.
2012; Ilbert et al. 2013; Moustakas et al. 2013; Muzzin et al.
2013; Tomczak et al. 2014; Song et al. 2016). From the
UNIVERSEMACHINE SMF, we convert from stellar mass M, to
SMBH mass M using the scaling law from Kormendy & Ho
(2013), as done in Ricarte & Natarajan (2018),

M M
1 =8.69 + 1.16log| ——— |. 11
Og( M@) - Og(lO“M@) (n

After converting from stellar to SMBH mass, we convolve the
SMBH mass distributions with a Gaussian kernel with a 0.3
dex FWHM to account for the intrinsic scatter in the scaling
relations. The resulting upper BHMF is shown in the center
panel of Figure 2.

Relative to the lower BHMF, the upper BHMF predicts
systematically more SMBHs at low to intermediate redshifts
(i.e., z < 3) and at all masses, though at the highest redshifts the
lower BHMF predicts more SMBHs with M >10°° M,
(see right panel of Figure 2). The low-redshift behavior of
the lower BHMF agrees well with a BHMF derived from the
UNIVERSEMACHINE SMF using the McConnell & Ma (2013)
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Figure 1. Flowchart illustrating the strategy for determining N(6,, 0,) (see Section 2.1) using an example case of §, = 1 pas and 0, = 1073 Jy. Panels (a), (b), and (c)
show the three primary inputs: the BHMF, the SED model, and the ERDF, respectively. The BHMF provides the global distribution of SMBHs as a function of M and
z (see Section 2.2); the SED model predicts the emitted flux density and optical depth for every M, A, and z (see Section 2.3); and the ERDF provides the distribution
of Eddington ratios A (see Section 2.4). In panel (d), the ERDF and the SED model are used to determine the fraction f(c,) of sources that simultaneously have flux
densities exceeding o, (left plot in the panel) and are optically thin (i.e., 7 < 1; right plot in the panel); in both plots, darker colors indicate a larger fraction. The
combined fraction, as a function of M and z, is then used in panel (e) to modify the global SMBH distribution from the BHMF. In panel (f), we further apply the
requirement that the angular shadow size exceed 6,, which can be cast as a minimum mass m(0,) at every z; N(6,, 0,) is then determined by integrating over the region
outside of the gray-shaded area. Finally, panel (g) illustrates that this procedure can be repeated for many other values of both 6, and o, (see Section 2.5).

scaling relation (see also Saglia et al. 2016)."° To remain
conservative in our estimates, throughout this paper we treat
the lower BHMF as our fiducial case and use it for all
computations and figures unless otherwise specified; we use the

1 An even lower BHMF could be produced using, for example, the scaling
relation from Reines & Volonteri (2015), but the resulting BHMF system-

atically underpredicts the observed local universe’s high-mass SMBH
population by several orders of magnitude.

upper BHMF primarily to determine plausible uncertainty
ranges for computed values. For this paper, we treat both
BHMFs as being nonzero only in the range 0 <z< 6 and
10°<M<10'" M.

For the analyses carried out in this paper, the high-mass end
of the BHMF is most important. To assess the fidelity of the
high-mass end of the lower and upper BHMFs, we compare
their predictions against the number of known massive SMBHs
in the local universe. In this regard, the MASSIVE galaxy
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Figure 2. Black hole mass functions used in this paper; see Section 2.2 for details about each BHMF. The left panel shows the lower BHMF from Shankar et al.
(2009), with our extrapolation to higher SMBH masses (i.e., M > 10°> M., as proposed by Natarajan & Treister 2009) shown using dashed lines; the BHMF is

colored by redshift. The center panel shows the upper BHMF constructed using the UNIVERSEMACHINE SMF with the Kormendy & Ho (2013) scaling relation. The
right panel shows the envelopes (between z = 0 and z = 6) of the BHMFs from the left and middle panels, overlaid to ease comparison. All three panels share the same

horizontal and vertical axis ranges, which are explicitly labeled in the left panel.

survey provides a convenient comparison point because it is a
volume-limited survey targeting massive early-type galaxies
with stellar masses above 10''° M. within a distance of
108 Mpc, or z ~ 0.02 (Ma et al. 2014). To date, four'' SMBHs
in this volume have dynamically measured masses at or above
M87s M >6.5 x 10° M.: M87 (Event Horizon Telescope
Collaboration et al. 2019f), NGC 1600 (Thomas et al. 2016),
NGC 3842, and NGC 4889 (McConnell et al. 2011). Our lower
and upper BHMFs predict that the number of SMBHs within
2<0.02 and M>6.5 x 10° M., should be ~5 and ~29,
respectively, which are consistent with the MASSIVE survey
results. The specific behavior of the BHMF at low masses is
less important because these black holes do not contribute
significantly at the angular resolutions and flux densities of
most interest for this paper.

2.3. Spectral Energy Distribution Model

Given the global distribution of SMBHs across mass and
redshift, Equation (7) selects only the fraction f(o,) that have
optically thin emission with a flux density that exceeds the
sensitivity threshold. This fraction is defined in Equation (6),
and it results from integrating over the distribution of flux
densities P(S,|M, z) at a given M and z. The first piece of
information we need to compute this integral is an SED model,
which will permit us to determine the flux density S, (\|M, z)
corresponding to a particular choice of Eddington ratio, black
hole mass, and redshift, and also to assess when the observed
emission will be optically thin.

Observational constraints on SMBH growth indicate that
SMBHs spend the majority of their time accreting at well
below the Eddington rate (Hopkins et al. 2006). At these low
accretion rates, the material in the vicinity of the black hole is
thought to follow the advection-dominated accretion flow
(ADAF) solution to the hydrodynamic equations describing
viscous and differentially rotating flows around black holes
(Narayan & Yi 1995a; Narayan et al. 1998; Yuan &
Narayan 2014). An ADAF accretion disk has a two-temperature

' This number should be taken as a lower limit because the MASSIVE survey
is ongoing and may uncover more SMBHs in the same range of M and z.

structure in which the ion temperature is greater than the
electron temperature. The electrons are able to cool via a
combination of synchrotron, bremsstrahlung, and inverse
Compton radiation, which together define the SED for the
observed emission.

For SMBHs observed in the radio to submillimeter wavelength
range, as relevant for this work, the SED is dominated by
synchrotron and Compton emission. Mahadevan (1997,
hereafter M97) provides a convenient formalism for computing
the gross spectral properties of an ADAF system given a black
hole mass M and accretion rate M (see also Narayan &
Yi 1994, 1995a, 1995b). We use a modified version of the M97
formalism for the SED models in this paper, and Appendix A
provides a detailed description of our updated model. We note that
this SED model only considers emission from the accretion flow,
and it does not incorporate a jet component.

Our SED model provides an estimate of the emitted luminosity
density L,, as a function of frequency for any input values of M and
A. Given a particular redshift z, we convert L, to S, using
Equation (4). We determine whether the system is optically thin by
comparing the rest-frame observing frequency, (1 + z)vy, to the
peak synchrotron frequency in the source, v, (see Equation (A16)).
So long as (1+2vy=>1, we consider the system to be
optically thin.

2.4. Eddington Ratio Distribution Function

The last piece of information we need to compute the integral
in Equation (6) is an ERDF, which provides a probabilistic
description of what fraction of SMBHs should be accreting at any
particular Eddington rate A. In this paper, we consider every
SMBH to be active at some level, rather than considering the
accretion to have only binary “on” and “off” states. We thus
dispense with the notion of a “duty cycle” often adopted for
AGNSs (or equivalently, we take the duty cycle to be unity), and
we instead work exclusively in terms of an ERDF (e.g., Merloni
& Heinz 2008) to account for the differences in accretion rates.

There is emerging evidence that luminous (“Type 17
unobscured; \ 2 1072) and low-luminosity (“Type 2;” obscured;
A< 107%) AGNs follow different distributions (Kauffmann &
Heckman 2009; Trump et al. 2011; Weigel et al. 2017).
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Figure 3. Eddington ratio distribution function, adapted from Tucci &
Volonteri (2017) and updated using the measurements from Aird et al. (2018);
see Section 2.4 for details. The top panel shows the ERDF plotted as the
probability P()) per unit log(\) as a function of A and z for an SMBH mass of
M =10° M., and the bottom panel shows the same for an SMBH mass of
M=10°M,.

Though the ERDF for luminous AGNs appears to be consistent
with a log-normal distribution (Lusso et al. 2012), there is no
clear consensus in the literature on a specific form for the
ERDF of low-luminosity AGNs (LLAGNSs). Different authors
have used variants that include a power law (Aird et al. 2012;
Bongiorno et al. 2012), a Schechter function (Hopkins &
Hernquist 2009; Cao 2010; Hickox et al. 2014), and a log-
normal (Kauffmann & Heckman 2009; Conroy & White 2013).
In addition, while there seems to be broad agreement on a
power-law behavior toward low Eddingtion ratios in the local
universe (i.e., z < 1), few observational constraints currently
exist for the ERDF of LLAGNS at z 2 1.

We proceed with a form for the ERDF adapted from the
analytic prescription used by Tucci & Volonteri (2017) and
updated using the more recent measurements from Aird et al.
(2018). For their ERDF, Tucci & Volonteri (2017) used a
Schechter function with an exponential cutoff value of A= 1.5,
but for our purposes (i.e., LLAGN with A < 1) only the power-
law component of the ERDF is relevant. Furthermore, the
LLAGN portion of the ERDF from Tucci & Volonteri (2017)
was constructed to match the low-redshift behavior from
Hopkins & Hernquist (2009), Kauffmann & Heckman (2009),
and Aird et al. (2012). None of these previous papers included
observational constraints for AGNs accreting below A~ 107
To avoid the strong dependence on the low-end cutoff that
comes from continuing the power law to arbitrarily small
values, we posit instead that the distribution breaks (as in, e.g.,
Weigel et al. 2017). Specifically, we modify the power-law
ERDF from Tucci & Volonteri (2017) such that it flattens out
for Eddington ratios smaller than some value ). That is, we
have

A7 )\min g )\ < )\O
P\ = A(i
0

“ 12
),)\O<)\<)\max’ ( )
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where P()) is the probability density per unit logarithmic
interval in A, Apin and Apax are the lowest and highest permitted
values, and the coefficient A is constructed such that the
distribution integrates to unity:

A 1 B
A= |log| 2> | + L= . a3
[ g(/\mm) o In(10) mes A0 (13)

In this paper, we use values of Apin = 10719, \g=10"5, and
Amax = 1072 (see Appendix A.4).

In addition to permitting the power-law index « to evolve
with redshift, we also allow for additional evolution with
SMBH mass,

-1, z<alM)
—1/[1+z—aM)], z>aM).
(14)

a(z, M) = a(M) x {

Here, a(M) encodes the mass dependence of the power-law
index. Though there is some prior observational evidence
indicating that the ERDF is approximately independent of
SMBH mass (Kauffmann & Heckman 2009; Kelly &
Shen 2013; Weigel et al. 2017), recent measurements by Aird
et al. (2018) found that more massive SMBHs tend to be
accreting at higher rates. We thus treat a(M) as being
essentially bimodal, with low-mass SMBHs having one
power-law index value and high-mass SMBHs having another,
and we use a logistic function to smoothly vary a(M) between
these two extremes,

ani + a(M/Mo)~1/4
M) =
(M) 1+ (M/M())fl/A

5)

Here, @, describes the power-law index at small masses, ap;
describes the power-law index at large masses, M, denotes the
midpoint mass, and A is the logistic width in log(M) that controls
how quickly the transition from the low-mass regime to the high-
mass regime occurs. We determine the values of these four
parameters by fitting Equation (12) to the Aird et al. (2018)
measurements; our fitting procedure is described in Appendix B.
We find best-fit values of a;, = 0.55, ap; = 0.20, log(M,y) = 7.5,
and A =0.3, and the resulting ERDF is shown in Figure 3.
Equation (12) defines the probability P(\) per unit log(\) for
any particular SMBH to be accreting at the rate \. Given some
specified M and z, we determine the probability P(S,|M, z) by
numerically sampling from P()) and using our SED model (see
Section 2.3) to associate each sample with a particular S,.
Efficient sampling of P()\) can be achieved by transforming a
random variable x that is distributed according to a unit uniform
distribution through the inverse cumulative distribution func-
tion (CDF) of Equation (12). This inverse CDF is given by

CDF-!(x)=

Amin 10774, 0<x< Alog(ﬂ)

min

A e A
/\O[aln(IO)[% - 1og(/\m‘?n)] + 1) , Alog()\m(:n) <x<1,

(16)

which we can use to generate random samples distributed
according to Equation (12). The associated distribution of S,
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Figure 4. Top: number of black hole shadows with angular sizes larger than an
angular resolution threshold 6, and total flux densities larger than a sensitivity
threshold o, as a function of the threshold values and assuming an observing
frequency of 230 GHz; that is, N(6,, 0,) from Equation (7). The solid contours
start with the thick contour indicating a count of N =1 and then increase by
factors of 10 toward the lower left, while the dashed contours each decrease by
a factor of 10 toward the upper right. Bottom: same as the top panel, but with
the additional restriction that the sources must be optically thin.

provides an estimate of P(S,|M, z), which we then integrate per
Equation (6) for the purposes of evaluating Equation (7).

2.5. The Number of Black Hole Shadows

Putting it all together, Figure 4 shows the result of evaluating
Equation (7) over a range of values for both the angular
resolution threshold 6, and the flux density sensitivity o, at an
observing frequency of v, = 230 GHz. The top panel shows the
source counts predicted without imposing the optical depth

Pesce et al.

condition, while the bottom panel restricts the sources to those
that satisfy 7 < 1 (see Equation (6)). Each point in both panels
of Figure 4 is computed from an integral over the remaining
(M, z) space. These plots thus represent an observation-
independent prediction about the character of the SMBH
population; namely, how many SMBHs are expected to have
angular shadow sizes in excess of 6,, horizon-scale flux
densities at 230 GHz greater than o,, and (in the case of the
bottom panel) an optically thin accretion flow. An approximate
analytic description of the resulting N(f,, o,) is provided in
Appendix C.

The two panels of Figure 5 show the behavior of N(6,, 7,) in
the limit as ¢, =0 (left panel) and 6,=0 (right panel); these
limits correspond approximately to one-dimensional slices
through the top panel of Figure 4 along the horizontal and
vertical axes, respectively. The black curve in the left panel
shows N(¢ > 6,, 0,=0), while the colored curves show the
contribution from SMBHs in different mass ranges. At large 6,
we see that the source counts follow the N o 6> behavior
expected from simple volume scaling. The upturn around
0, ~ 1 pas occurs because this is the resolution threshold below
which the most massive SMBHs can be seen at any redshift
(because of the turnover in angular diameter distance at
7~ 1.6), and the re-flattening at smaller 6, is caused by the
finite redshift coverage of the BHMF. The black curve in the
right panel shows N(0, =0, S, > ¢,), while the colored curves
again split out the contribution by SMBH mass. Throughout
most of the space, we see the source counts climbing
volumetrically as the flux density decreases, following
N x 0173/ 2. Cosmological effects become noticeable at the
lowest o, values, where the curve starts flattening out due to a

combination of the luminosity distance increasing more rapidly
and the finite redshift coverage of the BHMF.

3. Interferometric Source Counts

The analysis performed in the previous section predicts the

source counts corresponding to the population of SMBHs that
adhere to the three criteria specified at the beginning of
Section 2. We now aim to estimate a subtly different quantity:
the number of shadow-resolved sources that could be observed
by a telescope with angular resolution 0, and flux density
sensitivity o,. This conceptual distinction is relevant because
the telescopes that we expect to be carrying out spatially
resolved studies of black hole shadows in the foreseeable future
are radio interferometers. While the source-counting analysis
performed in Section 2 uses the SED model detailed in
Appendix A to determine the flux density expected from any
particular SMBH, this SED model only provides an estimate
for the total (i.e., spatially integrated) horizon-scale flux
density. However, an interferometric baseline is only sensitive
to flux on specific spatial scales, determined by the length of
the baseline and the wavelength of light being observed.
Though in this paper we do not explore specific methods for
estimating shadow diameters, sparse interferometric observa-
tions have previously been used to constrain the shadow
diameter for M87 under the assumption that the source is ring-
like (Doeleman et al. 2012; Wielgus et al. 2020). In this
section, we thus investigate the prospects for detecting SMBH
shadows on an individual interferometric baseline.
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Figure 5. One-dimensional slices through N(0,, o,) for an observing frequency of 230 GHz, with no restriction on the optical depth 7. Left: the black curve shows the
total number of SMBHs with shadows larger than some threshold angular resolution 6, as a function of that threshold; this curve approximately corresponds to a
horizontal cut through the bottom part of the top panel of Figure 4. The upper axis indicates the minimum mass of a black hole for which the corresponding angular
resolution would permit that black hole to be spatially resolved at any redshift. Right: the black curve shows the total number of SMBHs with horizon-scale flux
densities larger than some threshold value o, as a function of that threshold; this curve approximately corresponds to a vertical cut through the left part of the top panel
of Figure 4. In both panels, the source counts for different choices of black hole mass binning are shown as colored curves.

3.1. Flux Density Seen by a Single Baseline

We base our expectations for the horizon-scale emission
structure from an SMBH on the observational and theoretical
understanding of the M87 system. Johnson et al. (2020) provide an
approximate analytic expression for the expected flux density of
the photon ring emission as a function of baseline length for
optically thin emission, which we adapt to take the following form:

00 (TuW,)?
S(u) = nSoJo(mu) Y e™"me 42, (17)
n=0
W, ~ Wye "". (18)

Here, S is the total flux density (i.e., the value provided by the
SED model, given the redshift of the SMBH), ¢ is the angular
diameter of the photon ring (which for our purposes is given by
Equation (2)), u is the length of the baseline in units of
wavelengths, W is the FWHM angular thickness of the lowest-
order (i.e., n=0) photon ring, and n=1—¢ " is a normal-
izing prefactor. We assume W,=19/5 (Event Horizon Tele-
scope Collaboration et al. 2019e, 2019f). Equation (17) is
shown as the gray curve in Figure 6.

On long baselines (i.e., u > 1/¥), the bandwidth-averaged
flux density will be given by

N 2080 2 —
Su) ~ —,|— e "Me~
( ) 7.‘_2 ﬂur;

which is smaller by a factor 2/7 than the envelope of
Equation (17) as a result of averaging over many periods;
Equation (19) is shown as the dashed blue curve in Figure 6. By
replacing S, in Equation (6) with S (1/6,) from Equation (19) and
then recomputing the SMBH source counts via Equation (7), the

(ruWp)?

4In(2) ,
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Figure 6. Fraction of the total source flux density that can be detected on long
baselines for the photon ring model described in Section 3.1, shown here for a
¥ =40 pas diameter. The gray curve shows Equation (17), and the dashed
black line tracks the envelope of this function. The red curve shows a running
average of the gray curve across a 2% fractional observing bandwidth, and the
dashed blue curve shows Equation (19). The vertical cyan lines show the
resolution criteria used for the shadow (6, = 1) and for the first two orders of
photon ring (0, = 2w,_).
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Figure 7. Similar to the bottom panel of Figure 4, but now showing the number
of shadow-resolved, optically thin SMBHs that could be observed at 230 GHz
by an interferometric baseline with flux density sensitivity o, and angular
resolution 6, across the entire sky. The drawn contours mark the same source
count values as those in Figure 4. The diagonal dashed cyan line marks a
constant brightness temperature of 10'° K.

form of N(0,, 0,) becomes that shown in Figure 7. Unlike in
Figure 4, the source counts no longer monotonically increase as
angular resolution improves (i.e., as 6, decreases), because
Equation (19) ensures that longer baselines see lower flux densities
from any given SMBH. An analytic approximation for the
resulting N(6,, 0,) is provided in Appendix C.

Figure 8 shows the integrand from Equation (7) plotted over the
domain of integration for several values of 6, and o,, providing the
distribution of observable SMBHs as a function of M and z. The
number of objects generally increases with increasing redshift (at
fixed mass) and with decreasing mass (at fixed redshift), though
the density peaks at z ~ 2 for the smallest values of o,. For certain
configurations, such as 6, =0.1 pas and o, = 107> Jy, the impact
of Equation (19) is visually apparent as a lack of monotonicity in
the source counts with increasing redshift (at fixed mass). This
behavior reflects the fact that a fixed baseline becomes sensitive to
emission from larger spatial scales around a particular SMBH as
that SMBH is moved to larger distances; that is, S increases as ¥
decreases. On certain intervals in z, this flux increase associated
with smaller +J is more than sufficient to compensate for the flux
decrease associated with the increased distance to the SMBH.

3.2. Photon Ring Decomposition

The expression in Equation (19) for the horizon-scale flux
density contains contributions from all orders of photon rings, and
in Figure 6 we can see that rings of different order are expected to
dominate the observed flux density on different baseline length
intervals. Depending on the value of u relative to 1/, a telescope
may thus be primarily sensitive to emission from photon rings with
n > 0. To determine the number of sources from which we expect
to be able to detect higher-order photon rings, we can decompose
the total source counts into bins corresponding to which order of
photon ring dominates the emission.

Pesce et al.

We take as our resolution requirement to “see” the nth sub-ring

that 0, < 2w,,_,, where w, = W, / +/81n(2) is the Gaussian width
corresponding to the FWHM W,, (Equation (18)). This angular
resolution requirement can be recast as a mass threshold m,, for a
given redshift, analogous to Equation (3); for n > 0, we have

M > m, = 521n(2) e Dmy, (20)

where my is defined in Equation (3). Figure 6 marks the n >0
and n>1 resolution thresholds using vertical dashed cyan
lines. To ensure that the emission is optically thin enough to
see down to the nth sub-ring, we further impose a more
stringent condition on the optical depth of

T T = ! . 21
n+1

By replacing the lower mass limit m in Equation (7) with m,,, and
by replacing the 7 < 1 condition in Equation (6) with 7 < 7,,, we
can compute the source counts associated with objects for which a
photon ring of order n or greater is detectable.

Figure 9 shows these source counts for the first three orders
of photon ring at observing frequencies of 86, 230, 345, and
690 GHz, corresponding to standard atmospheric transmis-
sion windows (Thompson et al. 2017). At each observing
frequency, we see qualitatively similar behavior: the source
counts corresponding to the higher-order photon rings look
approximately like scaled-down versions of the n > 0 counts.
For each additional order, the same source count value is
achieved at an angular resolution threshold that is ~20 times
finer and a sensitivity threshold that is approximately ~100
times fainter than was necessary at the previous order. The
angular resolution increment is associated with the factor
e "= 1/23 in Equation (18) that sets the angular size ratio
between consecutive photon rings. The flux density incre-
ment comes from a combination of a similar exponential
suppression factor (a factor e~ " from the summand of
Equation (19)) as well as the fact that the flux density profile
is being observed on baselines that are typically a factor of e™
longer, thereby incurring an additional flux density factor of
e a1 /5 from the u 2 proportionality in Equation (19).

The evolution of the source counts with frequency primarily
affects the required sensitivity, with higher-frequency observa-
tions achieving the same source counts at a higher value of o,
than lower-frequency observations. The flux density threshold
required to detect a particular number of objects is approxi-
mately 1 order of magnitude smaller at 86 GHz than at
690 GHz; that is, approximately 1 order of magnitude better
sensitivity—in terms of Jy—is required at 86 GHz than at
690 GHz. The angular resolution requirement does not show
substantial evolution with frequency across this range.

3.3. The Impact of Baseline Projection

The analysis presented in this section thus far has assumed
that an interferometric baseline can observe the entire sky with
the same angular resolution. However, in reality, any physical
baseline between two stations will have a different projected
length as seen from different locations in the sky. The resolving
power of the baseline will thus be a function of source location
on the sky, which means that the number of black hole shadows

a baseline can detect per unit solid angle will also vary across
the sky.
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Figure 8. The integrand from Equation (7), plotted logarithmically as
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showing the distribution of the number of shadow-resolved and optically thin

SMBHs that can be seen by a single baseline as a function of redshift and black hole mass. Each panel shows a different choice of 6, and o,, and all panels assume an
observing frequency of 230 GHz. The total number of black holes, integrated over M and z, is given in the lower left-hand corner of each panel. The color scale maps
to the logarithm of the source number density (i.e., the number of sources per unit logarithmic interval in M and z), and the black contours enclose 50%, 90%, 99%,
and 99.9% of the total source count. All panels share the same horizontal and vertical axis ranges, which are explicitly labeled in the bottom-left panel.

For a particular baseline, we can define a spherical
coordinate system (6, ¢) such that 6 is a polar angle measured
from the axis defined by the baseline orientation and ¢ is
measured azimuthally around this axis. 6,.f) is then the
effective angular resolution of the baseline when projected
toward a source at a sky position with polar angle 6,

1 _ 9r,0
bsind  sinf’

6,06, b) = (22)

where b is the baseline length in units of the observing
wavelength and 0,0 =1/b is the angular resolution achieved

10

when 6 =m/2 (i.e., the finest resolution achievable by the

baseline). Denoting the number density of sources per unit
2

solid angle as ‘Z—N, we can express the total number of sources

observable by this baseline as

&N
N@b) = //Q S0 00, b1 o do. 23)

where we have explicitly indicated that the number density is a
function of the angular resolution, 6,(f, b), and we have assumed
that sources are distributed isotropically on the sky such that there
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Figure 9. Each panel shows a plot analogous to that in Figure 7, but decomposed into the number of sources for which we could expect to detect the first three orders
of photon ring. Each row shows this decomposition for one of four observing frequencies, with the frequency labeled in the upper left-hand corner of each panel. For
each row of panels, the left panel shows the number of sources for which we could detect any order of photon ring at all, while the center and right panels show the

number of sources for which we could detect the first- and second-order photon rings, respectively. In each panel, the drawn contours mark the same source count
values as those in Figure 4. All panels share the same horizontal and vertical axis ranges, which are explicitly labeled in the bottom-left panel.

is no ¢ dependence. The integral is carried out over the solid angle
Q,;s on the sky that is visible to the baseline.

To illustrate the impact of this geometric effect on source
counts, we consider the concrete example of an interferometric
baseline formed between two space-based antennas, each of

11

which can see the entire sky. In this case, the function d°N /dQ
is given simply by N(0,, 0,)/4n, and the domain of integration
for Equation (23) will be all (0, ¢); Figure 10 shows the result
of this evaluation. Relative to the source counts in Figure 7, at
large values of 6, (e.g., ~20 pas) the source counts in



THE ASTROPHYSICAL JOURNAL, 923:260 (26pp), 2021 December 20

10t

107" 4 S

o, (Jy)

10—
102

T
101

107!

10°
QT,O (/J&S)

Figure 10. Similar to Figure 7, but now accounting for baseline projection
effects appropriate for a space-based interferometric baseline that can see the
entire sky (see Section 3.3). The color scale and contours show the number of
shadow-resolved, optically thin SMBHs that could be observed at 230 GHz by
an interferometric baseline with finest angular resolution 6, o and flux density

sensitivity o,. The drawn contours mark the same source count values as those
in Figure 4.

Figure 10 are reduced because some fraction of the sky is not
observed with sufficient angular resolution to see SMBHs with
shadow sizes that are close to 6,o. The magnitude of this
reduction is modest, amounting to a factor of 37/16 ~ 0.59 for
uniformly distributed sources in flat space (see Equation (D3)
with a = 4). However, a much more pronounced impact can be
seen in the region of fine angular resolution and poor sensitivity
(e.g., the region around 6, ~ 107! pas and o, ~ 1074 Iy),
where the source counts in Figure 10 are significantly increased
relative to Figure 7. This difference arises because N(6,, o,)
increases rapidly toward larger 6, in this region, and so the
coarser angular resolutions arising from baseline projection
provide access to many SMBHs that a baseline with a fixed
angular resolution of 6, o across the entire sky would be unable
to see. In this region of the (0,0, 0,) space, the impact of
baseline projection is to increase the accessible number of
SMBH shadows by several orders of magnitude.

While Equation (23) provides the source counts appropriate
for a fixed baseline, in real-world arrays the baseline will
typically be changing orientation with time. For instance, a
spaceborne antenna forming a baseline with another antenna
situated on the Earth would execute a complete revolution once
every orbital period, as observed by a distant source. One effect
of this rotation is to make a larger fraction of the sky observable
with the finest resolution than would otherwise be possible with
just the instantaneous configuration, up to a unit fraction if both
stations are spaceborne and thus can view the entire sky. The
net impact of rotating the baseline is to bring more SMBH
shadows into view than would be accessible by a static
baseline. Appendix D provides a more detailed exposition of
the sampling behavior of such a baseline as it rotates.

12

Pesce et al.
4. Discussion

Our general strategy for carrying out the various source-
counting analyses presented in this paper is laid out in
Section 2.1 and illustrated in Figure 1. To recap:

1. We start with the BHMF, which describes the global
distribution ®(M, z) of SMBHs across mass and redshift.
Using our SED model and a prescription for the
distribution of SMBH accretion rates (i.e., the ERDF),
we determine the fraction f(o,) of objects for which the
horizon-scale emission is both optically thin and has
either a total flux density (in Section 2) or a resolved flux
density (in Section 3) exceeding some threshold o,.
3. We then integrate the product f(c,)®(M, z) over M and z,
excluding objects with shadow sizes smaller than some
angular resolution threshold 6, (see Equation (7)).

2.

The quantity N(f,, o,) resulting from this procedure
corresponds to the number of sources with shadow sizes larger
than 6, and flux densities greater than o,.

Figure 4 shows a summary of the SMBH population in terms
of the angular shadow size ¥/ > 6, and the total horizon-scale flux
density S, > o,. These source counts at any (6,, 0,) provide an
estimate for the number of SMBHs that are “resolvable”—that is,
distinguishable from a point source—Dby a telescope that achieves
an angular resolution of 6, and a flux density sensitivity of o,.
Even if the telescope lacks the sensitivity to detect the source
structure on the scale of 6,, it will still be able to constrain the
angular size of the source so long as its sensitivity is sufficient to
detect a total flux density of o,.'> We find that the population
source counts approximately follow the simple scaling relations
expected if the number of sources grows with the accessed
volume (see Appendix C); for example, hundreds of sources
are predicted to be resolvable with an angular resolution of
~1 pas and a flux density sensitivity of ~1 mly.

For interferometric observations, we find that the number of
detectable SMBH shadows generally increases as the angular
resolution 6, and sensitivity o, improve, but that the gradient of

N(,, 0,) changes orientation throughout the parameter space (see
Figure 7). At large 6, and small o,, the source counts increase
exclusively toward smaller 6,; at large o, and small 6,, the source
counts increase both toward smaller o, and toward larger 6,. The
gradient changes orientation from pointing primarily toward
smaller 6, to pointing primarily toward smaller o, around a ridge-
line in the (#,, 0,) space that approximately follows a power law
0, < 6>%; Figure 11 shows power-law fits to this ridge-line for
four different observing frequencies. At an observing frequency of
230 GHz, we find a best-fit power law of

22
o ).
(15 mJY) ( ) '

This expression can be used to estimate the angular resolution
and sensitivity corresponding to an effective “Pareto front™' in
source counts, whereby (6,, 0,) pairs located on this curve are in

6,
10 pas

(24)

12 In practice, an interferometric array carrying out such a measurement will need
to have at least a moderately filled aperture; if instead only a single baseline is
present, then the various considerations detailed in Section 3 will apply.

13 A “Pareto front” is the set of locations within a space of interest that satisfy
the property that no one condition can be relaxed without making another more
stringent. In our case, the “Pareto front” constitutes the set of locations in (6,,
0,) space where neither the angular resolution threshold nor the flux density
threshold can be increased (i.e., made less demanding) without requiring a
decrease in the other, while still being sensitive to the same number of objects.
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Figure 11. Power-law fits to the ridge-line in N(0,, 0,)—defined as the location
of maximum o, for every fixed N—for four different observing frequencies;
this ridge-line can be seen as the turnover in the contours in Figure 7.
Configurations of (6,, ¢,) that fall below and to the right of the ridge-line can
most effectively increase N by improving angular resolution (i.e., by decreasing
0,), while configurations that fall above and to the right of the ridge-line can
increase N by improving sensitivity (decreasing o,) or by increasing 6,. For
reference, we mark the approximate specifications of the EHT (i.e., 6, =20
pas, o, between 1 mJy and 0.5 Jy) by a shaded gray region.

some sense maximally economical. That is, to access the same
number of sources using a different set of (6,, 0,) would require
improving either the sensitivity or the angular resolution. Table 1
provides estimates for the number of SMBHs with shadow sizes
and optically thin horizon-scale flux densities that live on the
ridge-line approximated by Equation (24); Table 2 lists the same
for the number of sources we could expect to detect using
telescopes with different resolution and sensitivity thresholds.

4.1. The Case of M87 and the EHT

As of the writing of this paper, the SMBH in M87 is the only
one whose shadow size (~40 pas) and horizon-scale flux
density (~0.5Jy at 230 GHz) have been directly imaged'*
(Event Horizon Telescope Collaboration et al. 2019a, 2019b,
2019c, 2019d, 2019e, 2019f). M87 thus presents a natural test
case against which to compare our source counts predictions from
Section 2. Our model predicts that the number of SMBHs having
¥ > 40 pas and S, > 0.5 Jy should be between ~0.03 and ~0.23
for the lower and upper BHMF prescriptions, respectively.
Compared against the 1 object known to adhere to the chosen

!4 The second shadow-resolved black hole that the EHT has targeted—the
Milky Way SMBH Sgr A*—does not present a relevant comparison for this
work because it is located in our own Galaxy, and it therefore does not fit
within our modeling framework. In addition, Sgr A* has an additional
observing constraint beyond those given in Section 2: it is heavily scattered
by the ionized interstellar medium along its line of sight, so high-resolution
observations must be conducted at correspondingly high frequencies of
vzl THz/‘lﬂ,/l pas (e.g., Lo et al. 1998; Bower et al. 2006; Johnson et al.
2018). The scattering is significantly weaker for sources off the Galactic plane
(such as MB87), requiring only v 2 30 GHZ/,/Q,/I pas (e.g., Cordes &
Lazio 2002; Johnson & Gwinn 2015). Thus, interstellar scattering is unlikely to
significantly affect our estimates for observable source counts.
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Table 1
Population Characteristics at 230 GHz
Properties
Target Population How many? ¥ (uas) S, dy)
M87 40 0.5

1 (128,245  (3.8,16.5) x 1072
Black hole shadows 10 (3.1, 5.4) (1.6,5.5) x 1073
10* (0.81, 1.1) (7.9, 17.0) x 107°
10° (0.15, 0.23) (1.9, 4.9) x 10°¢

Note. Predicted approximate shadow size () and 230 GHz horizon-scale flux
density (S,) above which there exists the listed number of SMBH shadows.
Quantities in parenthesis indicate the values determined from the lower and
upper BHMF prescriptions. We note that our source counting model predicts
more stringent requirements to see N = 1 source than are actually required to
see the SMBH in M87 (see Section 4.1). We have thus separately listed the
requirements needed to observe M87.

criteria, our model is systematically underpredicting the pre-
valence of M87. This underprediction may be explained at least in
part if the local density of galaxies exceeds the cosmic mean, as
suggested by, for example, Dilya et al. (2018),"> which violates
our model assumption of a homogeneous distribution of SMBHs.
However, any such overdensity likely does not explain a
discrepancy larger than a factor of ~2, indicating that we may
simply be finding ourselves on the high end of sampling variance.
We thus expect that using the existence and properties of M87 to
extrapolate the number of SMBHs with smaller shadows or
weaker flux densities will result in systematically overoptimistic
predictions; that is, more sources will be predicted than our
modeling suggests the real universe likely contains.

Similarly, the EHT is currently the only telescope to have
successfully carried out shadow-resolved observations of an
SMBH. The number of sources that the EHT is able to resolve
and detect the shadows for thus presents a test case against which
to compare our source counts predictions from Section 3. The
EHT currently relies on observing with ALMA as part of the
array, and during the 2017 observing campaign that led to the
published M87 black hole images, ALMA itself required in-beam
sources with flux densities of >0.5 Jy to perform the array
phasing necessary for it to participate in VLBI observations
(Matthews et al. 2018). For the purposes of estimating source
counts, this phasing threshold effectively sets the sensitivity limit
of the EHT. In this case, our model predicts that for 6, =20 pas
and 0, = 0.5 Jy we should expect to resolve and detect up to ~0.4
sources, similar to the projected number based on the above
extrapolation using M87 as a benchmark.

However, the 0.5 Jy phasing threshold has since been relaxed by
permitting the transfer of phase corrections to faint targets from
nearby but bright out-of-beam calibrators, and even the on-source
phasing threshold can potentially be lowered through refinement of
the phasing algorithm. Moving forward, the EHT may thus be able
to observe much fainter targets. In a best-case scenario in which
the phasing threshold is reduced to mly levels, these improvements
could permit the nominal sensitivity of the EHT to be used for
source count estimates. Observing at 230 GHz, the EHT achieves
0,~20 pas and o, ~ 107> Jy, for which our model predicts the

15 We note that the overdensity in Ddlya et al. (2018) is driven almost entirely
by the existence of the Virgo cluster, and there are other indications (e.g., Tully
et al. 2019; Bohringer et al. 2020) that when considering a somewhat larger
volume (out to ~100 Mpc) the local universe may actually be underdense.
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Table 2
Telescope Requirements to Achieve Various Source Counts at 230 GHz

Requirements

How
Target Population many? 0, (uas) o, Jdy)
M87 40 107!
1 (8.6, 16.3) 1.1,3.9) x 1072
Black hole shadows (n > 0) 102 (2.2, 3.5) (5.0, 16.5) x 107*
10* 0.5, 0.7) 1.9,5.6) x 1073
10° (0.10, 0.14) (3.7, 13.0) x 1077
M87 7 1073
1 (1.4, 2.6) (2.7,9.9) x 10°*
First-order photon rings (n > 1) 10 (0.31, 0.55) (1.2,42)x 107
10* (0.075, 0.11) (5.0, 14.6) x 1077
108 (0.015, 0.022) 1.2,3.6) x 1078
M87 0.3 1073
Second-order photon rings (n > 2) 1 (0.061, 0.12) (2.5,9.0) x 107°
10? (0.013, 0.025) 1.1,3.8) x 1077

Note. Similar to Table 1, but listing the predicted approximate single-baseline angular resolution (6,) and flux density sensitivity (o,)
requirements for observing different numbers of SMBH shadows and low-order photon rings at 230 GHz. Quantities in parenthesis
indicate the values determined from the lower and upper BHMF prescriptions. For each order of photon ring, we have explicitly listed

the requirements needed to observe M87 at that order.

number of accessible SMBHs to be between ~0.6 and ~5.7 for
the lower and upper BHMF prescriptions, respectively. We thus
predict that the EHT could potentially gain access to approximately
an order of magnitude more shadow-resolved sources by
improving its effective sensitivity to mJy levels in this way.

4.2. Implications for Array Design

More generally, the behavior of N(#,, o,)—in particular, the
behavior of its gradient—has implications for how an existing array
can be most efficiently augmented to increase the number of
accessible black hole shadows. As mentioned in Section 4.1, the
EHT is currently operating with an angular resolution of 6, ~
20 pas and an effective flux density sensitivity between o, ~ 10>
Jy and 0,,~ 0.5 Jy. This sensitivity range straddles the Pareto front
for 6, ~ 20 pas (see Figure 11), such that with o, ~ 0.5 Jy the EHT
array could most significantly increase the number of horizon-
resolved black hole targets through improvements in sensitivity.
However, once the sensitivity improves beyond the Pareto
threshold of ~70 mJy then the EHT will require enhanced angular
resolution to increase the source counts further. For instance, at a
fixed sensitivity of o, = 10> Jy, an order-of-magnitude improve-
ment in the angular resolution would yield an increase of
approximately 2 orders of magnitude in the number of detectable
black hole shadows; in contrast, while keeping the angular
resolution fixed at 20 pas, arbitrary improvements in sensitivity
beyond 10~ Jy would not yield many additional sources.

In practice, an Earth-based array like the EHT is limited to a
maximum physical baseline length of one Earth diameter, meaning
that any significant angular resolution improvements must come
from increasing the observing frequency. A near-future aspiration
for the EHT (Event Horizon Telescope Collaboration et al. 2019b),
and a defining capability for the next-generation EHT (ngEHT;
Doeleman et al. 2019; Raymond et al. 2021) will be to observe at a
frequency of 345 GHz. At a fixed long-baseline sensitivity of
0,=10"" Jy, we expect that the effective 50% improvement in
angular resolution over the current EHT should correspond to a
factor of ~3 increase in the number of detectable black hole
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shadows. In contrast, at a fixed 6, =20 pas, the doubling of the
baseline sensitivity that the ngEHT is expected to provide will only
increase the source counts by ~10%.

While angular resolution may ultimately limit the number of
observable black hole shadows for ground-based interferometers
like the EHT and ngEHT, sensitivity is expected to be the limiting
factor for many prospective interferometers that network with
space-based stations. For instance, a baseline connecting a station
on Earth to one located at the Earth—Sun L2 Lagrange point—such
as may be possible using the proposed Millimetron (Kardashev
et al. 2014) or Origins (Wiedner et al. 2021) space telescopes—
would have a finest 230 GHz angular resolution of 6, ~ 0.2 pas. At
this resolution, we expect that a sensitivity of o, < 10~ Jy would
be required to detect even a single object. To achieve this
sensitivity level, a 10-m dish observing at 230 GHz as part of a
baseline with the phased ALMA array would require a time-
bandwidth product of ~3 x 10'? (e.g, 3 min of on-source
integration time using 16 GHz of bandwidth), which is already
larger than achieved by the EHT. Improving the sensitivity to 10>
Jy would require a time-bandwidth product that is 2 orders of
magnitude larger still (e.g., 2 hr of on-source integration time using
32 GHz of bandwidth), and pushing to 10~ Jy would require an
additional 2 orders beyond that (e.g., 5 days of on-source
integration time using 64 GHz of bandwidth). Achieving
the~10"° Jy Pareto front flux density corresponding to a
~0.2 pas angular resolution thus imposes demanding sensitivity
and stability requirements, and we expect that the number of
sources accessible using long (1 Earth diameter) Earth-space
baselines will be sensitivity limited rather than resolution limited.

5. Summary and Conclusions

Motivated by the success of the EHT and the promise of next-
generation radio interferometric facilities, we have presented a
framework for estimating the number of black hole shadows
that are expected to be observationally accessible to different
telescopes. Given assumptions about the distribution of SMBHs
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across mass, accretion rate, and redshift, we use a semianalytic
ADAF-based SED model to derive estimates for the number
of SMBHs with detectable and optically thin horizon-scale
emission as a function of angular resolution, flux density
sensitivity, and observing frequency. Using a simple analytic
prescription for the interferometric flux density distribution
expected from black hole photon rings, we further decom-
pose the SMBH source count estimates into the number of
objects for which we could expect to observe first- and
second-order photon rings.

Our main findings can be organized into two categories.
First, we provide the following characterizations of the SMBH
population:

1. Figure 4 shows the distribution of observationally
accessible SMBH shadows, predicting that large numbers
(>10° with ~0.1 pas resolution and ~1 pJy sensitivity)
of objects should have resolvable horizon-scale emission
at (sub)millimeter wavelengths.

2. Figure 7 shows the angular resolution and sensitivity that
an interferometer would require to observe the black hole
shadows for this same population of SMBHs.

3. For any particular choice of angular resolution and
sensitivity, the population density of SMBHs with
observable shadows generally increases toward higher
redshifts and toward smaller black hole masses (see
Figure 8). As a consequence, a majority of observable
shadows are expected to have angular sizes that fall
close to the resolution limit.

4. The bulk population of SMBHs with observable n =1
photon rings starts to become accessible at angular
resolutions of <2 pas and flux density sensitivities of
<0.5 mJy (see Figure 9 and Table 2). Similarly, the n =2
population is accessible for angular resolutions of <0.1
pas and flux density sensitivities of <5 uly.

We also consider the implications of these findings for current
and future interferometric facilities:

1. The current effective sensitivity of the EHT is insufficient
to maximally utilize its angular resolution. We predict
that as many as ~5 additional horizon-resolved sources
could become accessible by improving the effective
sensitivity of the EHT from ~0.5 Jy to <70 mJy. ALMA
should be sufficiently sensitive to achieve phased
observations on sources with flux densities at this level,
so an important next step will be to identify the specific
sources that then become accessible.

2. Once the effective sensitivity of the EHT improves
beyond the ~tens of mly level, a large (i.e., order-of-
magnitude) additional increase in the number of obser-
vable black hole shadows can only be achieved by
improving the angular resolution. We predict that an
ngEHT observing at 345 GHz should have access to ~3
times as many sources as the EHT observing at 230 GHz.

3. Future telescopes that observe with <1 pas angular
resolution, such as could be achieved using Earth-space
interferometry, will require flux density sensitivities of
<1 mly to detect large numbers of black hole shadows.

In carrying out our analyses we have produced a library of
synthetic SEDs and several tables of source counts,'® as well as

'® hitps:/ /doi.org/10.17632/8pj73cyTvx.1
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the code used to generate each SED.'” The source count tables
provide the predicted number of black hole shadows, n =1
photon rings, and n = 2 photon rings accessible using different
combinations of angular resolution, flux density sensitivity, and
frequency. These resources may be useful for determining the
specifications of future telescopes that aim to observe a large
population of SMBH shadows or higher-order photon rings.
Once such observations have been carried out, the predictive
framework developed in this paper could be inverted so that the
source counts become inputs rather than outputs, in turn
providing constraints on the distribution of SMBH masses and
accretion rates across cosmic history.
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Appendix A
SED Model

We use an SED model for ADAFs that largely follows the
formalism presented in M97, though we introduce a number
of modifications that update the SED to align it better with
more recent work. In this section, we detail these modifica-
tions, propagate them into the relevant expressions from M97
and Narayan & Yi (1995a, hereafter NY95), and describe the
resulting SED model.

In determining the form of the SED, the primary equation we
aim to solve is one of energy balance between the heating and
cooling of the electrons in the flow. Following M97 Equation
(8), we have

Q— + Qadv,e — Qie + 6Q+’
where Q7 is the total viscous heating rate, ¢ is the fraction of this
heating rate that goes directly to the electrons, Q*° is the rate of
energy transfer from the ions to the electrons, and Q™ is the total
radiative cooling rate of the electrons. We have introduced an
additional term Q™“* that accounts for the electron energy that is
advected into the black hole. We note that in the extremely low
accretion regime considered here, energy loss from neutrino
cooling is negligible. The radiative cooling term is given by:

(AL)

0 = synch + R:ompt + Porems, (A2)
where Pgynch, Peompts and Pprems correspond to the power
emitted in synchtrotron, inverse Compton, and bremsstrahlung
radiation, respectively. It is the combined contributions from
these three emission processes that ultimately constitute our
model SED.

17 https://github.com/dpesce/LLAGNSED
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The emission processes of interest for this paper depend on
the electron temperature, which is determined self-consistently
such that the total heating and cooling satisfy Equation (Al).
The left panel of Figure 13 shows the various model
contributions to the electron heating and cooling as a function
of electron temperature for an example M87-like system, and

_ |24mc3sGMp
B TN U+AR

= (1428 x 10° G)(1 + B) 212 ¢ V2 ]2 m=1/2 i )/? p=G/H+6/D),

the right panel shows the corresponding predicted SED as a
function of frequency. The right panel of Figure 14 shows the
derived temperatures as a function of m and m. Table 3
provides a list of the various parameters used in the SED
model, and Figure 12 shows example SEDs.

A.l. Flow Equations

We take the underlying accretion flow properties to be
described by the self-similar models developed by NY95, in
which the relevant parameters are the black hole mass M, the
accretion rate M, the radius R, the viscosity parameter c, the
ratio of gas to magnetic pressure 3,'® and the fraction f of
viscously dissipated energy that is advected into the black hole.
Following M97, we use scaled quantities,

M= M)m, (A3a)
R = I’RS
— (2.953 x 105 cm)m r, (A3b)
M = mMgaq
. RY
= (mOMEdd)(R_S)
=(1.399 x 10" g s~ Hym g 7%, (A3c)

where Rg=2GM/ ¢ is the Schwarzschild radius, Mggq=
Lggq/nc? is the Eddington accretion rate, and we have taken
the radiative efficiency 7 to be 0.1. Here, the difference
between Equation A3(c) and M97 Equation (4) comes from our
adoption of the radius-dependent accretion rate from Blandford
& Begelman (1999), which accounts for outflowing material
via a radial dependence of the mass accretion rate with power-
law index s.

The self-similar equations
flow, M97 Equation (5), become

describing the accretion

B M
r= 4d7rHoc~GMR
=(6.022 x 105 gem dHa ey m g rr @/,
(Ada)

18 We note that our definition for 3 differs from that used in M97; M97 uses
the ratio of the gas pressure to the total pressure, while we use the “plasma
beta” convention (i.e., ratio of gas pressure to magnetic pressure). If we denote
the M97 parameter as Syo7, then the two are related by Guvo7 = 6/(1 + 0).
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P
He T

=(3.158 x 10" cm ¥ a ' ¢, m g rG/2+5, (Adb)

ne =

(Adc)

where p is the mass density, B is the magnetic field strength, n,
is the number density of electrons, « is the disk viscosity
parameter (Shakura & Sunyaev 1973), H is the disk scale
height (we have followed M97 in setting H =R), pt, =1.14 is
the mean molecular weight (NY95), and ¢y = 0.5 and ¢3 ~ 0.3
are constants defined in NY95 and specified in Table 3.

We adopt a power-law radial profile for the electron
temperature 7, of the form

, (AS)
with < 1. From NY95 Equation (2.16), the two-temperature
accretion flow must satisfy

T, 4+ 1.08T, = (6.66 x 102 K)(1 + B) '8 c3r ], (A6)

where T; is the ion temperature. Setting 7;=17, at some
maximum radius r = .« yields an expression for ¢,

. 1 In (6.66 x 10'2 K) Bcs
1n (Fax ) 208T,0(1 + 3 )

such that T; > T, for all r < Fpax.

(A7)

A.2. Heating

The plasma in an ADAF is heated by viscous forces, with the
total heating rate per unit volume denoted as g*. Some fraction
0 of this energy is deposited into the electrons, while the
remaining fraction (1 — 8) heats the ions. The ions can transfer
thermal energy to the electrons via Coulomb collisions, with
the rate of this transfer denoted by ¢'°, and the electrons can
radiate energy away at a rate g . Taken altogether, energy
balance yields advected energy rates of

qadv,i — (1 _ (S)q+ _ qie’
qadv,e _ 6q+ + qie _

adv,i

(A8a)

q, (A8b)

for the ions (¢°™") and electrons (¢°*°). The ion heating is
driven by viscous dissipation, while the dominant electron
heating source depends on the accretion rate; at high accretion
rates the ion-electron heating is dominant, whereas at low
accretion rates the viscous heating is more important.

NYO5 give an expression for the viscous heating rate per unit
volume,

4 3pacic3 GM\? ?
T TR+ ) (T)

=(2914 x 102" erg cm 3 s~ )11 + ﬂ)’lc;/zm’znhor"‘“,
(A9)
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Figure 12. Example SEDs produced from the model described in Appendix A plotted for a range of accretion rates. The left panel shows SEDs for an SMBH mass
similar to that of M87 (6.5 x 10° M..; Event Horizon Telescope Collaboration et al. 2019f), and the right panel shows SEDs for an SMBH mass similar to that of Sgr
A" (4 x 10° M,,; Do et al. 2019; Gravity Collaboration et al. 2019).

where f is the fraction of viscously dissipated energy that is in Equation (A11) we have followed NY95 and multiplied by
advected into the black hole. The total (i.e., volume-integrated) an additional factor of 1.25 to account for the ions containing
viscous heating rate is then given by a mixture of roughly 75% hydrogen and 25% helium.

The volume-integrated ion-electron heating rate is given by
Ot = (9.430 x 1038 erg s™)f ' (1 + B)'ei ?mumy

{(1 e e L Q' = (3.236 x 10" cm3)m3fr' g'°r? dr, (A12)
X , (A10) min
In (7inax /7min) s =
o ] ) which does not have an analytic form and so must be integrated
where 1y, and 7 are the minimum and maximum radius, numerically.
respectively.'”
The heating rate per unit volume of the electrons from A.3. Cooling
Coulomb interactions with protons is given by Stepney & L . o .
Guilbert (1983), The observed emission in radio and (sub)millimeter bands is

dominated by synchrotron radiation, but the primary electron

T )2 . .
qie:%nemawln(/\)( k(T — 1) ) X [2(96 + 00" + 11(1(96 * 9’) + ZKO(M)]

m, K (1/60.)K>(1/6)) 0 + 6; 0.0; 0.6;
)
~ (5624 x 102 erg em? s~ KL =TI 4 op 0 L) emm, (A11)
KZ(l/ee) ee
where 0, :kTe/mec2 is the dimensionless electron temper- cooling mechanisms also include bremsstrahlung and inverse
ature, 0;=kT;/m,c* is the dimensionless ion temperature, Compton radiation. Each of these emission mechanisms
In(A) = 20 is a Coulomb logarithm, K, represents a modified contributes to ¢, and each depends on the electron temperature
Bessel function of the nth order, and we have assumed T..

n,=n; In the second line we have adopted the approx-
imation from M97.?° We note that in evaluating the prefactor

A.3.1. Synchrotron Emission

!9 We note and correct an error in the original expression for Q" from M97 We use a form for the synchrotron spectrum from
e moteand, et an enor . o evgnl enprssion o g~ o g7 Meadevan et al. (1996; s also NY93; M9Y), which assumes
£ P 4 an isotropic distribution of relativistic electrons. The synchro-

Equation (10), for which the exponent of the r term should be —3 rather oo
than —1. tron spectral emissivity is given by

17
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4mn,v
L, = (443 x 10730 erg s~ Hz72) ———— M (xy), Al3
Esynch, ( g )Kz(l/ee) (xm) ( )
where we assume the relativistic limit for M(x,,),
4.0505 0.40  0.5316
M) = 20 [1 7t ]exp<—1.8899x;/3>, (A14)
X Xy X
and x,, is a dimensionless frequency,
2v
Xy = ——=, (Al5a)
M 3I/b9§
eB
Vp =
2mm,c
=(3.998 x 10" Hz)(1 + B) 1/ 2a V21 2l 2m=\ 2 (/2= G/ D+6/D), (A15b)

Equation (A13) assumes optically thin emission, but below some critical frequency v, (which is a function of radius) we expect the
synchrotron to be optically thick and thus described by a blackbody spectrum. We follow M97 and determine v.(r) by equating
emission within a volume of radius r to the Rayleigh—Jeans blackbody emission from a spherical surface at that radius,

3 2
fsynch,uc(MTR) = 47TR2(27TV7L2-](7;), (A16)
c

which lends itself to a prescription for estimating the optical depth more generally of

2
__ Esynch, Re
6mv2kT,

-2
- (1) Soynche | (A17)
Ve €synch,v
We numerically solve Equation (A16) for v, at Ryin and Rpay, yielding a peak frequency v, at Ry, (with luminosity L,) and a
minimum frequency v, at Ry, (with luminosity L,,); the left panel of Figure 14 shows how v, changes with m and rz. We take the

synchrotron spectrum to be blackbody (i.e., optically thick) at frequencies below v, optically thin with an emissivity described by
Equation (A13) at frequencies above v, and a power law at intermediate frequencies. That is,

(1.058 x 1072 erg s~' Hz 3 K'Y T, gm®v2rL 11, V< Uy
)ln(Lp/Lm)/ln(Vp/Vm)

v

Lu,synch = Lln(]/_ ’ Vn SV S Y (A18)

(1.896 x 108 erg s~! HZ*Z)Ma*'q—'mzmour@/z)“

K (1/6.) "

m

s V2> U

The total emitted synchrotron power is then the integral of L, syncn Over frequency,
oo
ngnch = j(; Ll/,synch dv, (A19)

which we evaluate numerically.
A.3.2. Bremsstrahlung Emission

We use an expression for the bremsstrahlung emission that follows M97 Equation (27),

Dorems = (1.48 x 1072 erg cm? S_l)nezF(ee)

= (1476 x 10" erg cm 3 s Ya2¢; 2m 2l F (6,)r 3+, (A20)
where

172
4(29;) (1 + 178161 4+ 1.73632(1 + 116, + 62 — 12563%), 4, < 1
F(6,) = 90” (A21)
(2—6)[111(1.1230@ +0.48) + 15] + 2306.[In(1.1236,) + 128], 6, > 1.

™
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Table 3
SED Model Parameters
Parameter Description Default Value
m black hole mass in units of the solar mass; m = M/M_,
g mass accretion rate onto the black hole, in units of Eddington
n radiative efficiency 0.1
15 plasma beta; ratio of gas pressure to magnetic pressure 10
« viscosity parameter 0.2
s power-law index for the mass accretion rate as a function of radius 0.5
T, electron temperature
t power-law index for the electron temperature as a function of radius
f fraction of viscously dissipated energy that is advected 1
4 fraction of viscous heating that goes directly to the electrons 0.3
Timin minimum dimensionless radius of the advection region 3
Tinax maximum dimensionless radius of the advection region 103
0, dimensionless electron temperature; ﬁfz
MeC
Xp dimensionless synchrotron frequency; Equation A15(a)
. eB

v gyro frequency; Trmee
Ve critical frequency below which synchrotron emission is optically thick
vy “peak” critical synchrotron frequency at innermost radius; v, = ¢ (sinin)
Vp critical synchrotron frequency at outermost radius; 14, = ¥ (fax)

. . . 8453
v ratio of specific heats; T3 1.4
¢ W) =t oy 05
1 5+2¢ 1802 0.5

3a? (\/1 T (5 +2¢H? 1)

c3 25 +2¢" 1802 0.3

9a2 (\/1 + (5+2¢"? 1

o [ 1.5 x 10°

S1 142 x 10 \/Ml(Hd) .
5 1.19 x 107 Pxy,
53 1.05 x 1072*
by 3.16 x 10Y%a ¢! 10%°

Note. A list of the parameters used for the SED model. Certain parameters in the model take on the default values listed here, while others must either be specified as
inputs (e.g., m, rir) or else are internally computed as part of the model (e.g., 7., f).

The volume-integrated power emitted in bremsstrahlung
radiation will then be

Pirems = (3.236 x 10" Cm3)m3f . qbremsr2 dr

min

= (4.776 x 103 erg ™Yo 2¢; 2mimg f " F @)1+ ar, (A22)
with a spectral dependence given by

Ly brems = (2292 x 10 erg s Hz™' K)a2¢ 2mmd T, 4 f - F(Qg)exp(—]il—;)r”z”’ dr. (A23)

We integrate both of the above expressions numerically. of interest is expected to be a power law,
Lo — L 2] A24
A.3.3. Inverse Compton Emission vscompt == &p I/_p ) ( )

We follow M97 in considering Comptonization only of

synchrotron photons emitted predominantly at the peak The power-law index «. is determined both by how frequently
frequency v, for which the spectrum in the temperature range photons are scattered (which is determined by the optical depth
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Figure 13. Left: an example set of electron heating and cooling curves used in the SED model as a function of T, o, for an M87-like SMBH with m = 6.5 x 10° and
o = 107>, Solid colored curves indicate sources of electron heating, while dashed colored curves indicate sources of electron cooling; the total heating and cooling
are plotted as the black solid and dashed lines, respectively. The intersection of these lines is circled and indicates where the heating and cooling are balanced (see
Equation (Al)), which for this system occurs at 7,0 = 4.3 x 10'"° K. Right: the SED corresponding to the solution from the left panel, with the individual
contributions from synchrotron, inverse Compton, and bremsstrahlung emission plotted as colored curves and the combined spectrum plotted in black. For a 17 Mpc
assumed distance to M87, the predicted 230 GHz flux density is ~1 Jy. This prediction agrees well with the horizon-scale flux density measured by the EHT (Event
Horizon Telescope Collaboration et al. 2019d).
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Figure 14. Left: the peak synchrotron frequency, v, at Ry, as a function of m and r1. The white curves show contours at four different observing frequencies of
interest, such that at any given frequency objects located to the lower right of the curve are expected to have optically thin emission. Right: the self-consistent value
determined for T, as a function of m and 7. In both panels, the approximate mass (6.5 x 10° M) and accretion rate (A = 10~>) corresponding to the SMBH in M87
is marked in black.

. . We take the mean amplification factor A from M97 Equation
of th? scattering proces§) and by _hOW much a photon is (32) (originally inspired from Rybicki & Lightman 1979),
amplified during a typical scattering event. We use an A=1+ 46,0+ 16 92’0, (A26)

expression for the optical depth to electron scattering T ) ) )
adapted from NY95 Equation (2.15) which together with 7. determines the power-law slope for the

Compton emission,

Tes = 2N 07 Rin In (7o)
= 6.205a" "¢; g /DTS, (A25) %= A (A27)

1n
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The total Compton power will then be given by the integral of
Ly, compt Up to the maximum final frequency of a Comptonized
photon (vy=3kT, o/h),

vr
R:ompt = f Lu,compt dv
Yp
l—a.
_ vplp | vr 1
I —ac|\y

A.3.4. Electron Advection

(A28)

The M97 model assumed that 7, < T;, and it therefore
ignored electron energy advection. This assumption was
reasonable for the parameters considered in that paper,
particularly the choice of §=m,/m,. However, the modern
view is that § is much larger (x0.3; see Yuan & Narayan 2014).
Such large values of 6 make electrons significantly hotter,
especially at very low iz, and so energy advection in electrons
can no longer be ignored.

When electron advection is included, M97 Equation (8)
gains an additional term Q***° and becomes Equation (Al).
This advective cooling term is given by

d Rm:\x 2 dse
Qudve — f 47R2( novT, 2 | dr, (A29)
Rmin dR
where s, is the entropy per electron. Let us write
1 1. 1,
T.ds, = du, + pgd(—) = _kdTe KL ne,  (A30)
ne Yev — 1 ne

where, following the approach described in Narayan & Yi
(1994), we express the specific heat at constant volume Cy in
terms of an effective vcy. Substituting in Equations A4(b) and
(AS) and differentiating with respect to R yields

1—1¢ )
Yov—1)
Sadowski et al. (2017) provide an accurate fitting function for
Ycv, Which we write as

202 + 86, + 562)
3(8 4 4006, + 250%)

dse _ k];,()

— = 3 s — (A31)
dR  Rgr*—'\2

e

(A32)

Yev =

Noting further that n, = p/pzm, and M = —47R*vp, we finally
obtain

Q¥ve = (1.013 x 10% erg s7! Kfl)mmoﬂ,of Tl — 2 |2,
min \Yov— 1 2

which we integrate numerically. We note that there are
conditions under which Equation (A33) can yield a negative

value for Q°™¥%; in these cases, we impose Q" =0.

A.4. Maximum Mass Accretion Rate

The ADAF solution ceases to exist above some critical mass
accretion rate, i1y, where the accretion flow is no longer
advection-dominated (NY95; M97). Within the context of our
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Figure 15. The ratio of the bolometric luminosity Ly, to the accretion
luminosity Mc? versus the accretion rate 72 and colored by SMBH mass m. The
dashed gray line indicates the input radiative efficiency of n=0.1; for
g 2> 1072 the radiative efficiency of our model exceeds this input
assumption.

SED model, this condition manifests as a maximum accretion
rate above which there is no equilibrium temperature (i.e., the
heating and cooling curves never cross). We numerically
determine a value of i ~ 10~!7, and so in this paper we
only work with values of 71y < 1072

In addition to the critical m above which no ADAF solutions
exist, there is also a softer threshold accretion rate above which
solutions do exist but our assumed input radiative efficiency of
n=0.1 is no longer consistent with the output of the SED
model. Figure 15 shows the predicted radiative efficiency from
the model as a function of m(; we take the model radiative
efficiency to be the ratio of the bolometric luminosity,

Lyot = f(; (Lz/,synch + Lz/,compl + Ly brems) dv, (A34)

to the accretion rate equivalent luminosity, Mc2. Regardless of
the input mass, the output radiative efficiency exceeds the
assumed input value for rizg = 1072, Though this inconsistency
reflects a physical limitation of the model, we note that given the
ERDF prescription used in this paper (see Section 2.4),

1—¢t 3 A33)

it impacts only a small fraction of SMBHs (<1% for most M
and z, reaching a peak of ~5% for M > 10° M, and z > 5).

Appendix B
Mass Dependence of the Eddington Ratio Distribution
Function

As described in Section 2.4, in this paper we take the
ERDF to have a broken power-law functional form (see
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Figure 16. Comparison of the ERDF prescription used in this paper with the empirical modeling from Aird et al. (2018), with each panel showing a different choice of
redshift. In each panel, the colored lines and corresponding shaded regions show the constraints from Aird et al. (2018) for a range of SMBH masses, as labeled in the
legend at the lower right; the black dashed and dotted lines show our ERDF prescription (see Equation (12)) for example SMBH masses of 10° and 10° M,
respectively, as labeled in the legend at the lower left. All panels share the same horizontal and vertical axis ranges, which are explicitly labeled in the left panel.

Equation (12)) with a power-law index « that evolves with both
SMBH mass M and redshift z. Specifically, we adopt the
redshift evolution prescription from Tucci & Volonteri (2017)
(see Equation (14)), and we add to it an evolution with SMBH
mass (see Equation (15)). For the mass evolution of the ERDF
power-law index, we choose a logistic function in log(M) such
that low-mass SMBHs (i.e., those with masses below some
value M,) see a power-law index ay,, while high-mass SMBHs
(i.e., those with masses above M;) see a power-law index ay;.
The specific functional form of Equation (15) ensures that a(M)
transitions smoothly between the low- and high-mass regimes,
with a logarithmic width that is set by the parameter A.

To determine the values of the ERDF parameters aj,, an;, Mo,
and A, we rely on the observational constraints provided by
Aird et al. (2018). Aird et al. (2018) determined the distribution
of specific SMBH accretion rates A\—that is, the accretion rate
relative to the stellar mass of the galaxy, rather than to the mass
of the SMBH—by fitting a Bayesian mixture model to X-ray
observations of ~10° near-infrared-selected galaxies. This
sample includes a mix of star-forming, quiescent, and AGN-
dominated galaxies, and it spans a range ~10%°-10"" M in
stellar mass and ~0.3—4 in redshift. We use two different
prescriptions to convert from stellar mass to SMBH mass,
corresponding to the two BHMF prescriptions described in
Section 2.2. For our fiducial choice of the lower BHMF from
Shankar et al. (2009), we adopt the stellar-to-SMBH conver-
sion used by Aird et al. (2018) themselves, which is given
simply by M, = 500M; we use this fiducial prescription for all
figures and values in this paper unless otherwise specified. For
the instances in which we quote a range of values corresp-
onding to the lower and upper BHMFs, for the upper BHMF
we convert from JA; to A\ using the same stellar-to-SMBH
conversion as in Section 2.2 (i.e., Equation (11)).

Given the observed P()\) as a function of M and z, we
determine the best-fit ERDF parameters by minimizing the
squared logarithmic differences between the Aird et al. (2018)
empirical model and Equation (12). We restrict our fitting to
the region of parameter space between —4 < log(\) < —1,
with the low-A cutoff determined by the observational
limitations and the high-\ cutoff determined by our interest
in LLAGNs. The resulting best-fit values for the fiducial
case are a;, =0.55, a,; =0.20, log(My) = 7.5, and A=0.3.
Figure 16 shows a comparison between the best-fit ERDF and
the Aird et al. (2018) model. For the upper BHMF prescription,
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the only parameter that changes is My, for which we find a best-
fit value of log(M,) = 7.8.

Appendix C
Analytic Approximations Based on Volumetric Scaling
Relations

The behavior of N(6,, o,) seen in Figures 4 and 5 takes on an
apparently simple structure, whose gross properties can be
understood in terms of simple volumetric scaling relations.

C.1. Analytic Approximation for the Population Source Counts

For a static universe in which SMBHs are distributed
uniformly, the number of SMBHs that could be spatially
resolved at an angular resolution 6, by a telescope with
arbitrary sensitivity will be proportional to 6>, Similarly, the
number of SMBHs that could be detected at a sensitivity o, by
a telescope with arbitrary angular resolution will be propor-
tional to ¢,%/%. A simple function that captures both limiting
behaviors is

9 3 37271
N(b,, 0,) =~ A i g .
40 pas 1y

Here, we have chosen the normalization to be such that we
would expect to see 2 1 black hole shadows with angular sizes
smaller than 6,=40 pas and with flux densities less than
0, =1 Jy—approximately matching the values appropriate for
the SMBH in M87 (Event Horizon Telescope Collaboration
et al. 2019c¢, 2019d)—and that at this angular resolution and
flux density sensitivity we would expect to see N= 1 black
hole shadow.

Following these expectations, we fit a simple functional form
to the source counts of

(ChH

PEE
0\ (o

00 000 .
The model parameters 0,9, ¥, 0,0, and x are determined by
minimizing the squared logarithmic differences between
N(0,, 0,) from Equation (C2) and the complete numerical

evaluation of N(@,, 0,) from Equation (7) (see Section 2.5),
assuming an observing frequency of 230 GHz. Both functions

N(ers o) = l( (CZ)
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Figure 17. Left: same as the bottom panel of Figure 4, but with the source counts predicted by the best-fitting analytic approximation (Equation (C2)) overplotted in
cyan contours. Right: same as Figure 7, but with the source counts predicted by the best-fitting analytic approximation (Equation (C5)) overplotted in cyan contours.

are evaluated on a 200 x 200 grid of (0, o,) points,
logarithmically spaced between [1072, 10?] pas in 6, and
between [10_9, 101] Jy in o,.

We find best-fit parameter values of 6,0=21.8 pas,
v=2.95, 0,0=0.080 Jy, and x = 1.32; this best fit is shown
in the left panel of Figure 17. The power-law indices, -y and &,
have best-fit values that are close the initial expectations (i.e.,
v=13 and k = 1.5), indicating that the cosmological effects are
not causing large deviations from simple volumetric scaling
relations. The normalization factors, 6,, and o,,, are
substantially different from the values in Equation (Cl), in
line with the model’s known underprediction of M87 (see
Section 4.1). Overall, the best-fit Equation (C2) provides a
description of the source counts that deviates from the
numerical computation by less than an order of magnitude
across most of the (6,, 0,) space. Only for 6, <0.1 pas and
0, <1077 Jy does the analytic approximation deviate from the
numerical computation by more than an order of magnitude
in N.

C.2. Analytic Approximation for the Interferometric Source
Counts

When observing with an interferometric baseline, the
correlated flux density depends on the brightness temperature
T, of the source emission. For a source that is marginally
resolved and which subtends a solid angle €2, the brightness
temperature can be expressed as

2

_ Co,
" 000
~ (1.64 x 100 K)| - Or ( Y ) .
1 Jy J\ 40 pas 230 GHz

(C3)

Here, o, represents the total flux density of the source, and 6, is its
angular size on the sky. For synchrotron sources, self-absorption and
energy equipartition are expected to limit 7}, to some maximum
value of approximately 10'' K (Kellermann & Pauliny-Toth 1969;
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Readhead 1994, though see also Kovalev et al. 2016). More
specifically, the emitted brightness temperature should never
exceed the electron temperature, which for our SED model
described in Appendix A does not go above ~7 x 10'° K (see
the right panel of Figure 14). Following the considerations
from Appendix C.1 while also accounting for this brightness
temperature limit, we can modify Equation (C1) using an
exponential cutoff to smoothly suppress the the high brightness

temperature emission,
3 3271
o,
+ .
) ( 0.1 Jy ) l

(C4)
Here, 60, should now be understood to represent a single-
baseline angular resolution, and we have adjusted the o,
normalization to match the 230 GHz flux density observed
from MS87 on long baselines (Event Horizon Telescope
Collaboration et al. 2019c). We have set the brightness
temperature cutoff to 10'°K because we are selecting for
SMBHs that are optically thin and which therefore should not
typically saturate the brightness limit. We note that magneto-
hydrodynamic simulations of the M87 system also exhibit
brightness temperatures that peak between 10'® and 10''K
(Event Horizon Telescope Collaboration et al. 2019e).
Following these expectations, we expand on the results of
Appendix C.1 and fit a simple functional form to the source

counts of
3 37271
[(9—) +("—) ] . (C5)
ar,n Ou,n

Here, we have fixed the exponents of the 6, and o, terms to the
values expected from initial considerations and further
motivated by the fitting results of Appendix C.1. We also
incorporate the understanding from Section 3.2 into the scale-
setting parameters 6,.,, and o,,,, for the nth sub-ring, which are

6,
40 pas

N(b,, 6,) ~ e T/ (10 K) l(

N, 0,) = 3 e BT

n=0
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defined to be
91‘,n = er,Oe_mT Oyn = UV,Oe_Smr/z' (C6)

We do not have an a priori expectation for the scaling behavior
of the brightness temperature 7, in each sub-ring, so we
simply include it as an additional parameter,

Ty = ToC". C7)

The model has five free parameters—#, o, 0,0, Tp.0, tt, and C
—which we fit in the same manner described in Appendix C.1.
We find best-fit parameter values of 6, =23.2 pas, 0,0=0.17
Iy, Tpp=2.2x 108 K, 1 =0.50, and C =2.39; this best fit is
shown in the right panel of Figure 17. The fit quality is similar
to that in Appendix C.1, with the analytic source counts
throughout most of the (6,, 0,) space agreeing to better than an
order of magnitude with the numerical results. The deviations
become worse than an order of magnitude at small values of
0,<0.1 pas and 0, <1077 Jy, as well as wherever the source
counts contain substantial contributions from n >0 photon
rings.

Appendix D
Sampling Function for a Rotating Baseline

Following Section 3.3, we would like to determine how the
total number of sources that a particular baseline can resolve
changes as that baseline rotates. Equation (22) provides the
angular resolution 6, that a baseline of length b (in units of the
observing wavelength) has when viewed from a source at a sky
position with polar angle 6 as measured from the tip of the
baseline (see the left panel of Figure 18); there is no ¢
dependence because sources are assumed to be distributed
isotropically. For any particular baseline, the number density of
resolvable sources per unit solid angle can be written as

d>N 1 > &N
S0 =— [
ds) 47 Jo,0.0) d2dO,

do,, (D1)

which can then be used as in Equation (23) to determine the
total number of resolvable sources for any fixed baseline b. For

Pesce et al.

the example calculations presented in this appendix, we will
assume that the integrand of Equation (D1) follows a power
law with index « and coefficient A,

d*N 1 >
—(, b)=— A0 dO,
dQ( ) 47 f1/(bsin0)
: a—1
_ A (bsin#) ' D2)
47 o —1

The number of black holes instantaneously sampled is then
given by an integral over solid angle, expressed in
Equation (23) but now evaluated explicitly for the power law:

27 T d2N
Ning = fo dé L sinf-(6. b) o

B ﬁAbr(%) 3)
S ATA+ D

where I' is the gamma function. In order to compare the
cumulative sampling of different power laws, we must
normalize so that after the baseline rotates by 180°, the number
of black holes sampled is equal; this rotation corresponds to
sweeping the largest projected spacing across the entire sky.
Because the largest projected spacing is the only relevant
quantity, we can normalize simply by requiring
d*N s

Niotar = 47Tm(9 = 5, b) (D4)
for all A, b, and a. We express the number of black holes
sampled as a fraction of the total, removing the dependence on
A and b:
_ (sinf)*!

Q) =1 D5
Ntotal dQ( ) 4 ( )

It is then straightforward to observe that the fraction of black
holes in the sky instantaneously observed by a single baseline
decreases with «. However, it is less straightforward to
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Figure 18. Left: schematic diagram of black holes sampled by a single baseline at one instant. The dashed black line represents the baseline, the solid gray line
represents the line of sight to an example black hole, the dotted black line represents the projection of the baseline perpendicular to that line of sight, and the dotted
blue curve represents the sampling function (with radial distance from the baseline center proportional to the number of black holes sampled). Middle: same as left, but
after the baseline evolves, rotating by an angle Ay, sweeping through the volume enclosed by the dashed red line. Dotted gray lines show the decomposition
performed in Equation (D7). Both left and middle diagrams correspond to a two-dimensional cross-section of a three-dimensional surface; for a black hole distribution

3,
that follows 22 o 0, with a = 2, the instantaneous sampling surface is exactly a torus. Right: cumulative fraction of black holes sampled by sky density functions

dQdo,
with increasingly steep dependence on resolution.
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compute the cumulative number of unique sources a baseline
resolves over the course of some rotation through space,
because the sources sampled at each baseline orientation are
partially redundant with the source sampled at prior baseline
orientations. Put another way, the instantaneous sampling of
black holes provided by a single baseline is given by a
sweeping of the projected baseline through ¢, whereas the
sampling over a change in orientation is a sweep through a new
angle, which we call x. The angle y is related to 6 by

X = tan~! (sin ¢ tan 0). (D6)

X is defined so that it aligns with # when ¢=m/2. An
illustration of x and the redundant sampling are shown (for the
¢ =7/2 cross-section) in the middle panel of Figure 18.

The rotation of the baseline in space can then be described
by a change in the axial angle Ay. Computing Equation (23)
for the total sources sampled after this rotation (shown by the
dashed red surface in the middle panel of Figure 18) can be
simplified by breaking the integral into two regions: first, the
longest projected baseline sweeps out a partial spheroid, while
the rest of the baselines form arcs that intersect at the cusps of
the dashed red line in Figure 18. We refer to the sources
sampled by the partial spheroid as N, and those sampled by the
cusped curves as N4 As Ay increases, N, increases and Ny
decreases. The cusped curves have a four-fold symmetry, so we
integrate over a convenient curve (that between = 7/2 and
0 = m), and Equation (23) reduces to

N(AX) = 4Ns(Ax) + Ny(AX), (D7)
where
™ Omax (AX) . dzN
Ni(Ay) = f dé f sin 052 (6) do (D8)
0 /2 ds)
is the contribution from each of the cusped curves,
Ax d*N ( 7r)
N(Ax) = —= x 4n|—|0 == D9
s(AX) - a [ ) 2 DY)
is the contribution from the partial spheroid, and
tan (7T — %)
Omax (AX) = tan™" | ———= (D10)
sin ¢

is the value of 6 at the first leading cusp. The geometry of this
computation is shown between the dotted gray lines in the
middle panel of Figure 18.

The right panel of Figure 18 shows the cumulative source
sampling for several values of the power-law index « from
Equation (D5). We use a=2 for the schematic diagrams in
Figure 18 because the sampled surface around an instantaneous
baseline in this case reduces to a torus; o =4 corresponds to a
sky density of black holes that scales volumetrically (i.e.,
proportional to ), which is closer to the actual behavior. For
plausible values of o, we find that the difference between a
fully swept sampling of the sky and the instantaneous baseline
sampling is not more than a factor of 2.
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