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A B S T R A C T

Variable Stiffness Actuators (VSAs) have been developed to address the safety and limited
adaptability in interactions with uncertainties and energy efficiency issues which exist in tradi-
tional ‘‘stiff’’ robots. When desired performance of a VSA is given for a certain application, the
question is how this desired performance can be achieved with minimum energy consumption
and maximum robustness against uncertainties. This will lead to more compact, lighter but
more powerful VSAs. This work develops an understanding of how to optimally design the
parameters of the stiffness adjustment mechanisms by developing a framework that can robustly
maximize the output performance of VSAs. Five VSA examples, each representing a different
design set of stiffness adjustment mechanism, are being considered and evaluated based on the
proposed optimization framework to perform a given periodic motion. The resultant optimal
design of each set is then compared with the original design in terms of output performance
and robustness. The proposed framework shows improvement of the output performance for the
given periodic motion up to 546%, with robustness of up to 2.1% perturbation of the optimal
design values.

1. Introduction

In contrast to industrial robots that should be operated in isolated work-space from humans, where everything about the
nvironment is already known and planned for, the existence of humans in Human–Robot Interactions (pHRI) applications creates
ighly unknown environments as we, humans, are so unpredictable when it comes to motion, location, and interaction forces [1].
In order to guarantee safety of humans in physical interactions with robotic manipulators, actuators as the sources of generating
mechanical power should behave soft [2]. There are two main approaches to make a robotic platform soft; one, that is called active
compliance [3–5], is through the control framework, where the actuator should be facilitated with force/torque sensors to detect the
ollision and close loop feedback with different control strategies to prevent or at least reduce the level of risk [6]. This approach,
owever, cannot guarantee the safety in case of high bandwidth collisions such as impact forces and, as a result, the actuator would
ehave rigid in such scenarios. The other approach is to realize passive compliance embedded into the mechanical structure of the
ctuator, so that it can behave inherently soft in any interaction scenario [7–11]. A pioneer in this area, is the Series Elastic Actuator
EA developed by G. Pratt [12], where a spring is located between the motor and the output link, decoupling the high reflected
nertia of the gearbox from that of the link. Therefore, when it comes to an interaction with a human body, only the link inertia will
e in contact. Also, the spring can act like a force sensor, allowing to use the active compliance approach to regulate the reflected
tiffness through the control framework on top of the mechanical stiffness [13,14]. But again when it comes to high bandwidth
nteraction scenarios, the stiffness of a SEA would be the fixed stiffness level of its embedded spring [15].
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Also note that, spring can save and release the energy, which in periodic motions can greatly enhance the energy efficiency [16,
7]. However, in case of a SEA, this would be beneficial only when the frequency of the desired periodic motion matches the natural
requency of the compliant actuator [18]. In order to exploit the full advantage of having a source of storing and releasing energy,
.e. spring, in periodic motions with different frequencies, the mechanical stiffness level of the actuator should be adjustable [19,20].
urthermore, In general, when a robotic manipulator moves fast, it should be soft to guarantee safety and when it moves slow and
ccuracy is desired, it should be rigid [21].
Variable Stiffness Actuators (VSAs) [22–25], have been developed to address these needs in pHRI applications. A VSA needs two
otors as it has to control two degrees of freedom; one is the output link’s position just like a normal rigid actuator and the other one
s the output link’s stiffness [26–28]. Regulating the stiffness in VSAs is done by different Stiffness Adjustment Mechanisms (SAMs)
hat contain springs and other components [29]. SAMs can be categorized into two design groups; Antagonistic and Series [30]. In
antagonistic designs, both motors are responsible to control the output link position and regulating its stiffness, whereas in series
designs, one motor is dedicated to the link positioning while the other one adjusts the stiffness.

Despite the great need of being able to regulate the stiffness of the robotic actuators in pHRI applications and tremendous number
of different VSAs that have been developed so far, to our knowledge, there is not a VSA that has successfully passed the research lab
phase and transitioned into a real application. The main reason is due to the lack of understating how to optimally design a SAM
based on desired performances of different applications. If not optimally designed, the additional complexities that SAMs present
to the actuators prevent to win the trade-off between benefits of having a SAM versus its costs. Some examples of these trade-off
criteria are as following: the energy saving benefit of adjusting the stiffness in different periodic motions compared to how much
energy is in fact required for the stiffness regulation, increased torque capacity due to having two motors compared to how much
torque can be actually transferred to the output link, energy storage capacity of the springs compared to how much energy can
be actually released at the output link side, and adjusting the stiffness to a certain value compared to what is the actual stiffness
of the output link in dealing with unknown external forces. Currently, these trade-off criteria are not in favor of introducing a
SAM into the actuator. Therefore, generally, having a simple series elastic actuator with active compliance has been preferred over
having a complex VSA [31,32]. This research seeks to understand how to optimally design the parameters of a SAM by developing
a framework that can robustly maximize the output performance of VSAs to perform a variety of tasks, including periodic motions.

Depending on a particular design, the design parameters of a SAM may include the dimensions of its principal components,
e.g. cam, level arm, pulleys, etc, and stiffness of its springs. The constraints are user defined torque and velocity limitations of the
motors, springs’ constants (stiffnesses), and size limitations of the principal components.

The dimensions of principal components are real continuous variables, while stiffness of the spring and their dimensions,
e.g. diameter, length, and maximum allowable deflections, are categorical variables as springs are commercial products that
come in different but discrete sizes and stiffness constants. The same holds true for motors and theirs maximum torques and
velocities. Furthermore, since power is a product of torque and velocity, the nature of any energy-based optimization problem
would be nonlinear. Therefore, we will be dealing with a mixed-integer nonlinear optimization problem with a large number of
feasible solutions [33]. To solve this type of optimization problem, there are basically two main approaches; Heuristic (or Meta-
Heuristic) [34] and Global optimal [35]. The heuristic approaches can quickly find optimal solutions but cannot guarantee that the
yield solutions are the global optimum (as they may get trapped into local optimal solutions). Examples are: Tabu search [36],
Simulated annealing [37], and Ant colony optimization [38]. The global optimal approaches, on the other side, may take a long
time to find a solution, but once it is found, the solution is guaranteed to be the global optimal. Since computation time is not
a critical factor in optimal design problems, therefore global optimal approach is preferred over the heuristic one. Examples are:
Cutting plane method [39], Branch and Bound (BB) algorithm [40] and Interval method [41].

For this optimal design problem, we propose to employ interval method as a mean to systematically enumerate candidate
solutions in a BB algorithm. The so called interval based branch and bound algorithm can deal with nonlinear mixed-integer problems
and has been shown to be effective in optimal actuator design problems, in particular [42,43].

This article is organized as follow: in Section 2, different sets of stiffness adjustment mechanism are introduced. Section 3,
explains the proposed problem formulation, while Section 4 elaborates on the optimization algorithm. Section 5 presents the results
obtained from the optimization framework and compares them with the original designs. Finally Section 6 presents conclusion and
future works.

2. Stiffness adjustment mechanisms — design sets and principal dimensions

VSAs have been developed to address the safety, limited adaptability in interaction with uncertainties and energy efficiency issues
which exist in traditional ‘‘stiff’’ robots. These types of actuators have two motors to regulate the stiffness and the position of the
attached link. Springs are embedded into the system to realize the variable stiffness functionality using different design principles.
In general, these designs can be divided into two main classes: antagonistic and series [44,45] (Fig. 1).

In antagonistic designs, two motors 𝑀1 and 𝑀2 are antagonistically actuating a link through nonlinear springs (i.e. nonlinear
force to deflection profile) that are placed between the motors and the link. The nonlinearity of the springs is an important factor
as stiffness regulation cannot be achieved using linear springs in these setups. Based on different arrangements of the motors
and springs, these types of designs can be realized in three different sub-classes: simple unidirectional (e.g. [46]), cross coupling
(e.g. [22]) and bidirectional (e.g. [47]) configurations as it is shown in Fig. 1-a-b-c.

Alternatively, in the series design approaches, one motor 𝑀1 with a spring in series is dedicated to the link positioning while
2

another motor𝑀2 (usually smaller than𝑀1) is set to change the stiffness. In one class of these design approaches (Fig. 1-d), nonlinear
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Fig. 1. Different classes of SAMs: Antagonistic Class: (a) simple antagonistic, (b) cross-coupling, (c) bi-directional- Series Class: (d) pre-tension based, and (e)
ever-based.

prings are employed where stiffness adjustment is done through changing the pre-tension of the springs using 𝑀2. Another class of
these design approaches (lever-based) (Fig. 1-e) uses linear springs while the stiffness adjustment is done through changing another
parameter such as location of the springs [27], the pivot point [25,48] or the point at which force is being applied to a lever
echanism [49].
These design approaches can be realized in many different ways, using different mechanisms or components. However, regardless

f how they have been realized, there are always principal components in each class whose dimensions or properties are essential
3

n determining functionality of the SAM as well as output performance of the VSA. In antagonistic SAMs, examples are: the radius
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Fig. 2. Schematic of a Variable Stiffness Actuator VSA.

of the link’s pulley, the radius of each motor’s pulley, the distances between center of rotation of each pulley as well as springs’
constants.

In those SAMs that need nonlinear springs, sometimes linear springs are used together with a mechanism that can generate
nonlinear force to deflection profile, such as cam-follower mechanism in contact with a spring [50]. In this case, dimension of cam
is also another principal component of the SAM as its profile determines the nonlinearity of the spring.

In our proposed optimal design process, we only take into account the principal components of a SAM, rather than every single
elements (such as bearings, screws, etc.) that are being used in a particular realization. However, our proposed approach is general
and one can consider different detailing levels of a particular SAM in the optimization process. However, it may substantially add
to the complexity of the process by increasing the number of variables while the output optimal result might not be significantly
better.

In addition, each motor 𝑀1 and 𝑀2 provides energy to the SAM that can be presented by considering torques and displace-
ent/velocity of an element due to that torque (e.g. motor shaft). Motors come in different torque and velocity capacities. These
arameters which eventually affect the output performance of a VSA are discrete categorical variables. The same holds true for
prings as they have different spring constants, sizes, free length, and maximum allowable deflections, which all can affect the
erformance of a VSA.
Therefore, in order to optimize the design process, different types of variables including continuous and integer or categorical

ariables have to be dealt with. This makes the design problem a nonlinear mixed-integer optimization problem.

. Output performance formulation

If a certain output performance for a VSA is desired in terms of trajectory of the output link, its stiffness profile and an external
orque that has to be overcome during a given period of time, then the energy required to achieve this output performance, i.e. output
nergy can be calculated and compared to the energy that the VSA consumes to perform the task, i.e. input energy (Fig. 2).
This article proposes an optimization framework that can robustly minimizes the VSA’s input energy requirement as a function

f SAM’s design parameters. The significance of this work is that, by optimally designing robust VSAs, the robotic manipulators
ould be more efficient, more compact, lighter, safer to interact with humans, while at the same time can achieve higher level of
erformances.
The output energy of a VSA can be determined by the output link’s trajectory (velocity and acceleration can be simply calculated

y taking first and second derivatives with respect to the time), stiffness as well as the external torque it has to handle during its
otion. This energy is indeed provided by the motors as the input energy to the VSA system.

.1. Performance formulation

Every class of VSA, regardless of being series or antagonistic, can be represented by the schematic shown in Fig. 2. Motors 𝑀1
nd𝑀2 provide torques 𝑇𝑀1

and 𝑇𝑀2
as well as displacements 𝜃𝑀1

and 𝜃𝑀2
to a transmission system (e.g. gearbox). The transmission

ystem outputs the torque and displacement to change the output link’s position 𝑇𝑝 and 𝜃𝑝, as well as the torque and displacement
equired to adjust the output link’s stiffness 𝑇𝐾 and 𝜃𝐾 . It should be mentioned here that in ideal series design, simply 𝑇𝑀1

= 𝑇𝑝,
𝑀2

= 𝑇𝐾 , 𝜃𝑀1
= 𝜃𝑝 and 𝜃𝑀2

= 𝜃𝐾 . However in antagonistic design these relationships are more complicated and depends on the
esign parameters. We focus on optimizing the performance of SAM, therefore we assume that the transmission is ideal, i.e. the
nput energy to the transmission is equal to the output energy delivers by the transmission:

𝐸𝑖𝑛 =
2
∑

∫

𝑡𝑓
𝑇𝑀𝑖

.𝜃̇𝑀𝑖
𝑑𝑡 = ∫

𝑡𝑓
𝑇𝑝.𝜃̇𝑝𝑑𝑡 + ∫

𝑡𝑓
𝑇𝐾 .𝜃̇𝐾𝑑𝑡 (1)
4

𝑖=1 𝑡𝑜 𝑡𝑜 𝑡𝑜
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The output of the transmission will be the input to the SAM. The dynamic equations of both link positioning and stiffness adjustment
of a SAM, can then be expressed as follow:

{

𝑇𝑝 = 𝐼𝑝𝜃̈𝑝 + 𝑏𝑝𝜃̇𝑝 + 𝛼𝑇𝑒𝑙𝑎
𝑇𝐾 = 𝐼𝐾 𝜃̈𝐾 + 𝑏𝐾 𝜃̇𝐾 + (1 − 𝛼)𝑇𝑒𝑙𝑎

(2)

where 𝐼𝑝 and 𝑏𝑝 are inertia and damping coefficient parameters of the SAM, respectively, whose torques have to be overcome for
link positioning through applied 𝑇𝑝. Similarly, 𝐼𝐾 and 𝑏𝐾 are inertia and damping coefficient parameters of the SAM, respectively,
hose torques have to be overcome for link stiffness adjustment through applied 𝑇𝐾 . 𝛼 is a parameter that its value can vary
etween zero and one (therefore a continuous variable) depending on the class of SAM. For instance, in a perfect series class based
n lever mechanism, 𝛼 = 1, which implies that stiffness motor does not have to overcome the elastic torque 𝑇𝑒𝑙𝑎 generated due
o the spring’s deflection [27]. However, generally some part of elastic torque is overcome by the position torque 𝑇𝑝 and the rest
hrough the stiffness torque 𝑇𝐾 .
All the inertia and damping components 𝐼𝑝, 𝑏𝑝, 𝐼𝐾 and 𝑏𝐾 as well as 𝛼 are functions of design parameters, which have to be

etermined by the designer prior to the optimization process.
Elastic torque is actually the output torque of the SAM that has to cancel the external torque 𝑇𝑒𝑥𝑡 (this includes the inertia and

amping torques associated with the output link itself) applied by the external environment, therefore, 𝑇𝑒𝑙𝑎 = 𝑇𝑒𝑥𝑡. Considering the
difference between the expected position of the output link, i.e. 𝑝𝐿 and its actual position, i.e. 𝑞𝐿 due to the external torque as 𝛿𝐿
(where 𝐾𝐿 = 𝑑𝑇𝑒𝑥𝑡/𝑑𝛿𝐿), one can express the output energy that SAM delivers to the external environment as:

𝐸𝑜𝑢𝑡 = ∫

𝑡𝑓

𝑡𝑜
𝑇𝑒𝑥𝑡.𝛿̇𝐿𝑑𝑡 (3)

where ̇𝛿𝐿 = ̇𝑞𝐿 − ̇𝑝𝐿. We define the objective function as: 𝑓 (𝑃𝑐 , 𝑃𝑟) = (𝐸𝑖𝑛∕𝐸𝑜𝑢𝑡) ≥ 1.

3.2. Time discretization

Since in general, the VSA’s performance in terms of output link’s trajectory, its stiffness and external torque are given as functions
of discrete time and not necessarily as analytical functions, Eqs. (1)–(3) have to be discretized with respect to the time. We discretize
time from 𝑡𝑜 to 𝑡𝑓 of the following functions into 𝑛 points: 𝑞𝐿, 𝑝𝐿, 𝐾𝐿, 𝑇𝑒𝑥𝑡(= 𝑇𝑒𝑙𝑎), 𝑇𝑝, 𝑇𝐾 , 𝜃𝑝 and 𝜃𝐾 . If 𝐗 represents each of these
function in discrete fashion, therefore, the time derivative of 𝑋, i.e. 𝐗̇ (where 𝐗 and 𝐗̇ ∈ R𝑛) can be approximated by 𝐷𝐗 ∈ R𝑛×𝑛

where:

𝐷 =

⎡

⎢

⎢

⎢

⎢

⎣

−1 1 0 0 … 0
0 −1 1 0 … 0
⋮ ⋮ ⋮ ⋮ … ⋮
0 … … … −1 1

⎤

⎥

⎥

⎥

⎥

⎦

[1∕2𝛥𝑇 ] (4)

and 𝛥𝑇 is the sampling rate, based on the central difference method [51]. With this discretization method, the dynamic equations
of a VSA (Eq. (2)) can be approximated as:

{

𝐓𝑝 = (𝐼𝑝𝐷2 + 𝑏𝑝𝐷)𝜽𝑝 + 𝛼𝐓𝐞𝐥𝐚
𝐓𝐾 = (𝐼𝐾𝐷2 + 𝑏𝐾 )𝜽𝐾 + (1 − 𝛼)𝐓𝐞𝐥𝐚

(5)

Furthermore, there are two more equations that show relationships between 𝐊𝐿, 𝜽𝑝, 𝜽𝐾 and 𝐓𝑒𝑙𝑎 as follow:
{

𝐊𝐿 = 𝐊,𝐊𝑖 = (𝐓𝑒𝑙𝑎𝑖+1 − 𝐓𝑒𝑙𝑎𝑖 )∕(𝜹𝐿𝑖+1
− 𝜹𝐿𝑖

),∀𝑖 ∈ 1, 2,… , 𝑛
𝐊𝐿 𝑚𝑜𝑑𝑒𝑙 = 𝑓𝐾 (𝜽𝑝)

(6)

here 𝐊𝐿 𝑚𝑜𝑑𝑒𝑙 is model-based stiffness of the output link as a function of 𝜽𝑝. Such function 𝑓𝐾 can be determined based on the
lass of SAM and its design parameters. Therefore, based on the chosen design parameters, Eqs. (5) and (6) can be used to solve for
four input variables: 𝐓𝑝, 𝐓𝐾 , 𝜽𝑝 and 𝜽𝐾 using given output variables: 𝐓𝑒𝑥𝑡, 𝜽𝐿 and 𝐊𝐿.

Once all variables are determined in their discrete fashions, it is possible to calculate both the input and the output energies as:

𝐸𝑖𝑛 =
𝑛
∑

𝑖=1
[(𝐓𝑝 𝑖)𝑇𝐷𝜽𝑝 𝑖 + (𝐓𝐾 𝑖)𝑇𝐷𝜽𝐾 𝑖]𝛥𝑇 (7)

𝐸𝑜𝑢𝑡 =
𝑛
∑

𝑖=1
[(𝐓𝑒𝑙𝑎 𝑖)𝑇𝐷𝜹𝐿 𝑖]𝛥𝑇 (8)

Similarly, all design’s and actuators’ constraints can be discretized with respect to the time.
As discussed before, to design a SAM, we are dealing with some continuous design variables such as dimensions of its principal

elements as well as some categorical variables such as stiffness, free length, diameter and maximum allowable deflection of the
springs. We present continuous variables as vector 𝑃𝑟 ∈: R𝑛 (where 𝑛 is the number of continuous variables) and categorical variables
as 𝑃𝑐 ∈

∏𝑐𝑛
𝑖=1 𝐾𝑖 (where 𝑐𝑛 is the number of categorical variables). Therefore, the optimization problem can be expressed as:

⎧

⎪

⎪

⎨

⎪

⎪

minimize
𝑃𝑐∈R𝑛 ,𝑃𝑐∈

∏𝑐𝑛
𝑖=1 𝐾𝑖

𝑓 (𝑃𝑐 , 𝑃𝑟) = 𝐸𝑖𝑛∕𝐸𝑜𝑢𝑡

subject to:
𝑔𝑖(𝑃𝑐 , 𝑃𝑟) ≤ 0,∀𝑖 ∈ 1,… , 𝑙

(9)
5

⎩
ℎ𝑗 (𝑃𝑐 , 𝑃𝑟) = 0,∀𝑗 ∈ 1,… , 𝑚
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This mixed-integer optimization problem is in fact an inverse design problem as oppose to a direct design problem. However,
roblems of this type are generally nonlinear, nonquadratic, and also nonconvex. Generally, for these problems, the knowledge of
ll the expressions of the functions of the considered problem can be found through the principal components and their interactions
ased on what class of VSAs designs the SAM belongs to. However, the solution could not be found by iterating some resolution of
he direct problem as there are large number of feasible solutions.

.3. Robustness formulation

In real world, we always have to deal with uncertainties. In the context of the design optimizations of VSAs, these uncertainties
ould be due to manufacturing of springs or motors, fabrication and machining of principal components such as pulley, lever, cam
rofiles, etc. These uncertainties will affect both the optimal solution found for both categorical and real continuous variables and
onsequently inertia, damping and even available motor torques and velocities. These effects change the coefficients in both the cost
unction as well the constraints in our formulated optimization problem, in other words, the optimization problem will be perturbed
s:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

minimize
𝑃𝑐∈R𝑛 ,𝑃𝑐∈

∏𝑐𝑛
𝑖=1 𝐾𝑖

𝑧 = 𝑓 (𝑃𝑐 , 𝑃𝑟) + 𝛥𝑓 (𝑃𝑐 , 𝑃𝑟)

subject to:
𝑔𝑖(𝑃𝑐 , 𝑃𝑟) + 𝛥𝑔𝑖(𝑃𝑐 , 𝑃𝑟) ≤ 0,∀𝑖 ∈ 1,… , 𝑙
ℎ𝑗 (𝑃𝑐 , 𝑃𝑟) + 𝛥ℎ𝑗 (𝑃𝑐 , 𝑃𝑟) = 0,∀𝑗 ∈ 1,… , 𝑚

(10)

It is important to understand the robustness of our optimized solutions to the uncertainties that is: how and to what extend these
erturbations may affect the optimal solutions of the aforementioned optimization problems. Generally, two scenarios are possible:
- the optimality of the current optimal solution, i.e. 𝑧∗, will be invalid and 2- the feasibility of the current optimal solution will
e violated. In the first scenario, we will have a new optimal solution due to the perturbations that reduces the objective function.
sually we consider a ‘‘user defined’’ threshold value on this reduction, i.e. 𝛥𝑧, that means that if the reduction in the objective
unction is less than this threshold value, we still consider the current solution 𝑧∗ as the optimal solution. In the second scenario, we
eed to calculate the maximum perturbations on each design and system parameters that do not make the current optimal solution
o violate any constraint.
In order to examine these effects, we will use sensitivity analysis technique. Sensitivity analysis discusses ‘‘how’’ and ‘‘how much’’

hanges in the parameters of an optimization problem modify the optimal objective function value and the point where the optimum
s attained [52].
Sensitivity analysis and duality are two connected concepts. In mathematical optimization theory, duality or the duality principle

s the principle that optimization problems may be viewed from either of two perspectives, the primal problem or the dual problem.
he solution to the dual problem provides a lower bound to the solution of the primal minimization problem [53].
Interestingly, it has been proven that regardless of how complex and nonlinear is the primal problem, the dual problem is always
convex problem, i.e. it is easy to find a lower bound for the optimal solution of the primal problem [54].
Considering the minimizing optimization problems in Eq. (9) as primal problems, we can define a dual problem for each one as:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

maximize
𝑧

subject to:

(𝑃𝑐 , 𝑃𝑟) ∈ R𝑛 ×
∏𝑐𝑛

𝑖=1 𝐾𝑖
𝑔𝑖(𝑃𝑐 ,𝑃𝑟)≤0,∀𝑖∈1,…,𝑙,ℎ𝑗 (𝑃𝑐 ,𝑃𝑟)=0,∀𝑗∈1,…,𝑚
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 𝑓 (𝑃𝑐 , 𝑃𝑟) ≥ 𝑧

(11)

where R𝑛 ×
∏𝑐𝑛

𝑖=1 𝐾𝑖 is the feasible set and 𝑔𝑖(𝑃𝑐 , 𝑃𝑟) ≤ 0,∀𝑖 ∈ 1,… , 𝑙, ℎ𝑗 (𝑃𝑐 , 𝑃𝑟) = 0,∀𝑗 ∈ 1,… , 𝑚 is called distinguished domain of the
feasible set. So the dual seeks the largest 𝑧 for which 𝑓 (𝑃𝑐 , 𝑃𝑟) ≥ 𝑧 can be inferred from the constraint set.1

Assume that the optimal solution of Eq. (9) be, ∞ or -∞ when the problem is infeasible or unbounded, respectively. Looking at
Eq. (11) it is obvious that the optimal value of the primal is equal to the optimal value of the dual.

If 𝑧∗ = 𝑓 (𝑃𝑐
∗
, 𝑃𝑟

∗
) is the optimal solution to the primal problem, then solving the dual is tantamount to constructing a proof

that 𝑓 (𝑃𝑐 , 𝑃𝑟) ≥ 𝑧∗ using the constraints as premises. It is important to highlight that if we can prove 𝑓 (𝑃𝑐 , 𝑃𝑟) ≥ 𝑧∗, then the same
proof shows that 𝑓 (𝑃𝑐 , 𝑃𝑟) − 𝛥𝑓 (𝑃𝑐 , 𝑃𝑟) ≥ 𝑧∗, for 𝛥𝑓 (𝑃𝑐 , 𝑃𝑟) ≥ 0. This is important as in sensitivity analysis, the question is that what
perturbations will or will not reduce the optimal solution below 𝑧∗ − 𝛥𝑓 (𝑃𝑐 , 𝑃𝑟) if the value of 𝛥𝑓 (𝑃𝑐 , 𝑃𝑟) is given.

A solution of the dual problem (11) can be recovered from a BB search tree in the following way. At each node of the tree,
a surrogate inequality is derived that is violated by the bounding criteria in effect of that particular node. The surrogate will be
a non-negative linear combination of some of the constraints and possibly the objective function. A falsified clause2 can then be
inferred from the surrogate, and this serves as the basis for sensitivity analysis. [57] presents a detailed explanation of this process.

1 Let 𝑃 and 𝑄 be two propositions about 𝑥; that is, their truth or falsehood is determined by the value of 𝑥. If 𝑄 is true for any 𝑥 ∈ 𝐷 for which 𝑃 is true,
then 𝑃 implies 𝑄 with respect to a domain 𝐷 (𝑃

𝐷
←←←←←←←→ 𝑄) [55].

2 In logic, a clause is an expression formed from a finite collection of literals (atoms or their negations). A clause is true either whenever at least one of the
literals that form it is true (a disjunctive clause, the most common use of the term), or when all of the literals that form it are true (a conjunctive clause, a less
6

common use of the term) [56].
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The idea is to determine under what conditions the bound 𝑓 (𝑃𝑐 , 𝑃𝑟)−𝛥𝑓 (𝑃𝑐 , 𝑃𝑟) ≥ 𝑧∗ remains valid for problem (10). A sufficient
condition for its validity is that the dual solution remains a valid proof schema for 𝑓 (𝑃𝑐 , 𝑃𝑟) − 𝛥𝑓 (𝑃𝑐 , 𝑃𝑟) ≥ 𝑧∗ as follow: For a given
𝛥𝑓 (𝑃𝑐 , 𝑃𝑟), let 𝜆 be the vector of multipliers in the dual problem that is used to obtain a surrogate at each node of the BB algorithm, and thus
𝜆𝑝𝑖 denotes the vector of multipliers at node 𝑝 on 𝑖th constraint, as defined by [58]. It has been proven by [59] that 𝑓 (𝑃𝑐 , 𝑃𝑟)−𝛥𝑓 (𝑃𝑐 , 𝑃𝑟) ≥ 𝑧∗

as long as 𝜆𝑝𝑖 ≥ 0. Similarly, if 𝜆𝑝0 denotes the vector of multipliers at node 𝑝 on the objective function, 𝑓 (𝑃𝑐 , 𝑃𝑟) − 𝛥𝑓 (𝑃𝑐 , 𝑃𝑟) ≥ 𝑧∗ as long
as 𝜆𝑝0 = 1.

Solution of the programming dual, for example, reveals the sensitivity of the optimal value to perturbations in the primal
constraints. Duality provides a general approach to sensitivity analysis. In particular, it provides a practical method of sensitivity
analysis for mixed integer problems.

Solving the dual problem in a sense explains why the optimal value is the best possible. Sensitivity analysis can be viewed as
part of this explanation: It examines the role of each parameter in the proof of optimality. It may reveal, for example, that certain
parameter play no role at all and can be dropped, or that other parameters can be altered in certain ways without affecting the
proof [58].

3.4. Constraints formulation

The constraints of this optimization problem are due to the limitations on real continuous design variables, torque and velocity
of the motors 𝑀1 and 𝑀2 as well as springs’ maximum allowable deflections 𝛿𝑠𝑚𝑎𝑥 . Here we just presents some examples for each
type of these constraints.

-Design constraints: In antagonistic designs, the principal components are basically the pulleys attached to each motor’s shaft
and the output link, as well as the connections between each pair of pulleys (that can always be modeled as series combinations
of rigid and extendable, i.e. springs, elements). The dimensions of interest therefore, are each pulley’s radius 𝑟𝑀1

, 𝑟𝑀2
, 𝑟𝑝 as well

as the distance between each pair of pulleys 𝑑1, 𝑑2, 𝑑3. The distance between each pair of pulleys can be determined by taking
into account the free length and maximum allowable deflection of the spring that should be placed between the two pulleys. For
instance, for simple antagonistic class as shown in Fig. 1-a, this means that: 𝑙01 + 𝛿𝑠𝑚𝑎𝑥1 ≤ 𝑑1.

In addition to that, there is another important design consideration for antagonistic VSAs: in order to achieve symmetrical
behavior as well as contribution of both motors in moving the output link, springs have to be placed with a pre-tension and that
pre-tension has to be half of their maximum allowable deflection, so when one spring becomes fully deflected, the other one will
reach its free length. This pre-tension will also affect the maximum output link’s deflection 𝛿𝐿𝑚𝑎𝑥

. For instance for the spring #1 in
the antagonistic class as shown Fig. 1-b, this means that : 𝑟𝑃 × 𝛿𝐿𝑚𝑎𝑥

≤ 0.5 𝛿𝑠𝑚𝑎𝑥1 .
In series, pre-tension based class, design variables that can define the profile of the cam are essential. It is important to mention

here that the cam is a representative component of this class and it does not mean that all the pre-tension based VSA use a cam
mechanism. However, SAM functionality of every pre-tension based VSA can be modeled using a cam profile. It is important to
define the cam profile as a function of output link’s deflection, i.e. 𝑟𝑐 = 𝑓 (𝛿𝐿). Another design variable in this class that can define
the range of stiffness adjustment is the distance between the output of the stiffness motor and the center of rotation of the output
link as shown in Fig. 1-d, 𝑑𝑐 . This distance should allow for full deflection of the spring at no-load condition: 𝑙𝑜+ 𝑟𝑐𝑎𝑡𝛿𝐿=0

+𝛿𝑠𝑚𝑎𝑥 ≤ 𝑑𝑐 .
In series class based on lever mechanism, length of the lever 𝑑𝑙 is an important variable to achieve a desired range for stiffness.

Also in both series classes, i.e. the pre-tension based and the lever based, a transmission system TS (e.g. a ball screw mechanism) is
required to convert rotary motion of the stiffness motor 𝑀2 into a linear motion. The conversion factor can be denoted by variable
set 𝑁𝑇𝑆 that includes all variables that are required to define the torque/force and rotary/linear motion relationships.

-Actuator constraints: In majority of the current VSAs, motors 𝑀1 and 𝑀2 are usually electric DC motors. In these motors, the
available torque is limited by the Stall torques 𝑇𝑠1 and 𝑇𝑠1 and the maximum velocity is 𝜔𝑚𝑎𝑥1 and 𝜔𝑚𝑎𝑥2 : 𝜃̇𝑀𝑖

≤ 𝜔𝑚𝑎𝑥𝑖 and 𝑇𝑀𝑖
≤

𝑇𝑠𝑖 ∀𝑖 ∈ 1, 2.
Furthermore, in these types of electric DC motors the available torque is a function of velocity: which is the faster the motor

runs the less torque it can apply: 𝑇𝑀𝑖
= 𝑇𝑠𝑖 × (1 + 𝜃̇𝑀𝑖

∕𝜔𝑚𝑎𝑥𝑖 ) ∀𝑖 ∈ 1, 2.
It is important to mention that motor 𝑀1 and 𝑀2 are commercially available products and thus 𝑇𝑀1

, 𝑇𝑀2
, 𝜔𝑚𝑎𝑥1 and 𝜔𝑚𝑎𝑥2 are

related to categorical variables as they come in different discrete values, depending on their types, sizes and manufacturers.
-Spring constraints: Springs are also commercially available products that come in different types and sizes and thus their stiffnesses

(spring’s constants) 𝑘𝑠, free lengths 𝑙𝑜, and maximum allowable deflections 𝛿𝑠𝑚𝑎𝑥 are categorical variables. Actual length of the
spring at any time cannot be less/more that its free length when the spring is extension/compression type and also their amount of
deflection at any time should be less than or equal to their maximum allowable deflection. In case of extension springs, for example:
𝑙𝑠 ≥ 𝑙𝑜 and 𝛿𝑠 ≤ 𝛿𝑠𝑚𝑎𝑥 .

It is also important to highlight here that commercially available springs are either extension or compression type, and therefore,
in our models we do not assume a spring that can be both extended or compressed.

Another important feature of the springs that can be considered here is related to their free length. Sometimes springs have some
level of pre-tension already built in their structure. This means that there is a threshold force level that needs to be overcome in
order for the spring to start deflecting. This amount of force threshold affect the effective free length of the spring that is different
that its actual free length. The actual free length is the length of the spring when there is no force acting on it, while the effective
free length is by taking into account how much the force threshold could deflect the spring in the opposite direction and then
7

subtract that amount from the actual free length of the spring.
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4. Optimization algorithm

In order to find the global optimal solution to the problems (9), and (10), we propose to use interval based BB algorithm, as it
is guaranteed that the global solution will be precisely enclosed at the end of the algorithm.

Interval-based methods have gained considerable interest over the last decade. Two main features distinguish interval-based
methods from other methods: they account for uncertainties in the parameter values and computation errors over the floating-
point numbers, and they are able to treat the complete search space, thus offering proofs of infeasibility and/or certification of
solutions. Because of these features, these methods are being used in several research areas, including robotics, localization, model
qualification, and the design of control systems. For example, robots and vehicles can obtain useful information from a set of
sensors (e.g., odometers, GPS or gyrocompass). Then, this information is transformed into a set of non-linear systems of constraints.
Solving these systems means finding the position, displacement, or required movement for the vehicle/robot. Uncertainties of
sensor measurement errors, mechanical parts or floating-point number computation errors are considered by interval-based methods.
Interval-based techniques have also been used successfully for localizing nodes in mobile networks and tracking acoustical sources.
In designing robust control systems, the quantitative feedback theory method has been studied by interval-based techniques where
the feedback of measurable plant/machinery outputs to generate an acceptable response. Usually, the general problem is related to
how to design the feedback controller and prefilter such that the desired specifications are satisfied in the region of uncertainty.
Interval Branch and Bound strategies are primarily used to solve continuous constraint systems and to handle constrained global
optimization problems. These strategies are mathematically rigorous, i.e., they account for the rounding errors that are implied by
floating point operations in their implementations.

The principle of this algorithms is based on subdivisions of the considered initial domain into smaller and smaller parts such that
one can determine, using interval analysis [60], which box can be discarded. This is because interval computations will produce
the proof that a box cannot contain the global solution or prove the fact that at least one constraint could not be satisfied in a box.
Therefore, at the end of the algorithm, the global optimum will be enclosed with a given accuracy, however the algorithms must
be capable to deal with both real continuous and categorical variables.

The initial pre-step of the proposed optimization process is normalizing the principal components’ values. By dividing the actual
values of each component to its original value (i.e. the original non-optimal design), a dimensionless value will be obtained (similar
process has been adopted in [61]). This has an effect on simplification of the computations and minimizing the effect of rounding
errors as mentioned above. At the end of the optimization process, each dimensionless parameter is then converted to its final
optimal value by multiplying the dimensionless and the original non-optimal. The final result will be a dimension-ed value.

The main idea is to subdivide the initial domain space 𝑋 ⊆ R𝑛 ×
∏𝑐𝑛

𝑖=1 𝐾𝑖 into smaller sub-boxes 𝑍 ⊆ 𝑋 and to delete the
considered box 𝑍, if and only if it can be proven that 𝑍 cannot contain the global optimum.

In order to subdivide the domain into smaller boxes, we need to consider the space in which the boxes are located in. In this
roblem, this space is a combination of continuous as well as categorical variables.
BB algorithms have been modified to deal with integer variables, such as in the author’s previous work in finding an optimal

olution to the facility layout problem [62]. The categorical variables cannot be directly considered in subdivision of a box and an
xpression of a function. In this project, we propose a method to change categorical variables into integer ones. This is done through
n univariate function 𝑎 that assigns an integer to a categorical value. For example, if one spring has stiffness of 315 N/mm and
tiffness of another spring is 450.5 N/mm, this univariate function assigns integer value = 1 to the first stiffness value and integer
alue = 2 to the second one: 𝑎(1) = 315 N/mm and 𝑎(2) = 450.5 N/mm. Therefore, while integer values 1 and 2 can be used for the
urpose of subdividing the boxes, the values 𝑎(1) and 𝑎(2) will be used in calculating the objective function and constraints.
The classical principle of subdividing is to choose a coordinate direction parallel to which 𝑍 has an edge of maximum length.

hen, 𝑍 is subdivided normal to this direction [60]. For continuous variables the subdivision of a box 𝑍 on its 𝑘th component into
o boxes 𝑍1 𝑘 and 𝑍2 𝑘 will be applied at the midpoint (as defined in [60]) of the original box 𝑍 as follow: 𝑍1 𝑘 = [𝑍𝐿

𝑘 , (𝑍
𝑈
𝑘 +𝑍𝐿

𝑘 )∕2]
nd 𝑍2 𝑘 = [(𝑍𝑈

𝑘 + 𝑍𝐿
𝑘 )∕2, 𝑍

𝑈
𝑘 ], where 𝑍𝐿

𝑘 and 𝑍𝑈
𝑘 denote the lower and upper bounds of 𝑘th component of box 𝑍, respectively.

or categorical variables, however, this subdivision rule has to be slightly modified as follow: 𝑍1 𝑘 = [𝑍𝐿
𝑘 , [(𝑍

𝑈
𝑘 + 𝑍𝐿

𝑘 )∕2]𝐼 ] and
2 𝑘 = [[(𝑍𝑈

𝑘 +𝑍𝐿
𝑘 )∕2]𝐼 + 1, 𝑍𝑈

𝑘 ], where [𝑥]𝐼 is the integer part of 𝑥.
At each step of the BB algorithm, and as the branches are generated through subdividing the boxes, we will have an interval for

ach variable. The interval analysis proposed by [60] is a powerful tool to calculate upper and lower bounds of a function over a
ox. This is simply done by the concept of natural extension of a function.
The natural extension of an expression of 𝑓 into interval consists by replacing each occurrence of a variable by its corresponding

nterval (which encloses it), and then by applying the rules of interval arithmetic as explained in [60]. For example, if 𝑓 (𝑥) =
2 + 𝑥 + 1 and 𝑥 ∈ 𝑋 = [1, 2], then 𝐹 (𝑋) = ([1, 2])2 + [1, 2] + 1 (𝑋 and 𝐹 (𝑋) are both intervals) is the natural extension of
(𝑥) over box 𝑋. It has been proven by [63] that the natural extension is always an inclusion function, which means that it
ncloses the upper and lower bounds of 𝑓 over the box (or even all boxes when dealing with multiple variables) 𝑋. Therefore,
(𝑋) = [min𝑥∈𝑋 𝑓 (𝑥),max𝑥∈𝑋 𝑓 (𝑥)] ⊆ 𝐹 (𝑋)∀𝑋.
Interval arithmetic is only defined for continuous functions, and thus in our method, the inclusion functions must be extended

o deal with discrete variables as well. As mentioned before, we will convert categorical variables into integer variables through
nivariate functions. These integer variables will then be further relaxed into continuous variables. For example, if an integer variable
elongs to set 𝑍𝐿, 𝑍𝐿 + 1, 𝑍𝐿 + 2,… , 𝑍𝑈 , a continuous interval [𝑍𝐿, 𝑍𝑈 ] will be considered for this variable. Replacing an integer
et by its corresponding relaxed continuous interval, an inclusion function can then be constructed. The proof is obvious because it
8

omes from the fact that the relaxed compact interval sets enclose by definition the initial discrete sets.
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Fig. 3. Plotting actuator constraints for each classes of SAMs: Antagonistic Class: VSA-HD [64] simple antagonistic, VSA-C [65] cross-coupling, and BVAS [47]
i-directional. Series Class: FAS [66] pre-tension based, and AwAS-II [25] lever-based. Constraints include (a) continuous output power, (b) nominal torque, (c)
ominal speed, (d) nominal stiffness variation time, (e) peak torque, (f) maximum elastic energy, (g) maximum deflection, and (h) active rotation angle. All
ata extracted from VIACTORS project’s website.

In order to proceed with the elimination of the boxes that cannot contain the global optimum solution, just the computation of
9

ower bound of a given function 𝑓 over a box 𝑍, i.e. 𝑙𝑏(𝑓,𝑍), is needed. We will compute these bounds by using interval analysis
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Fig. 4. Plotting static stiffness by applying a known torque and measuring the link deflection for: (a) FSA [66], (b)VSA-C [65], (c) AwAS-II [25], (d) VSA-HD [64]
and (e) BVAS [47]. Stiffness is the slop of each curve.

s follow: Considering that 𝑓 denotes the current solution (in fact, it is just the best evaluation of 𝑓 at this stage of the algorithm
uch that all the constraints are satisfied), one obtains the following:
(1) No global solution is in 𝑍, if 𝑖𝑏(𝑓,𝑍) > 𝑓 , a lower bound of 𝑓 over 𝑍 is greater than a solution already found, then no point

n 𝑍 can be a global minimum.
(2) No feasible solution is in 𝑍, if it exists 𝑘 such that 𝑖𝑏(𝑔𝑘, 𝑍) > 0, or it exists 𝑘 such that 𝑖𝑏(ℎ𝑘, 𝑍) > 0 or 𝑢𝑏(ℎ𝑘, 𝑍) > 0

𝑢𝑏 = upper bound). In this case, a very small positive real value can be considered instead of 0, in order to address numerical
pproximation difficulties due to the floating point operations [60].
This implies that at the end of the algorithm, accurate enclosures of the global minimum value and of all their corresponding

olutions can be expected. Indeed, at each step of the algorithm, one has the following properties for all the remaining sub-boxes
⊆ 𝑋: (1) 𝑙𝑏(𝑓,𝑍) ≤ 𝑓 and (2) all constraints are always satisfied.

Algorithm 1 Branch and Bound Algorithm

1: set initial box X := R𝑛 ×
∏𝑐𝑛

𝑖=1 𝐾𝑖
2: set current solution 𝑓 := + ∞
3: set initial lower bound 𝓁 := (+∞, X)
4: extract from 𝓁 the lowest lower bound 𝑙𝑏
5: divide the chosen box 𝑉 by its midpoint 𝑚 to get sub-boxes 𝑉1 and 𝑉2
6: for j=1,2 do

calculate 𝑣𝑗 = 𝑙𝑏(𝑓, 𝑉𝑗 )
calculate lower bounds of all constraints over 𝑉𝑗 using interval analysis
if 𝑓 ≥ 𝑣𝑗 and all constraints are satisfied then:
a: 𝓁 ← (𝑣𝑗 , 𝑉𝑗 )
b: set 𝑓 ∶= 𝑚𝑖𝑛[𝑓, 𝑓 (𝑚𝑗 )] if and only if all constraints are satisfied at 𝑚𝑗
c: if 𝑓 has been changed from its previous value, then remove all (z,Z) from 𝓁 where 𝑧 > 𝑓

7: if 𝑚𝑖𝑛(𝑧,𝑍)∈𝓁𝑧=𝑓 STOP, then
else GoTo step 4

8: end if
9: end for
10
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Fig. 5. Schematics of working principles and SAM’s principal components of: (a) BVAS [47], (b) VSA-HD [64], (c) VSA-C [65], (d) FAS [66] and (e) AwAS-II
AwAS-II [25].

5. Results and discussion

In this section, we provide a comparison analysis on the energy required to perform a specific task done by different VSAs. These
intake energy amounts are being calculated theoretically, based on the equations given in Section 3. It is important to mention here
that these energy amounts, are in fact, the minimum input energy required to perform the task for each VSA. This is because friction
and other fabrication-dependent parameters, such as smoothness of the sliding surfaces, inherent damping of actual springs, etc have
not been taken into accounts. These parameters would add to the minimum required energy and thus the actual energy required to
perform the task will increase for each VSA. Five Representative examples of SAMs classes, Fig. 1, with their actuators’ constraints
are being considered as following: Antagonistic Class: VSA-HD [64] simple antagonistic; VSA-C [65] cross-coupling; BVAS [47]
bi-directional- Series Class: FSA [66] pre-tension based, and AwAS-II [25] lever-based. Data regarding both actuators and designs
constraints for each actuator is extracted from Variable Impedance ACTuation systems embodying advanced interaction behaviORS
(VIACTORS) project’s website. There are two missing values, first one is regarding the maximum torque hysteresis of AwAS-II,
which is being adopted from its previous version AwAS [27] as 21%, and the second one is the nominal stiffness variation in time
for VSA-HD with nominal torque, which is being considered to be 0.4 ms as the nominal stiffness variation in time with no load.

The energy equation for each of these five representative actuator example has been provided in VIACTORS’s data sheets. These
energy equation are functions of joint stiffness, link deflection and other principal dimensions for each actuator. Plugging the
provided energy functions into Eqs. (1), (2) and performing the proposed optimization procedure on each actuator, the optimal
design parameters for each actuator can be achieved while the design’s and actuator’s constraints presented in Fig. 3 are all being
satisfied.

For each actuator, the torque versus link deflection, Fig. 4 has been obtained experimentally by applying a known weight to the
tip of the link at a known distance (hence a known torque) and measuring the resultant angular deflection through a link encoder,
while stiffness has been set to different levels in an off-line fashion. The static stiffness can then be calculated by taking derivative of
11

each resultant torque versus deflection curve, to validate the stiffness regulation formulas that have been provided in the actuator’s
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Fig. 6. Desired performance in terms of a periodic motion: (a) desired external load, (b) desired link’s trajectory, and (c) desired external link’s stiffness.

ata sheet in VIACTORS website. The calculated stiffness values are actuators’ constraints that have to be satisfied while searching
or optimal design parameters using the proposed algorithm.
The principal components of each representative VSA can be extracted from the schematic of their working principles depicted in

ig. 5. In BVAS system, a spring in connected to two cam roller at its ends and is placed between two disks with inner cam profiles
s depicted in Fig. 5-a. The distance between the central axis on the two cam profiles and longitudinal axis of the spring, i.e. 𝜙,
efines the stiffness profile. Deflection of the output link results in deviation of central axis of the upper disk from the fixed lower
ne by 2𝛿. In VSA-HD system, a four-bar linkage is connected between motor output, i.e. 𝑂′ and output link, i.e. 𝑂. By applying
xternal torque, the link 𝑅2 will rotate by 𝑞, which results in spring’s deflection. On the other side, rotating the link 𝐿1 by the
o-contraction of the motors, also results in spring’s deflection. The stiffness adjustment in CSA-C is done through the mechanism
hown in Fig. 5-c: 𝑖, the distance between centers of the pulleys; 𝑙, distance between free end of the spring and point in which the
endon is tangent to the pulley; 𝑟 radius of the pulley; 𝛽, the angle between 𝑖 and 𝑙; ℎ the distance between fixed end of the spring
nd 𝑖; 𝑥 the length of the spring and 𝑘, the spring elastic constant. FAS is an VSA, where the force 𝐹 applied through the cable to
he output link, indirectly applies a spring force of 𝐹𝑠, at the angle 𝛼, through a pulley mechanism with two segmented distances
f 0.5𝑆 each. In AwAS-II actuator, the pivot is at the distance of 𝑞1 from the center of rotation of a lever with the length of 𝐿. By
pplying an output torque, a force of 𝐹𝑡 will be applied to the spring’s leg at the distance of 𝑟𝑡.
We considered a particular periodic motion as depicted in Fig. 6 in terms of 𝑇𝐿; the link’s external load, 𝐾𝐿; the link’s stiffness

nd 𝑞𝐿; the link’s trajectory, within a period of 5 s, starting from an arbitrary initial time 𝑇0. All these conditions are considered so
hat each five representative actuators are able to perform the desired task. The energy required to perform this task was numerically
alculated as: 0.23 [J].
12
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Fig. 7. Input energy required by: FAS [66], AwAS-II [25], BVAS [47], VSA-C [65], VSA-HD [64], to perform the desired task.

Table 1
Examples of principal components with real continuous and/or integer parameters, both original and optimal values as well as
maximum allowable perturbation in % by which the resultant values are still optimal.
Actuator Principal component Original value Optimal value Maximum allowable

perturbation %

BVAS x [m] 0.05 0.005 5.3
BVAS 𝜎 [m] 0.01 0.01028 3.7
BVAS 𝜙 [m] 0.015 0.01444 3.5
BVAS K𝑠 [N/m] 240 320 NA
VSA-HD R1 [m] 0.02 0.03247 7.2
VSA-HD R2 [m] 0.015 0.012223 2.4
VSA-HD L1 [m] 0.01 0.0054 2.1
VSA-HD L2 [m] 0.017 0.02545 3.0
VSA-HD K𝑠 [N/m] 27 27 NA
VSA-cube h [m] 0.008 0.012404 3.7
VSA-cube i [m] 0.012 0.012538 5.5
VSA-cube r [m] 0.004 0.0033 3.6
VSA-cube K𝑠 [N/m] 2 4 NA
FSA s [m] 0.014 0.06723 11.3
FSA L [m] 5 5.329 5.8
FSA 𝛼 [◦] 25 31.685 4.3
FSA K𝑠 [N/m] 12 18 NA
AwAS-II L [m] 0.23 0.12 12
AwAS-II r𝑡 [m] 0.08 0.02 5.9
AwAS-II K𝑠 [N/m] 147 220 5.0

The result of the interval-based optimization framework is presented in Fig. 7 and Table 1 for all five representative actuators.
In Fig. 7, the energy required by each VSA to perform the desired task, i.e. the input energy, has been shown for both original and

optimal designs. As it is clear, in original FAS the required energy is 0.54 J, while its optimal design requires only 0.29 J, i.e. almost
50% reduction. The same level of energy reduction is being achieved with optimal design of AwAS-II, compared to its original design.
Antagonistic designs, generally require lot more energy than series classes. The reason is due to the antagonistic arrangements of
motors and springs. In order to regulate the stiffness, motors have to co-contract. Co-contraction is, in fact, two motors ‘‘fighting’’
against each other and ‘‘waste’’ energy. In antagonistic designs, BVAS shows almost 64% energy reduction through optimization
process. VSA-C and VSA-HD shows highest required energy to perform the task with their original designs. However, through
optimization, the required energy reduce to a great extent, i.e. 7.8 J for VSA-C and 11.5J for VSA-HD. It should be highlighted here,
that even with our proposed optimization procedure, the reduction in the required energy in antagonist designs cannot still lead to
winning the race against series designs, even if they are not optimally designed. However, this would not weaken the applicability
of our proposed optimization process, as the compression should be done between original and optimal designs of each actuator,
rather than between each actuators.

In overall, the required input energy for all five VSAs has been dramatically lowered through the proposed optimization process,
especially the antagonistic setups, i.e. BVAS, VSA-C and VSA-HD showed more energy reduction where VSA-HD benefited the most
by its optimal designs, as much as 546%.

With regards to robustness of the optimal values of the principal components, and as shown in Table 1, the maximum allowable
13

perturbation for each parameter, found to be in the range of 2.1% to 12% of their optimal values obtained as the result of the
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proposed optimization algorithm. Sensitivity cannot be defined for discrete parameters such as stiffness values of the springs. It
should be mentioned here that the ‘‘non-applicability’’ of the stiffness values should not be generalized to all discrete parameters.
For example, if we had the possibility of changing stiffness constants of springs in much smaller intervals that what is available
in the market, then springs with different but close stiffness values could all fit within an acceptable range. The most sensitive
component found to be 𝐿1 in VSA-HD’s four-bar linkage as it is shown in Fig. 5-b (2.1%), while the least sensitive parameter was
the length of the lever 𝐿 in AwAS-II, as shown in Fig. 5-e.

6. Conclusion

This paper presents an interval-based optimization framework to maximize the output performance of variable stiffness actuators,
which is defined as the energy required to perform a desired task versus the energy that the VSA actually spend. The desired task
is defined as the output link’s stiffness, load and trajectory. Even though the proposed approach is applicable to any arbitrary task,
here we focus on periodic motions, as in these type of tasks, performing an optimization process is only required for one full period.
In addition to that, we also analyzed robustness on the obtained optimal values, in such a way that even with some degree of
perturbation, the obtained result still remained optimal. The result showed huge improvements in term of output performance for
all classes on stiffness adjustment mechanisms, especially for antagonistic ones up to 546%, while the obtained values were robust
to perturbations more than 2.1% of their optimal values. In conclusion, our proposed optimization approach was proved to be
very beneficial when designing a VSA to perform a particular desired task which in return can dramatically reduces the energy
consumption, size, weight and safety of these VSAs to be used in pHRI applications.
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