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Abstract

In an important class of econometric problems, researchers select a target pa-
rameter by maximizing the Euclidean norm of a data-dependent vector. Examples
that can be cast into this frame include threshold regression models with estimated
thresholds and structural break models with estimated breakdates. Estimation
and inference procedures that ignore the randomness of the target parameter can
be severely biased and misleading when this randomness is non-negligible. This
paper studies conditional and unconditional inference in such settings, accounting
for the data-dependent choice of target parameters. We detail the construction of
quantile-unbiased estimators and confidence sets with correct coverage, and prove
their asymptotic validity under data generating process such that the target param-
eter remains random in the limit. We also provide a novel sample splitting approach

that improves on conventional split-sample inference.
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1 Introduction

In a variety of economic settings, researchers select a target parameter by maximizing the
Euclidean norm of a data-dependent vector. For example, in threshold regressions and
structural break models researchers commonly estimate the location of a break or threshold
by minimizing a residual sum of squares or, equivalently, maximizing an explained sum
of squares. Researchers then estimate and form confidence sets for the magnitude of the
discontinuity, taking the estimated threshold or break as given (see e.g. Hansen (2000)
and Perron (2006)). Estimation and inference procedures that do not account for the
data-driven selection of the target parameter in such settings can perform very poorly
when the maximizer is variable. In the structural break and threshold regression settings,
this corresponds to the empirically-relevant case where the location of the threshold/break
is unknown, and is not obvious from the data. In such cases conventional estimators may
be badly biased, and conventional confidence intervals may under-cover.

This paper builds on the results of our companion paper, I. Andrews et al. (2019) (hence-
forth abbreviated AKM), to derive quantile-unbiased estimators and valid confidence sets.
In AKM we develop results on estimation and inference following abstract data-dependent
selection of a target parameter in a normal model, proving a variety of validity and optimal-
ity results. The form of the resulting procedures depends on the nature of selection, and
AKM works out details for the case where the target parameter is chosen by maximizing the
level of an asymptotically normal random variable. The translation of results from the nor-
mal model to results on asymptotic validity also depends on the form of selection considered,
and AKM further shows uniform asymptotic validity for the level-maximization case. In the
present paper, we derive the form of the AKM estimators and confidence sets in the settings
where the target parameter is chosen by maximizing the norm, rather than the level, of
asymptotically normal random variables and prove asymptotic validity of these procedures
for the first time in this class of problems. For asymptotic validity, we focus on sequences
of parameter spaces such that the norm-maximizing value is random, even asymptotically.

Our results also build on the rapidly expanding statistics literature on selective inference,
which has primarily considered inference on regression parameters after using popular
model-selection tools. See e.g. Harris et al. (2016), Lee et al. (2016), Tian and Taylor
(2018), Fithian et al. (2017), Tibshirani et al. (2018), and references therein. To implement
selective inference procedures one needs a tractable representation of the selection event

of interest as a function of sufficient statistics for nuisance parameters. We derive such



a representation for norm-maximization problems, while existing papers in the literature
have developed analogous representations for other questions, for example inference after
LASSO model selection in Lee et al. (2016). Tibshirani et al. (2018) also develop results
on asymptotic validity for parameter spaces similar to those we consider, but their results
cover neither the norm-maximization setting we study nor some of the estimators and
confidence intervals we discuss.! In contrast to the level-maximization setting studied by
AKM, we show that norm-maximization induces a non-convex conditioning event. De-
riving a tractable form for this conditioning event and establishing validity of the resulting
procedures constitute the main theoretical contributions of this paper.

Split-sample inference provides an alternative solution to the failures of conventional
estimators and confidence sets in this setting. In a split-sample approach, one selects the
target parameter based on one part of the data (or, alternatively, a noised-up version of
the full data), and then conducts inference using the remainder of the data. In AKM we
derive an improved split-sample approach for abstract selection events, which dominates
conventional split-sample inference. In the present paper, we work out the details of
improved split-sample inference in norm-maximization settings.

We illustrate how our estimation and inference procedures can be applied to structural
break and threshold regression settings. Building upon Elliott and Miiller (2007, 2014)
and Lee and Wang (2020), we show how to cast estimation and inference in these models
as norm-maximization problems. In a notable departure from these papers, our estimators
and confidence intervals do not require the threshold or structural break model to be
correctly specified. This added generality is important, since researchers sometimes fit
a threshold model as a parsimonious approximation in settings where the parameters
may in fact change in a more continuous manner. Hence, if we perform inference after
estimating the breaks, the pseudo-true parameter defined based on an estimated change
point becomes a natural object of interest.

Finally, we examine the performance of our proposed methods in threshold regression
simulations calibrated to data from Card et al. (2008). These authors studied the dynamics
of neighborhood segregation by comparing the change in white share between 1980 and 1990
to the minority share in 1980. They fit a model which allows for “tipping point” dynamics,

where an increase in the minority share beyond some threshold leads to a discontinuous

n particular, the inference procedures studied in Tibshirani et al. (2018) are all what we term
conditional below, in that they condition on a selection event, while we consider both conditional and
unconditional inference procedures.



decrease in the white share (“white flight”). Their theoretical model, by contrast, predicts
large but potentially continuous changes as a function of the minority share, and so suggests
the discontinuous tipping point model may be misspecified. Our simulations calibrated
to this application highlight that conventional estimation and inference procedures can
perform very poorly in terms of bias and coverage when the target parameter is selected
through norm-maximization. By contrast, our new procedures perform well in terms
of both bias and coverage, and outperform existing alternatives. In particular, Card
et al. (2008) originally conducted inference based on a split-sample approach, and we find
substantial performance gains from our improved split-sample methods

The next section illustrates the pitfalls of conventional inference, and outlines the goals
of our corrections, in a stylized norm-maximization problem. Section 3 discusses the norm-
maximization problem in the context of a normal model, and shows that both the structural
break and threshold regression examples are asymptotically normal under a small-break
asymptotic approximation. We then derive the expressions needed to implement the AKM
inference procedures in a norm-maximization setting. Section 4 establishes the asymptotic
validity of our estimators and confidence intervals in norm-maximization settings. Finally,
Section 5 discusses implementation of our improved split-sample procedures, while Section
6 wraps up with our simulation study based on Card et al. (2008). Proofs of the theoretical
results in Section 3 can be found in the Appendix. Proofs of some of the theoretical results
in Section 4, results on alternative confidence interval constructions and further simulation

results can be found in the Supplemental Appendix.

2 Norm Maximization in a Stylized Example

We begin by considering a stylized example inspired by Romano and Wolf (2005). In par-
ticular, suppose we compare two investment strategies in a backtest, and seek to estimate
and form a confidence interval for the expected return of the strategy with the largest
absolute historical average return.? To further simplify the analysis for this section, let us
suppose the returns of the two strategies are statistically independent. Such independence
is neither required nor imposed in the rest of the paper.

Let R;; and ;2 denote the observed returns of the two investment strategies in period
i for a sample of observations i = 1,...,n and R = (Ry,Ry) =n~'> "  R;. We assume

returns are stationary, and when |R;|>|Ry| we are interested in inference on E[R; ], while

2Treating negative and positive historical returns symmetrically can be justified by the ability to take
short positions.



when |Ry|>|R;| we are interested in inference on E[R; ). Standard weak dependence and

moment conditions imply a central limit theorem:
Vi(R—E[R]) == N (0.5),

where Y is a diagonal, consistently estimable variance matrix.
To capture the feature that average returns are small relative to sampling uncertainty;,
let us further model E[R;|=pu/+\/n for a fixed vector pu, so

X,=vnR-5 X ~N(uY). (1)

This “small return” approximation ensures that both investment strategies are chosen with
positive probability even in large samples, and hence that our asymptotic analysis captures
the finite-sample uncertainty about which strategy has the highest absolute return.® If
we were to instead fix E[R;], then so long as the elements of |E[R;]| are not equal, the
strategy with the largest absolute expected return would be chosen with probability one
asymptotically.

For j = argmax; | X;|, our inference problem thus asymptotically resembles that of
estimation and inference on p; based on observing X ~N(11,%) for known . We thus
study this asymptotic problem, in the hope (borne out by the results of Section 4) that
finite-sample results for procedures based on (X,%) will translate to asymptotic results
for procedures based on X,, and a variance estimator in

Since Xj; is an unbiased estimator for y;, one may be tempted to use X; to estimate

p; and to form a level-(1—«) confidence interval in the standard way as

[X3—1 /ijzl—a/Qan—'— Ejjzl—a/Z]a (2)

for z1_o/2 the 1—a/2 quantile of a standard normal distribution. Recall, however, that
7 is random, so in general X is biased and (2) does not have correct coverage for fu;.
To understand why, suppose that j=1, or equivalently that | X;|>|X5|. Conditional on
j': 1, X p is distributed as a normal variable with mean p; and variance X1, truncated
to lie outside the random interval (—|X|,[Xa[). We thus see that the distribution of X;

conditional on the realized value of j =1 is neither normal nor symmetric about y; for 1 #0.

3These drifting sequence asymptotics can be considered a form of weak-identification asymptotics,
where the best performing investment strategy is weakly identified.



To better understand the behavior of X in this setting, let us further condition on

the realized value of X,. The conditional mean of X p given 5: 1 and Xo=umx5 is
lzal—p1 \ _ o f =lz2|—m
o) o () .
|2]— i1 —lzal—p )
~o(l) ve (=)

The conditional bias thus has the same sign as qb('mlﬁ) —qb(_'”T\/l—;’“), which for z5£0

has the same sign as p1. Since the sign of the bias is the same for almost every x5, the bias

E[X;]j=1.Xs =a5] = B[Xy|| X1 | > |a2]] = 1 +0

of X5 conditional on 7=1 likewise has the same sign as ;. Since the analogous argument
holds for j=2, we thus see that X is biased away from zero conditional on j=j, in the
sense that |E[X;|j = j]| > |u;| whenever 1;7#0. As this bias suggests, the conventional
confidence set (2) will undercover.

In this paper we build on the results of AKM to overcome the problem of biased
estimation and undercoverage for norm maximization settings. In particular, we develop

a conditionally a-quantile-unbiased estimator ji,, which has the property that

PM{[LQZ/@’;:]}:@ for je{1,2} and all p.

These estimators can be used to form equal-tailed 1—« level confidence intervals [/l% , /11_%],

which have correct conditional coverage given 7,
PM{,u; € C’S|§':j} =1—a for j€{1,2} and all p.

If the level-maximization criterion considered in AKM were used instead, ie., j =
argmax; X, the conditioning event in (3) would be given by a half-open interval {X; >z-}
rather than the union of the disconnected intervals {X; > |zo|}U{X; < —|z3|}. Below we
show that in general, norm-maximization problems lead to conditioning events that can be
represented as finite unions of disconnected intervals, unlike level-maximization problems
for which the conditioning events are intervals.

Conditional quantile unbiasedness and conditional coverage are demanding require-
ments, and simulations in AKM suggest that they can come at the cost of unconditional

performance.* Hence, for cases where we are satisfied with controlled unconditional bias,

4“Whether a conditional or unconditional coverage constraint is more appropriate is context-specific.
We refer the interested reader to AKM for further discussion of this point.



following AKM we also introduce estimators 12 such that
IR Zﬂj} —a|<f-max{a,1—a} for all 4,
where [ is a user-selected constant, and confidence sets with correct unconditonal coverage,

Pm{,ujeCS}Zl—a for all .

3 Norm Maximization in the Normal Model

This section introduces a finite-dimensional normal model with norm maximization which
generalizes the stylized example in the last section, and shows that this model arises as
an asymptotic approximation to threshold regression and structural break models. We
then briefly introduce the inference procedures of AKM and derive the expressions needed
to use these procedures in the norm-maximization setting.

!/

As in the general setting of AKM, assume we observe normal random vectors (X (6)',Y (9))
for € © where O is a finite set, X (/) € R, and Y (§) € R. In particular, for

O=1{01,..00 )}, let X= (X(Hl)’,...,X((ﬂ@‘)’), and Y = (Y(6)),...Y (fe/))"- Then

for

(2 2 ()2
Syx(0.0) Tv(0.0) Y (0) Y (0)

We assume that 3 is known, while g is unknown and unrestricted unless noted otherwise.
We abbreviate 3(6,0) by (). We assume throughout that ¥y (0) >0 for all § €O, since
the inference problem is trivial when 3y-(#) =0. We distinguish between the blocks of
3(6,0), ie., Xx(0.0), Sxy(0,0), Byx(6,0) and Xy (6,0), since two of these blocks are used
explicitly in the formulation of our estimation and inference approaches later in the paper
(see Section 3.2). Here, and throughout the text 6 and 6 denote fixed elements of ©.



We are interested in inference on py () where 6 is chosen by norm maximization

6= argmax|| X ()] (5)
0cO
for ||-|| the Euclidean norm. The stylized example of the previous section corresponds to

the special case for which Y=X, dx=1 and |0|=2.
3.1 Threshold Regression and Structural Break Estimation

Suppose we observe data on an outcome Y;, a scalar threshold regressor (); and a k-
dimensional vector of regressors C; for i € {1,....n}. We assume there is a linear but

potentially regressor-dependent relationship between Y; and C;:

Yi=Ci(B+pn(Q:))+ Ui, (6)

where ); €R and the residuals U; are orthogonal to (); and C;. Similarly to Elliott and
Miiller (2014), the function ¢, :R—R* determines the value of the regressor-dependent
coefficient 5+, (Q;). This model nests the traditional threshold regression model (see
e.g. Hansen (2000) and references therein) by taking

on(Qi) =H{Qi>0}9, (7)

where 6 € R is the “true” threshold. This model also nests a time-varying parameters
regression model where the observations i=1,...,n are ordered and ();=1i/n denotes the
position of observation ¢z in the sample. The traditional structural change model is a special
case of this time-varying parameters model (see Bai (1997) and Perron (2006)) for which
(7) holds and 6 € (0,1) is the “true” break fraction. For the remainder of this paper we
focus terminology on the threshold regression, with the understanding that the analysis
also applies to the special case of a regression model with a structural break.

The threshold model (7) is often used as a parsimonious approximation to the more
general linear regression model (6) with regressor-dependent coefficents. For instance, as
noted above Card et al. (2008) use the threshold model to approximate a theoretical model
where the regressor-dependent coefficients may change smoothly. Hansen (1997, 2000) also
notes that the threshold regression model is often used as a misspecified but parsimonious
approximation to a more general class of nonlinear regression models. Since the threshold

regression model is widely used in practice as an approximating model, we consider a



researcher who fits the model (7), but to allow for the possibility of misspecification we
assume only that the data are generated by (6). Note that this modeling framework also
covers the case of a standard linear regression model with no change in its coefficients, for
which ¢, (-)=0 in formulation (6) or §=0 in formulation (7).

To provide a good asymptotic approximation to finite sample behavior, we follow
Elliott and Miiller (2007, 2014) and Lee and Wang (2020) and model parameter instability
as being on the same order of magnitude as sampling uncertainty, with ¢, (Q;)= \/Lﬁ 9(Q;)
for a fixed function g. As in the stylized example of the previous section, this DGP
allows the asymptotic problem to reflect an important feature of the finite sample prob-
lem in many applications, namely that the data provide limited information about the
regressor-dependent coefficient function ¢, (-). See Elliott and Miiller (2007, 2014) for
further justification of this drifting sequence DGP.

We further assume that
—Z(J CI{Q; <0} —, 2 (0) Zc Clg(Q)1{Q; <0} —, Sy (6), (8)

and

%iam{@ise}:(;w» )

all uniformly in § € R. Here Y¢ : R — R¥** is a consistently-estimable matrix-valued
function and Y¢(6) is full rank for all 6 in the interior of the support of @;, X, :R—R”
is a vector-valued function, and G(-) is a k-dimensional mean zero Gaussian process with a
consistently estimable covariance function that is positive definite when evaluated at points
in the interior of the support of ();. Conditions (8) and (9) are analogous to Conditions 1(ii)
and 1(iv) of Elliott and Miiller (2007) for structural break models in a time-series setting.
See Hansen (2000) and Lee and Wang (2020) for sufficient conditions that give rise to (8)
and (9). Although these high-level conditions cover both threshold and structural break

5While we model the degree of parameter instability as local to zero, if one instead models the degree
of parameter instability as fixed but takes ¢, =¢ to be continuous, rather than a step function, estimates
based on (7) also exhibit nonstandard behavior, with a n~3 rate of convergence for the estimated
threshold rather than the n~! rate obtained for the correctly-specified case. See Biihlmann and Yu
(2002) and Banerjee and McKeague (2007). Song et al. (2016) shows that nonstandard asymptotic
behavior arises even when the threshold model is only locally misspecified, while Hansen (2017) obtains
nonstandard asymptotic results in the regression kink case, where there is a discontinuity in the derivative
rather than the level. Inference results that, like those in the present paper, account for estimation of
the threshold are important in all of these settings, and are discussed in the references above.



applications, appropriate low-level sufficient conditions, and the form of X (+), Xy (+), and
G(-), will differ across applications.

The standard threshold estimator 6,, chooses 6 to minimize the sum of squared residuals
in an OLS regression of Y; on C; and 1{Q); >0}C; across a finite grid of thresholds ©. For

X (9):< (T GO <0) ™ (T, Cn{Qi<0)) )
' (i GO Qi>0) 2 (L, Cn{Qi>6}) )

with 7, =U;+n~2Clg(Q;), arguments analogous to those in the proof of Proposition 1
in Elliott and Miiller (2007) imply that 6, =argmax ycg || X, (8) | +0,(1), where 0,(1) is an
asymptotically negligible term.

Suppose we are interested in the approximate change in the jth parameter d; = ¢’9,
where e; is the j% standard basis vector.® In practice it is common to estimate ¢ by least
squares imposing the estimated threshold ,. When the threshold regression model (7) is
misspecified, however, there is neither a “true” threshold # nor a “true” change coefficient o.
Instead, the population regression coefficient §(6) imposing threshold 6 depends on . Thus,
we are interested in ¢; (9n), the population regression coefficient at the estimated threshold.
Denote the OLS estimate imposing threshold 6 by §;(#) and define Y;,(8) = /nd;(6). If
we define iy (0) =lim,_,.1/nd;(0) as the scaled coefficient of interest and px(6) as the
population analog of X,,(#),” Section A.1 of the Appendix shows that

Xa(0) d px (0)
SR (GVED 0

uniformly over a parameter space © contained in the interior of the support of ¢);, where the
covariance matrix Y(#) is consistently estimable but px () and py (6) are not. This corre-

sponds to the asymptotic problem (4) where 0 is defined through norm-maximization (5).8

Inference in Threshold and Break Models Since the estimated threshold 9n is
random and the parameter of interest 0,(#) (or equivalently sy, (0)) depends on 6, it is
important to account for this randomness in our inference procedures. In particular, it

may be appealing to condition inference on the estimated threshold 9n, since we only seek

6By changing the definition of Y;, below, our results likewise apply to the pre-change parameters 3;
and the post-change parameters (;+9;, amongst other possible objects of interest.

"See Section A.1 of the Appendix for precise definitions of these quantities.

8Estimators and confidence intervals for the object of interest §; (9) can be obtained by a simple

y/n-rescaling of the corresponding estimators and confidence intervals for uy (6).

10



to conduct inference on ¢;(#) when 0, =0. Even if we only desire coverage of (5]-(9”) on
average over the distribution of 9n, and so prefer unconditional estimators and confidence
intervals, accounting for the randomness of 6,, remains important.

It may also be natural to condition inference on additional variables. For example, if
we report a confidence interval for the change coefficient ¢; (9n) only when we reject the
null hypothesis of parameter constancy, Hy: ¢, (#)=0 for all 6, it is natural to condition
inference on this rejection. This can be accomplished by defining 4,, = v(X,,) to be a
dummy for rejection of Hy, and conditioning inference on (6,,,3,). See Propositions 1 and
2 below for further details.

If we are confident that the threshold model is correctly specified, so that (7) holds in the
data, it is conceptually more appealing to focus on inference for the “true” parameters as
in Elliott and Miiller (2014) and Lee and Wang (2020). However, we note that these latter
inference procedures can become computationally intractable when C; has more than a few
elements, so that even in the correctly-specified setting inference on 5j(9n) may be the only
feasible option. In addition, Proposition 5 of AKM implies that when the break magnitude
16]| is large enough that 0, takes a single value with very high probability, the conditional
inference procedures here collapse to standard efficient inference on the “true” ¢,.” On the
other hand, the computationally feasible standard threshold and structural break confidence
intervals are based upon normal approximations to 0;(6,) (see e.g., Bai (1997), Bai and
Perron (1998) and Hansen (2000)). Therefore, when the true break magnitude is not large
enough to overwhelm sampling variability (in accord with the asymptotic approximations
of this section), they can have poor coverage for either d;(6,,) or the “true” d;.

One solution to this problem that has been used in the literature is sample splitting,
where the first part of the sample is used to form 6,, and the second part is used to form
) (+), so that a conventional normal approximation can be applied to 5]- (9n).10 See e.g. Card
et al. (2008). Like the methods proposed in this paper, this form of split-sample inference
is valid for ¢; (én), not the “true” ¢;. However, when 0, is formed using only the first
fraction of the data, it is a less precise estimator of the (pseudo-)true break fraction than
when using the full data as we do here. Even in the case for which one wishes to only use
a fraction of the data to form 6, Section 5 provides an improved split-sample inference

approach that dominates the standard method.

9Elliott and Miiller (2014) employ a switching scheme such that their approach nearly reduces to
standard inference, and increase their critical values to account for the switch.

10While direct application of this approach fails in structural break settings since the data may be
non-stationary, an analogous effect can be achieved by adding normal noise: see Section 5 below for details.
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Other Norm-Maximization Examples While our discussion of threshold regression
estimation focuses on the linear model (6), Elliott and Miiller (2014) show that structural
break estimation in nonlinear models with time-varying parameters gives rise to the same
asymptotic problem. Hence, our results apply in that setting as well. Likewise, the
same asymptotic problem arises in nonlinear threshold models.!* Further afield, one could
generalize our approach to consider norm-minimization rather than norm-maximization,

and so derive results for GMM-type problems with finite parameter spaces.

3.2 Inference in the Normal Model

A

AKM studies estimators for py-(0) that are quantile-unbiased conditional on the realization
of é, perhaps along with the value of an additional conditioning variable 4=~(X). The

mean vector yx is a nuisance parameter in this problem, and AKM notes that
Zy=X— (EXY(-,é) /zy(é))Y(é),

is a sufficient statistic for the unknown mean vector px. Hence, the inference procedures
derived in AKM condition on (8,5)=(8,7) and Z;=~z. Conditional on Z;=z, the event
that (0,7)=(0.7) is equivalent to the event that Y'(0) € Y(6,7,2) for a set Y(6,7,2) which
depends on the nature of 0 and 4. AKM derives the form of ) (@ﬁ,z) for level-maximization
problems, while we derive the form for norm-maximization problems here.

AKM introduces an efficient conditionally a-quantile-unbiased estimator of iy (6), fia,

with the property

Pm{ﬂQZ/Ly(@)]é:é,’y::y}:a for all 4, 0, 7.

This estimator enables the construction of an equal-tailed confidence interval C'S =

[ﬂ%nfh_%] with conditional coverage 1—a:
Pr#{uy(@)eCS\@:?ﬁzfy}:l—a for all 1, 0, 7.

AKM shows that the estimator ji,, and confidence set C'S posesses the additional appealing
properties that for any sequence of means i, such that Pr,, {9 =04 :ﬁ} — 1, fla—p Y (0)

while C'S converges to the conventional confidence interval that ignores selection. Hence,

"In a manuscript circulated after the initial public version of this paper, Hyun et al. (2018) consider
the related problem of conditional inference for changepoint detection, but the changepoint estimation
methods they consider cannot be cast as norm-maximization, so their results do not overlap with ours.

12



in cases where selection-corrected inference is unnecessary, there is no “price” for using
the conditional procedures discussed above.

Imposing conditional unbiasedness and coverage can be costly from an unconditional
perspective. Results in Kivaranovic and Leeb (2020) imply that conditional confidence
sets can have infinite expected length. If one cares only about unconditional coverage, an
alternative is to start with a joint confidence interval for uy and project on the dimension
corresponding to 6. This general approach has been applied in various contexts in the
literature — see AKM for examples. To formally discuss this approach, let ¢, denote the
1—a quantile of maxgee|¢(0)|/+/Sy () for €~ N(0,Zy). Define the level 1—a projection

confidence interval as

CS8= [Y(é)—ca\/iy<é>,y(@)+ca\/iy<é)} .

~

This interval has correct unconditional coverage Pr), { y (0) ECSI%} > 1—a for all p,
but does not in general have correct conditional coverage in the sense that we may have
Pru{,uy(@) GC'SI%@:@} <1—a for some 6 and p. Moreover, the length of C'S% does not

depend on (X,Y), so in cases where Pru{ézé} ~1 for some 0, C'S% will tend to be much
longer than the conditional confidence sets discussed above.

In order to overcome some of the weaknesses of both the conditional and projection
procedures, AKM introduces a hybrid estimator, ji¥, and confidence interval, C'SH | that
condition both on # and on the (possibly incorrect) event that py (6) € C'Sh for some
0<B<a. This latter conditioning limits the worst-case dispersion of the hybrid estima-
tor and the worst-case length of the hybrid confidence interval. AKM shows that the

unconditional level-a quantile bias of i is controlled,
Pr{it! = (0) } —a| < p-max{a,1-a}.

Hence, for example, the absolute median bias of % (measured as the deviation of the
2
exceedance probability from 1/2) is bounded above by /2. Using these estimators, we

form the level 1—a equal-tailed hybrid confidence intervals as

2-23 2-23

o8 =Ly i g

Note that we have adjusted the quantiles considered to account for the possibility that

13



C’SIB) may not cover My(é). Finally, AKM also introduces confidence intervals that are
uniformly most accurate unbiased in the conditional problem as well as analogous hybrid
confidence intervals. For brevity, we defer discussion of these procedures to Section B of

the Supplemental Appendix.
3.3 Conditioning Sets for Norm-Maximization Problems

To implement AKM procedures in a given setting, we need tractable representations for the
sets ) (éﬁ,z). AKM derives such representations in cases where 0 is selected by maximizing
the level of X (6) (dx=1), but do not consider the norm-maximization setting studied here.
Since the set of X values such that 0 =0, X € X(f) = {X: HX(@)H:rnax@E@HX(H)H},
involves nonlinear constraints, other results in the existing literature (e.g., Lee et al. (2016))
likewise do not apply. Hence, in this section we derive y(éﬁ?z) for norm-maximization
settings.

In norm-maximization settings without additional conditioning variables, the general

expression for Y (@,z) is long, but easy to calculate in applications.

Proposition 1

Define
dx
A=y (0) Y [Sxva0) v, (07,
=1
B2(0.0) =25y (0) Y [ Lxvs(0) 23, (0)~Sxv,(00) 24, (6)|.
=1
Co(0.0)= | 23,0/~ 2,07
j=1
For -
5N (702 5 5 2o —Cz(0.0)
DZ(eﬂ)_BZ(976> _4A(979)CZ(979)7 HZ(eﬁ)_ ~ )
BZ(070)
3 —B4(0.0)—+/D4(0,6 3 —B(0,0)++/D~(0.,0
G2(6.0)= 266)y Dzl ),andKZ(O,G): #66)+y D265)
2A(0,9) 2A(0.9)
define
flz(é):max{ “max Gz (0.9), _max HZ(éﬂ)},
0€0:A(0,0)<0,D 4 (5,0)>0 0€0:A(0,0)=0,B7(8,0)>0
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EQZ(é,@):max{ max G£(6.0), max Hz(é,G),KZ(é,H)},

0€0:A(0,0)<0,D7(8,0)>0 0€0:A(6,0)=0,Bz(6,0)>0
ulz(éﬁ):min{ “min K4(6.,0), _min HZ(é,Q),GZ(é,G)},
0€0:A(6,0)<0,D2(8,0)>0 0€0:A(0,0)=0,B7(0,0)<0
u%(é):min{ “min K4(0,0), _min Hz(éﬁ)},
0€0:A(0,0)<0,Dz(8,0)>0 0€0:A(8,9)=0,B7(6,0)<0
and
V(0,75)= min C(0.6).

0c0:A(6,0)=Bz(6,0)=0 or Dz(6,)<0
If V(é,Z(;) >0 then
Y0z)= ) [|E0wk00]0]26.0.:30).
0€0©:A(0,0)>0,D7(0,0)>0
IfV(0,75) <0, then y(a Z; )

0.
Note that Pru{ } 0 for all pso we can ignore this constraint in applications.
z)

While the expression for y (6, is long, it simplifies substantially in some special cases.

Corollary 1
Suppose dx =1, X =Y, and Xx 1is full rank.
(i) Define Hz(éﬁ):—Ex(é)Z(;(H)/(QZX(H,é)),

5 o _ Sx(0)Zx(0.0)Z5(0) 5 (0)°1 Z5(0)
Gz(0.0)= = - ,
Yx(0)2—Xx(0.,0)?
- Sx(0)Sx(0.0)Z;(0)+Sx(0)%] Z5(0
oy (.9) - EXOE 0D 50+ 0P125(0)
Yx(0)2—%x(0,0)?
Then, for
Elz(é):ma,x{ max  Gz(6.0), max Hz(éﬁ)},
0€0:|Sx (0.0)|>Ex (9) 0€6:|Sx (0.0)|=Sx (8),Sx (0.0)Z;(6)<0
@(é,e)_max{ max  Gz(0.9), max Hz(é,e),KZ(é,e)},
0€6:|Sx (6,0)| > x (B) 0€0:|S x (6.0)|=Sx (0),Sx (6,8) Z;(6) <0
ulz(éﬁ):min{ min CK4(0.9), min i Hz(é,é’),GZ(éﬁ)},
0€6:|Sx (6,0)|>E x (B) 0€6:|5x (6.0)|=Sx (0),5x (6,8) Z;(6)>0
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and

u>(0) :min{ min K4(0.0), ~ min i Hz(0,0) },
0€6:[Sx (0,0)>Ex () 0€0:[Sx (0,0)| = x (8),=x (6,0) Z5(6)>0
Y0.5)= () |EOwh00]0]E6.0.:30)]

0cO:|Tx (6,0)|<Tx ()

(ii) If, moreover, |Xx(0,0)| <X x(0) for all 6, 0€© such that 00,

V(0,Z;) = (—oo,%éiélGZ(é,Q)} U {IgleaécKZ(é,Q),oo).

Part (i) of the corollary covers the stylized example discussed in Section 2, and its
generalization to cases with dependence and more than two strategies. The condition
12 x(0,0)] < Xx(0) in part (i) holds automatically when X is comprised of studentized
statistics and the elements of X are not perfectly dependent.

So far this section has considered conditioning on 6=0, AKM also allows conditioning
on another random variable 4=(X). Such conditioning can be used to incorporate the
outcome of a pre-test or other data-driven selection in order to address pretest bias and
coverage distortions. The form of Y(0,7,z) will depend on the nature of 4. Here we derive

Y(0,7,z) in the case where 4 encodes the outcome of the sup-Wald pretest, which is a

natural pretest for tipping point and structural break applications.

Threshold Regression and Structural Break Estimation (continued) Suppose
that we report estimates and confidence intervals for the change parameter 5j(9) only
if we reject the null hypothesis of no threshold, Hy:d(6) =0 for all # € ©. Suppose, in
particular, that we test Hy with the sup-Wald test of D. Andrews (1993). Analogous
results to those in Elliott and Miiller (2014) show that the asymptotic version of such a test

A

rejects asymptotically if and only if || X (0)|| > ¢ for a critical value ¢ that depends on ¥. A

Let 4 € {0,1} be a dummy variable for rejection by the sup-Wald pretest, 5 =
1{ 1X(0)]] >c}. We study inference conditional on =0 and 4=1. We can express

V(0.7,2)=Y(0,2)NY,(7,2),

with J(6,2) the conditioning set based on 6 alone (derived in Proposition 1), and Y (%,2)

the conditioning set based on 4. The next result derives the form of ), (1,2) for the
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sup-Wald test, while ), (0,2)=Y,(1,2)".

Proposition 2
Suppose = 1{||X( )| >c} Define

dx
)Y Sy (0,
j=1

o)=Y "2, 07 —c. Dy()=B (67 —4AB)C(0)
For
L) = —Bz<9)_—~ DZ(Q)’
24(0)
_ —By(0)+1/Dz(0)
U(Z5)= YT ,
(6)
V(Z5)=[1{A(0) =0} +1{A(60) > 0,D(0) < 0}]C (D),

if V(Z;) >0 then Y, (1,Z5) = (L(Z5)U(Z5))", while Y.(1,Z5)=0 otherwise.

4 Practical Implementation and Uniform Asymptotic Validity

This section shows that the desirable finite-sample properties of the AKM estimators

and confidence intervals in the normal model translate to asymptotic results in norm-

maximization problems satisfying regularity conditions. In particular, we show that feasible

implementations of the AKM procedures are uniformly asymptotically valid over classes

of norm-maximization problems such that the mean vectors ux and uy are asymptotically

bounded. We begin by discussing our asymptotic setting and assumptions and relate our

assumptions to the threshold regression and structural break examples. We then turn to

asymptotic results for feasible versions of the AKM procedures.
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4.1 Asymptotic Setting and Assumptions

In analogy with the normal model of Section 3, but dropping the assumption of finite-sample
normality with known variance, assume we observe random vectors (Xn(H)/,Y;l(H))/ for
6 €O, where O is a finite set, X,,(#) ER% and Y, (§) €R. In particular, for © = {01,...,9@‘ },
let X,,= <Xn(01)',...,Xn (9|@|)/>/ and Y, = (Yn(91),...,Yn (9|@|))/. We suppose that the data
in the sample of size n are distributed according to P €P,, for P, a sample-size dependent
class of distributions, and assume that with appropriate recentering, (X,,,Y;,) are jointly

asymptotically normal uniformly over P €P,,.

Assumption 1
For BLy the class of Lipschitz functions that are bounded in absolute value by one and
have Lipschitz constant bounded by one, and &p~ N (0,5(P)),

Xn_NX,n<P>
I ( Y fiya(P) )

for some sequence of functions pux . (-) and fy,(-).

Ep —E[f(&))| =0

lim sup sup
n—=0pcp, feBL,

Bounded Lipschitz distance metrizes convergence in distribution, so uniform conver-
gence in bounded Lipschitz, as we assume here, is one formalization for uniform convergence

in distribution. Intuitively speaking, this assumption requires that

/

(X;L _NX,n(P)/aY;; _”Y,n(P)/)

be asymptotically N(0,X(P)) distributed, uniformly over P& P,,.
In many cases we can take (x ., (P),uyn(P)) to be the mean of (X,,,Y,) under P,

- Py ,UX,n(Q;P>
“Ha(0P) ( pvn(0;P) )

We do not impose this as an assumption, however, since the finite-sample mean may be

poorly-behaved in some settings, including in structural break and tipping point applica-
tions, so it may be preferable to define (px ,,(P),uy,(P)) in some other application-specific
way. For instance, see the next section for definitions in the tipping-point example.

We are interested in estimation and inference on ,uY,n(én;P) for the true but unknown
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DGP P, in the norm-maximization problem where
by = argmaxx | X, (6)| +0,(1),
0co

and the o,(1) term is uniformly asymptotically negligible over P€P,,.

We next restrict the asymptotic variance X(P).

Assumption 2
There exists a finite A>0 such that for Amin(A) and Amax(A) the minimum and mazimum

eigenvalues of a matriz A,
/A< i (Xx (P)) € Amax(Bx (P)) < X for all PEP,

and
1Ay (0;P) <\ for all €O and all PEP,.

This assumption bounds the variance matrix ¥ x (P) above and away from singularity,
and likewise bounds the diagonal elements of Yy (P) above and away from zero. This
ensures that the set of covariance matrices consistent with P € 7P, is a subset of a compact
set, and that || X, (0)|| has a unique maximum with probability tending to one.

Our estimators and confidence intervals depend not only on (X,,,Y;,), but also on an

estimator f]n of 3. We assume that this estimator is uniformly consistent.

Assumption 3

S, s uniformly consistent for %(P),

lim sup Prpﬂ in—E(P)H >€} =0,

noopep,
for all € >0.
Finally, we assume that (ux,(P),uy..(P)) are asymptotically bounded.

Assumption 4

There exists a finite constant C' >0 such that

limsup sup (||1xn(P)[|+ ||l yn(P)]]) < C.

n—oo PeP,
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This assumption requires that ||x »(P)|| and ||zy,(P)|| be uniformly bounded over P,
by a constant that does not depend on the sample size. Given the scaling of (X,,,Y;,) in our
threshold regression and structural break examples, this corresponds to the case with local
parameter instability. More broadly, this condition implies that the norm-maximization
problem remains non-trivial even asymptotically, in the sense that we do not have Prp{@:
é} — 1 for any 6. While it may be possible to relax this assumption, it holds in all settings

we have encountered that give rise to the norm-maximization problem asymptotically.'?

Threshold Regression and Structural Break Estimation (continued) As shown
in Section 3, the asymptotically normal norm-maximization problem arises when we
follow Elliott and Miiller (2007, 2014) and Lee and Wang (2020) and model the degree
of parameter instability as shrinking with the sample size at the y/n rate. The quantities
(X»,Y,) in this example are detailed in Section 3 above, while we can take (gx ,,ttyn) to

be their population analogs. In particular, let

i (B:P) = ﬁ< EplCiC1{Q; <0)] 2 Ep[Cin 1 {Qi < 6}] )

Ep[CiC'1{Q; >0} % Ep[Cin; 1{Q; > 0]

Calculations in Section A.1 of the Appendix show that we can write the population
regression coefficient §(6,P) imposing break point 6 as 6(0,P)=.A(0;P) ' B(0;P) for

B(6;P)= Ep[CiCi1{Q; > 0}9(Qy)] — Ep[CiCI1{Q; > 0} Ep[CiCl) ~ Ep[CiClg(Qs)],

so we can define py,(6;P)=+/nd(0,P). Note that while p1x,, and iy, correspond naturally
to X, and Y,,, respectively, in general Ep[X,]# 1x, and Ep[Y,]# tiyn.

In Section A.1 of the Appendix, we show that the elements of Z(Q,Q;P) are functions
of c(8;P), Sc(6;P) and Ep[G(A)G(6Y] so that we can construct an estimator %, by
plugging in consistent estimators of these quantities. In particular, we can estimate
Yc(0; P) = Ep[C;CI1{Q; <0}] by ic(ﬁ) = 15" CiCI{Q; <6} and Ep[G(0)G(0)] =

Ep[C,C{Q;<0}] for 6 < 0 and iid data by Sc(f) = £377 C,CIU21{Q; <6} with

T on

U;=Y;—C!(B—@n(Qy)) for consistent estimators (3 of 8 and (,(-) of ¢y (-).13

12Note, moreover, that the proofs of uniform asymptotic validity for a related class of selective inference
procedures in Tibshirani et al. (2018) rely on a similar condition, though the proofs of AKM for the
level-maximization setting do not.

BFor dependent data, Ep[G(0)G(0)] =limy, o0 5> iy >0y Ep[CiCiUU;1(Qi <0)1(Q; <6)] can be
consistently estimated using standard long-run variance estimation techniques.
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In this setting, Assumptions 1-3 follow from standard conditions. In particular, As-
sumption 1 requires that (X,,,Y,,) be uniformly asymptotically normal over P,, and will
follow from uniform versions of (8) and (9), along with bounds on ¥ (#;P). Assumption 2
bounds the behavior of ¥, and will follow from suitable uniform moment bounds. Finally,
Assumption 3 will again follow from uniform moment bounds and, in the structural break
setting, limits on the degree of dependence in the data. We note that these assumptions
are fully compatible with the absence of a changing coefficient, in which case g(-)=0.

Assumption 4 warrants additional discussion. This assumption holds if we take P, to
correspond to any finite collection of local sequences of the sort studied by Elliott and Miiller
(2007, 2014) and Lee and Wang (2020). If we instead take the degree of parameter instability
to be fixed, one can show that the threshold regression and structural break models reduce

to level maximization, as studied by AKM, asymptotically. Intuitively, for ux large,

IX O~ [lrex (0) 7 +210x (0) (X (0) — 1 (6)),

so the squared norm [|.X ()||> behaves like a normal random variable.

The issue here is similar to the difference in the asymptotic distribution of the Vuong
(1989) test between the nested and non-nested cases. As this analogy suggests, it may be
possible to develop asymptotic results for threshold regression and structural break models
that, analogous to the results of Shi (2015) and Schennach and Wilhelm (2017) for the
Vuong test, cover cases with both fixed and local parameter instability. We are unaware of
such results for existing procedures in threshold regression and structural break literatures,
however, and this point is far afield from our primary focus here. Hence, in this paper
we follow Elliott and Miiller (2007, 2014) and Lee and Wang (2020) by limiting attention
to cases with local parameter instability and refer readers interested in fixed parameter
instability to the level-maximization results discussed in AKM. A

Note that the stylized example discussed in Section 2 can likewise be recast as level
maximization when pyx grows large. In particular, for trading strategies with absolute
average returns well-separated from zero, we can consistently estimate the sign of the
average return, and so convert the problem to level maximization by choosing strategy

J to maximize sign{y; } X;, where sign{z} takes value 1 if >0 and value -1 if x <0.
4.2 Uniformity Results for Estimators and Confidence Intervals

We next prove uniform asymptotic validity for feasible versions of the AKM procedures.

These feasible versions are defined as in the normal model in Section 3.2, save that we
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replace 0 by 6,,Y by Y, ¥ by 3, and Zy by
Zg=Xn= (Exva-0)/Sxal®)) Y2 (0)

in all expressions.

Asymptotic uniformity results for some conditional inference procedures that, like
our corrections, rely on truncated normal distributions have been previously established
by Tibshirani et al. (2018). However, their results do not cover the norm-maximization
problems studied in this paper. Moreover, they do not cover the hybrid inference procedures
of AKM, which are new to the literature, nor do they provide results for quantile-unbiased
estimation. Our proofs are based on subsequencing arguments as in D. Andrews et al.
(2018), though due to the differences in our setting (our interest in conditional inference,
and the fact that our target is random from an unconditional perspective), we cannot

directly apply their results.
4.2.1 Asymptotic Validity of Conditional Procedures

We begin our analysis of uniform asymptotic validity by establishing results for the feasible
asymptotically a-quantile-unbiased estimator fiq . Just as fi, is quantile-unbiased in the
normal model, i, is asymptotically quantile-unbiased both conditional on the event

{971 = é} and unconditonally.

Proposition 3

Under Assumptions 1-/,

lim sup Prp{ﬂamz;mn(@n;P)|@n:é}—a’:O, (11)
n=oopep,
for all 0€©, and
lim sup PT’P{/AJ@’”Z/JJY’” <@n;P>}—0z’ =0. (12)
n—=oOpep,

Arguments as in the proof of Proposition 3 imply analogous results for additional
conditioning variables 4, such as 4, = 1{|\Xn @) >c}. This is also true for the other
conditional results in this subsection and the next. For the sake of brevity, we do not
pursue such extensions here.

Proposition 3 immediately implies that the one-sided confidence intervals (—o0,ft1—q.x)

and [fin,,00) have uniformly correct asymptotic coverage. We also consider equal-tailed
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intervals C'S,, = [ﬂa/27n7ﬂ1_a/27n]. The following corollary shows that C'S,, has correct

asymptotic coverage for ,uym(én;P), both conditionally and unconditionally.

Corollary 2
Under Assumptions 1-/,

lim sup Prp{uxn@n;P) GC’Sn|9n:é}—(1—oz)‘:0,

n—oopep,

for all 0€©, and

lim sup P'r’p{,uxn (@n;P> € C’Sn} —(1—04)‘ =0.
n—oo PEPn
Arguments along the same lines as in the proof of Corollary 2 also imply uniform
asymptotic validity of intervals which weight the two tails differently, viz, [fi5n,it1—a—sn)
for 0<d<au.

4.2.2 Unconditional Validity Results

In this section, we turn to asymptotic validity for the unconditional procedures discussed in
Section 3.2, namely the projection and Hybrid approaches. Let us denote the feasible level
1—a projection interval by C'S% . This interval has asymptotically correct unconditional

coverage for uxn(@n;P) uniformly over the class of DGPs PeP,,.

Proposition 4
Under Assumptions 1-4,
timinf inf Pre{ o (00:P) €CSE, | >1-a.
Wl e (il € €Tk p 2 1m0
Next, consider feasible hybrid estimators ﬂf - While these estimators are not asymp-

toptically quantile-unbiased, their asymptotic quantile bias (as measured by the exceedence

probability) is controlled.

Proposition 5

Under Assumptions 1-/,

A

lim sup Prp{/linZMKn(@n;P)|9n:§,uxn<@n;P) EC’S?,’R}—a’:O,

n_)OOPEPn
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for all € ©. Moreover

limsup sup Prp{ Afn > Ly, (Gn,P) } —a‘ <max{a,1—a}p.
n—oo PeP,

We can again use the estimators [Lf ,, to form equal-tailed confidence intervals. As in
Section 3.2, however, we need to adjust the quantiles we consider to account for the fact
that CSIE, may not cover fiy,, (9n;P). Hence, we define the feasible level 1—a equal-tailed
hybrid interval as

Csyl= {ﬂ? s, ﬂ{f_aen}

1-8°
Corollary 3
Under Assumptions 1-4,

1—
tim sup |Prp{ iy (003P) € O, =01y, (005P) €CSF, == =0,
n—)oopep 1_/6

for all 0O,
liminf inf P’T’p{,uyn (Gn,P> EC’SH} >1
n—oo PeP,
and X
limsup sup P'r’p{,uYn (Qn,P> € C’SH} < 2 <l—a+p.
n—oo PeP, 1—5

5 Split-Sample Inference

We next briefly discuss feasible split-sample estimators and confidence intervals which
dominate conventional split-sample inference as used in e.g. Card et al. (2008). These
dominating procedures were introduced in a general asymptotic setting by AKM, and we
refer the interested reader to AKM for theoretical details on dominance in the normal
model. Asymptotic validity of these procedures under extensions of Assumptions 1-4
follows from arguments along the same lines as the proofs of the results in the last section,
so we omit formal statements and proofs for brevity.

The problem we consider here is quite similar to that studied in Section 4.2, with the
key difference being that only part of the sample is used to select the norm-maximizing
value. In settings with iid data, this can be formalized as follows: for 7€ (0,1), assume

we observe random vectors
(X711/7Y;11,)/ = 7-_1/ (X[TTL]7 [tn) )/
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and
(X2 Y2 =1=7) (XY = VT (X Yy s

where (X7,Y,) is as defined in Section 4.2, and [rn| is the closest whole number to 7.
Intuitively, (XY,Y,") is the analog of (X/,Y!)" formed from the first [rn] observations,
while (X?Y?) is the analog of (X!,Y;")' formed from the rest of the sample. Split-sample
approaches then take

6, = argmax|| X, (8) | +0,(1)
0co

and consider inference on uy,n(@}l;P). The conventional split-sample estimator and con-

fidence interval for fiy,(6:P) are Y2(A!) and

R 1 - . R 1 - .
Yf(@i)—\/ :an(%)zl—a/%ﬁ(@i”\/ :ZY,n(%)Zl—am] 7

where 3, is as defined in Section 4.2. Since (XYY"} and (X2,Y?) are based on different

observations, they are independent by construction, and it is straightforward to show

CSssn=

that Y2(0!) is asymptotically unbiased and C'Ssg, has correct asymptotic coverage for
fiyn(6:P) both conditional on the realization of 6. and unconditionally.

Direct sample splitting can also be applied in some stationary time-series applications,
where asymptotic independence of (XY, Y'V) and (XZ,Y?)" will follow from weak de-
pendence assumptions. In structural break applications, however, we are fundamentally
interested in non-stationarity, and splitting the sample is not a viable approach. In such
cases, one can still employ an asymptotic analog of sample splitting. Specifically, for &

a standard normal random vector independent of the data we can take

1y 1N VAV, 1_7_’\%
T
21 N2\ VA T A%
(Xn 7Y;’L ) _(Xn7Y;L) + 1_7_27157

and define 0} as above. Under Assumptions 1-4, (XY V") and (X2,Y) will be asymp-
totically independent, and asymptotic validity of conventional split-sample inference again
follows.

Taking 7 as given, we next describe how to construct estimators and confidence intervals

for fiy,,(61;P) that are conditionally and unconditionally valid, and dominate Y2(.) and
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CSss, in terms of concentration around ,uym(@}l;P) and confidence interval length. Let

Fio(py (61),0',2") denote the distribution function of the random variable
(+57¢)
T

f%/v(uy(éwéixn(él)) and §2~N<uy(9l),

51 ey(él’zl>

where

are independent, and Y(0,z) is defined as in Proposition 1. Expressing Y(6',z!) as a
finite union of disjoint intervals using De Morgan’s laws, Y(0",2") = UK [6,(2") ue(21)],

we obtain the following expression for Fk(y:puy (61),0%,2"):*

| (5-€ = = @)/ 50 ) 1(¢ €U )
T ()= 0/ 7 a0~ () - 0y 7 ) )

)

where ®(+) is the cumulative distribution function of a standard normal random variable
and the expectation is taken with respect to &
The a-quantile asymptotically unbiased split-sample estimator ﬂé&‘,am is the unique
solution to
By (V20 + SN2 0 2, ) =1
where 6! :931 and

23 = X0 = (Sxval-8)/Sva@)) V8.

The new dominating equal-tailed split-sample confidence interval is

A _[~A A A
CSSS,n = [NSS@/Z,n’/LSS,l—a/Q,n]'

The expression for FZ(y;uy(0'),6",2") above makes the computation of [135,0., and C'Sgg .

very straightforward in practice.

6 Monte Carlo Simulations for the Threshold Regression Model

In this section, we conduct a simulation study based on the tipping point model of Card

et al. (2008), a leading application of the threshold regression model discussed throughout

14Gee AKM for the full derivation.
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this paper as a running example. Card et al. (2008) study the evolution of neighborhood
composition as a function of minority population share. For Y; the normalized change in
the white population of census tract ¢ between 1980 and 1990, C; a vector of controls, and
Q; the minority share in 1980, Card et al. (2008) consider the specification

Y;=pB+Cla+61{Q; >0} +U;.

This specification allows the white population share to change discontinuously when the
minority share exceeds some threshold #. They then fit this model, including the break
point 6, by least squares. See Card et al. (2008) for details on the data and motivation.
We consider data from Chicago and Los Angeles with n=1,820 and n=2,035 observations,
respectively, estimating the model separately in each city.!

Results in Hansen (2000) and Lee and Wang (2020) show that if we model the degree of
parameter instability as on the same order as sampling uncertainty, this threshold regression
model satisfies the high-level conditions (8)—(9) we introduced in Section 3.1. Hence, we can
apply our results for the norm-maximization problem to the present setting. Specifically,
we define X, as discussed in Section 3.1 and 6, is again asymptotically equivalent to the
solution to a norm-maximization problem argmax ye|| X (8)||.X® We define Y,,(8)=+/nd(f)
to be proportional to the estimated change coefficient imposing tipping point , so we again
consider the problem of inference on the (scaled) change coefficient while acknowledging
randomness in the estimated threshold.

Our simulations draw random vectors (X,Y") from the limiting normal model (10). This
model depends on the function ¢ and the covariance function of G in (9) which we (con-
sistently) estimate from the Card et al. (2008) data. It also depends on the function ¢, (-).
Since this is not consistently estimable, we consider three specifications. Specification (i) as-
sumes there is no coefficient change, corresponding to §=0. Specification (ii) assumes that
there is a single large change, setting 6 =—100% and taking the true threshold to equal the
estimate in the Card et al. (2008) data. Finally, specification (iii) calibrates Y¢,(-) to the
data, corresponding to the analog of model (6) where the intercept term in the regression

may depend arbitrarily upon a neighborhood’s minority share. This specification implies

15We focus on these cities since Card et al. (2008) note that their tipping point estimation method
appears more appropriate for larger cities.

6While Card et al. (2008) optimize over all possible tipping points between 5% and 60%, consistent
with our theoretical results we limit attention to a finite set of thresholds. In particular, we consider 100
evenly-spaced quantiles of the minority share, and then further restrict attention to thresholds between
5% and 60%. We also tried several other discretization schemes and found very similar results in all cases.
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Figure 1: Specifications for ¢y, (-) used in the simulations for Chicago (left) and LA (right) data.
The horizontal axis corresponds to the empirical percentile of ;. The solid line corresponds to
DGP (i), the dotted line corresponds to DGP (ii) and the dashed line corresponds to DGP (iii).

that the break model is misspecified but as discussed above, our approach remains appli-
cable in this case, unlike the method of Lee and Wang (2020). Indeed, Card et al. (2008)
acknowledge that the tipping point model only approximates their underlying theoretical
model of neighborhood ethnic composition, so misspecification seems likely in this setting.
Figure 1 above plots the function ¢, () for specifications (i)—(iii) corresponding to how
the data are generated in the simulations, for both the Chicago and Los Angeles data.
We begin by considering the problem of inference on ,Lby(é). We focus on unconditional
performance, as we are unaware of alternative procedures with conditional performance
guarantees in this setting. All reported results are based on 10* simulation draws. Table 1
reports the unconditional coverage for the confidence intervals C'S; C'ST, and C'S%, along
with the conventional confidence interval C'Sy =[Y (6)—1/(0)21_a /Q,Y(@) + \/% Z1—a/2)-
See the Supplemental Appendix for the corresponding results for the unbiased confidence
intervals. In all cases, we consider confidence intervals with nominal coverage 95%, a:=0.05.
For hybrid confidence intervals, we set 5=a/10. From Table 1 we see that all confidence
intervals other than C'Sy have correct coverage, the projection confidence interval C'S%
often over-covers, the conditional confidence interval C'S has exact coverage and the
hybrid confidence interval C'SH exhibits minimal over-coverage. In this application, the
conventional confidence interval C'Sy severely under-covers for some simulation designs.
Table 2 compares the lengths of our confidence intervals to that of C'S%. Since projec-
tion confidence intervals have been previously proposed in the literature and their length is

~

proportional to the asymptotic standard error 4/ ¥y () of the estimated change coefficient,
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Table 1: Unconditional Coverage Probability

DGP cS CS% (CSs CSy
Chicago Data Calibration
(i) 0.948 0949 095 0.750
(ii) 0.951 0.956 0.994 0.951
(iii) 0.947 0.951 0.990 0.934
Los Angeles Data Calibration

(i) 0.949 0949 095 0615
(ii) 0.952 0.956 0.996 0.952
(i) 0.951 0.955 0.996 0.95

This table reports the unconditional coverage probability of uy (#) for the conditionally valid confidence
interval (CS), the hybrid confidence interval (C'SH), the projection confidence interval (C'S%) and the
conventional confidence interval (C'Sy), all evaluated at the nominal coverage level of 95%. In the
Chicago (Los Angeles) data calibrations, the covariance matrix ¥ is set equal to a consistent estimate
from the Chicago (Los Angeles) Card et al. (2008) data. The column “DGP” refers to the specification
of the nuisance function ¢g(-), which along with other parameters, determines the value of the mean
vector f (see Appendix A.1 for details). The function X, (-) is set equal to the value it takes when there
is no coefficient change in DGP (i), the value it takes when there is a single large coefficient change in
DGP (ii) and its data-calibrated value in DGP (iii). For DGP (ii) the true threshold location is set to
equal the estimate from the Card et al. (2008) data. All other parameters that determine p are set equal
to consistent estimates from the Card et al. (2008) data.

it provides a natural benchmark for comparison of our new confidence intervals. For each
confidence interval we report both median length relative to C'S$ and the frequency with
which the confidence interval is longer than C'S. Here we see that the conditional confi-
dence interval can be relatively long, while the hybrid confidence interval provides marked
performance improvements across the specifications considered. The benefits of the hybrid
confidence interval can become even more pronounced at higher length quantiles. See
Section C of the Supplemental Appendix. Remarkably, the hybrid confidence interval is not
longer than C'S in any simulation draw across all specifications examined. The overall mes-
sage is that hybrid confidence interval possesses a clear advantage for unconditional inference
and we recommend this approach for settings where unconditional coverage is desired.
Finally, we compare the conventional point estimator Y(@) with ﬂ% and ,&? . The initial
columns of Table 3 report median bias measured both as the deviation of the exceedance
1

probability from 35 and as the median studentized estimation error. We see that ﬂ% is

median-unbiased (up to simulation error) and that i exhibits minimal median bias. By
2

contrast, in specification (i) the conventional estimator Y'(#) has substantial median bias

as measured by the median studentized estimation error, though very little as measured
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Table 2: Length of Confidence Sets Relative to C'S% in Tipping Point Simulations

Median Length Relative to C'S%  Probability Longer than C'S%

DGP Cs CSsH cS cst
Chicago Data Calibration
(i) 1.33 0.94 0.83 0
(ii) 0.72 0.74 0 0
(iii) 0.82 0.82 0.35 0
Los Angeles Data Calibration
(i) 1.26 0.86 0.58 0
(ii) 0.68 0.69 0 0
(iii) 0.68 0.70 0.15 0

This table reports the median length of the conditionally valid confidence interval (C'S) and the hybrid
confidence interval (C'S*), divided by the median length of the projection confidence interval (C'S%), as
well as the frequency with which C'S and C'S is longer than C'S%. In the Chicago (Los Angeles) data
calibrations, the covariance matrix 3 is set equal to a consistent estimate from the Chicago (Los Angeles)
Card et al. (2008) data. The column “DGP” refers to the specification of the nuisance function X¢g(-),
which along with other parameters, determines the value of the mean vector p (see Appendix A.1 for details).
The function X¢y(+) is set equal to the value it takes when there is no coefficient change in DGP (i), the
value it takes when there is a single large coefficient change in DGP (ii) and its data-calibrated value in DGP
(iii). For DGP (ii) the true threshold location is set to equal the estimate from the Card et al. (2008) data.
All other parameters that determine p are set equal to consistent estimates from the Card et al. (2008) data.

by the exceedance probability. This latter feature reflects the fact that the density of
Y (0)— iy (9) is bimodal with very little mass near zero in this specification.

Turning to median absolute studentized error, we see that all estimators perform
similarly when the series has a single large break. By contrast, the median-unbiased
estimator ji1 performs better than the conventional estimator Y (A) in specification (i)
(no break) but performs worse in specification (iii). The hybrid estimator 4 is weakly
better than the unbiased estimator in all cases, with perfomance gains in case (12) and equal
performance in the other two cases. The performance gains are again more pronounced
if one considers higher quantiles of the absolute error distribution, as reported in Section

C of the Supplemental Appendix.
6.1 Split-Sample Procedures

~

We have so far focused on inference on py (6) and compared the performance of our con-
ditional and hybrid procedures to the projection confidence interval C'S% and conventional
estimator Y (f). However Card et al. (2008) instead adopt a sample splitting approach,
using two thirds of the data to select the break date and one third of the data for inference.

In this section we compare the performance of this conventional split-sample procedure
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Table 3: Bias and Median Absolute Error in Tipping Point Simulations

Pru{,a>,uy(9)}—% Medu(“ ;:EZ;) Medu< e )

DGP poo @ YO o YO o Y()
Chicago Data Calibration
(i) 0 0 0.01 -0.01 0.01 064 151 138 1.52
(ii) -0.01 -0.01 -0.01 -0.03 -0.03 -0.03 0.66 0.66 0.66
(iii) -0.01 -0.01 -0.15 -0.03 -0.03 -0.37 0.83 0.83 0.71
Los Angeles Data Calibration

(i) 0 0 0 0 0 -0.8 138 129 1.80
(ii) 0 0 0 0.01 001 0.01 0.67 0.67 0.67
(iii) 0 0 0006 0 -001 -016 0.74 0.74 0.68

This table reports the deviation of the probability that an estimator exceeds py (f) from 1/2, the median

studentized estimation error, and the median studentized absolute estimation error for the conditionally

median-unbiased estimator (f 1 ), the hybrid estimator (if) and the conventional estimator (Y()). In
2

the Chicago (Los Angeles) data calibrations, the covariance matrix ¥ is set equal to a consistent estimate
from the Chicago (Los Angeles) Card et al. (2008) data. The column “DGP” refers to the specification
of the nuisance function Xy (-), which along with other parameters, determines the value of the mean
vector f (see Appendix A.1 for details). The function X¢,(-) is set equal to the value it takes when there
is no coefficient change in DGP (i), the value it takes when there is a single large coefficient change in
DGP (ii) and its data-calibrated value in DGP (iii). For DGP (ii) the true threshold location is set to
equal the estimate from the Card et al. (2008) data. All other parameters that determine u are set equal
to consistent estimates from the Card et al. (2008) data.

to that of (asymptotic versions of) the dominating split-sample alternative discussed in
Section 5. We consider the same calibrations to the Card et al. (2008) data as above and
choose the sample split as in Card et al. (2008).

Table 4 compares asymptotic versions of the conventional split-sample confidence
interval C'Sgg and estimator Y2(6) used by Card et al. (2008) to the asymptotic versions
of our (equal-tailed) alternative split-sample confidence interval C4g and median-unbiased

estimator f1' ., where we drop the n subscript in the table to emphasize that we consider
2

the asymptofii problem. These results clearly reflect the dominance of the alternative
split-sample procedures, with substantial performance improvements for both confidence
intervals and estimators across all calibrations. These improvements are largest in the
true break case (ii), but are nearly as large in the data-calibrated case (iii). Section
C of the Supplemental Appendix provides ratios of the 5%, 25% 50t 75 and 95t

quantiles of the lengths of C'Sgq relative to the those of C'Ssg as well as the quantiles of
‘ﬂ—MY(él)

/Sy (V) for ji= jit 4g and f1=Y2(0"). There, our new split-sample proce-
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dures can be seen to dominate the conventional ones across all quantiles and simulation

designs considered, often by very wide margins.

Table 4: Performance Measures of Split-Sample Procedures

Median Length Med |ii—py (6Y)]
Relative to C'Sgg P\ VEv @Y

DGP CS4s ,[L;SS Y2(01)
Chicago Data Calibration
(i) 0.83 0.57 0.67
(ii) 0.58 0.38 0.66
(iii) 0.64 0.44 0.67
Los Angeles Data Calibration
(i) 0.78 0.55 0.69
(ii) 0.58 0.39 0.67
(iii) 0.59 0.42 0.68

This table reports the median length of the alternative split-sample confidence interval (C'S ﬁs), divided

by the median length of the conventional split-sample confidence interval (CSsg), and the median

studentized absolute estimation error of the median-unbiased alternative split-sample estimator (fi4 s5)
5

and of the conventional split-sample estimator (Y2(6)). In the Chicago (Los Angeles) data calibrations,
the covariance matrix ¥ is set equal to a consistent estimate from the Chicago (Los Angeles) Card et al.
(2008) data. The column “DGP” refers to the specification of the nuisance function 3¢y (-), which along
with other parameters, determines the value of the mean vector u (see Appendix A.1 for details). The
function ¥ (-) is set equal to the value it takes when there is no coefficient change in DGP (i), the value it
takes when there is a single large coefficient change in DGP (ii) and its data-calibrated value in DGP (iii).
For DGP (ii) the true threshold location is set to equal the estimate from the Card et al. (2008) data. All
other parameters that determine p are set equal to consistent estimates from the Card et al. (2008) data.
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A Appendix: Proofs for Results in Section 3

Proof of Proposition 1 Note the following equivalence of events:

(=0} = {i)g(é)?zixj(e)? vee@}

Jj=1

— {Z [Zg)d(é)—l—zxyd(é)zﬁ/(é>ily<é)] i

j=1
>3 [Zé,j (9)+2m(9,9)zy(e)flyw)} vee@}
=1
— {A(é,e)y<é>2+BZ(é,9)Y(é)+cz<é,e) >0 Ve @}, (13)
for A(6,0), Bz(0,0), and C(0,0) as defined in the statement of the proposition.
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By the quadratic formula, (13) is equivalent to the event

{Bz(é,e) D (8.9) . —By(0.0)+1/D4(0.6)

2A(0.,0) <Y< 2A(0.0)

Vo€ O s.t. A(A,0)<0 and Dy(6,6)>0,

Y )< —B(6.,0) - D2(6.0) o Y (H)> —BZ(9,6)+~\ /D,(6.,)
2A(6.0) 2A(0,0)
V0ecO s.t. A(B,0)>0 and D(6,6) >0,
Y(0)> w
Bz(6,6)
Y (0)< w
B(0.0)
C2(0,0)>0V0cO st. AB,9)=DBy

o
C4(0,0)>0 Y00 st. Dy(0.9) <o}

{Y(é)e m _BZ<679>_\/M —BZ(9,9)+\/M

) ) 2A(6,0) ’ 2A(6,0)
0€0:A(0,0)<0,Dz(6,0)>0

. N (OO’BZ(Q,H) Dz(e,e)] . !BZ(G,G)—H/DZ(G,G) ’OO)
(0,0)>0

V0cO st. A(6,0)=0 and B4(,6) >0,

V0cO s.t. A(6,0)=0 and By (0,0) <0,

0)=0,

0€©:A(0,0)>0,Dz 2A(9’9) QA(Q 79)

N N H2(0.0)00) N (—o0HA(0.9)] }

0€©:A(9,0)=0,B(0,0)>0 0€0:A(6,0)=0,B(0,0)<0

ﬂ{ i min i 02(9,0)20}
0€6:A(9,0)=B(0,0)=0 or Dz(6,0)<0

:{Y(é)e [ “max  Gz(0.9), ~min KZ(éﬂ)}
0€6:A(9,0)<0,D(8,0)>0 0€6:A(9,0)<0,D(8,0)>0

N [ _max Hz(éﬂ),oo) N (—oo, _min HZ(H,Q)}
0€0:A(9,0)=0,B7 (6,0)>0 0€6:A(8,0)=0,B7(0,0)<0

N N <—oo,GZ(é,e)} U [Kz(é,e),oo) }m{wé,zg,) > o}

0€O:A(0,0)>0,D7(8,0)>0
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{Y(é)e AR G O SO }m{wéz@»o}

0€0:4(0,0)>0,D(0,0)>0

for D2(0.0), Gz(0,0), Hz(0.0), K,(8,0), £4(8), (%(0.,0), ul(0,0), u%(8), and V(B,Z;) again

defined in the statement of the proposition. The result follows immediately. [

Proof of Corollary 1 (i) The result follows directly from Proposition 1 after specializing
the problem of AKM to the case for which X =Y and dx =1. More specifically, in the
notation of Proposition 1, A(8,8)=1—x(8,0)%/Sx(6)? so that A(A,0) < (=)0 if and only if
12x(6,0)|> (=)2x(8), B(0,0)=—27;(0)%x(8,0)/%x(8) so that By(6,0)>0 if and only if
Yx(0,0)Z;5(0) <0 and D(0,0)=47Z5(A)? so that D(6,6) >0 holds everywhere. Moreover,
V(6,75) >0 vacuously holds everywhere since C7(6,0) = —Z;(6)? so that V(6,7Z;) <0 would
imply that Z;(6)#0 for some 6 € © for which both [Zx (6,0)|=Xx () and Xx (6,0) Z;(0) =0.
This is impossible given the full rank assumption on Xy, which implies X(é) >0.

(ii) Specializing the result in part (i), we have

(X(®):0=01= <—oo,GZ(é,e)} U [Kz(é,e),oo).

0cO

But note that ~
—Sx@)Z;0) ¢

G001 Tosen 14020

S U AU AP
Sx (0)-3x(6.0) 0

and

Kz(00)={ *xO->x(00) it Z(0) >

0
ExO)\ZO) -

Sxresxes 1 Z0)<0,
which implies Gz(6,8) <0 and K(6,0) >0 for all 6,0 € © and thus the result in part (ii). O

Proof of Proposition 2 Arguments as in the proof of Proposition 1 show that

Y(§)< B0~y D) Y(§)> —520) +y Da®) D(8)>0
24(0) 24(0)

{IX@O)P>c}=
N{Cz(0)>0,D4(f) <0}

if A(A)>0 and {||X(9)|]>>c} ={C%(0) >0} if A(f) =0, since A(f) >0 by definition.
Then we can immediately see that if V(Z;) >0 then Y, (1,Z;) = (£(Z;)U(Z;))°, while
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V,(1,Z5) =0 otherwise. [J
A.1 Threshold Regression Limit Experiment Details

This section provides additional results to supplement our discussion of the threshold
regression example in the text.

We begin by establishing the weak convergence (10). To do so, we show uniform
convergence over any compact set © in the interior of the support of Q;, which implies
uniform convergence over 6. Note, in particular, that under (8) and (9) the continuous

mapping theorem implies that
Xn(0) =X (0)

_ ( Ec<g)—1/2209(g> >+< EC(Q) 1/2G(9) )
(Zo(00) =0 (6)) ™ (Zeg(00) =Ty (6)) (So(00)=Ta(6))*(G(00)—G(6))

(14)
uniformly on ©, where we use the following slight abuse of notation:
1 n
— E C’C’—>pEc E CCI Qz) _)pZCg( ), and 7 E CZUZ:>G(OO>
n
i=1

Hence, if we define px(6) to equal the first term, we obtain the convergence (10) for X,.

Likewise, standard regression algebra (e.g. the FWL theorem) shows that
Vb (0)=An(0) " 1Ba(0) +Ca(0)],

for

A, (0) EnliCngl{Qi >0} — (wiq{:ﬂ{@ >9}> (nli@q{> ) <n1iqc;1{cgi >9}> :
— - e —
B,,( —120 C'{Q; >0 g(Q:)— ( ZC C'1{Q; >9}> (n—lzn:qc;) R <n—1§n:ci0;g(cgi)> :
=1 =1 =1
C(0) zn—miqm{@ >0} — <n—120i0;1{@ >9}> (mliqc*;) ; (mlﬂi(m) :
im1 Py im1 i1
Under (8) and (9), however, the continuous mapping theorem implies that

An(0) = B (00) = Xe(0) — (B (00) = Za(9)) B (00) ™ (Be(00) — S (6))
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=Y0(0) =S (0)Zc(00) ' B (0) =A"(0),
B (60) =5 Xcg(00) =g (0) — (e (00) =X (0)) B (00) ™ Ey(00)
=Y0(0)Xc(00) ™ Say(00) =Sy (0) =B (9),
Cn(0) = G(00) = G(0) — (Sc(00) — X (6)) Xe(o0) ' G(o0)
=Yc(0)Xc(00) ™' G(o0) —G(0) =C"(0)

all uniformly on ©, where this convergence holds jointly with that for X,. By another

application of the continuous mapping theorem,

Y, (0) =¢;\/nd(0) =Y (0) =€, A"(0) " [B*(0)+C*(9)]. (15)

Hence, if we define p1y (6)=¢}.A(6) " B(6), we obtain the convergence (10), as desired.
We now obtain explicit expressions for the elements of the variance matrix X(P) in
terms of the consistently estimable quantities ¥ (6) and E[G(8)G(8)], dropping explicit

dependence of expectation operators on P to ease notation. From (14) we obtain

Zx(w):( S(0.0) £R(0.0) )

S210.0) S2(0.9)

where

SR (0.0)=Sc(0)"*E[G(O)G(0)]2c(0) 7,

SR(0.0)=Sc(0)"*(E[G(0)G(00)]| - E[G(0)G(0)])(Sc(00) — S () /2,

S3(0.0)=(Sc(00) —Sc(0)) ™ 2(E[G(00)G(0)]| - E[G(0)G(0) ) S (0) /2,

S3%(0.0)=(Sc(00) =S ()™ (E[G(00)G(00)' | — E[G(00)G(0) ] — E[G(0)G(00) |+ E[G(0)G(0)])
X (S (00)— e ()72

From (14) and (15) we obtain

Sy (0.0)= S (0)V2E[G(0)C(0))A*(0) ei

( (Sc(00)—Xe (6)) A (E[G(c0)C”

(
zyxw,é):( ady ”QE[G@)C; (0y).4*(0
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where

E[G(9)C" (6)]=E[G(6)G(00)|Ec(00) ™' Ee(B) — EIG(0)G(8)'].
Finally, from (15) we obtain
Sy (6.0) =} A (6) " B[C*(6)C(9)]A"(9) e,
where

E[C*(0)C"(0)]=Zc(0) Sc(00) " ElG(00)G(00) [Be(00) ™ e (f) — e (0)Ee(00) " E[G(00)G(6)']
~E[G(0)G(00) [Zc(B)Ec(00) ' +E[G(O)G(B) ).
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Inference After Estimation of Breaks

Isaiah Andrews Toru Kitagawa Adam McCloskey
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This Supplemental Appendix contains proofs and additional results for the paper
“Inference After Estimation of Breaks.” Section A collects proofs of the formal uniform
asymptotic validity statements made in Section 4.2 of the main text. Section B contains
a description of and theoretical results for confidence intervals based upon uniformly most
accurate unbiased confidence intervals in the conditional norm-maximization problem.
Finally, Section C presents additional Monte Carlo simulation results for the confidence

intervals discussed both in the main text and in Section B of this Supplemental Appendix.

A Proofs of Uniform Asymptotic Validity Results

To prove uniformity in norm-maximization settings, we rely on some of the lemmas in

AKM, along with a few additional results.

Lemma 1
Under Assumptions 2 and 4, for any sequence of confidence sets C'S,,, any sequence of sets
Cn(P) indexed by P, Cn(P)zl{ (Xn,Yn,in> ECn(P)}, and any constant o, to show that

limsup sup Prp{uy,n (9n;P) €CS,|C,(P)= 1} —a‘Prp{Cn(P) =1}=0

n—oc PEP,
it suffices to show that for all subsequences {ns} C{n}, {P,.} €P>=x P, with:
1 X(P,) =S € {Z: /A< i (Bx) S Amax(Ex) SAL/AL Sy (0) <A}
2. (pxn, (Pg) sy, (Pn,)) = (W15 ) for (W) finite
we have

lim Prp, {[Lyné <@n5 ;Pns> €CS,.|Ch.(Po)= 1} =q.

5—00
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Proof: Follows by the same argument as in the proof of Lemma 5 in AKM. [J
To state the next lemma, for Z; , ;(€) the jth element of Z;  (6), let us define

9 4x

A0(00) =S50 (5) "X [Brrns(7) v (09) |

j=1
B2 () =250 (0) "3 B0 )10 (0) S0 (99 0)
j=1

Can (39) =320y (0) 20007

J=1

Dy (é,e) — By, (é,e) “_aa, (é,e) Cn (é,e) ,

o @9) . By, (é,e) /Dy (é,e) o (é,e> . By, (é,a) +/Dyn (é,e)

24, (é,e) 24, (é,a)

and

Cun (é,e)

By (é,e)) '

Hy, (?),9) __

Based on these objects, let us further define

o (é> - ma,x{ eeezAn(é,é)?i%,XDz,n (é,e)goGZ’" (é’9> '0co:A,, (é,egi%ézm (979)>0HZ’" (@)9) }

EQZ’" (970> B max{eee):An (é,eﬁgﬁ) Zom (é,e)zoGZ’n <é’9) ‘9co:A, (é,eﬁ%ﬁ% Zom (é,e)>oHZ’n <é’0) Gz (éﬁ) }

uz o (9,0) :min{eee;An(é,e)IE%){lD Z,n(é,e)zoKZ’” (é,@) ’9ee:An(é,9)n:1%){lBZ,n (é,e)<0HZ’n <é’0) K7 (é’0> }

uzz n <é> =min min Ky, <é ,9) , min Hyz, <é ,9) .
’ 0€0:A,,(6,0)<0,Dz,5,(0,0)>0 0€0:A(0,0)=0,Bz,,(0,0)<0

Lemma 2
Under Assumptions 3 and 1, for any {ns} and {P,,} satisfying conditions (1) and (2) of
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Lemma 1,

(Yns Sl (9) . (é,e) al (é,e) W (9))
iy (Y*,z*,é,e;‘ (9) e (é,@) s (é,e) iz (9)) :

where the objects on the right hand side are calculated based on (X*,Y*,3*) for

X* * *
( o )NN(,u 2.

Proof: Note that Assumption 1 along with condition (2) of Lemma 1 imply that

Xn, — X N(p*,2")
Y:ns d y* 22 ;

while Assumption 3 implies that f]ns —p 2"

If we define

<A* (é,e) B (é,e) C (é,e) D%, (é,e) e (é,e) K (é,e) 3, (?),0))

as the analog of

(An (é,e) By, (9,9) Con (9,9) Dz (é,e) Gz (é,e) K (é,e) Hy (é,e) )

based on (X*,Y* ¥*), the continuous mapping theorem implies that

(40 (8.0).Bz0. (8.0).C. (0.0) ) —a (A*(00) B (8.0).C5(0.0) )

where this convergence holds jointly over all (9,@) cO? If A* <§,8> #0, another application

of the continuous mapping theorem implies that'”

(Dz,ns (é,e) ferm (é,e) Ko, (9,9) ) "y (D*Z (é,e) e (é,e) K (9,9) ) .

"Note that we allow the possibility that (Dz,n (éﬂ) D7 (é,@)) may be negative, so
(Gz,n (9,9) Kzn (é,@)) and (G*Z (9,0) K (9,0)) may be complex-valued.
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If instead A* (éﬁ) =0, note that

el GO () =x;0-— 0),. (9)

YOO

Hence, in this setting

) dx

B (9,9) —9%y (é) 3 [X; (9) —X;(e)]

J=1

and condition (1) of Lemma 1 implies that PT{B} (é,@) :O} =0 for all ##6. Hence,
PT{D*Z (@,6’) >0} =1. Moreover, note that for b0 and all ¢

hmb\/624ac{§ if b<0

0 2 —co ifb>0

while

I —b+vb—4dac oo ifb<0
11 = .
=0 2a —¢ ifb>0

b
Hence, if A* (6,@) =0,
By, (é,e) —+/Dz. (9,9)

24, (é,e)

—q—o01{B;(00) >0} +H; (6.0)
and
By, (é,e) +1/Dzn (é,e)
24, (é,e)

with the convention that co-0=0. Finally, another application of the continuous mapping
theorem shows that when A* (é,@) =0,

—>doo'1{B} (é,e) <0}+H} (é,e),

Hy.. (9,9) Sl (é,e) .
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Since all of these convergence results hold jointly over (9,@) € 6?2, another application

of the continuous mapping theorem implies that

(2, (0) 2., (0.0) ik, (0.0) 2, (9)) —a (05 (0).2: (0.0) it (0) w2 (9) ).

Moreover, 0 is almost everywhere continuous in X*, so that (Yn,fln,én) —q (Y*,Z*,é),
where this convergence occurs jointly with that above. Thus, we have established the
desired result. [J

To state our next two lemmas, we consider sets that can be written as finite unions

of disjoint intervals, Y =U[_ [¢* u*].

Lemma 3
For FTN(-;M,EY(Q),)/K ) the distribution function for ¢ with

(~EEeVR £~ N (1S (0)),
Fry (Y(@);N,EY(G),J)K) is continuous on the set

{ (Y (0),1,5y () ER3 01 € [—o00,00),

_ 2y (6) >0, ‘ukfﬁk‘>0,uk25k2uk_l or all k ;.
{ék}kKZQERK_I,{uk}lelG]RK_l,uKE(—oo,oo] v() zk: J

Proof: Note that we can write

S Y (0) > %) <FN (%) —FN( ﬁzi&)))
2k (FN (u;—;’fg)> _FN< ékz?é@)))

Hence, we trivially obtain continuity for Xy (6) >0,Y () ER,u€R, 0< >, |uf —¢*| < cc.

Frn (Y (0);.3y (0), V") =

Moreover, as in the proof of Lemma 9 of AKM we retain continuity as we allow ¢! — —o0

and/or u® — oo, in the sense that for a sequence of sets Y5 with

{Evkmus@}kl(ﬂ — {éﬁo’ulgo }5:1

with ¢}, =—o0 and/or uX =00 and the other elements finite,

Ern (Y (0), 2y (0).Y5) = Fra (Y (0):.5v(0),Y%). O
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Lemma 4
Under Assumptions 1-4, for either C,, = 1{@n = é} or

Cn = 1{én = é,MY,n (émpn) € CS]ﬁDJL }7
there exists € >0 such that

liminf inf Prp{C,=1}>¢.

n—o0 pEPn,

Hence, for any sequence of variables V,,,

limsup sup |Ep[V,|C,=1]|Prp{C,=1}=0

n—oo PeP,

if and only if
limsup sup |Ep[V,|C,=1]|=0.

n—oo PeP,

Proof of Lemma 4 By the same argument as in the proof of Lemma 5 in AKM, it

suffices to consider sequences as in Lemma 1, where by Assumption 4,

x4l | < C.

Note, next, that for (X*,Y*) ~ N ((u%45),%), Sy full-rank, and 6* =argmax ;.|| X*(8)]],
6" has full support. Moreover, 6" is almost everywhere continuous in X*, so by the contin-

uous mapping theorem, 6, —46* under {n,}, {P,.}. Moreover, Pr{@* :é} is continuous
in u% and Xx, and the set of p%, Xx values we consider is compact. Hence, Pr{é* :é} is

bounded away from zero, from which the bound for C,, = 1{9n:9} follows. The claim for

Cp= 1{9n:é,wn (@n,Pn) ecsﬁ,n},

follows by the same argument, using almost everywhere continuity of C’SJBD in the limit

problem. The final claim is then immediate. [

Proof of Proposition 3 As in the proof of Proposition 9 of AKM, note that

ﬂa,nZMY,n (énap) < My m (émp) GC'SU,—,n
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for C'Sy — = (—00,flan|. Hence, by Lemmas 1 and 4, to prove that (11) holds it suffices
to show that for all {n,} and {P,,} such that conditions (1) and (2) of Lemma 1 hold
with C,,= 1{@n:é}, we have

lim Prp, {[Lyms <ém ;Pm,) €CSy_n, 9ns zé} =q. (16)

§—00

To this end, note that for Fry (Y (6);1,5y(6),Y%) as defined in the statement of Lemma

3, the estimator fi,,,, solves

Fry (Y;L (én) %ixn (én> 7yn> =l-a,
e N )k )] 0) @)

0€©:4,,(0,0)>0,D 7., (0,0)>0

for

(see Proposition 1). The set ), can be written as a finite union of disjoint intervals by
DeMorgan’s Laws.
The cdf Fry (Y;L <9n> ; ,u,iym (én> ,yn> is strictly decreasing in p as argued in the proof

of Proposition 8 of AKM, and is increasing in Y, (@) . Hence, fiqn > vy <§n;P) if and only if
FTN <Y:n (én> My n <émp> 7§Y,n (én> ayn> Z I—a.

Lemma 2 shows that <Yn (9n> Sy, <@n> ,yns,éns) converges in distribution as s— 00,
so since Fry is continuous by Lemma 3 while argmaxy||X*(0)| is almost everywhere

continuous for X*, the continuous mapping theorem implies that

Al il

where YV* is the analog of ), calculated based on (X*,Y*3*).

Since we can write

Prp, {FTN (Yns (9n> iy, (é;Pm) Sy, (t%) ,yns) >1—alf,, :é}

18Since ), can be represented as a finite union of intervals, we use Y, —q)* to denote joint convergence
in distribution of (i) the number of intervals and (ii) the endpoints of the intervals.
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B [P (Y (B v (8:2..) S, (B0 ) 0. 21 -0 J1{0, =0}
i{a =] |

and by construction
Frx (V¥ (8)tvn (852 ) 55 (0) ¥70) lo=0~U0,1),
and Pr{@z@} =p* >0 by Assumption 4, we thus have that
Pro, {Brx (Y. (00 )iy, (0:Pn.) Sy (B0 ) D) 2 1-alf, =0}

— PT{FTN <Y* (é) Ly <é> 2y (9) ,y*) >1 —oz|9: 6’} =q,
which verifies (16).
Since this argument holds for all 6O, and Assumptions 1 and 2 imply that for all
0,0 €O with 040,
lim sup Pre{ | X,(6)] = HXn (o) H b =0,
n—oopep,

Lemma 6 of AKM implies (12). O

Proof of Corollary 2 Follows from Proposition 3 by the same argument used to prove
Corollary 1 of AKM. [J

Proof of Proposition 4 Follows by the same argument as in the proof of Proposition
11 of AKM. OJ

Proof of Proposition 5 Follows by an argument along the same lines as in the proof of
Proposition 12 of AKM, using Lemmas 1, 2, 3, and 4 in place of Lemmas 5, 8, and 9 in AKM,
and using the conditioning event {Y,,(6,) € Y2} ={Y,(0,) €V, }N { Uy (9,“13") € CS]’Bjyn}.
OJ

Proof of Corollary 3 Follows by the same argument as in the proof of Corollary 2 in
AKM. O

B Uniformly Most Accurate Unbiased Confidence Intervals

This section provides uniform asymptotic results for the uniformly most accurate unbiased
confidence sets of AKM, and related procedures, in the norm-maximization setting.

In the inference problem that conditions on 0 and 4, rather than considering equal-tailed
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intervals, we can alternatively consider confidence intervals that are unbiased, in the sense
that the probability of covering any given false parameter value is bounded above by 1—a.
AKM develop a confidence interval, C'Sy, that is uniformly most accurate unbiased in the
conditional problem, in the sense that it has a weakly lower probability of covering any
given incorrect parameter value than does any other unbiased confidence set while still

maintaing correct conditional coverage 1—a:

Pr“{uy(é)EC'SUW:éﬁ:i}zl—a for all p, 0, 3.

See AKM for the construction of these confidence sets.
The feasible versions of these intervals C'Sy,, are defined identically to C'Sy after
replacing 0 by @n, Y by Y, ¥ by 3., and Zy by Zj,,. Here we establish that these feasible

intervals have correct coverage both conditionally and unconditionally.

Proposition 6

Under Assumptions 1-/,

lim sup P?”P{My’n<én;P> GC'SU,n|én=é}—(1—a)‘:0, (18)

n—oopep,

for all 0€©, and

lim sup Prp{uxn@n;P) ECSU,n}—(l—a)‘:O. (19)

n—copep,

Proof: Note that by the definition of C'Sy,,

Wy <9n;P> €eCSun
e 0 oo (3P) S0 ) 20) o ) 5,0)7)

where ), is as defined in (17) while (¢;(1t,2y(0),Vn),cu(1t,2y(0),V,)) are as defined imme-
diately before Lemma 5 below, after replacing V¥ with )),.

By Lemmas 1 and 4, to prove that (18) holds it suffices to show that for all {ns} and
{P,.} satisfying conditions (1) and (2) of Lemma 1,
lim Prp,_ {,qus <ém> eCSyn. |0, :é} =1—q.

5—00
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Thus, it suffices to show that

i Pro 4 Y., @n) . [cz (MYns (9 ) iYns (9 s)vyns>’ b, —0\=1 a

P
NENENENNES)

To this end, note that by Lemma 2,

5§—00

(ns,yns,im,1{éns :?)}) 5 (Y*,y*,z* {é 0})
and thus, by Lemma 5 and the continuous mapping theorem,
( ( ) ) (MYns (é ns) 23 e ( ) yns) "Cu (MYns (0 Pns) s23Y e %) yns) 71{§ns :é}>
= (v (0) (- (0) 2 (6).97 ) i (8) =5 (2) ) {0 =0} ).

By construction,

Pr{v*(0) efa(m (6)3°55 (9) ) o (1 (0). 3755 (9) ) [10=0} =1-0

and Y* (é) |9:§,Y* (é) e Y* follows a truncated normal distribution, so

() =65 0)550)7) {0 0) =6 05 0) 7)) =

Hence,

o) [ RS 1)0) |,
Pas n( ) C(u ( )Eyng’“)y")l s

_ B [{Yns (O JE[er(ivins (0:Prs ) Sving 9ns)[yns>6u(ﬁm 0,Pn: ) S¥ing (Ons ) Vs )| }1{00s=0}]
B[{y(0)ele (s (5)55 (0)."). cﬁuile) s @)=l _
B[1{0=0}| ’

as we wanted to show, so (18) follows by Lemma 5 of AKM.

Since this result again holds for all § € ©, (19) follows immediately by the same

argument as in the proof of Proposition 3. [J

9Note that when 6 =6, Y* is either equal to the real line or contains at least one interval with a
continuously distributed endpoint. Hence, the almost-everywhere continuity established in Lemma 5 is
sufficient for us to apply the continuous mapping theorem.
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AKM also introduces the analogous 1—a level hybrid confidence interval, C'S#, that
modifies the conditioning set in its construction to condition on both 6 and the event that
ﬂy(é) € C’Sg for some 0 <[ <a. Again, the feasible versions of these intervals C’S{{n are
defined identically to C'Sy after replacing 6 by 0,, Y by Y,, X by S, and Zy by Zj .

These intervals again have asymptotically correct unconditional coverage.

Proposition 7

Under Assumptions 1-/,

R P . 1—
lim sup Prp{ [y <9n;P) eCSH 10, =011y (Gn;P> ecsf,n} %,
n—oopecp, ’ ) 1_B
for all Oc O,
. . . A . H > _
lggloréfplgnPrp{uxn <9n,P> S C’SUm} >1—a,
and

. 1—
limsup sup Prp{,uym <9n;P> € C’S{]{n} < @ <l—a+p.
n—oo PeP, ’ 1_ﬁ

Proof: Follows by the same argument as the proof of Proposition 5, using Lemma 5
rather than Lemma 3. [

To state the following lemma, let

(Cl (H’?EY (9) ,yK) &N ([L,Ey (9) ’yK)> (20)

solve
Pr{C€la,cl)}=1-a

ElCH{Ce a,cu}]=(1—a) E[C]
for ¢ as in Lemma 3.

Lemma 5
The function (20) is continuous in (p,Xy(0), V%) for Lebesque almost-every {fk,uk}le
on the set

{ (1.Sy (8)) €R2 0 € [—00,00),

_ Yy (0)>0, kb >0uF >0 >yF1 k.
{E’“}fZQERK_l,{u’“};{:llERK‘17uKe(—oo,oo] v (0)> ;]u |>0u" > 0" >uF! for a }

Moreover, if we fix any (1,2 (0)) in this set, and fix all but one element of {Kk,uk}le,

(20) is almost-everywhere continuous in the remaining element.
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Proof: Note that

RN it G € i €.,
= () ()

ElC{¢ea,cl = ECIC€la,c]lPr{Cea,cu}

while

where

S {ur >0, > 00} (fN (kaCz—u) —fx (u’mcu—u)
BICICE e =t/ To () — 0 o))
> Hub>cpe, > 00} (FN (“k/\cu—“> —_Fy (i’“vw—u))

Thus,

E[C1{¢€lened}] = MZkl{UkZCZ’CUZEk} (FN (UAEY_(;;) i (Zkvzciwl;))
= () ()

and

Using analogous reasoning to that in the proof of Lemma 10 in AKM, we can write

(20) as the solution to
9/ (0.9 ) =0 (21)

for

g(cw,\/ Ey(e),yK) =

o1



uPAc,— Fve — ub— ok —
Ekl{ukzcl,cuzék}<FN(M)—FN< ng(g‘;)—(1—a)<FN(\/zTZQ)>—FN<\/ZT‘(;)>)>
5V u“ANeg—p ok — ut—pu
St >ae, >0 }(f ( /7\;}/(9”) fN< /—gy((;)(la)(fN( Ty%)fzv( Tv@)))
Note that by construction

(cu\/fy) (c 15:0,7/y (0), VK — )

which implies that

(a (/L,Ey(&),yK) Cu (u,zy(e),yf‘)) = (p+a (O,Ey(ﬁ),yK—,u) e, 0,2y (H)Q)K—u))

so to prove continuity it suffices to consider the case with p=0.
Next, note that g(c;O,\ /Yy (0),VE > is almost everywhere differentiable with respect

to (¢,cy), with derivative

Zkl{u’“>cl>€’“}\/ (\/Z’ ) Zkl{uk>cu>£k}\/ (\/2 )
S Hut >a> 0t fw(\/ﬁ) Yt > >t fN<\/2&;(0))

though it is non-differentiable if ¢, € {uk ,ﬁk} or ¢ € {uk ,fk} for some k.

Note, however, that if we fix all but one element of {Kk,uk}kil and change the remaining
element, there exists a solution ¢ to (21) with ¢, € (#,w’) and ¢ € (¢*,u*) for some j,k
Lebesgue almost-everywhere by arguments along the same lines as in the proof of Lemma
10 of AKM. Likewise, the set of values such that there exists a solution ¢ to (21) with
c=c¢, has Lebesgue measure zero. The implicit function theorem thus implies that (20)
is almost-everywhere continuously differentiable in the element we have selected. Since we
can repeat this argument for each element of {Ek,uk}le, we obtain that (20) is elementwise
continuously differentiable in {Kk,uk}klil Lebesgue almost everywhere. Moreover, as in the
proof of Lemma 10 of AKM, the form of (20) implies that the same remains true if we

take /' — —o0 or u —o00. O

C Additional Results for Tipping Point Simulations

We begin by presenting results analogous to those presented in Tables 1 and 2 of the main
text for the conditional and hybrid confidence intervals based upon the uniformly most accu-

rate unbiased approach. More specifically, Table 5 reports the unconditional coverage proba-
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bility for the confidence intervals C'Syy and C'S# while Table 6 compares the lengths of C'Syy
and C'SH to C'S%. The values in these two tables can be seen to be quite similar to the values

corresponding to the confidence intervals C'S and C'S¥ in Tables 1 and 2 of the main text.

Table 5: Unconditional Coverage Probability

DGP CSy CSH
Chicago Data Calibration
(i) 0.95 0.949
(ii) 0.95 0.955
(iii) 0.946 0.951
Los Angeles Data Calibration

(i) 0948  0.948
(ii) 0952  0.956
(ii) 0951  0.954

This table reports the unconditional coverage probability of py (9) for the conditionally valid uniformly
most accurate unbiased confidence interval (C'Sy) and the hybrid confidence interval based upon the
uniformly most accurate unbiased conditional confidence interval (C'S{), both evaluated at the nominal
coverage level of 95%. In the Chicago (Los Angeles) data calibrations, the covariance matrix 3 is set
equal to a consistent estimate from the Chicago (Los Angeles) Card et al. (2008) data. The column
“DGP” refers to the specification of the nuisance function ¥¢4(-), which along with other parameters,
determines the value of the mean vector 1 (see Appendix A.1 of the main text for details). The function
Ycg(+) is set equal to the value it takes when there is no coefficient change in DGP (i), the value it takes
when there is a single large coefficient change in DGP (ii) and its data-calibrated value in DGP (iii).
For DGP (ii) the true threshold location is set to equal the estimate from the Card et al. (2008) data. All
other parameters that determine u are set equal to consistent estimates from the Card et al. (2008) data.

Tables 7 and 8 provide the ratios of the 5, 25, 50 75" and 95" quantiles of the
lengths of C'S, CSy, CSH and CSH relative to the corresponding length quantiles of
CS$ for the tipping point data-calibrated designs described in Section 6 of the main text.
Looking at the upper quantiles in Table 7, we can see that the conditional confidence
intervals C'S' and C'Syy can become very wide in the absence of a clear break. Conversely,
as seen in Table 8, the hybrid intervals CS? and C'SH dominate C'S% across all quantiles
and simulation designs we examined.

Table 9 reports the same quantiles of the studentized absolute errors of ,LAL%, pf and
2

Y(é) The main features of this table are similar to those of Table 7: the unconditional
estimator ,u1 can exhibit very large absolute errors while the hybrid estimator ,LL1 does
not exhibit such extreme values. In addition, note that the hybrid estimator ,u1 not only
exhibits minimal bias, in contrast to the standard estimator Y(Q), but also exh1b1ts lower

studentized absolute errors across most quantiles and designs considered.
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Table 6: Length of Confidence Sets Relative to C'SE in Tipping Point Simulations

Median Length Relative to C'S%  Probability Longer than C'S%

DGP C'Sy CSH CSy CSH
Chicago Data Calibration
(i) 1.38 0.94 0.89 0
(ii) 0.72 0.74 0 0
(iii) 0.93 0.87 0.44 0
Los Angeles Data Calibration
(i) 1.29 0.85 0.62 0
(i1) 0.68 0.69 0 0
(iii) 0.70 0.72 0.19 0

This table reports the median length of the conditionally valid uniformly most accurate unbiased
confidence interval (C'Syy) and the hybrid confidence interval based upon the uniformly most accurate
unbiased conditional confidence interval (C’S{]{ ), divided by the median length of the projection confidence
interval (C'S%), as well as the frequency with which C'Syy and C'S# is longer than C'S%. In the Chicago
(Los Angeles) data calibrations, the covariance matrix ¥ is set equal to a consistent estimate from the
Chicago (Los Angeles) Card et al. (2008) data. The column “DGP” refers to the specification of the
nuisance function ¢y (+), which along with other parameters, determines the value of the mean vector
1 (see Appendix A.1 of the main text for details). The function X¢4(-) is set equal to the value it takes
when there is no coefficient change in DGP (i), the value it takes when there is a single large coefficient
change in DGP (ii) and its data-calibrated value in DGP (iii). For DGP (ii) the true threshold location
is set to equal the estimate from the Card et al. (2008) data. All other parameters that determine p
are set equal to consistent estimates from the Card et al. (2008) data.
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Table 7: Ratios of Length Quantiles Relative to C'S%

C'S Quantile CSy Quantile
DGP 5th 25t 5oth 75th g5t th o 95th 50t 75t g5th
Chicago Data Calibration
(i) 088 1.13 133 154 1.87 092 120 1.38 1.58 1.89
(i1) 0.72 072 072 0.72 0.72 072 0.72 072 0.72 0.74
(iii) 074 0.74 0.82 122 330 0.74 0.76 093 1.45 3.65
Los Angeles Data Calibration

(i) 092 127 126 099 076 094 131 1.29 1.00 0.77
(ii) 0.68 0.68 0.68 0.68 0.68 0.67 0.68 0.68 0.68 0.69
(iii) 0.68 0.68 0.68 0.79 212 0.68 0.68 0.70 0.89 2.32

This table reports the 5, 25", 50", 75" and 95" quantiles of the length of the conditionally valid
equal-tailed confidence interval (C'S) and conditionally valid uniformly most accurate unbiased confidence
interval (C'Sy), divided by the corresponding length quantiles of the projection confidence interval (C'S%).
In the Chicago (Los Angeles) data calibrations, the covariance matrix ¥ is set equal to a consistent
estimate from the Chicago (Los Angeles) Card et al. (2008) data. The column “DGP” refers to the
specification of the nuisance function Xc,(-), which along with other parameters, determines the value
of the mean vector p (see Appendix A.1 of the main text for details). The function X¢c,(-) is set equal
to the value it takes when there is no coefficient change in DGP (i), the value it takes when there is
a single large coefficient change in DGP (ii) and its data-calibrated value in DGP (iii). For DGP (ii) the
true threshold location is set to equal the estimate from the Card et al. (2008) data. All other parameters
that determine p are set equal to consistent estimates from the Card et al. (2008) data.
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Table 8: Ratios of Length Quantiles Relative to C'S%

CSH Quantile CS{ Quantile
DGP 5™ 25 50 75t g5th pth 95t 5ot 75t g5tk
Chicago Data Calibration

(i) 069 091 094 093 096 0.60 090 094 0.93 0.96

(ii) 0.74 074 074 074 074 0.74 074 074 0.74 0.75

(iii) 0.75 0.75 082 093 097 0.76 0.78 087 0.94 0.97

Los Angeles Data Calibration

(i) 0.73 091 086 0.82 0.76 0.65 091 0.8 0.82 0.76

(ii) 069 069 069 0.69 0.69 069 069 0.69 0.69 0.70

(iii) 0.69 0.69 070 0.79 091 0.68 0.69 0.72 0.84 0.92
This table reports the 5, 25t" 50", 75t and 95" quantiles of the length of the hybrid confidence interval
based upon the equal-tailed conditional confidence interval (C'S) and the hybrid confidence interval based
upon the uniformly most accurate unbiased conditional confidence interval (CS{]{ ), divided by the corre-
sponding length quantiles of the projection confidence interval (C'S%). In the Chicago (Los Angeles) data cal-
ibrations, the covariance matrix ¥ is set equal to a consistent estimate from the Chicago (Los Angeles) Card
et al. (2008) data. The column “DGP” refers to the specification of the nuisance function X ¢ (-), which along
with other parameters, determines the value of the mean vector p (see Appendix A.1 of the main text for de-
tails). The function .4(-) is set equal to the value it takes when there is no coefficient change in DGP (i), the
value it takes when there is a single large coefficient change in DGP (ii) and its data-calibrated value in DGP

(iii). For DGP (ii) the true threshold location is set to equal the estimate from the Card et al. (2008) data.
All other parameters that determine p are set equal to consistent estimates from the Card et al. (2008) data.
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Table 9: Quantiles of )ﬂ—,uy(@)‘/\/zy(é)

fu Quantile iH Quantile Y (6) Quantile
DGP 5th 92 5th 50th 75th 9 5th 5th 2 5th2 50th 7 5th 9 5th 5th 9 5th 5oth 7 5th 9 5th
Chicago Data Calibration

(i) 0.15 0.74 151 265 638 0.15 0.71 138 202 263 081 1.16 152 1.95 2.70

(ii) 006 032 066 114 195 0.06 032 066 1.14 195 0.06 032 066 1.14 1.95

(iii) 0.08 0.38 0.83 150 4.81 0.08 038 083 148 294 007 034 071 1.19 2.05
Los Angeles Data Calibration

(i) 0.13 067 138 232 525 0.13 064 129 193 260 1.07 145 180 220 2.89

(ii) 0.07 032 0.67 114 193 0.07 032 067 1.14 193 0.07 032 067 1.14 1.93

(iii) 0.07 035 0.74 131 256 0.07 035 074 130 246 0.06 033 0.68 1.17 2.00

This table reports the the 57, 25" 50", 75" and 95" quantiles of the studentized absolute estimation error for the conditionally median-unbiased
estimator (fi1), the hybrid estimator (f1f1) and the conventional estimator (Y (6)). In the Chicago (Los Angeles) data calibrations, the covariance
2

matrix X is set equal to a consistent estimate from the Chicago (Los Angeles) Card et al. (2008) data. The column “DGP” refers to the specification
of the nuisance function X¢4(-), which along with other parameters, determines the value of the mean vector p (see Appendix A.1 of the main text for
details). The function Xy (+) is set equal to the value it takes when there is no coefficient change in DGP (i), the value it takes when there is a single
large coefficient change in DGP (ii) and its data-calibrated value in DGP (iii). For DGP (ii) the true threshold location is set to equal the estimate
from the Card et al. (2008) data. All other parameters that determine p are set equal to consistent estimates from the Card et al. (2008) data.



C.1 Additional Results for Split-Sample Approaches
Table 10 provides the ratios of the 5%, 25t 50t", 75" and 95" quantiles of the length

of our newly proposed equal-tailed split-sample confidence interval C'S4s relative to the
corresponding length quantiles of the conventional split-sample confidence interval C'Sgsg
for each of the tipping point data-calibrated designs described in Section 6 of the main
text. Since every entry in this table is less than one, we can see that the dominance result
illustrated in Table 4 of the main text is further reinforced: the length quantiles of C'S4q are
shorter than those of C'Sgg across all quantiles and simulation designs considered. Table
11 reports the same quantiles of the studentized absolute errors of our newly proposed

split-sample estimator ﬂg‘s , and those of the conventional split-sample estimator Y2 (91)
2

Though both of these estimators are median-unbiased for 1z (6"), figs 1 dominates Y (6") in
'3

terms of studentized absolute errors across all quantiles and simulation designs considered.

Table 10: Ratios of Length Quantiles of C’S‘S“S Relative to C'Sgg

Quantile
DGP 5th o5th 50th 7t g5th
Chicago Data Calibration

(i) 0.69 0.79 0.83 0.84 0.87

(ii) 0.57 058 058 058 0.58

(iii) 059 059 0.64 0.73 0.86

Los Angeles Data Calibration

(i) 0.74 0.85 0.78 0.68 0.57

(ii) 0.57 0.58 0.58 0.58 0.58

(iii) 0.57 058 0.59 0.66 0.81
This table reports the the 5%, 25" 50" 75" and 95" quantiles of the length of the alternative
split-sample confidence interval (C'S ‘545), divided by the corresponding length quantiles of the conventional
split-sample confidence interval (C'Ssg). In the Chicago (Los Angeles) data calibrations, the covariance
matrix X is set equal to a consistent estimate from the Chicago (Los Angeles) Card et al. (2008) data.
The column “DGP” refers to the specification of the nuisance function X4 (-), which along with other
parameters, determines the value of the mean vector p (see Appendix A.1 of the main text for details). The
function ¢4 (+) is set equal to the value it takes when there is no coefficient change in DGP (i), the value it
takes when there is a single large coefficient change in DGP (ii) and its data-calibrated value in DGP (iii).

For DGP (ii) the true threshold location is set to equal the estimate from the Card et al. (2008) data. All
other parameters that determine p are set equal to consistent estimates from the Card et al. (2008) data.
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Table 11: Quantiles of ‘ﬂ—ﬂy(él)‘/\/zy(é)l

ids 1 Quantile Y2(0') Quantile
DGP 5th 25t 250th 75t 95th  5th95th 5oth 75th g5t
Chicago Data Calibration
(i) 0.05 0.27 057 095 161 0.06 0.31 067 1.15 197
(i1) 0.04 0.18 038 065 1.13 0.06 031 066 1.14 1.96
(iii) 0.04 021 044 077 138 0.07 032 067 1.15 2.00
Los Angeles Data Calibration
(i) 0.05 025 055 093 1.56 0.07 032 069 1.16 1.96
(ii) 0.04 0.18 0.39 066 1.13 0.06 031 067 1.15 1.96
(iii) 0.04 020 042 071 125 0.06 0.32 068 1.16 1.98

This table reports the the 5%, 25" 50t" 75" and 95" quantiles of the studentized absolute estimation
error of the median-unbiased alternative split-sample estimator (f4 sg) and of the conventional
3

split-sample estimator (Y2(9")). In the Chicago (Los Angeles) data calibrations, the covariance matrix X
is set equal to a consistent estimate from the Chicago (Los Angeles) Card et al. (2008) data. The column
“DGP” refers to the specification of the nuisance function ¥¢4(-), which along with other parameters,
determines the value of the mean vector 1 (see Appendix A.1 of the main text for details). The function
Yg(+) is set equal to the value it takes when there is no coefficient change in DGP (i), the value it takes
when there is a single large coefficient change in DGP (ii) and its data-calibrated value in DGP (iii).
For DGP (ii) the true threshold location is set to equal the estimate from the Card et al. (2008) data. All
other parameters that determine u are set equal to consistent estimates from the Card et al. (2008) data.
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