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Abstract

We propose a positive model of empirical science in which an analyst makes a

report to an audience after observing some data. Agents in the audience may

differ in their beliefs or objectives, and may therefore update or act differently

following a given report. We contrast the proposed model with a classical model

of statistics in which the report directly determines the payoff. We identify

settings in which the predictions of the proposed model differ from those of the

classical model, and seem to better match practice.
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1 Introduction

Statistical decision theory, following Wald (1950), is the dominant theory of optimality

in econometrics.1 The classical theory of point estimation, for instance, envisions an

analyst who estimates an unknown parameter based on some data. The performance

of the estimate is judged by its proximity to the true value of the parameter. This

judgment is formalized by treating the estimate as a decision that, along with the

parameter, determines a realized payoff or loss. For example, if the loss is taken to be

the square of the difference between the estimate and the parameter, then the expected

loss is the estimator’s mean squared error, a standard measure of performance.

Although many scientific situations seem well described by the classical model,

many others do not. Scientists often communicate their findings to a broad and diverse

audience, consisting of many different agents (e.g., practitioners, policymakers, other

scientists) with different opinions and objectives. These diverse agents may make

different decisions, or form different judgments, following a given scientific report. In

such cases, it is the beliefs and actions of these audience members which ultimately

matter for realized payoffs or losses.

In this paper we propose an alternative, positive model of empirical science to cap-

ture scientific situations of this kind. In the proposed communication model, defined

in Section 2, the analyst makes a report to an audience based on some data. After

observing the analyst’s report, but not the underlying data, each agent in the audi-

ence takes their optimal decision. Agents differ in their priors or loss functions, and

may therefore have different optimal decisions following a given report. A reporting

rule (specifying a distribution of reports for each realization of the data) induces an

expected loss for each agent, which we call the rule’s communication risk.

We compare the proposed communication model with a decision model in which

the analyst selects a decision that directly determines the loss for all agents. The

decision risk of a rule for a given agent is then the expected loss under the agent’s prior

from taking the decision prescribed by the rule.2 The decision model generalizes the

classical frequentist model, and the decision model’s implications coincide with those

1See Lehmann and Casella (1998) for a textbook treatment of statistical decision theory and
Stoye (2012) and Manski (2019) for recent discussions of its relation to econometrics.

2Decision risk is what Lehmann and Casella (1998, Chapter 4) call the Bayes risk.
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of the classical model in a particular sense. By contrast, we find that the implications

of the decision model can be very different from those of the communication model.

Section 3 presents an example in which the communication and decision models

imply opposite dominance orderings of the same rules. In the example, the analyst

conducts a randomized controlled trial to assess the effect of a deworming medication

on the average body weight of children in a low-income country. Although deworm-

ing medication is known to (weakly) improve nutrition, sampling error means that

the treatment-control difference may be negative. Under quadratic loss, the deci-

sion model implies that all audience members prefer that the analyst censor negative

estimates at zero, since zero is closer to the (weakly positive) true effect than any neg-

ative number. Under the same loss, the communication model implies that censoring

discards potentially useful information (the more negative the estimate, the weaker

the evidence for a large positive effect), and has no corresponding benefit (agents can

incorporate censoring when determining their optimal decisions or estimates). Thus,

an uncensored rule dominates a censored one under the communication model, while

the reverse is true under the decision model. We claim, and illustrate by example,

that a scientist choosing a report for a research article would be unlikely to censor. We

also develop some general properties of the communication model that are suggested

by the example.

Section 4 presents an example in which the communication and decision models

disagree in an even stronger sense. In this example, the analyst conducts a randomized

controlled trial to determine, from a finite set of options, the optimal treatment for

a medical condition. When all of the treatments show equally promising effects in

the trial, the decision model implies that it is optimal for the analyst to randomize

among the treatments. By contrast, under the communication model, randomization

discards the information that the treatments showed similar effects, which is useful

to an agent who has a prior or preference in favor of one of them. Thus, a rule

that reports that the trial was inconclusive dominates one that randomizes among

the treatments under the communication model, while the reverse is true under the

decision model. In fact, we show that any rule that is undominated (admissible)

under the decision model in this example must be dominated (inadmissible) under

the communication model, and vice versa. Again, we illustrate by example that the
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implications of the communication model seem to better match practice in at least

some situations, and we develop some general results suggested by the example in an

appendix.

Section 5 looks beyond dominance comparisons to consider alternative ways of

selecting rules. One is to minimize weighted average risk which, under the decision

model, corresponds to selecting Bayes decision rules. If all agents receive positive

weight, then (under regularity conditions) weighted average risk inherits any ordering

implied by dominance, and the conflicts in the preceding examples stand. Another

way to select rules is to minimize the maximum risk over agents in the audience. Here

we find more agreement between the two models in the sense that if the class of beliefs

in the audience is convex, then (under regularity conditions) any rule that is minimax

in decision risk is minimax in communication risk. This finding establishes a sense in

which any rule that is robust for decision-making is also robust for communication.

We illustrate both results in an example, based on GMM estimation, in which

an analyst needs to combine multiple potentially misspecified moment conditions to

learn about a structural parameter of interest. We characterize, respectively, rules

that minimize weighted average decision risk and communication risk, and show how

and why they differ. We further derive minimax decision rules, show that they are not

minimax optimal for communication when the audience is non-convex, and discuss

why they become minimax optimal for communication when the audience is convex.

Heterogeneity among agents plays a central role in our analysis. When agents are

homogeneous, the distinction between decision and communication risk is inconse-

quential, because a benevolent analyst can simply report the agents’ optimal decision

given the data. When agents are instead heterogeneous, the distinction can be con-

sequential, because different agents may prefer different decisions (or estimates).

We are not aware of past work that studies the ranking of rules based on com-

munication risk in a setting with heterogeneous agents. Raiffa and Schlaifer (1961),

Hildreth (1963), Sims (1982, 2007), and Geweke (1997, 1999), among others, consider

the problem of communicating statistical findings to diverse, Bayesian agents.3 Our

3See also Efron (1986) and Poirier (1988). A related literature (e.g., Pratt 1965; Kwan 1999;
Abadie 2020; Abadie and Kasy 2019; Frankel and Kasy forthcoming) assesses the Bayesian interpre-
tation of frequentist inference. Another literature (e.g., Zhang et al. 2013; Jordan et al. 2018; Zhu
and Lafferty 2018) considers the problem of distributing statistical estimation and inference across
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analysis is particularly related to that of Hildreth (1963) who studies, among other

topics, the properties of what we term communication risk in the single-agent setting.

Andrews et al. (2020) study the implications of communication risk for structural

estimation in economics (see also Andrews et al. 2017).

Our setting is also related to the literature on comparisons of experiments follow-

ing Blackwell (1951, 1953), reviewed, for example, in Le Cam (1996) and Torgersen

(1991). What we term communication risk has previously appeared in this literature

(see for instance Example 1.4.5 in Torgersen 1991), but the primary focus has been on

properties (e.g., Blackwell’s order) that hold for all possible beliefs and loss functions.

By contrast, we focus on the comparison between communication risk and decision

risk for a given loss function and class of priors. We formalize the connection to

sufficiency, which plays an important role in this literature, in Section 3.3.

Our setting is broadly related to large literatures on strategic communication

(Crawford and Sobel 1982) and information design (Bergemann and Morris 2019).

As in Farrell and Gibbons (1989), the receivers (agents) in our setting are hetero-

geneous. As in Kamenica and Gentzkow (2011), the sender (analyst) in our setting

commits in advance to a reporting strategy. Unlike much of the literature on strate-

gic communication, our setting does not involve a conflict of interest between the

sender and the receivers, which Spiess (2018), Banerjee et al. (2020), and others have

recently considered in a statistical context.

2 Model

An analyst observes data X ∈ X , for X a sample space. The distribution of X is

governed by the parameter θ ∈ Θ, X ∼ Fθ, for Θ a parameter space. The analyst

publicly commits to a rule c : X → ∆ (S) that maps from realizations of the data

X to a distribution over reports s ∈ S, for S a signal space and ∆ (S) the set of

distributions on S. Let C denote the set of all such rules, and with a slight abuse of

notation let c (X) ∈ S denote the realization from a given rule c ∈ C.
The analyst’s report c (X) is transmitted to a set of agents indexed by a. Each

multiple machines when communication is costly. Brown (1975) considers a setting with a collection
of possible loss functions, while the literature on robust Bayesian decision theory (see e.g. Gilboa
and Schmeidler 1989; Stoye 2012) analyzes decision rules with respect to classes of priors.
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agent a is identified with a prior a ∈ ∆ (Θ) on the parameter space. We will call

the set A ⊆ ∆ (Θ) of such priors the audience. While we interpret the audience as

a collection of agents, our model can be interpreted as one in which there is a single

agent who possesses additional information unavailable to the analyst.4

After receiving the analyst’s report c (X) each agent a takes a decision d ∈ D ⊆ S,

for D a decision space. It will sometimes be useful to focus on rules whose reports

are valid decisions, i.e. rules c : X → ∆ (D) . We term such rules decision rules and

let B denote the set of all such rules, where since D ⊆ S, we have B ⊆ C.
After taking the decision d, the agent a realizes the loss L (d, θ) ≥ 0. The analyst

is benevolent and wishes to minimize the ex ante expected loss, or risk, of each

agent under the agent’s own prior. We consider two notions of risk. The first, which

we call decision risk, is the expected loss to the agent from following the decision

recommended by the analyst’s report. Formally, for c ∈ B, the decision risk Ra (c) is

Ra (c) = Ea [L (c (X) , θ)] ,

where Ea [·] denotes the expectation under a’s prior. The second notion of risk, which

we call the communication risk, is the expected loss when each agent updates their

beliefs based on the analyst’s report and then selects a decision that is optimal under

their updated beliefs. Formally, for c ∈ C the communication risk R∗a (c) is

R∗a (c) = Ea

[
inf
d∈D

Ea [L (d, θ) |c (X)]

]
.

For given audience A and loss L (·, ·), we will call the model with rules B and risk

functions Ra (·) the decision model, and the model with rules C and risk functions

R∗a (·) the communication model. The assumption that all agents share a common loss

function is without loss of generality, as a model with heterogeneous loss functions can

always be re-parameterized as one with a homogeneous loss and a richer parameter

θ.

Both the decision model and the communication model evaluate the expected loss

with respect to the agent’s own prior. The key difference between the decision model

4Under this interpretation, A is the set of posterior beliefs that the agent may hold after receiving
the additional information.
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and the communication model is that, under the decision model, the expected loss is

evaluated as if the agent is forced to adopt the decision recommended by the analyst’s

report, whereas under the communication model, the expected loss is evaluated as if

each agent takes their optimal decision conditional on the analyst’s report.

If we take the audience A to be the set of point-mass priors on Θ, i.e., the vertices

of ∆ (Θ), then the decision risk is the frequentist risk (Lehmann and Casella 1998,

equation 1.10), and the decision model coincides with the classical model. If we

instead take the audience A to be the set of all possible priors on Θ, i.e., ∆ (Θ),

then the decision model still selects the same rules as the classical model under many

standard optimality criteria (see Stoye 2012 for discussion). We therefore focus on

comparing the decision and communication models.

The implications of the decision and communication models coincide if we take the

audience A to be a singleton with unique element a∗. In this case, under the decision

model the analyst will choose a rule c∗ such that c∗ (X) minimizes Ea∗ [L (d, θ) |X]

almost surely. Any such rule is also optimal under the communication model. If A
instead contains multiple priors this logic need not apply and, as we show below, the

two models can have quite different implications.

Interpretation of the Decision and Loss

We pause to highlight two ways to interpret the decision d ∈ D and loss L (d, θ).

One interpretation is that the decision d ∈ D represents a real-world action whose

consequences are captured by L (d, θ). For example, doctors may need to choose a

treatment, policymakers to set a tax, and scientists to decide on what experiment to

run next. On this interpretation, the decision model reflects a situation in which the

analyst makes a decision on behalf of all agents, or equivalently, all agents are bound

to take the decision recommended by the analyst. The communication model, by

contrast, reflects a situation in which each agent is free to take their optimal decision

given the information in the analyst’s report.

Another interpretation is that the decision d ∈ D represents a best guess whose

departure from the truth is captured by L (d, θ). This interpretation is evoked by

canonical losses, such as L (d, θ) = (d− θ)2, that increase in the distance between
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the estimate and the parameter. On this interpretation, the decision model reflects

a situation in which each agent evaluates the quality of the analyst’s guess according

to the agent’s prior. The communication model, by contrast, reflects a situation in

which each agent evaluates the quality of the agent’s own best guess, as informed by

the analyst’s report as well as the agent’s prior.

In many real-world situations the agents in the audience for a given scientific find-

ing will have diverse opinions and may therefore make different decisions, or form

different best guesses about an unknown parameter, after observing the same re-

port. The communication model better reflects such situations than does the decision

model. In other situations—for example, a government committee deciding on the

appropriate treatment to reimburse for a given diagnosis for all practitioners, or a

scientific committee deciding where next to point a telescope that will provide data

to many researchers—the decision model seems a better fit.

3 Conflict in Dominance Ordering

We will say that a rule c dominates another rule c′ under a given model if the rule

c achieves weakly lower risk for all agents in the audience and strictly lower risk for

some. In this section, we show by example that the decision and communication

models can imply opposite dominance orderings, in the sense that c dominates c′ in

the communication model but c′ dominates c in the decision model.

3.1 A Treatment Effect with a Sign Constraint

An analyst observes data on weight gain for a sample of children enrolled in a ran-

domized trial of deworming drugs (anthelmintic therapy). For the NC children in the

control group, weight gain Xi is distributed as Xi ∼ N (θC , σ
2). For the NT children

in the treatment group, weight gain Xi is distributed as Xi ∼ N (θT , σ
2) . Thus the

sample space is X = RNC+NT . We assume that weight gain is independent across

children so that the control group mean XC and treatment group mean XT follow(
XC

XT

)
∼ N

((
θC

θT

)
,

(
σ2

NC
0

0 σ2

NT

))
.
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The variance σ2 and group sizes (NC , NT ) are commonly known. The average treat-

ment effect of deworming drugs on child weight is θT − θC . Suppose that this effect is

known a priori to be nonnegative, and in particular Θ = {(θC , θT ) ∈ R2 : θT ≥ θC}.
The audience consists of governments who must decide how much to subsidize (or

tax) deworming drugs. The governments face a loss L (d, θ) = (d− (θT − θC))2 for

d the per-unit subsidy, with d < 0 denoting a tax. The set of feasible decisions is

D = R. We assume that the audience A consists of the set of all distributions such

that θT − θC is a zero-truncated normal. All statements in this section continue to

apply when A = ∆ (Θ).

Consider two decision rules, c and c′, defined as

c (X) = XT −XC , c
′ (X) = max {c (X) , 0} .

The rule c reports the difference in means between the treatment and control groups.

The rule c′ censors this report at 0.

Claim 1. Rule c′ dominates rule c under the decision model. Rule c dominates rule

c′ under the communication model.

Proofs are collected in Appendix A, but we sketch the argument here. Start with

the decision model. Because all governments accept that θT ≥ θC , a tax on deworming

drugs is never optimal. Yet, the rule c will sometimes recommend a tax. Under the

decision model, such a recommendation incurs an unnecessarily large loss, because it

is worse than recommending a neutral policy d = 0.

Next consider the communication model. Although all governments accept that

θT ≥ θC , in cases where XT −XC < 0 the realized value of XT −XC is nevertheless

informative about the true value of θT − θC . Intuitively, the lower is XT − XC ,

the stronger is the evidence for a small value of θT − θC . The rule c preserves this

information, whereas the rule c′ discards it. Even though every government’s optimal

subsidy d is nonnegative, there is no benefit to the censoring in c′, because each

government can simply censor its own decision d based on the information conveyed

by c.

We can compare the implications of the decision and communication models to

observed practice in a situation similar to the example. Kruger et al. (1996) conducted
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an early randomized controlled trial of the effect of deworming drugs on children’s

growth. A separate randomization was used to study the effect of iron-fortified soup.

Among children who received unfortified soup, those receiving deworming drugs had

a lower average growth over the intervention period (mean weight gain of 0.9kg,

n = 15) than those receiving a placebo treatment (mean weight gain of 1.0kg, n = 14;

see Table 4 of Kruger et al. 1996). Kruger et al. (1996) state that “[Positive effects on

weight gain] can be expected with reduction in diarrhoea, anorexia, malabsorption,

and iron loss caused by parasitic infection” (p. 10). In a later review of the literature,

Croke et al. (2016) state that “there is no scientific reason to believe that deworming

has negative side effects on weight” (p. 19).

If we interpret these statements to mean that the average treatment effect is

known to be nonnegative, then censoring the estimated treatment effect at 0 (i.e.,

reporting that the treatment and control groups experienced the same average weight

gain) would lead to an estimate strictly closer to the truth than the negative estimate

implied by the group means, and would therefore dominate in mean squared error.

However, Kruger et al. (1996) did not publish a censored estimate, nor did any of the

four studies that Croke et al. (2016) identify as implying negative point estimates of

the effect of deworming drugs on weight.5

3.2 Discussion

We have focused on a scenario where the audience consists of policymakers, so the loss

captures the value of setting the right policy. We may alternatively envision the loss

as capturing the scientific community’s desire for a good guess of the true average

5Croke et al. (2016, Figure 2) identify 4 negative point estimates out of a total of 22 reviewed.
These 4 negative point estimates are from 4 distinct studies (including Kruger et al. 1996), out of a
total of 20 distinct studies reviewed. Donnen et al. (1998, Table 2) report the regression-adjusted
weight gains for a group treated with mebendazole and a control. They further report that the
treated group’s gain is statistically significantly below that of the control group at all time horizons
considered. Croke et al. (2016, Figure 2) report a statistically significant effect on weight gain of
-0.45kg based on the data from Donnen et al. (1998). Miguel and Kremer (2004, Table V) report
treatment and control group means of standardized weight-for-age and a statistically insignificant
difference in means of -0.00 to rounding precision. Croke et al. (2016, Figure 2) report a statistically
insignificant effect on weight of -0.76kg based on the data from Miguel and Kremer (2004). Awasthi
et al. (2000, Table 1) report treatment and control group means of weight gain and report that
these are not statistically different. Croke et al. (2016, Figure 2) report a statistically insignificant
effect of -0.05kg based on the data from Awasthi et al. (2000).
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treatment effect. On this interpretation, a guess d < 0 is again unappealing from

the standpoint of decision risk (such a guess cannot be right), but may be appealing

from the standpoint of communication risk (because it conveys useful information

that agents can use in formulating their own guesses).

We have focused on rules that have range D and are therefore decision rules. This

is natural under the decision model but is restrictive under the communication model.

To illustrate, suppose that S contains R2 and consider the rule c′′ with

c′′ (X) =
(
XC , XT

)
.

Claim 2. (i) The rule c′′ dominates the rule c under the communication model. (ii)

The rule c′′ achieves weakly lower risk for all agents than does any other rule under

the communication model.

Because the rule c′′ conveys more information than the rule c, it dominates the rule c

under the communication model. Moreover, because the statistic c′′ (X) is sufficient

for θ, rule c′′ is weakly better than any other rule for any agent under the communi-

cation model. Interestingly, Kruger et al. (1996) report group means for the control

and treatment groups, and do not explicitly report the difference XT −XC .

We have also focused on a situation in which the tension between the decision and

communication models arises due to an a priori constraint on the parameter space.

While illustrative, that is not the only situation in which the tension arises. Imagine,

for example, that the randomized controlled trial is run at J ≥ 3 sites j, each of which

is associated with its own parameters θj =
(
θjC , θ

j
T

)
. We drop the sign constraints,

so that Θ = R2J , and take A to be the set of all distributions on Θ such that the

J−vector θT − θC is normally distributed. Agents in the audience must now choose a

subsidy or tax for each site, so that D = RJ , and L (d, θ) = ‖d− (θT − θC)‖2 for ‖·‖
the Euclidean norm. At each site the number of treatment and control units is equal

to N , which we continue to assume is commonly known along with the variance σ2

of weight gain. Consider two estimators, cM and cJS defined as

cM (X) = XT −XC , c
JS (X) = max

{
1− J − 2

‖cM (X)‖2

2σ2

N
, 0

}
cM (X) .
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where XT − XC is the J−vector of treatment-control differences X
j

T − X
j

C . The

rule cM corresponds to the maximum likelihood estimator for the vector of average

treatment effects, while cJS is a positive-part James-Stein estimator.

Claim 3. (i) Rule cJS dominates rule cM under the decision model. (ii) Rule cM

dominates rule cJS under the communication model.

Classic results in statistics (James and Stein 1961; Baranchik 1970; Efron and

Morris 1973) imply that for any value of θ the mean-squared error of rule cJS is

strictly lower than that of cM , implying that cJS dominates cM under the decision

model. At the same time, because cJS (X) is a function of cM (X), cM is at least as

good as cJS for any agent under the communication model. Moreover, because cJS

sometimes discards useful information (by mapping a range of XT − XC values to

zero), cM dominates cJS under the communication model.

3.3 Generalization

The examples in this section illustrate two general properties of dominance orderings

under the communication model. The first is that coarsening the analyst’s report is

never desirable.

Proposition 1. Fix rules c, c′ ∈ C. (i) If the distribution of c′ (X) |c (X) , X is equal

to ψ (c (X)) for some ψ : S → ∆ (S), then c achieves weakly lower risk than c′ for all

agents a ∈ A under the communication model. (ii) If, further, there exists a ∈ A for

whom c (X) and c′ (X) imply different optimal actions with positive probability,

Pr
a

{
arg min
d∈D

Ea [L (d, θ) |c (X)] ∩ arg min
d∈D

Ea [L (d, θ) |c′ (X)] = ∅
}
> 0,

where both minima are achieved and R∗a (c) is finite, then c dominates c′ under the

communication model.

The conditions in Proposition 1 part (i) imply that c′ (X) is a garbling of c (X), while

part (ii) gives a sufficient condition for strict superiority of c for a given loss function

and prior. An important special case of garbling is when c′ (X) can be written as a

deterministic transformation of c (X), as in the examples in this section.
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The second general property is that, following Blackwell (1951, 1953), it is optimal

for the analyst to report sufficient statistics when feasible.

Proposition 2. Fix a rule c ∈ C. If c (X) is sufficient for θ under Fθ, then c

achieves weakly lower risk than does any other rule for all agents a ∈ A under the

communication model.

The statements about the communication model in Claims 1, 2, and 3 are corollaries

of Propositions 1 and 2.

4 Conflict in Admissibility

We will say that a rule c is admissible under a given model if no other rule dominates

c. Admissibility in the decision model corresponds to what Stoye (2012) terms Γ-

admissibility. In this section, we give an example in which the sets of admissible rules

under the decision and communication models do not intersect.

4.1 Optimal Treatment Assignment

An analyst must make a clinical recommendation to an audience of physicians on the

basis of the available evidence. Say that each physician’s goal is to achieve the best

average outcome for patients with each of a given set of attributes (e.g., diagnoses).

We suppose these attributes are discrete, as in Manski (2004), and study the problem

of recommending treatment to patients in a given attribute cell.

Formally, denote the available treatments (e.g., medications) by t ∈ {1, ..., T}
for T ≥ 2. Suppose that the analyst observes data from a trial where n ≥ 1 units

(e.g., patients) are randomly allocated to each treatment t, and that for each unit

i the analyst measures a binary outcome Yi (e.g., an indicator for the resolution

of symptoms). Let us further assume that patient outcomes are exchangeable, so

it is without loss to represent the data for treatment t as a fraction of successes

Xt ∈
{

0, 1
n
, ..., 1

}
, with nXt following a binomial distribution. The sample space is

then

X =

{
0,

1

n
, ..., 1

}T
.
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The unknown parameter is (θ1, ..., θT ) where θt denotes the success probability

for units assigned to treatment t. We assume each θt lies in a nontrivial interval

Θ0 ⊆ (0, 1), so the parameter space is Θ = ΘT
0 ⊆ (0, 1)T . We take the audience to

consist of all possible priors A = ∆ (Θ).

Each physician’s decision consists of either picking a treatment t or declining to do

so. Formally we take the decision space to be D = {1, ..., T}∪{ι} where ι corresponds

to not picking a treatment. The physician’s objective is to pick the best treatment

which, following Manski (2004), we formalize by considering the regret loss

L (d, θ) =

−θd + maxt θt if d 6= ι

maxt θt if d = ι
.

Declining to pick a treatment yields greater loss than picking any given treatment

(e.g., because the patient cannot self-prescribe).

Again consider two rules. The first rule, c∗, takes c∗ (X) = arg maxtXt if the

argmax is unique and otherwise randomizes uniformly over arg maxtXt. The second

rule, c̃, takes c̃ (X) = ι if arg maxtXt = {1, ..., T} and c̃ (X) = c∗ (X) otherwise. As in

Section 3, the comparison of these two rules reveals a conflict in dominance ordering

between the communication and decision models.

Claim 4. (i) Rule c∗ dominates rule c̃ under the decision model. (ii) Rule c̃ dominates

rule c∗ under the communication model.

Start with the decision model. The rule c∗ is a special case of what Manski (2004)

terms the “conditional empirical success” rule, and is related to the empirical welfare

maximization procedures studied by Kitagawa and Tetenov (2018) and Athey and

Wager (2021). Classical decision-theoretic results for selection problems (Lehmann

1966; Eaton 1967) imply that the rule c∗ minimizes decision risk uniformly over A =

∆ (Θ) among rules that are invariant with respect to permutations of the treatments,

and that c∗ is an optimal decision rule for any agent a∗ with a permutation-invariant

prior.6 By contrast, because the rule c̃ sometimes fails to make a recommendation,

thus choosing the bad decision d = ι, the rule c̃ is not an optimal decision rule for

any agent a ∈ A.

6The results of Stoye (2009) further imply that c∗ is a minimax decision rule in the case of T = 2.
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Next consider the communication model. Any agent can construct c∗ (X) given

c̃ (X) for any X ∈ X . Proposition 1 therefore implies that rule c̃ achieves weakly

lower risk than rule c∗. Note, however, that c̃ (X) cannot be constructed from c∗ (X),

because c∗ (X) does not inform the agent when there has been a tie. Intuitively, this

results in a loss of useful information for an agent a whose prior is such that they

prefer to follow the rule c∗ only when the data are informative about the optimal

treatment. For this reason, Proposition 1 further implies that c̃ dominates c∗ under

the communication model.

In fact, the tension between the decision and communication models is stronger

than what is captured by Claim 4. Because d = ι is a bad decision, any rule that

sometimes recommends it is inadmissible in decision risk. But because the decision

space is too small to convey the full data, T + 1 = |D| < |X | = (n+ 1)T , and distinct

realizations of the data imply distinct optimal actions for some agent, any rule that

does not sometimes report c (X) = ι is inadmissible in communication risk.

Claim 5. There exists no rule c that is admissible under both the decision model and

the communication model.

We prove Claim 5 as a consequence of a more general result for situations with finite

decision and sample spaces. Loosely, if there is a decision that is always unappealing

and the decision space is too small to convey the actionable information in the data,

then there exists no rule that is feasible and admissible in both the decision model

and the communication model.

In practice, analysts in situations like the one we have modeled sometimes ex-

press their ignorance rather than choosing a concrete recommendation at random.

UpToDate is a private publisher that synthesizes medical research into clinical rec-

ommendations. As in the communication model, readers of these recommendations

include practitioners who are free to make different clinical decisions. On the choice

among selective serotonin reuptake inhibitors (SSRIs) to treat unipolar major depres-

sion in adults, UpToDate says, “Given the lack of clear superiority in efficacy among

antidepressants, selecting a drug is based on other factors, such as ... patient prefer-

ence or expectations” (Simon 2019). Such a report seems more similar to c̃ than to

c∗, and thus more consistent with the predictions of the communication model than

with the predictions of the decision model.
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4.2 Discussion

The example illustrates a tension between the decision and communication models

that arises when the data are completely uninformative. Reporting that findings are

inconclusive arises in many situations like the one illustrated by the UpToDate quote.

Appendix B extends the analysis to demonstrate a case in which the communication

model favors reporting ι even when the data are informative, provided the amount of

information in the data is small in comparison to the audience’s priors.

Claim 5 holds for any signal space S containing D. Indeed, it seems plausible

that an analyst concerned with communication risk might wish to convey more than

simply “I don’t know.” The UpToDate article that we quote at the end of Section

4.1, for example, discusses the evidence before stating its conclusion, noting that some

evidence in favor of a particular selection of SSRIs failed to replicate in a second meta-

analysis, and that “randomized trials have found no evidence that one antidepressant

[SSRI] is superior in preventing relapse or recurrence” (Simon 2019).

The conclusion of Claim 5 also holds if we restrict D to contain only the feasible

treatments {1, ..., T}, provided that the signal space S contains at least one element

that is not in {1, ..., T}. Intuitively, in this case the rule c̃ is simply infeasible under the

decision model, but remains superior to the (feasible) rule c∗ under the communication

model.

5 Additional Optimality Criteria

In this section we look beyond dominance comparisons to consider two other opti-

mality criteria: optimality in weighted average risk, and minimaxity. To derive our

results, we impose the following regularity conditions.

Assumption 1. There exists a σ-finite measure which dominates Fθ for all θ ∈ Θ.

The loss function L (d, θ) is nonnegative and lower semicontinuous in d for all θ ∈ Θ.

The existence of a dominating measure is a weak condition that holds in all of our

examples. Likewise, the loss functions in our examples are continuous in d, which

implies lower semicontinuity.
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Assumption 2. The decision space is a subset of Euclidean space, D ⊆ Rq for q

finite, and is closed. Moreover, either (i) D is bounded or (ii) lim‖d‖→∞ L (d, θ) =∞
for all θ.

Assumption 2 holds in all of our examples. See Assumption 3 in Appendix A for a

weaker condition sufficient for our results.

5.1 Weighted Average Risk

Let ω be a distribution on A and define

ρω (c) =

∫
A
Ra (c) dω (a) , ρ∗ω (c) =

∫
A
R∗a (c) dω (a)

to be the weighted average decision risk and the weighted average communication risk

of rule c, respectively. Any rule c ∈ B that minimizes weighted average decision risk

ρω (c) is a Bayes decision rule (e.g., Lehmann and Casella 1998, p. 6; Robert 2007, p.

63). Bayes decision rules have strong optimality properties in the classical setting.7

For given weights ω, weighted average risk defines a complete ordering on the set

of rules, whereas dominance and admissibility define only partial orderings. These

orderings are closely related.

Proposition 3. Suppose Assumptions 1 and 2 hold. (i) If, under a given model, rule

c dominates rule c′, and the risk function for c is bounded and continuous in a, then

c has strictly lower weighted average risk than c′ with respect to any weights ω with

full support on A. (ii) If the risk functions for all rules are bounded and continuous

in a, then any rule that minimizes weighted average risk with respect to full-support

weights ω is admissible.

Intuitively, if c dominates c′, then at least one agent a is worse off under c than under

c′, and no agent is better off. As long as ω puts weight on agents in a neighborhood of

a, and agents in that neighborhood have risk similar to a’s, c will be strictly preferred

to c′ under weighted average risk.

7In particular, Complete Class Theorems show that in many cases any rule that cannot be
expressed as Bayes is dominated by one that can be.
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An implication of Proposition 3 is that if there is a conflict in dominance ordering

(as in Section 3) or a conflict in admissibility (as in Section 4) between the commu-

nication and decision models, then (under the given conditions) there is a conflict

in the ordering of weighted average risks with respect to full-support weights. The

following corollary illustrates for the case of a conflict in admissibility.

Corollary 1. Suppose that decision and communication risk are bounded and con-

tinuous in a for all c ∈ B. If there is no rule that is admissible under both the

decision and communication models, then any rule c that minimizes weighted average

risk for some full-support weights ω under the decision model is inadmissible, and

does not minimize weighted average risk under any full-support weights ω∗, under the

communication model.

Under the conditions of Corollary 1, any Bayes decision rule based on full-support

weights ω is inadmissible for communication, and does not minimize weighted average

communication risk for any full-support weights, including weights ω∗ 6= ω.

5.2 Maximum Risk

We will say that a rule c∗ is minimax under a given model if it minimizes the maximum

risk possible under the set of priors in the audience. Formally, rule c∗ is minimax if

Ra (c∗) = inf
c∈B

sup
a∈A

Ra (c) , R∗a (c∗) = inf
c∈C

sup
a∈A

R∗a (c)

under the decision and communication models, respectively. Since we evaluate perfor-

mance with respect to a class of priors, minimaxity in the decision model corresponds

to robust Bayes optimality (also called Γ-minimaxity – see, e.g., Gilboa and Schmei-

dler 1989; Stoye 2012).

The max-min inequality implies that infc∈B supa∈ARa (c) ≥ supa∈A infc∈B Ra (c).

If the reverse is true, so that infc∈B supa∈ARa (c) = supa∈A infc∈B Ra (c), we will say

that a minimax theorem holds under the decision model.8

8Viewing the decision model as a zero-sum game between the analyst and nature, a minimax
theorem holds if and only if this game has a value (von Neumann and Morgenstern, 1944).

18



Theorem 1. If a minimax theorem holds under the decision model, then any rule

c∗ that is minimax under the decision model is minimax under the communication

model.

Proof. By the definitions of decision and communication risk, for all a ∈ A, infc′∈B Ra (c′)

≤ R∗a (c) for all c ∈ C, and R∗a (c) ≤ Ra (c) for all c ∈ B. By the first inequality and the

max-min inequality, supa∈A infc∈B Ra (c) ≤ supa∈A infc∈C R
∗
a (c) ≤ infc∈C supa∈AR

∗
a (c).

Since R∗a (c) ≤ Ra (c), however, infc∈C supa∈AR
∗
a (c) ≤ infc∈B supa∈ARa (c). If a mini-

max theorem holds under the decision model, this implies that infc∈C supa∈AR
∗
a (c) =

infc∈B supa∈ARa (c), and any rule c∗ with Ra (c∗) = infc∈B supa∈ARa (c) must also

have Ra (c∗) = infc∈C supa∈AR
∗
a (c) and therefore be minimax under the communica-

tion model.

Thus if a minimax theorem holds under the decision model, there is no conflict be-

tween the decision and communication models when the analyst seeks to minimize

maximum risk.

Theorem 1 holds for all S ⊇ D. Hence, for minimax communication, there is no

gain from enlarging the signal space beyond D, or from communicating information

other than a recommended decision, provided a minimax theorem holds. The lit-

erature has derived minimax rules in a wide range of frequentist decision problems,

and Theorem 1 implies that these will also be minimax communication rules for the

maximal audience A = ∆ (Θ), provided a minimax theorem holds. Theorem 1 also

implies that robust Bayes decision rules with respect to a class of priors A are robust

communication rules with respect to the same class of priors, provided a minimax

theorem holds.

The next proposition, proved in Appendix A as a consequence of a more general

result building on arguments from Strasser (1985), gives sufficient conditions for a

minimax theorem to hold. To state the proposition, we say that A is convex if for

any a, a′ ∈ A and any λ ∈ (0, 1), λ · a+ (1− λ) · a′ ∈ A.

Proposition 4. Suppose Assumptions 1 and 2 hold. If the audience A is convex,

then a minimax theorem holds under the decision model, and there exists a minimax

rule c∗.
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Convexity of A holds for the maximal audience A = ∆ (Θ), as well as for the classes

of priors studied in Gilboa and Schmeidler (1989). We next discuss an example that

illustrates the differences between minimizing weighted average risk and minimizing

maximum risk, and also highlights the role played by convexity of A in Proposition

4.

5.3 Combining Multiple Moments

An analyst observes data X ∈ Rk and is interested in a scalar parameter τ . An

economic model imposed by the analyst implies a sample moment function g (τ̃) =

X−Gτ̃ , for G a known, nonrandom k−vector. Under the analyst’s model the sample

moments g (τ) have mean 0 at the true value of τ . The economic model may be

misspecified, however, so that the true mean of g (τ) is given by (η′, γ′), where (η, γ)

are nuisance parameters with dim (η)+dim (γ) = k. Thus θ = (τ, η, γ). We formalize

the idea that τ is the parameter of interest by taking D = R and L (d, θ) = (d− τ)2.

We further assume that

g (τ) ∼ N
(
(η′, γ′) , σ2 · Ik

)
(1)

where σ2 > 0 is a commonly known variance and Ik is the identity matrix. Armstrong

and Kolesár (2021) show that (under regularity conditions) locally misspecified mo-

ment condition models, including nonlinear models with multiple parameters, are

asymptotically equivalent to a version of (1) where the moment function depends on

multiple parameters and has an unrestricted, but known, variance matrix.9

Suppose all agents a ∈ A believe that θ follows a multivariate normal distribution

with τ ⊥ (η′, γ′) and τ ∼ N (0, ρ2
τ ) for ρτ > 0. Agents are concerned about misspeci-

fication, and each agent a believes that η = ηa and γ ∼ N
(
0, ρ2

γ · Idim(γ)

)
for ργ ≥ 0.

Thus, agents are certain, but may disagree, about the extent of misspecification of

the first dim (η) moments, and are uncertain, in a commonly-agreed way, about the

extent of misspecification of the remaining dim (γ) moments.

9Starting with the representation in Armstrong and Kolesár (2021, equation 4), one can obtain
(1) by partialling out model parameters other than τ , and then normalizing the variance of the
sample moments.
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We will consider an audience A and weights ω such that beliefs about η follow

ηa ∼ N
(
0, ρ2

η · Idim(η)

)
under ω, for ρη > 0. Under such weights we can charac-

terize rules that minimize weighted average risk under both the decision and com-

munication models. Towards such a characterization, decompose X =
(
X
′
η, X

′
γ

)
and G =

(
G′η, G

′
γ

)
conformably with (η′, γ′) and assume that Gη, Gγ 6= 0. Let

τ̂η =
(
G′ηGη

)−1
G′ηXη be the maximum likelihood estimate (absent misspecifica-

tion) based on the first dim (η) moments, and define τ̂γ analogously. Note that

Var (τ̂η|θ) = σ2
η = σ2 · ψη for ψη =

(
G′ηGη

)−1
, and likewise for τ̂γ.

Claim 6. Any rule cω that minimizes weighted average risk under the decision model

takes

cω (X) = cω (τ̂η, τ̂γ) =

(
σ2
η + ρ2

ηψη
)−1 · τ̂η +

(
σ2
γ + ρ2

γψγ
)−1 · τ̂γ

σ−2
τ +

(
σ2
η + ρ2

ηψη
)−1

+
(
σ2
γ + ρ2

γψγ
)−1

almost surely. One rule c∗ω that minimizes weighted average risk under the communi-

cation model takes

c∗ω (X) = c∗ω (τ̂η, τ̂γ) =
σ−2
η · τ̂η +

(
σ2
γ + ρ2

γψγ
)−1 · τ̂γ

σ−2
τ + σ−2

η +
(
σ2
γ + ρ2

γψγ
)−1 .

The rule cω does not minimize weighted average risk under the communication model,

and the rule c∗ω does not minimize weighted average risk under the decision model.

Moreover, no other rule achieves strictly lower communication risk than c∗ω for any

agent.

Both cω (τ̂η, τ̂γ) and c∗ω (τ̂η, τ̂γ) are weighted averages of the prior mean (i.e., 0)

and the maximum likelihood estimates (τ̂η, τ̂γ). The weighted averages differ in the

weight they place on τ̂η, the maximum likelihood estimate based on the block of

moments about which the agents disagree. Each agent a is confident that the bias

of τ̂η for τ is
(
G′ηGη

)−1
G′ηηa. Under the decision model, disagreement about the

magnitude of the bias translates into a larger expected distance between τ̂η and τ .

Under the communication model, such disagreement is irrelevant, because each agent

a can readily compute their posterior mean

Ea [τ |c∗ω (τ̂η, τ̂γ)] = c∗ω (τ̂η, τ̂γ)−
σ−2
η

(
G′ηGη

)−1
G′ηηa

σ−2
τ + σ−2

η +
(
σ2
γ + ρ2

γψγ
)−1
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that adjusts c∗ω (τ̂η, τ̂γ) for the bias in τ̂η. As a result, c∗ω (τ̂η, τ̂γ) places more weight

on τ̂η than does cω (τ̂η, τ̂γ). And because Ea [τ |c∗ω (τ̂η, τ̂γ)] coincides with agent a’s

posterior mean Ea [τ |X] based on the full data, no communication rule can be better

than c∗ω from the agent’s point of view.

In the limit taking disagreement to zero, ρη → 0, the two rules coincide, whereas

in the limit taking disagreement to infinity, ρη → ∞, cω (τ̂η, τ̂γ) places no weight on

τ̂η, and c∗ω (τ̂η, τ̂γ) is unaffected. By contrast, the rules cω and c∗ω are similar in how

they treat agents’ uncertainty about γ, and in the limit as ργ →∞ both rules place

no weight on τ̂γ. Thus, the decision and communication models both predict that the

analyst will down-weight moments about whose validity the audience is very uncer-

tain. In contrast to the communication model, however, the decision model further

predicts that the analyst will down-weight moments about whose misspecification

audience members disagree, even if each audience member is certain in their belief.

In practice analysts frequently choose from among a large set of potentially mis-

specified moments when estimating economic models. Nakamura and Steinsson (2018)

advocate estimating structural models of the macroeconomy by targeting “identified

moments” that correspond to direct estimates of causal effects (see also Dridi et al.

2007). Nakamura and Steinsson (2018) argue that, although the assumptions jus-

tifying the causal interpretation of identified moments “are typically controversial,”

these moments are sensitive to a relatively narrow range of modeling assumptions.

By contrast, other moments one could target, for example unconditional means and

variances, are likely to be sensitive to the specification of many different aspects of

the model. Targeting identified moments may therefore allow audience members to

form more precise beliefs about the likely impact of misspecification on the analyst’s

estimate. In this sense the recommendation to target identified moments, in pref-

erence to moments whose behavior under misspecification is harder to assess, seems

more consistent with the predictions of the communication model than with those of

the decision model.

It is also possible to characterize minimax rules in this example.

22



Claim 7. Any rule čω that is minimax under the decision model takes

čω (X) = čω (τ̂η, τ̂γ) =

(
σ2
γ + ρ2

γψγ
)−1 · τ̂γ

σ−2
τ +

(
σ2
γ + ρ2

γψγ
)−1

almost surely, and therefore coincides with cω in the limit as ρη →∞. The rule čω is

not minimax under the communication model.

Because any decision rule that puts weight on τ̂η can be arbitrarily bad for suffi-

ciently large ηa, the rule čω puts no weight on τ̂η. Ignoring τ̂η is unappealing under the

communication model, however, because τ̂η is informative about τ , and as discussed

above agents can account for the bias in τ̂η in formulating their optimal decision, no

matter how large is ηa.

Proposition 4 does not apply in this setting because the audience A is not convex.

If we replace the audience A with its convex hull, then by Proposition 4 and Theorem

1, čω is a minimax rule under the communication model. Intuitively, convexifying

the audience means that if there exist agents a and a′ who disagree about η, there

exists a third agent a′′ who puts equal weight on the two beliefs. Convexity thus

turns disagreement about how to interpret τ̂η into uncertainty, and so implies that

minimax communication rules should put no weight on τ̂η. This illustrates the role

of the convexity restriction on A in Proposition 4.

Discussion

Under the communication model, rule c∗ω is more appealing than rule cω because

agents can adjust for the bias in τ̂η when forming their own decisions or judgments.

To make the appropriate adjustment, agents need to know the weight that c∗ω (τ̂η, τ̂γ)

places on τ̂ . Andrews et al. (2020) discuss the situation where weights are data-

dependent, in which case it is appealing (from the standpoint of communication risk)

for the analyst to report the weights to the audience.

Under the communication model, the rule c∗ω (τ̂η, τ̂γ) is as good, for any agent, as

having access to the full data X.10 This property of the example depends on the

10In particular, c∗ω (τ̂η, τ̂γ) is marginally sufficient for τ with respect to A in the sense of Raiffa
and Schlaifer (1961).
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assumption that all agents have the same prior variance for θ. In situations with

more heterogeneity in agents’ beliefs, there need not be a low-dimensional sufficient

statistic. Appendix C considers a setting where each component of g (τ) is subject

to an additional disturbance, on which agents have mean-zero Gaussian priors with

potentially different prior variances. In this case, any coarsening of the data increases

communication risk for some agent, and an analyst concerned with communication

risk in such a setting might be expected to report X to the audience. DellaVigna

(2018) advocates reporting X as good practice when estimating structural models in

behavioral economics. Appendix C shows that, as the size of the additional distur-

bance becomes small, c∗ω (τ̂η, τ̂γ) achieves communication risk arbitrarily close to that

from observing X. If there are communication constraints (say because k is large

or some data must remain confidential), c∗ω (τ̂η, τ̂γ) therefore remains appealing under

the communication model.

6 Conclusions

We propose a model of scientific communication in which the analyst’s report is

designed to convey useful information to the agents in the audience, rather than, as in

a classical model of statistics, to make a good decision or guess on these agents’ behalf.

We exhibit settings in which the proposed model predicts very different reporting

rules from the classical model. We argue that, in some practical situations similar to

these settings, scientists’ reports appear more consistent with the predictions of the

proposed model than with the predictions of the classical model.
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A Proofs

Proofs of Claims

Proof of Claim 1. To see that c′ dominates c under the decision model, note that

Pra {c (X) < 0} > 0 for all a ∈ A, and

Ea [L (c (X) , θ) |c (X) < 0] > Ea

[
L
(
c
′
(X) , θ

)
|c (X) < 0

]
,

while the two rules achieve the same loss when c (X) ≥ 0. Dominance in the decision

model follows immediately.

For dominance in the communication model consider an agent with a N (µ, 1)

prior on θT − θC , truncated at zero. This agent’s posterior on θT − θC after observing

c (X) = d is a N
(

1
1+σ̃−2µ+ σ̃−2

1+σ̃−2d, (1 + σ̃−2)
−1
)

truncated at zero, for σ̃2 = σ2

NT
+ σ2

NC
.

This agent’s optimal decision is thus a strictly increasing function of c (X). Since

c′ (X) is a non-invertible transformation of c (X) , and arg mind∈D Ea [L (d, θ) |c′ (X)]

is a singleton by strict convexity of the loss, for almost every d̃ < 0

arg min
d∈D

Ea

[
L (d, θ) |c (X) = d̃

]
∩ arg min

d∈D
Ea [L (d, θ) |c′ (X) = 0] = ∅.

Proposition 1 thus implies that c dominates c′ in the communication model. 2

Proof of Claim 2. For part (i) of the claim, consider an agent with a dogmatic prior

that θC = 0 with probability one. Suppose further that this agent has a N (µ, 1) prior

on θT . This agent’s posterior on the average treatment effect after observing
(
X̄C , X̄T

)
will be a N

(
1

1+σ̃−2
T

µ+
σ̃−2
T

1+σ̃−2
T

X̄T ,
(
1 + σ̃−2

T

)−1
)

distribution truncated at zero, for σ̃2
T =

σ2

NT
. Hence, this agent’s optimal action is a strictly increasing transformation of X̄T .

Under the agent’s prior, however, c (X) is equal to X̄T plus standard normal noise,

so the agent cannot implement this optimal action based on observing c (X) alone.

Proposition 1 thus implies that c′′ dominates c under the communication model.

Part (ii) of the claim is immediate from Proposition 2. 2

Proof of Claim 3. Part (i) of the claim follows from standard results on the

positive-part James-Stein estimator (see e.g. Efron and Morris 1973). For part (ii) of
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the claim, consider an agent with a N (µ, IJ) prior on the vector of average treatment

effects, and note that this agent’s posterior mean is a one-to-one transformation of

c (X) = X̄T − X̄C . Hence, the conclusion follows from Proposition 1 by an argument

similar to the proof of Claim 1. 2

Proof of Claim 4. Under the decision model, all agents a ∈ A strictly prefer to

randomize uniformly over d ∈ {1, ..., T} rather than taking d = ι. That c∗ dominates

c̃ in the decision model follows immediately.

For part (ii) of the claim, note that c̃ yields weakly smaller communication risk

for all agents than c∗ by part (i) of Proposition 1. To show strict inequality for some

agents, consider agents a for whom Ea [θt| arg maxtXt = {1, ..., T}] is non-constant

across t, while for all X arg maxt Ea [θt|c∗ (X)] = c∗ (X) . Any agent a∗ with a

permutation-invariant prior has c∗ (X) ∈ arg maxt Ea∗ [θt|c∗ (X)] , so we can find

agents a of the sort we desire by slightly perturbing such a prior. When arg maxtXt =

{1, ..., T}, the decision taken by these agents is uniformly randomized under the rule

c∗, while under the rule c̃ they are able to pick a decision they strictly prefer to uni-

form randomization. Dominance in the communication model follows by Proposition

1. 2

Definition 1. Suppose X is finite, and let P be the set of partitions of X , with generic

element P ∈ P. Let P∗ denote the subset of P such that for every cell Xp ∈ P ∈ P∗,
each agent has at least one decision d ∈ D that is optimal for every x ∈ Xp. That is,

P∗ =

{
P ∈ P :

{
∩x∈Xp arg min

d∈D
Ea [L (d, θ) |X = x]

}
6= ∅ for all Xp ∈ P, a ∈ A

}
.

The effective size of the sample space X , denoted N (X ,A), is the minimal size

of a partition in P∗, N (X ,A) = min {|P | : P ∈ P∗} .

Proposition 5. Suppose that D and X are finite, that L (d, θ) is bounded, and that

there exists a decision d ∈ D with L (d, θ) ≥ L (d′, θ) for all θ ∈ Θ and some d′ ∈ D,

with strict inequality for all θ ∈ Θ̃ ⊆ Θ. Suppose further that Pra

{
Θ̃
}
> 0 for some

a ∈ A, and that Fθ has support X for all θ ∈ Θ. If N (X ,A) ≥ |D|, then any rule

c that is admissible in decision risk is inadmissible in communication risk and vice

versa.
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Proof of Claim 5. We prove this result building on Proposition 5. First, note that

choosing d′ = 1 yields strictly lower loss than choosing d = ι for all θ ∈ Θ, which

verifies the condition on the loss. Next, note that the effective size N (X ,∆ (Θ)) of

the sample space is bounded below by the size N
(
X , Ã

)
for a restricted audience

Ã ⊆ ∆ (Θ). Consider the audience consisting of only three agents, a0, a1, and a2.

Agent a0 has a uniform prior on Θ. This implies that θt is independent of θs for

all s 6= t. By the monotone likelihood ratio property of the binomial distribution,

provided arg maxtXt is unique this agent strictly prefers to set d = arg maxtXt. When

arg maxtXt is not unique, by contrast, this agent strictly prefers d ∈ arg maxtXt to

d 6∈ arg maxtXt, but is indifferent among d ∈ arg maxtXt.

Note, next, that

a (θ|X) =
f (X; θ) da (θ)∫

Θ
f
(
X; θ̃

)
da
(
θ̃
) , Ea [θ|X] =

∫
Θ

θda (θ|X)

for f (X; θ) the probability mass function of Fθ, where Fθ has full support for all

θ ∈ Θ. Hence, Ea [θ|X] is continuous in a (for the L1 norm on A). Thus, there exists

an open neighborhood N (a0) around a0 such that all agents a ∈ N (a0) strictly

prefer to set d ∈ arg maxtXt to d 6∈ arg maxtXt for all realizations of X. Within this

neighborhood, there is an agent a1 who strictly prefers d = 1 when arg maxtXt =

{1, ..., T}, and an agent a2 who strictly prefers d = 2 conditional on the same event.

This immediately implies, however, that N
(
X , Ã

)
≥ T + 1, since

(
arg min
d∈D

Ea0 [L (d, θ) |X] , arg min
d∈D

Ea1 [L (d, θ) |X] , arg min
d∈D

Ea2 [L (d, θ) |X]

)

=

(arg maxtXt, arg maxtXt, arg maxtXt) when arg maxtXt is a singleton

(arg maxtXt, 1, 2) when arg maxtXt= {1, ..., T}
,

where the right hand side takes T + 1 distinct values. 2

Proof of Claim 6. Note that ρω (c) = Raω (c) for aω

(
Θ̃
)

=
∫
A a
(

Θ̃
)
dω (a) for

all Θ̃ ⊆ Θ. Hence, weighted average decision risk is simply the decision risk for the

agent with the weighted average prior, aω. However, the rule cω (X) corresponds to
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the posterior mean for this prior, and hence is the almost-surely unique optimal rule

in the decision model.

For the communication model, by contrast, note that Ea [τ |c∗ω (τ̂η, τ̂γ)] = Ea [τ |X]

corresponds to agent a’s posterior mean. Hence, c∗ω (τ̂η, τ̂γ) allows all agents to obtain

the same risk as if they observed the full data, and so is optimal in the communication

model. By contrast, for all agents a ∈ A, Vara (c∗ω (τ̂η, τ̂γ) |cω (τ̂η, τ̂γ)) > 0, so c∗ω (τ̂η, τ̂γ)

has strictly lower weighted average risk than cω (τ̂η, τ̂γ) under the communication

model. 2

Proof of Claim 7. Note that for all c, supa∈ARa (c) = supω ρω (c) . Hence, to obtain

a minimax decision rule, we want to solve minc∈B supω ρω (c). Note, next, that the

decision risk of čω (τ̂η, τ̂γ) is the same for all a ∈ A, and that čω (τ̂η, τ̂γ) corresponds

to a Bayes decision rule for an agent with an infinite-variance normal prior on η, and

independent N (0, σ2
τ ) and N

(
0, ρ2

γ · Idim(γ)

)
priors on τ and γ, respectively. Denote

the corresponding (limit of) weights by ω∗, and note that for all a ∈ A,

Ra (čω) = ρω∗ (čω) = min
c∈B

ρω∗ (c) .

Since ρω (čω) = ρω∗ (čω) for all ω, it follows immediately that čω is a minimax decision

rule. Since the loss function is strictly convex, it is almost surely unique. Finally,

building on the proof of Claim 6, note that Ea [τ |čω (τ̂η, τ̂γ)] =
(σ2
γ+ρ2γψγ)

−1
·τ̂γ

σ−2
τ +(σ2

γ+ρ2γψγ)
−1 for

all a, and that Ea

[
(Ea [τ |čω (τ̂η, τ̂γ)]− Ea [τ |c∗ω (τ̂η, τ̂γ)])

2] = ε > 0 for a constant ε.

Hence čω is not minimax under the communication model. 2

Proofs of Propositions

Proof of Proposition 1. For part (i) of the proposition, under the garbling con-

dition, an agent who observes c (X) can generate draws from the distribution of

c′ (X) |c (X) , X by applying ψ to the observed report c (X) . This, however, implies

that Ea [L (d, θ) |c (X) , c′ (X)] = Ea [L (d, θ) |c (X)], so

Ra (c) = Ea

[
inf
d∈D

Ea [L (d, θ) |c (X)]

]
≤ Ea

[
inf
d∈D

Ea [L (d, θ) |c′ (X)]

]
= Ra (c′) .
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For part (ii) of the proposition, let us write E ⊆ X for the event that

arg min
d∈D

Ea [L (d, θ) |c (X)] ∩ arg min
d∈D

Ea [L (d, θ) |c′ (X)] = ∅.

Note that Ea [L (d, θ) |c (X) , E ] = Ea [L (d, θ) |c (X)] , and consider f : X → D
such that f (X) lies in arg mind∈D Ea [L (d, θ) |c′ (X)] almost surely. By definition,

Ea [L (f (X) , θ)−mind∈D Ea [L (d, θ) |c (X)] |E ] > 0, so since

Ea

[
L (f (X) , θ)−min

d∈D
Ea [L (d, θ) |c (X)] |X \ E

]
≥ 0,

the result follows. 2

Proof of Proposition 2. Sufficiency of c (X) implies that for any other report

c′ (X) and any prior a, the distribution of θ|c (X) , c′ (X) is the same as that of θ|c (X).

Hence, Ea [L (d, θ) |c (X) , c′ (X)] = Ea [L (d, θ) |c (X)] , and the argument is the same

as in part (i) of Proposition 1. 2

Assumption 3. Either (i) D is compact or (ii) D is locally compact with a countable

base, and {d : L (d, θ) ≤ l} is compact for all l ∈ R and θ ∈ Θ.

Lemma 1. Under Assumption 1, Assumption 2 implies Assumption 3.

Proof of Lemma 1. Case (i) of Assumption 2 trivially implies case (i) of Assump-

tion 3. For case (ii), closed subsets of Euclidean spaces are locally compact, and lower

semi-continuity of L implies that {d : L (d, θ) ≤ l} is closed for all l. Assumption 2

(ii) implies that {d : L (d, θ) ≤ l} is bounded. 2

Lemmas 2 and 3, Proposition 4, Corollary 2, or their proofs, consider generalized

decision functions. For H the space of bounded continuous functions h : D → R, and

M the set of bounded signed measures on X , define the class of generalized decision

functions G as the set of bilinear functions g : H ×M → R with (i) |g (h, µ)| ≤
‖h‖∞ ‖µ‖1, (ii) g (h, µ) ≥ 0 if h ≥ 0 and µ ≥ 0, and (iii) g (1, µ) = ‖µ‖1 if µ ≥
0. For c ∈ B, let c (·;x) be the measure on D implied by c (x), define gc (h, µ) =∫
X

∫
D h(d)dc (d;x) dµ (x), and note that {gc : c ∈ B} ⊆ G. Further, for `θ : D → R

define W (g, `, a) =
∫

Θ
g (`θ, Fθ) da (θ), and note that W (gc, L, a) = Ra (c) .
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Lemma 2. Under Assumption 1, decision risk is lower semicontinuous in a for all

c ∈ C. Under Assumptions 1 and 3, the same holds for communication risk.

Proof of Lemma 2. Theorem 42.3 of Strasser (1985) establishes that G is convex,

and compact in the weak topology (i.e. the topology such that gk → g if and only

if gk (h, µ) → g (h, µ) for all (h, µ) ∈ H ×M). Let Lθ (d) = L (d, θ) . Since L (d, θ)

is lower semicontinuous in d for all θ, Lemma 47.2 of Strasser (1985) establishes that

g (Lθ, µ) = sup`∈Lθ g (`, µ) for Lθ the set of bounded, nonnegative, and continuous

functions ` : D → R with ` ≤ Lθ. Note that g (`, µ) is continuous with respect to the

product of the weak topology on G and the L1 topology on M.

Next, define L̃ to be the set of functions ˜̀ with ˜̀
θ ∈ Lθ for all θ and supθ,d ˜̀

θ (d)

finite, and let W
(
g, ˜̀, a

)
=
∫

Θ
g
(

˜̀
θ, Fθ

)
da (θ) . W

(
g, ˜̀, a

)
is lower semi-continuous

with respect to the product of the weak topology on G and the L1 topology on

A. Since G is compact in the weak topology, the theorem of the maximum implies

that infg∈GW
(
g, ˜̀, a

)
is likewise lower semicontinuous on A (see Lemma 17.30 in

Aliprantis and Border, 2006).

The supremum of a family of lower semicontinuous functions remains lower semi-

continuous, so both sup˜̀∈L̃W
(
g, ˜̀, a

)
and sup˜̀∈L̃ infg∈GW

(
g, ˜̀, a

)
are lower semi-

continuous in a. For the former, note that sup˜̀∈L̃W
(
g, ˜̀, a

)
= W (g, L, a) (again

by Lemma 47.2 of Strasser, 1985). For the latter, note that L̃ is convex, while G is

convex and compact in the weak topology. W
(
g, ˜̀, a

)
is lower semicontinuous in g

and continuous in ˜̀ (for the uniform topology on L̃). Hence, Sion’s (1958) minimax

theorem (Corollary 3.3 in Sion 1958) implies that

sup
˜̀∈L̃

inf
g∈G

W
(
g, ˜̀, a

)
= inf

g∈G
sup
˜̀∈L̃

W
(
g, ˜̀, a

)
= inf

g∈G
W (g, L, a) .

Hence, infg∈GW (g, L, a) is lower semicontinuous in a.

To complete the proof, we need to relate these results back to attainable risk

functions. For decision risk, recall that {gc : c ∈ B} ⊆ G and note that W (gc, L, a) =

Ra (c) , so we have proved lower semicontinuity of Ra in a.

For communication risk, consider case (i) in Assumption 3. Theorem 43.2 of

Strasser (1985) implies that for each g ∈ G, there exists some c ∈ B with gc (h, µ) =
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g (h, µ) for all µ ≥ 0 and all lower semicontinuous functions h that are bounded

from below. Hence, infg∈GW (g, L, a) = infc∈CW (gc, L, a). Next consider case (ii).

Theorem 43.5 of Strasser (1985) implies that for each g ∈ G, there exists c ∈ B
such that gc (h, µ) ≤ g (h, µ) for all h with compact sublevel sets {d : h (d) ≤ l}.
Hence, again infc∈CW (gc, L, a) = infg∈GW (g, L, a). However, infc∈CW (gc, L, a) is

equal to the communication risk based on observing the full data, so the conclusion

is immediate by considering the special case where the data X are reduced to just

the analyst’s report. 2

Proof of Proposition 3. We discuss the argument for the decision model, while

the result for the communication model follows by the same argument. Lemma 2

implies that Ra (c′) is lower semicontinuous in a, while Ra (c) is continuous in a by

assumption. Hence, Ra (c′) − Ra (c) is lower semicontinuous. Dominance of c means

that {a : Ra (c′)−Ra (c) < 0} is empty, while {a : Ra (c′)−Ra (c) > 0} is nonempty,

and is open by lower semicontinuity. Since ω has full support, this implies that

ρω (c′)− ρω (c) =

∫
A

1 {Ra (c′)−Ra (c) > 0} (Ra (c′)−Ra (c)) dω (a) > 0.

Since Ra (c) is bounded ρω (c) is finite, proving part (i) of the proposition.

For part (ii) of the proposition, suppose towards contradiction that the rule c

minimizes weighted average risk, but is dominated by another rule c′′. The proof of

part (i) implies that ρω (c) > ρω (c′′) , which contradicts weighted average optimality

of c. 2

Proof of Corollary 1. By Proposition 3, under the conditions of the corollary any

rule that minimizes weighted average risk with respect to full-support weights in a

given model is admissible in that model. Hence, if the set of admissible rules for the

decision and communication model do not overlap, weighted average risk optimality

in the decision model implies inadmissibility, and hence non-optimality in weighted

average risk for any full-support weights, in the communication model. 2

Lemma 3. (Extension of Lemma 46.1 in Strasser 1985) Suppose that L is bounded

and continuous. For every continuous f : A → R the following two statements are
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equivalent: (i) there exists g ∈ G such that f (a) ≥ W (g, L, a) for all a ∈ A, (ii)∫
f (a) dω (a) ≥ inf

{∫
W (g, L, a) dω (a) : g ∈ G

}
for every weight function ω on A.

Proof of Lemma 3. That (i) implies (ii) is immediate. To show that (ii) implies

(i), note that Theorem 45.6 of Strasser (1985) (taking M1 = {f} and

M2 = {W (g, L, a) : g ∈ G}) implies that for C (A) the set of continuous functions on

A, there exists some g̃ in the closure of W = ∪g∈G {ḡ ∈ C (A) : ḡ ≥ W (g, L, ·)} with

g̃ ≤ f . Theorem 42.3 of Strasser (1985) establishes that G is convex, and compact

in the weak topology. Hence, W is closed by Remark 45.4 of Strasser (1985), and

g̃ ∈ W . Thus, (ii) implies (i), and we have established equivalence. 2

Corollary 2. (Extension of Corollary 46.2 in Strasser 1985) The conclusion of

Lemma 3 holds for any loss function L that is lower semicontinuous in d.

Proof of Corollary 2. That (i) implies (ii) is again immediate. To obtain (i) from

(ii), define L̃ as in the proof of Lemma 2. Condition (ii) implies that
∫
f (a) dω (a) ≥

inf
{∫

W
(
g, ˜̀, a

)
dω (a) : g ∈ G

}
for all ω and all ˜̀∈ L̃. Hence, by Lemma 3, for each

˜̀∈ L̃ the set
{
g ∈ G : W

(
g, ˜̀, a

)
≤ f (a) for all a ∈ A

}
is nonempty. Note that this

set is decreasing as ˜̀ increases pointwise, so since L is the pointwise upper bound of L̃,

Cantor’s intersection theorem implies that {g ∈ G : W (g, L, a) ≤ f (a) for all a ∈ A}
is nonempty, which in turn implies (i). 2

Proof of Proposition 4. As discussed in Section 5.2, we need only show that

inf
c∈B

sup
a∈A

Ra (c) ≤ sup
a∈A

inf
c∈B

Ra (c) .

To do so, note that supa∈A infc∈B Ra (c) ≤ supω infc∈B ρω (c) , and let f (a) be the

constant function equal to supω infc∈B ρω (c) for all a. By construction
∫
f (a) dω (a) ≥

inf
{∫

W (g, L, a) dω (a) : g ∈ G
}

for all ω, so by Corollary 2 there exists g∗ ∈ G with

f (a) ≥ W (g∗, L, a) for all a ∈ A.

For case (i) in Assumption 3, Theorem 43.2 of Strasser (1985) implies that there

exists some c∗ ∈ B with gc∗ (L, µ) = g∗ (L, µ) for all µ ≥ 0. For case (ii), Theorem

43.5 of Strasser (1985) implies that there exists c∗ ∈ B such that gc∗ (L, µ) ≤ g∗ (L, µ).
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For these c∗, supa∈ARa (c∗) ≤ supω infc∈B ρω (c) by construction. Since A is convex,

however, supω infc∈B ρω (c) is equal to supa∈A infc∈B Ra (c), so infc∈B supa∈ARa (c) ≤
supa∈ARa (c∗) ≤ supa∈A infc∈B Ra (c) and c∗ is a minimax rule under the decision

model. 2

Proof of Proposition 5. We first argue that any rule c that is admissible in

decision risk must use the decision d with probability zero. Specifically, consider any

a with Pra

{
Θ̃
}
> 0, and a rule c with Pr {c (X) = d|X = x} > 0 for some x. By our

full support assumption Pra

{
c (X) = d|θ ∈ Θ̃

}
> 0, and conditional on θ ∈ Θ̃ the

rule c yields strictly higher expected loss than the rule c′ which chooses d′ whenever

c chooses d and agrees with c otherwise. By assumption c′ has weakly lower loss for

all parameter values θ 6∈ Θ̃, and so dominates c. Hence, any rule admissible in the

decision model must choose d with probability zero.

We next show that any rule that chooses d with probability zero is inadmissible

in the communication model. Consider any such rule c̃, and for each d̃ ∈ D define

X
(
d̃
)

=
{
x ∈ X |Pr

{
c̃ (X) = d̃|X = x

}
> 0
}

. If ∩x∈X (d) arg mind∈D Ea [L (d, θ) |X = x]

is nonempty for all d∗ ∈ D \ {d} and a ∈ A, then we can show that N (X ,A) ≤
|D| − 1. Hence, since N (X ,A) ≥ |D| , there exist d∗ ∈ D \ {d}, a ∈ A such that

∩x∈X (d∗) arg mind∈D Ea [L (d, θ) |X = x] = ∅. For d∗∗ ∈ arg mind∈D Ea [L (d, θ) |c̃ (X) = d∗],

there exists x̃ ∈ X (d∗) and d∗∗∗ ∈ D such that

Ea [L (d∗∗∗, θ) |X = x̃] < Ea [L (d∗∗, θ) |X = x̃] .

Consider the rule c∗ that is equal to c̃ except that it reports d when X = x̃. By

Proposition 1, c∗ dominates c̃ in communication risk.

Hence, we have shown that any rule admissible in the decision model must choose

d with probability zero, while any rule that chooses d with probability zero is inad-

missible in the communication model. �
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B Extension of Optimal Treatment

Assignment Example

This section extends the analysis of optimal treatment assignment in Section 4 to

show that when agents have sufficiently informative priors, it may be communication-

preferred to report ι even in some cases without exact ties. To develop these results

we consider a restricted audience Ā ⊂ ∆ (Θ).

Claim 8. Suppose that for an audience Ā and some nonempty set E ⊆ X ,

arg max
t

Ea [θt|X] = arg max
t

Ea [θt] for all a ∈ Ā, X ∈ E . (2)

Then the rule c̄ which takes c̄ (X) = c∗ (X) when X 6∈ E and c̄ (X) = ι when X ∈ E
has weakly lower communication risk for all a ∈ Ā than does the rule c∗.

Claim 9. If in addition to the conditions of Claim 8, (i) {X : arg maxtXt = {1, ..., T}}∩
E 6= ∅, (ii) there exists a ∈ Ā with arg maxt Ea [θt|c∗ (X)] = c∗ (X) for all X, and (iii)

arg maxt Ea [θt] is a singleton, then c̄ dominates c∗ in communication risk.

Proof of Claim 8. Note that all agents have the option to choose d ∈ arg maxt Ea [θt]

conditional on observing c̄ (X) = ι, while choosing d ∈ arg maxt Ea [θt|c̄ (X)] condi-

tional on observing c̄ (X) 6= ι. By the definition of E this yields a weakly lower

expected loss for agent a than choosing some d ∈ arg maxt Ea [θt|c∗ (X)]. 2

Proof of Claim 9. If arg maxt Ea [θt] is a singleton for a given agent a and (2) holds,

then conditional on X ∈ E agent a strictly prefers not to randomize their decision.

At the same time, since arg maxt Ea [θt|c∗ (X)] = c∗ (X), under the rule c∗ this agent’s

decision is random conditional on the data when

X ∈ E ∩
{
X : arg max

t
Xt = {1, ..., T}

}
.

As in the proof of Claim 8, since the agent is free to choose d = c̄ (X) conditional

on c̄ (X) 6= ι and d = arg maxt Ea [θt] conditional on c̄ (X) = ι, we see that c̄ yields
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a strictly lower communication risk for this agent. Since we have shown in the proof

of Claim 8 that c̄ yields weakly lower communication risk than c∗ for all a ∈ Ā, c̄

dominates c∗. �

C Extension of Combining Multiple

Moments Example

Building on Section 5.3, now suppose that X = Gτ + (η′, γ′)′ + ν + ε, where ε ∼
N (0, σ2 · Ik) . The analyst again observes X, while the variance σ2 > 0 is com-

monly known, and the loss is L (d, θ) = (d− τ)2 . The unknown parameters are

θ = (τ, η, γ, ν). All agents a ∈ A have N (0, ρ2
τ ) priors on τ , dogmatic priors on

η with Pra {η = ηa} = 1, and N
(
0, ρ2

γ · Idim(γ)

)
priors on γ independent of τ .

If each agent a believes that Pra {ν = 0} = 1, the analysis in this extension co-

incides with that in Section 5.3. Instead, suppose that each agent a believes that

ν ∼ N (0, Va) for Va a positive semidefinite matrix, and that ν is independent of

(τ, η, γ). To express agent a’s posterior mean for τ conditional on X under this

assumption, define

Ξa = σ2 · Ik +

[
0 0

0 ρ2
γ · Idim(γ)

]
+ Va, σ

2
τ,a =

(
G′Ξ−1

a G
)−1

.

Agent a’s posterior mean for τ (and hence optimal decision) is

ca (X) =
1

σ−2
τ,a + ρ−2

τ

(
G′Ξ−1

a

(
X − (η′a, 0

′)
′))

.

Further suppose that the set of Va matrices over the audience is given by V =

{Va : a ∈ A} = ζ ·
{

p.s.d. Ω ∈ Rk×k : ‖Ω‖ ≤ 1
}

, for ‖·‖ the Frobenius norm and ζ > 0.

Hence, as ζ → 0, the situation converges to that described in Section 5.3.

We first show that X is a minimal (marginally) sufficient statistic for τ in this

setting. Note that since matrix inversion is a homoemorphism between {Ξa : a ∈ A}
and {Ξ−1

a : a ∈ A}, {Ξ−1
a : a ∈ A} has a nonempty interior. This implies, however,

that for any X, X̃ ∈ Rk with X 6= X̃, there exists a ∈ A such that ca (X)− ca
(
X̃
)

=
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G′Ξ−1
a (X−X̃)
σ−2
τ,a+ρ−2

τ
6= 0, i.e., for whom these two realizations of the data imply different

optimal decisions.

We next show that the communication risk of c∗ω (τ̂η, τ̂γ) as described in Section 5.3

approaches that of the optimal rule based on X as ζ → 0. Note that Ξ−1
a is continuous

in Va, so as Va → 0, Ξ−1
a → Ξ−1

0 , where V0 = 0, and ca (X)→ Ea [τ |c∗ω (τ̂η, τ̂γ)] for each

realization of X. The dominated convergence theorem thus implies that as Va → 0,

R∗a (X)→ R∗a (c∗ω), as we aimed to show.
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